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Abstract

In a recent paper Komaki studies the second-order asymptotic proper-
ties of the predictive distributions, using the Kullback-Leibler divergence
as loss function. He shows that estimative distributions with asympto-
tically efficient estimators can be improved by predictive distributions
that do not belong to the model. The model is assumed to be a multi-
dimensional curved exponential family. In this paper we generalize the
result assuming as loss function any f-divergence. It appears a relations-
hip between the a-connections and the optimal predictive distributions.
In particular, using an a-divergence to measure the goodness of a predic-
tive distribution, the optimal shift of the estimative distribution is related
with a-covariant derivatives. The expression we obtain for the asympto-
tic risk is also useful to study the higher-order asymptotic properties of
an estimator, in the mentioned class of loss functions.
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Prediction and a-connections 1
1 Introduction

The main goal of this work is to provide distributions that are close, in the
sense of an f-divergence, to an unknown distribution belonging to a curved

exponential family

P = {p(; 6(u)) = explf(u)a; — ¥(6(u))]}.

In order to obtain this, we could estimate u by % and consider p(z;4). This kind
of distributions are called estimative distributions. The procedure assures that
they belong to the model. However, perhaps we could obtain a better result by

considering predictive distributions, that is, distributions outside the model.

Let p(z;xz;.n) be a predictive distribution obtained by some rule from the
sample of size N, 1.y = (z(1),...,2(N)). An f-divergence Dy of the predic-
tive distribution to the true one is defined as:

Dy (p(;u), B(&; T1nn)) / f( ”“”)p(x;uww),

where f is a convex function with minimum value in 1. We measure the close-

ness, by

B (Dy(p5)) = [ Dy (pla; ), i 21om)) oo Wz (1)

In order to choose p, we could try to find the distribution that minimizes (1),
uniformly in u, among “all probability distributions” equivalent to p. Since there
are some technical problems in giving a structure of differentiable manifold to
this infinite dimensional space, we follow the procedure suggested by Komaki
(1995) and try to solve the problem only for distributions belonging to a finite
dimensional model containing P. We construct this model by enlarging P in
orthogonal directions. As we shall see, only a finite number of special directions
contribute to improve the estimative distribution, so that the solution does not

depend on the enlarged model, whenever it contains such directions; that is, we
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can add more and more orthogonal directions without changing the solution. In
this sense, we can consider the problem solved in the infinite dimensional space
F of all probability distributions equivalent to p. The relevant directions are
just the difference between what we call, with certain abuse of language, the

a-covariant derivatives of the a-score function in F and in P.

For the sake of simplicity, we shall work with a-divergences D,, that is

f-divergences with

4 [l—zuz_a} a# +1

1-a?
fz) = falz) = 4 zlogz a=1
. —log z a=-1

Note that D, is a continuous function with respect to a. In the final remark,
we extend the results to any f-divergence.

2 The enlarged model

Let £ be a n-dimensional full exponential family, that is,

€ = {p(z;0) = expl6'z: — ¥(6)], 0 € O},

where the probability functions p(z;6) are densities with respect to some refe-

rence measure y and

0= {0 : /exp[eixi]/,t(da:) < oo}

is an open subset of R". We consider the model P to be a (n,m)-curved
exponential family of £, m < n,

P = {p(z;u) = expl0(u)z: — Y(6(u))], u € U},

with U smooth m-dimensional submanifold of ©.
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Let , -
o= { P F ] ot
log p(z; u) a=1
be the so-called a-representation of p(z;u), see Amari (1985), p.66. From now
on, the index a will be used to denote all that regards o-representation of
geometric quantities. The tangent space T, of P in u is identified with the

vector space spanned by

aala(x;u)z alaa(z;u)’ a=1,---,m,
that are the components of what we call the a-score function. The first and
second derivatives of [,(z;u) are related to those of {(z;u) = logp(z;u) =
li(z;u) by

Bl = p =0

and

8:0,l, = p* (aaz+ %40, z).
Defining

Ea(f(2)) = [ f(2)p" (aiwhu(da),

we have that the inner product of vectors d,/, and Oy/,,
(Oalas Osla)a = Ea(Baladpls) = / Bnlaylop® u(da) = / 8,106 p p(dz) = (Bal, By,

does not depend on the a-representation; it is the (a, b)-component of the Fisher
matrix, g,». In the sequel, we omit the subscript a in the inner product and in
the expectation, since it will be clear from the representation used. We indicate
with ¢g°® the inverse of g,; and use the repeated index convention.

