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Abstract 

In a recent paper Komaki studies the second-order asymptotic proper
ties of the predictive distributions, using the Kullback-Leibler divergence 
as loss function. He shows that estimative distributions with asympto
tically efficient estimators can be improved by predictive distributions 
that do not belong to the model. The model is assumed to be a multi
dimensional curved exponential family. In this paper we generalize the 
result assuming as loss function any f-divergence. It appears a relations
hip between the a-connections and the optimal predictive distributions. 
In particular, using an a-divergence to measure the goodness of a predic
tive distribution, the optimal shift of the estimative distribution is related 
with a-covariant derivatives. The expression we obtain for the asympto
tic risk is also useful to study the higher-order asymptotic properties of 
an estimator, in the mentioned class of loss functions. 
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1 Introd uction 

The main goal of this work is to provide distributions that are close, in the 

sense of an f-divergence, to an unknown distribution belonging to a curved 

exponential family 

P = {p(x; 0(u)) = exp[0i(u)x¡ - it,(0(u))]}. 

In order to obtain this, we could estimate u by u and consider p(x; u). This kind 

of distributions are called estimative distributions. The procedure assures that 

they belong to the model. However, perhaps we could obtain a better result by 

considering predictive distributions, that is, distributions outside the model. 

Let p( x; x 1,..,,N) be a predictive distribution obtained by sorne rule from the 

sample of size N, xi~N = (x(l), ... , x(N)). An f-divergence D¡ of the predic

tive distribution to the true one is defined as: 

where f is a convex function with minimum value in l. We measure the close

ness, by 

In order to choose p, we could try to find the distribution that minimizes ( 1 ), 

uniformly in u, among "all probability distributions" equivalent to p. Since there 

are sorne technical problems in giving a structure of differentiable manifold to 

this infinite dimensional space, we follow the procedure suggested by Komaki 

(1995) and try to solve the problem only for distributions belonging to a finite 

dimensional model containing P. We construct this model by enlarging P in 

orthogonal directions. As we shall see, only a finite number of special directions 

contribute to improve the estimative distribution, so that the solution does not 

depend on the enlarged mo'del, whenever it contains such directions; that is, we 
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can add more and more orthogonal directions without changing the solution. In 
this sense, we can consider the problem solved in the infinite dimensional space 

F of all probability distributions equivalent to p. The relevant directions are 

just the difference between what we call, with certain abuse of language, the 

a-covariant derivatives of the a-score function in F and in P. 

For the sake of simplicity, we shall work with a-divergences D0 , that 1s 

f-divergences with 

f(z) = fa(z) = { 
4 [1 ~] l-02 - Z 2 

z log z 
-logz 

a# ±1 
a=l 
O'.= -1. 

Note that D0 is a continuous function with respect to a. In the final remark, 

we extend the results to any f-divergence. 

2 The enlarged model 

Let E be a n-dimensional full exponential family, that is, 

E= {p(x; 0) = exp[0ix¡ -1/,(0)], 0 E 0}, 

where the probability functions p(x; 0) are densities with respect to sorne refe

rence measure µ and 

is an open subset of R.n. We consider the model P to be a ( n, m )-curved 

exponential family of E, m ~ n, 

P = {p(x; u)= exp[0i(u)x¡ -1/,(0(u))], u E u}, 

with U smooth m-dimensional submanifold of 0. 
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Let 
lcx(x;u) = { l~o [Pi;º(x;u)- 1] a# 1 

logp(x; u) a= 1 

be the so-called a-representation of p(x; u), see Amari (1985), p.66. From now 

on, the index a will be used to denote all that regards a-representation of 

geometric quantities. The tangent space Tu of P in u is identified with the 

vector space spanned by 

a l ( 
. ) _ fJ/ 0 ( x; u) 

ac,X,U- O ' uª 
a= 1,···,m, 

that are the components of what we call the a-score function. The first and 

second derivatives of 10 ( x; u) are related to those of l( x; u) = log p( x; u) = 
l 1(x;u) by 

and 

Defining 

Ecx(f(x)) = j J(x)pª(x; u)µ(dx), 

we have that the inner product of vectors Gala and Obla, 

<loes not depend on the a-representation; it is the ( a, b )-component of the Fisher 

matrix, gab• In the sequel, we omit the subscript a in the inner product and in 

the expectation, since it will be clear from the representation used. We indicate 

with gªb the inverse of gab and use the repeated index convention. 

Following Amari (Arnari et al. 1987), we can construct a fibre bundle on P 
by associating to each point p(x; u) E P a linear space Hu defined by 

Hu= { h(x): j p~(x; u) h(x)µ(dx) = O, j pª(x; u) h2(x)µ(dx) < oo} 
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If h, g E Hu we can define an inner product on Hu by 

(h,g) = j pª(x;u)h(x)g(x)µ(dx); 

4 

it is well defined by the Cauchy-Schwarz inequality. Then, since Hu is a closed 

subset of L2(pª µ ), it is a Hilbert space. The tangent vectors Dala( x; u) satisfy 

f lb!. f p 2 (x;u)8ala(x;u)µ(dx) = p(x;u)8al(x;u)µ(dx) = O 

and 

thus, Tu C Hu. Notice that the inner product defined on Tu is compatible with 

that in Hu. Attached to each point we have a different Hilbert space and the 

aggregate 

1-i(P) = U Hu 
uEU 

constitu,tes the fibre bundle. It is necessary to establish a one to one correspon

dence between Hu and Hu,, when p(x; u) and p(x; u') are neighbouring points, in 

order to express the rate of variation of a vector field as an element of the fibre 

bundle. If we move in the direction Galo and hu E Hu, Oahu (/. Hu in general. 

Anyway, if hu is a smooth vector field, in the sense that we can interchange the 

integral an·d the derivative, 
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Thus, we can define the a-covariant derivative in 1í as: 

e, (1í) 1 + O'. l=2 
'y élalahu = Oahu + -2-p 2 E(oalohu), 

If hu(x) = 8bl0 (x; u) (notice that it is a smooth vector field), we have 

e, (1í) 1 + o: l=.a 
'y 00¡

0 
Obla = OaObfa + -

2
-p 2 9ab 

and the a-covariant deriva ti ve in P is the projection of ~ ~~Ía Obla on Tu: 

These connections coincides with the a-connections defined in Amari (1985), 

p.38. lt is natural to define 

even though we do not have an o:-covariant derivative in the whole :F. We use 

the superscripts m and e respectively for the -1 and +1-covariant derivatives. 

Let M be any regular parametric model containing P. We can consider on 

/\1( the coordinate system ( u, s ), where uª, a = 1, ... , m, is the old coordinate 

system on P and sI, I = m + 1, ... , r, r > m, are orthogonal coordinates to 

P. Moreover we suppose s = O for the points in P. The tangent space to the 

enlarged model M is now spanned by vectors 8al0 (x; u, s ), a = 1, ... , m, and 

8Il0 (x;u,s), I = m + l, ... ,r. Omitting the argument (x;u,s) will not cause 

any confusion since we are interested on the tangent space to M on the points 

with coordinates s = O and 

Oala(x; u, s)ls=O = Oala(x; u), a= 1, ... , m. 

We call hI the tangent vectors &Il0 (x;u,s)is=O, I = m + l, ... ,r. Notice that 

the h¡'s belong to Hu, If sI = O(N- 1 ), we can write 

~ I 1 p(x;u,s) =p(x;u)+p 2 (x;u)s hI(x)+o(N- ), (2) 
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smce 
. _ .!.±2.. 
h¡(x)=a¡la(x;u,s)ls=O=P 2 (x;u)a¡p(x;u,s)ls=O· 

Expression (2) is an approximation, up to order N-1
, for the predictive distri

bution. It integrates one, since vectors h¡'s belong to Hu. In the case when 

/ [ 
slh¡(x) l p( x; u) exp l=.2. µ ( dx) < oo, 

p 2 (x;u) 

we can obtain another useful expression for p( x; u, s ). Since the h¡'s belong to 

Hu, we have 

and 

where 

/ [ 
slhr(x) l p(x;u)exp l=.2. µ(dx)=l+o(N- 1

) 
p 2 (x; u) 

. - . [ slh¡(x) l -1 p( X, u, S) - p( X, u) exp 1 _ 0 - <Pu ( s) + o( N ) , 
p-2-(x; u) 

<Pu(s) = log/p(x;u)exp [ S::¡(x) ] µ(dx). 
p 2 (x; u) 

3 Predictive distribution 

(3) 

We consider predictive distributions p(x; uN(x), s(x)), with uN(x) a smooth 

asymptotically .efficient estimator, hence first order equivalent to the maximum 

likelihood estimator, of the form 

(4) 

where, fixed x, 
Uoo(x) = lim UN(x) 

N • oo 
and 

ü(x) = lim N (uN(x) - Uoo(x)) 
N • oo 
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depend on N only through x. 