Following Amari (Amari et al. 1987), we can construct a fibre bundle on P
by associating to each point p(z;u) € P a linear space H, defined by

{ /p (z;u) p(d:c-O/p :cuh2()(d:c)<oo}
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If h, g € H, we can define an inner product on H, by

(h,g) = /p"(:v;u)h(x)g(w)u(dw);

it is well defined by the Cauchy-Schwarz inequality. Then, since H, is a closed
subset of L*(p®u), it is a Hilbert space. The tangent vectors Julq(x; u) satisfy

/puzﬁ(z;u)aala(x;u)u(dx) = /p(x;u) 0ul(z; u)p(dr) =0

and

/p"(w;u)(6ala(w;u))2u(dw) = /p(w;U) (Bal(z; u))*p(dz) = gao < 005

thus, T, C H,. Notice that the inner product defined on T, is compatible with
that in H,. Attached to each point we have a different Hilbert space and the

aggregate
= |J H.

u€U
constitutes the fibre bundle. It is necessary to establish a one to one correspon-
dence between H, and H,, when p(z; u) and p(z;u') are neighbouring points, in
order to express the rate of variation of a vector field as an element of the fibre
bundle. If we move in the direction 0,l, and h, € H,, 3,h, ¢ H, in general.
Anyway, if h, is a smooth vector field, in the sense that we can interchange the
integral and the derivative,

0=6/p hyp(dz)

1 a=1 a
=/ ;ap-f" Ouphu(dz) + [ 9% Ouhun(dz)

_l+a a3l e
= = / pF O, hup(de) + / p'5® Buhup(de)

1 a
= +a /p"‘ Oulo hup(dz) +/pu2_ Ozhyp(de)

- / * [Buha + 2525 B(@ula b (o).
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Thus, we can define the a-covariant derivative in ‘H as:

L s B (Bulahe).

%(g?:l)cihu = 8ahu +

If hy(x) = Opla(z;u) (notice that it is a smooth vector field), we have

l+a 1-a
P ? Gab

%g?zlabla = aaabloz +

[»3
and the a-covariant derivative in P is the projection of v‘af,Labza on Ty,:

%Bala.abla = <€7g{fliablaa acla>ngadla zf‘abc QCdadla-

These connections coincides with the a-connections defined in Amari (1985),

p.38. It is natural to define
%gfl)oabla =%gi{1)cabla,

even though we do not have an a-covariant derivative in the whole F. We use

the superscripts m and e respectively for the —1 and +1-covariant derivatives.

Let M be any regular parametric model containing P. We can consider on
M the coordinate system (u,s), where u®, a = 1,...,m, is the old coordinate
system on P and s’, I = m +1,...,r, r > m, are orthogonal coordinates to
P. Moreover we suppose s = 0 for the points in P. The tangent space to the
enlarged model M is now spanned by vectors 0,/,(z;u,s), ¢« = 1,...,m, and
Orla(z;u,8), I = m +1,...,r. Omitting the argument (z;u,s) will not cause
any confusion since we are interested on the tangent space to M on the points

with coordinates s = 0 and
Oola(zi U, 8)|s=0 = Oulalz;u), a=1,...,m.