For each N, UN is a map 

UN: f-+ P, 

since x can be identified with the point in f having expectation parameters 

T/i = Xi- Then, u00 is also a map from f to P and we can associate to UN 

a family of ancillary (n - m)-dimensional submanifolds off, A = {A(u)}, 
where A(u) = u;}(u). Following Amari (1985), p.128, it can be shown that 

u00 is consistent if and only if every p( x; u) E P is contained in the associated 

submanifold A( u) and u00 is asymptotically first order efficient if and only if 

A( u) is orthogonal to P in u. On the other hand, since 

lim u00 (x) = lim uN(x) 
N• oo N• oo 

in probability and 

lim [v1N( uoo(x) - u)] = lim [v1N( uN(x) - u)] N• oo N• oo 
in distribution, the results still hold for UN. 

If we introduce a coordinate system v\ "' = m + 1, ... , non each A( u), every 

point in the full exponential family containing P is uniquely determined by a 

pair ( u, v ). It is convenient to fix v = O for the points in P. We denote by indices 

a, b, e, ... E {1, ... ,m} the coordinates u in P, by"',,\,µ, ... E {m+l, ... ,n} 

the coordinates v in A(u) and by a, /3, ,, ... E {l, ... ,n} the new coordinates 

w = ( u, v) in f. Since UN is asymptotically efficient, 

ga~(u) = O. 

Indices i, j, ... E {1, ... , n} are used to denote both the natural parameters 

0 and the expectation parameters 17 in f. We use indices I, J, K, ... E { m + 
1, ... , r} for the coordina tes s we add to enlarge the model P and A, B, C, ... E 

{l, ... ,r} for the coordinates t = (u,s) in the enlarged model M. By the 

coordinate system we choose on M, 

ga1(u) = O. 
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Theorem 3.1 The average a-divergence from the true distribution p( x; u0 ) to 
a predictive distribution p(x; UN(x), s(x)) is given by 

o 

s = NE[s(x)], 

Qabcd = E(oalobloclOdl), 

Hrst= \ Varia Oslo, Otlr.x), 

Tabc = E( Oaloblocl), 

( 
e 2 ) e acK e bd>. H p =H H 9cd91t>.9ab, 

( 
m 2 ) - m 1t>.a m µ1.1b H .A - H H g,.µ9>.v9ab 

(5) 

and v' a is the a-component of the general covariant derivative of a tensor with 

respect to the a-connection. 
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Proof: For simplicity, we omit the subscript N and write u(x) for uN(i). By 

expanding an a-divergence from p(x; u0 ) to p(x; u, s), we obtain: 

' ' J (p(x;u,s)) ( ) ( ) Dc,(p(x;u0 ),p(x;u,s)) = fa ( ) p x;uo µ dx 
p x; uo 

~,4 1 ~A ~B Jc,(l) + Eu0 (fJAfa)t + 2Eu0 (0A0Bfa)t t 

1 ~A ~B ~e 1 ~ A ~B ~e ~o ~ 4 
+6Eu0 (8AOBOcfc,)t t t + 

24 
Eu0 (0A0B0C0DÍa)t t t t + o(ltl ) 

1 ~A -B ( 1 ª ª ) ~A ~B ~e 2,9AB(uo)t t + 2 r ABC (uo) + 3TABc(uo) t t t 
, ~A~B~c~o ~4 + li ABC n ( Uo )t t t t + o( 1 t 1 ) , 

~ ' 1 
where t = t - to= ( u - Uo, s) and KABCD = 24 Euo ( aAaBaconfa)- Taking into 
account that, from the definition of fa, 

Ía(l) = O, J:(1) = 1, J:'(1) = a; 3, Ji4)(1) = (a - 3)1a - 5), 

we can write KABCD in a form that will be useful for the calculations: 

J_ { (a - 3)(a - 5) j 0AP0BPOcp8op (d ) 
KABCD = 24 4 p3 µ X (6) 

+a; 3 j OAOBP;cpoop µ(dx)[6] + j 0A0B~P0DP µ(dx)[4] 

+ J 0A0BP:c0DP µ(dx)[3]}, 

where the bracket [ ] refers to the sum of a number of different terms obtained 

by permutation of the indices. We suppose s(x) to be a smooth function of x 
and Op(N- 1

). Since 9ar(uo) = o, r ABC is symmetric with respect to indices A 
and B and TABC is a syrnmetric tensor, we can rewrite the expansion of Da as: 

Da(p(x; u0 ),p(x; u, s)) = 
1 ( )~a~b 1 ( ),[,J (1 rª ( ) ªT. ( )) ~a~b~e - 29ab Uo U U + 2gu Uo s s + 2 abe Uo + 3 abe Uo U U U 

+ [i (rabr (uo) + 2 farb (uo)) + aTabl(uo)] uªi'is1 + Kabed(uo)uªubueud 

+op(N-2), 
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where u = it - u0 • The mean value of DO/ is: 

Euo { DO/ (p( x; Uo), p( x; it, s))} = (7) 

}gab( uo)Euo [uªu 6
] 

+}gu( uo)Euo [s1 s1
] 

+ ( t r'abe ( uo) + ; Tabe( uo)) Euo [uªu6iíe] 

+ (1 fabI (uo)+ f'aib (uo) + aTabI(uo)) Eu0 [uªií6s1] 

·+I<abed( uo)Euo [uªií6iíeud] + o( N-2
). 

For the calculations we use the following relations: 

O/ m l+a 
r abc=r abe --2-Tabe, 

-DI O/ 

r abc=r abe +aTabe• 

Moreover, since gbK = O, we have that 

m m 
r abK + r aKb -TabK 
O/ O/ 

r abK + r aKb +aTabK. 

It follows that 
O/ O/ 

r aKb= - r abK -aTabK 

and, similarly, 
O/ O/ 

fa1b= - f abl -aTabl· 

Let us begin by calculating Eu0 [iíªu6]. First of all notice that, defining 

- 1~ r,.;· 
l = 0V ~ log p(x(l); u)= v N {0 1(u)x¡ -1J'.,(0(u))}, 
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we obtain 
1 -

xi = xi - T/i = x¡ - ai',/J = J¡;tai1 

and we can easily calculate the moments of x: 

11 

(8) 

The bracket ( ) means symmetrization with respect to the indices included, 

e.g., 

Since 

Euo [( uª - gªcxc)(ii - ldxd)] = 

E,, [ ( u0 

- Jwg•'aJ) (u• - )wl'Bi)] 
E [uªub] + ~gab - _2_E [a [u(a] gb)d uo N J¡;fuo d 

E [uªub] + ~gab - _2_E [a li,1,(ª] gb)d uo N ffi uo d 

Euo [uªub] + !gªb - !adEuo [1iª] l)d 

- Euo[uªub] + !gªb - !adEuo [u(ª+ u~ª] l)d 

E [~a~b] 1 ab 2 0 A(a b)c 
- uo U U - Ng - N cUbia.s9 , 

we can write the mean squared error of u as: 

E [~a~bi 1 ab 2 0 A(a b)c E [(~ª ac~ )(~b bd~ )] 
uo U U = Ng + N cUbiasg + uo U - g Xc U - g Xd . (9) 
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Let Woo = (uco,v) = (uco - Uo,v). Xi= T/i(u,v), can be expanded at (uo,O) as 

If we put Bai = 00 r¡i( u0 ) and Ca/3i = Oc,Of3T/i( uo), we can write: 

and, by inversion, 

~0 B 0 i~ 1 BªkB-yiBsjc - - + o (N- 1 ) W00 - Xi - 2 -y,SkXiXj p 2 

ª 13 B i ~ l C-YfoB ¡B 1 ~ ~ + O (N- 1 ) - g /3 Xi - 2 -y ,5 X¡X j p 2 , 

where Bªi is the inverse of B 0 ¡, indices are raised and lowered by multiplication 

by gªi and 9ai and C13-y ª = C/3-ykBªk. Since gªK = O, we can write 

~a - abB i ~. - !c"lsªB ¡B j ~.~.+O (N-1) Uco - g b Xi 2 'Y ,5 X,X3 P 2 • 

Notice that 

smce . . . .. . . aok .. aoi 
B , - B ·g'J - a r,·g'J - a !:l .• l.g'J - !:lk!:l .• f.g'J -

e, - ClJ - a J - c,U;'f/ - -0 U U3<p - -0 • 
wª wª 

Moreover, 
m 

Ca/3-y =f a/3-y • 

This is easily prooved because, since the coordinate system r¡ has the property 
m . 

o~ bein§ fl.at withmrespect to the -1-connection, we have that Va; fP = O, where 

o' = -
0 

, hence Vºª 83 = O. Thus, 
T/i 
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and, by taking the inner product of each rnernber with Ó-r = B-rJ)i, we obtain 

the result. Thus we can rewrite the expansion for u~ as: 

By ( 4), 
1 m 5 l 

uª= gªbxb - 2 r-r ªx-rx.s + Nuª(x) + op(N- 1
). (10) 

We can now calculate the bias of u. By (10) and relations (8), 

utias Eu0 [uª(x)] - u~= Eu0 [uª(x)] (11) 

- -1 f'Y8ªEuo[x-yxs] + ~Euo[uª(x)] + o(N- 1
) 

1 mr a be l Hm a KA + l -a + (N-I) - - 2N be 9 - 2N KA g N U O , 

m m 
where u 
obtain: 

- u(u0 ) and H,-Aa=f ,_Aa• By substituting (10) and (11) in (9), we 

Since 

Eu0 [ (-} fªf3ªxaXf3 + ~uª(x)) (-} f-róbx-rxs + ~üb(x))] = 

E [( 1 mf af3a- - + 1 -a) ( 1 mf-rSb- - + 1 -b)] + (N-2) u -- X Xf3 -U -- X X< -U O 0 2 ª N 2 -r º N 
3 mf a{3a mf-ySb + 1 -a -b 

4N2 9(af39-rS) N 2 U U 

__ l_u,(a mr b)ged _ _ l_ü(a Hm b)gKA + o(N-2) 
N2 ed N 2 KA 

1 mf a{3a mf-yób( + 2 ) + 1 -a-b 4N2 9af39-rS 9a-r9f3ó N 2 U U 
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__ l_il(a mr b)gcd - _l_il(a Hm b)g,,;,\ + o(N-2) 
N2 cd N2 ,-,\ 

1 (mr a cd+ Hm a ,,;,\) (mr b ef+ Hm b µv) + 1 mr 0t/3a mr"Yób 
4

N 2 cd g ,,;,\ g ef g µv g 2N 2 90t"'19/38 

+ _l_ila-b - _l_il(a mr b)gcd - _l_il(a Hm b)g,,;,\ + o(N-2) 
N2 U N2 cd N2 ,-,\ 

- 4~2 (red a gcd + H ,-,\ a g",\) (re/ gef + H µ} gµv) + 2~2 f'cd a ? e/ gce lf 

+ 
2
~2 ( H ,,;,\a H µvb g,-µ9,\v + 2 H c,,;a H d,\b 9cd9,-,\) 

+ _l_ -ailb - _l_il(a mr b)gcd - _l_il(a Hm b)g,,;,\ + o(N-2) 
N2 U N2 cd N2 ,-,\ 

- 41~2 (rcdªgcd+ H,.,\ªg",\) (re/gef+ Hµvb9µv) + 2~2 fcdª fe/gcegdf 

+2~2 (H",\a Hµvbg,-µg,\v + 2 Jrc" /¡bd,\9cd9,-,\) 

+ _l_ilªüb - _l_il(a mr b)gcd - _l_il(a Hm b)g,,;,\ + o(N-2) 
N2 N2 cd N2 ,-,\ ' 

we can finally write: 

Euo[uªub] = (12) 

- ~gab - _l_gc(ba (mr a)gde) - _l_gc(ba (Hm a)g",\) + 2.gc(ba uª) N N2 e de N2 e KA N2 e 

+ 4~2 (rcdªgcd+ H,-,\ ªg",\) (1\/gef + H µv bgµv) + 2~2 fcdª r e/gceif 

+ 2~2 ( H 11:,\a H µvb 911:µ9,\v + 2 H acK H bd,\ 9cd911:,\) 

1 1 (m 1 ( m +-ilªüb _ -il a f b)gcd _ -i], a H b)g,,;,\ + o(N-2) N2 N2 cd N2 ,-.,\ . 

Since s1 = Ov(N-1
) and it is a smooth function of x, 

E [AIAJ] __ l -I-J+ (N-2) 
uo s s - N2 s s o . (13) 

By (10) and relations (8), 

E [~a ~b ~e] 
u0 UUU = (14) 



Prediction and a-connections 15 

(15) 

and 
Euo[uªiiucud] = :29(abgcd) + o(N-2). (16) 

We can now use (12), (13), (14), (15), (16) and (6) to calculate each term of 
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o - 5 m rabe 3a - 1 mr Tdee ab ª - 3 T rabe 
- - 4N2 r abe - SN2 abe 9de9 + 12N2 abe 

1 ª mr dea be 1 -ra Hm KAa be 1 mr mr eab 
- 2N2 r abe 9de9 - 2N2 abe 9K>.9 - N2 abe 

1 m m dee ab l ª m KAe ab l m m abe 
- 4N2 r abef 9de9 - 4N2 r abeH 9K>.9 - 2N2 r abef 

1 -ra b-a + 1 rª ab-c + (N-2) + NZ ba U 2N 2 abe g U O ; 

(
1 a ª T. ) E ¡~a~bA[] 1 ª ab-l (N-2) 2 r abl + r alb +a abl UQ u u s = - 2N2 H abl g s + o ; 

It should be noticed that each term in (5) is a scalar, that is, it does not 

depend on the coordinate system. 

4~2 (¡¡~) + 

1 (-a 1 ma ,->,) (-b 1 m b µ,v) 1 
1

2° (-a 1 m a ,->,) + 2N2 9ab U - 2 H ,-). 9 U - 2 H µ,v g + N2 '\7 a U - 2 H KA g 
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is the only part involving the estimator uN; 

1 ( -I-J fl ab-I) 
2N 2 9/JS S - abl 9 S 

is the only term depending on s, and the rest depends only on the model. Ex

pression (5), calculated in s = O, can be used to study the asymptotic behaviour 

of UN with respect to an a-divergence. For a = -1 the last term disappears 

and we obtain the result present in Komaki (1995), Proposition 1, p.10. 

Remark. From (5) we can obtain a decomposition of the average a-divergence 

from the true distribution to any predictive one, in two parts: 

Eu0 { Da (p( x; uo), p( x; uN(i ), s(x)))} ( 17) 

= Eu0 {Da (p(x; uo),p(x; UN(i)))} + 
2

~
2 

[9IJS1sJ - Habl gªbsl] + o(N-2
). 

The first term in ( 17) depends on the choice of the estimative distribution 

and the other on the shift orthogonal to the model P. It is well known that 

the problem of choosing a second-order efficient estimator uN(i) has not, in 

general, a unique solution. On the other hand the following theorem solves the 

problem of the choice of the optima! shift orthogonal to the model. 

Theorem 3.2 The second order optima/ choice of s1(x) is given by: 

Al (-) 1 Ha /(A (-)) ab(A (-)) sopt X = 2N ab UN X g UN X , (18) 

where uN(i) is any asymptotically efficient estimator. 

Proof: By Theorem 3.1, 

Eu { Da (p( x; u), p( x; uN( x), s(x)))} - Eu { Da (p( x; u), p(x; uN(x), sopt(i)))} = 
1 (N2E(AI)E(AJ) 1 ª I ª J ab cd) - 2N2 9I J S S - 4 H ab H cd g g 

1 ª ab (NE(AI) 1 ª I cd) (N-2) - 2N2 H abl 9 S - 2 H cd g + O 
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1 E('l)E('J) 1 ª r nª J ab cd 
29IJ S S + SNZ Hab cd g g 9IJ 

- 2~ Habl gªb E(s 1
) + o(N-2

) 

1 (NE('[) 1 e, I ab) (NE('J) 1 a J cd) (N 2) -
2

N 2 9IJ S - 2, Hab g S - 2, Hcd g + O - • 

Since g¡J is positive definite, Sopt is asymptotically optimal. • 

Let us now define, for a, b = 1, ... , m, 

a (.r) a 
ha, - y' 80/J)bla- y' Bolaabla (19) 

1 + a 1-a a 
- ªªªble,+ _2_P_2_9ab- f ab cacla 

1-a ( 1 - a 1 + a a ) 
- p-2- OaObl + --.¡-8al8bl + -2-gab- r ab cacl . 

Vectors h00 are, by definition, orthogonal to the original model P. Moreover 

they belong to Hu. The following theorem explains the important role they 

play in our analysis. 

Theorem 3.3 The diff erence in average a-divergence from the true distributi

on, between the estimative distribution p( x; UN( x)) and the optima/ predictive 

distribution p(x; UN(x), Sopt(i)), is maximal if and only if vectors h 00 , a, b = 
1, ... , m, belong to the linear space spanned by the h1 's. In this case, the opti

ma/ predictive distribution is 

p(x; u, S0 pt) = (20) 

( A) [ 1 ab ( 1 - a 1 + a ª e )] _ 1 =px;u 1+
2
Ng OaObl+-

2
-oalobl+-

2
-gab-fab Ocl +o(N ). 

a 
Proof: By (19) and definition of Habl, we have that 

/ 1 + O'. 1-a Q ) (hoo, hr) = \ OaObla + _2_P-2-9ab- r ab cacla, h¡ (21) 
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a 
(OaObla, f}¡la) =Hab[ • 

By substituting (18) in (17), 

Eu {Da (p(x; u),p(x; uN(x)))} - Eu {Da (p(x; u),p(x; uN(x), sopt(i)))} = 
1 ª ª ab cd [J (N-2) 1 11 a ab IJ !::i / 112 (N-2) =8N2HabIHcdJ999 +o =8N2 Habl99 UJa +o 

= 8~211 (hoo, h1 )gªb gIJ hJll2 + o( N-2), 

that depends only on the projection of the h00 's on the linear space spanned by 

the h¡'s. Thus, it is maximal if and only if the h00 's are included in this space 

and its maximal value is 

Eu {Da (p(x; u),p(x; uN(x)))} - Eu {Da (p(x; u),p(x; uN(x), sopt(i)))} = (22) 

= 
81

~ 2 ll(hoo, h1)gªbg1J hJll 2 + o(N-2) = 
8
~ 2 llgªbh00 11

2 + o(N-2
). 

In this situation, by (18), (21) and (19), we have that 

,1 h 
8 opt l 

1 a labh 1 ab(h h)[Jh 1 abh 
2N H ab g I = 2Ng a'>, I g J = 2Ng a', 

1 !..=.2. ab ( 1 - O'. 1 + O'. a e ) 
2

NP 2 9 OaObl + -
2

-8al8b[ + -
2
-gab- f ab Gel , 

and the re~ult follows by substituting (23) in (2). 

(23) 

• 

Remark. Including vectors h00 's on the enlarged model, allows us to attain the 

best improvement on the estimative distribution. For this reason, in the sequel 

we consider only models M containing directions h00 's. Since (20) depends only 

on the h00 's, Theorem 3.3 assures that the same optimal predictive distribution 

is obtained from any regular parametric model M containing P and the h00 's. 

In this sense, (20) gives a predictive distribution that can be considered optimal 

in the space F of ali probability distributions equivalent to p. 



Prediction and a-connections 

In the case when P itself is a full exponential family, we have: 

and 

l ( x; 0) = 0i x ¡ - ¡/; ( 0), 

Oal(x; 0) = Xa - Oa1/J(0) 

Since the second derivatives of l(x; 0) do not depend on x, 

and 

I'abc - E [ ( &a&bl + l ~ a &al&bl) &el] 

1-o: 1-o: 
- -

2
-E(f)a[f)b[f)cl) = -

2
-Tabc• 

Thus, we can write (20) in a simpler form: 

20 

p(x; u, Sopt) = (24) 

= p(x; u) [ 1 + \~ a gª6 (&al&bl - 9ab - Tatélcl)] + o(N-1
) 

= p(x; u) [1 + 14~0: (gª6(xa - Oa1/J)(xb - 0b1P) - m - gª6Tabc(xc - Oc1/J))] 

+o(N-1 ). 

Notice that for a= 1 there is no correction, that is, we do not move out of the 

full exponential model. Moreover, for a = -1 we obtain 

p(x; u, sopt) = 
= p(x; u) [1 + 2~ (gª 6(xa - Oa1/J)(xb - 0b1P) - m - gª6Ta{(xc - Oc1/J))] 

+o(N- 1
), 

that is exactly the same result as Vidoni ( 1995), expression ( 3.1), p. 7. 
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Example 3.4 We consider m-dirnensional rnultivariate distributions N(µ, Im), 

where µ = (µi), i = 1, ... , m, is unknown. We have that 

9ij(µ) = Óij 

and 
a 
Ljk(µ)=O, 

for all a. Let now x(l), l = 1, · · ·, N, be independent N(µ, lm) and µ = ftN(x) 
be any estirnator for the mean vectorµ, where 

1 N 

x = N ¿ x(l). 
l=l 

By (19), 

By (24), 

p(x; µ,s.,,)= p(x; µ) [1 + \~"' t ((x; - µ;)' - 1)] + o{N-1 
). 

Anyway, in this case we better substitute (23) in (3): 

p(x;µ,s.,,) = p(x;µ)exp [2~g"' P~;. -</>"] + o(N-1
) 

- p(x; µ) exp [\~"' t ((x; - µ;)' - 1) - ,/>µ] + o(N-1
) 

- exp -- 1 - -- ¿(x1 
- µ1 )2 + o(N- 1

). [ 
1 ( 1 _ ª) m . . l 
2 2N i=l 

We thus have that the optirnal predictive distribution is 
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For o: = -1, it is distributed as 

that coincides, up to order N- 1, with the result of Barndorff-Nielsen and Cox 

(1994), p.318. From (22) we can calculate the difference in average a-divergence 

between the estimative distribution and the predictive distribution: 

1 . . 2 
-llg1Jh··II 8N2 IJ 

- (1- º/ llp12º f [(xi -f/)2 -1Jll2 
32N 1::l 

( 1 - o) 2 / [~ [( i - -i) 2 - 1] l 2 d = ( 1 - o:) 2 
- 32N2 ~ x µ p x 16N2 m, 

1=1 

that <loes not depend on µ, the efficient estimator used. Let now µ be the 

James-Stein estimator for µ, that is, 

Then 

µoo(x) = lim µ = x, 
N • oo 

and 
m-2 

P = fl(µ) = -L~ ( i)2µ. 
1:l µ 

We can use expression (5) with s = O to compare the two estimative distribu

tions obtained respectively frorn the rnaxirnum likelihood estirnator P,mie = x, 
and the James-Stein estimator: 

Eµ, {Do (p(x;µ),p(x;µmle))} - Eµ {D 0 (p(x;µ),p(x;µ))} = 
1 -i - . 1 -i -2 1 ( m - 2)2 -2 = - •) ,y2g¡jµ µ1 - N/J¡µ + o(N ) = ?N2 Lm ( i)2 + o(N ). 

-• - t=l µ 
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Remark. Let us consider an f-divergence D ¡ as loss function. Without loss 

of generali ty, we can su ppose J ( 1) = O and J" ( 1) = l. Theorem 3 .1 can be 

easily generalized to this case by putting a = 2J111 (l) + 3 and by substituting 

the coeffi.cient 

of the term 

with 

(a-ll)(a-1) 
32 

Q g abgcd 
abcd 

N2 

¡(4)(1) - 2f111 (l) - 4 
¡3 = 8 . 

In fact, in the expantion of D ¡, the first and second order terms remain unc

hanged. The coeffi.cient of the third order term is 

(f '" ( 1) + 3) 1 e 

6 
TABC + 2 f ABC, 

and it can be written as 
a l º 
3TABC + '.2 f ABC 

with a= 2J111 (l) + 3. The coeffi.cient ¡3 is calculated by 

¡(4)(1) O'.+ 1 ¡(4)(1) - 2J111(l) - 4 
---= 

8 8 8 
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