We call h; the tangent vectors Orl,(z; u, s)|s=0, [ = m + 1,...,7r. Notice that
the hy'’s belong to H,. If s' = O(N~!), we can write

p(z;u,s) = p(z;u) + p 3 (o3 u)s hi(z) + o(N7H), (2)
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since
hi(z) = Oila(z; uy 8)|s=0 = p”'gg(:c; u)0rp(z; u, 8)|s=o-

Expression (2) is an approximation, up to order N, for the predictive distri-

bution. It integrates one, since vectors hj’s belong to H,. In the case when

I
/p (z;u)exp [———hL(——)—} p(der) < oo,

P (zu)

we can obtain another useful expression for p(x;u,s). Since the Ar’s belong to

H,, we have

I
/p (z;u)exp [———u] p(dz) =14+ o(N7Y)

pz (z;u)
and
I
(25 uy5) = plou) exp [——’@i = buls )} o N71), 3)
p 7 (z5u)
where
6.(5) = log [ pleiu)exp [—Iﬁ’i)—] u(d)
P 5 ()]

3 Predictive distribution

We consider predictive distributions p(z;in(Z),3(Z)), with dN(a'c) a smooth
asymptotically efficient estimator, hence first order equivalent to the maximum
likelihood estimator, of the form

. 1

UN(Z) = oo (Z) + —U(E) + 0,(N 1), (4)

where, fixed 7,

and
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depend on N only through Z.

For each N, 4y is a map
un : E— P,
since Z can be identified with the point in £ having expectation parameters
n; = ;. Then, Gy is also a map from £ to P and we can associate to iy
a family of ancillary (n — m)-dimensional submanifolds of £, 4 = {A(u)},
where A(u) = 47!(u). Following Amari (1985), p.128, it can be shown that
o 15 consistent if and only if every p(z;u) € P is contained in the associated
submanifold A(u) and 4., is asymptotically first order efficient if and only if
A(u) is orthogonal to P in u. On the other hand, since
Jim oo (2) = lim 4n(Z)

in probability and

lim [VN(ito(2) — )] = Jim [VN(in(z) - )]

= m,
in distribution, the results still hold for uy.

If we introduce a coordinate system v*, Kk = m+1,...,n on each A(u), every
point in the full exponential family containing P is uniquely determined by a
pair (u,v). It is convenient to fix v = 0 for the points in P. We denote by indices
a,b,c,...€{1,...,m} the coordinates u in P, by x, A\, u,... € {m+1,...,n}
the coordinates v in A(u) and by ¢, 5, 7,... € {1,...,n} the new coordinates
w = (u,v) in €. Since ux is asymptotically efficient,

Jax(u) = 0.

Indices ¢, j,... € {1,...,n} are used to denote both the natural parameters
¢ and the expectation parameters n in £. We use indices I, J, K,... € {m +
1,...,r} for the coordinates s we add to enlarge the model P and A, B, C,... €
{1,...,r} for the coordinates ¢ = (u,s) in the enlarged model M. By the

coordinate system we choose on M,

gar(u) = 0.
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Theorem 3.1 The average a-divergence from the true distribution p(z;uo) to
a predictive distribution p(z;un(Z),$(2)) is given by

Euy { Do (p(x; wo), p(z; 4n(Z), 3(2)))} = (3)

1 e m
- Fovanleis)+ (1)
1
5 g

L (- L B
Nz Ve\" T
! a7 _ bl
+2_ﬁ'5 (gus 8 — Har g°s )
a - abe (a_ 11)(&-—-1) ab_cd
+12N2Ta CT + 32N2 QGCg
1
+4N2g“gbd/ (8 Oyp— Tab® e,D) <6 dup— T fafp) p(dz)

3

_8N2gab Cd/ (8 85}7— Fab aep) (a adp— FCdfafp)
1

~ 529" bd f 3apObp (3 0up— Tea? 3fP) —H(dz)

a+1
e
where all the quantities are evaluated in u,

!
p
1
P

abng Vid Tabc + O(N—z)’

5= NE[5(2)],
Quabed = E (0,10410.1041) ,
ﬁmt= <€7a,1<, asla,atla>,
Tose = E(8:18410,0),

(f?%> =H* Hbd)\gcdgn/\gab,

(Hi) =H"* H"®g..0\.90

and Ya7a is the a-component of the general covariant derivative of a tensor with
respect to the a-connection.
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Proof For simplicity, we omit the subscript N and write 4(z) for an(Z). By

expanding an a-divergence from p(z;ug) to p(z;u,S$), we obtain:

Da(pl100), p(5312,8)) = | fa( plzi ) p(z; uo)u(de)

;cuo

= fa(]-) + Euo(aAfa)t‘ + §Euo(6Aana)t~At~B

~h gy~ 1 a Dy~ .
+%Eu0(8,48380 FuVAPPEC + ooy (04Bp000p £)IATPHCHP + of )
1 I 1 a oAb
= §9AB(u0)tAtB + (-2' TaBc (uo) + (—;’TABc(Uo)) i4{Bic

+ K apep (w4190 + o( |#)),

A 1
where t = t — to = (4 — uo, §) and Kapep = é—zEuo(BABBBCBDfa). Taking into
account that, from the definition of f,,
" " oa—3 o—3)a—=>5
Lm=0 =1, =272 o= ezdesd

we can write K agcp In a form that will be useful for the calculations:

I ((a=3)a—5) [ O4pBspdopd
Kagep = o {(a L(a )/ 4 Bf,scp 2P u(dz) (6)
8,463;)6051317 }
+ ————— d.’L‘ 3 2
j[ —u(dz)f3]

where the bracket [ | refers to the sum of a number of different terms obtained
by permutation of the indices. We suppose §(Z) to be a smooth function of z
and O,(N~1). Since g,r{uo) = 0, [ asc is symmetric with respect to indices 4
and B and T4p¢ is a symmetric tensor, we can rewrite the expansion of D, as:

Do (p(z; uo), p(z; 4, 8)) =
1 oy 1 gy (la e
= 59as(uo)i @b + §ng(uO)sIsJ + (5 Cabe (wo) + 3Tabc(u0)> RTALY
]_ (03 a3
+ [5 (Fabl (uo) + 2 Care (uo)> + aTab[(UO)] 421287 4 Kapea(uo)utubacal
+OP(N—2)7
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where @ = @ — ug. The mean value of D, is:

E., {Da(p(x;uo), p(z; 4, 8)

1
= Egab(uo Euo [u

2

1 a
+ (5 Fabc (UO) +

)} =
'

1 N
+291s(uo) By, [8787]

g-Tabc(qu Ey (@]

1 o a anba
+ (5 Fasr (wo)+ Tars (uo) + aTabI(uo)) E, w3

+ I{abcd(UO) Euo [

arabacut] + o(N72).

For the calculations we use the following relations:

m 1+ o
Fabc Fabc —’__’_Tabca

-

Moreover, since g5, = 0, we have t

2

I abc:f‘abc +aTabc-

hat

0,0y pOs 0yp0, 0, 8,004 O,
0= 8agb;c = /—‘Q)“_gﬂ(dl')ﬁ-/-—bg——-zlu(dx) _/M

P
= TI'abx + Faxbd —Tab

p p?

K

= f‘abn + f‘anb +aTabm

It follows that

a o
Faop= — Cabr —aTabn

and, similarly,
[ 4
Lans=

Let us begin by calculating E,,[a®

u[\/]z

ogp

o
— Tabr —aT 1.

#*). First of all notice that, defining

= VN{0'(0)z: — ¥(8(u))},

p(dz)

10

~I
~—
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we obtain

Li=3i—-ni=I,— 0=

-

and we can easily calculate the moments of Z:

E,[#] =0, E,lid,] = 2ot o

N N’
- E.[0:l0;10,1 1
E, [2:&;8) = #l NZTka, (8)
. E.,[0:10;10,101 3 -
E,,[3:8;8k3s] = [ N 0n] = 290Gk + O(N~3).

The bracket ( ) means symmetrization with respect to the indices included,
e.g.,
39(i;gkn) = GijGkn + GikGin + GinGik-

Since

1 2 .
= Eylad’]+ Ng 7—A7Euo [ad al ]gb)d
~a~b 1 2 7olel b
= Euo[uu]-i-——g —WEUO [Bdu ]g
2 ~(a
= E,[ua’] + Ng N—adEuo [u( ng)d
ax 1 2 ~(a
= B, [a*a’] + N9~ w0iEu [u( + }gb)d
1 2 0. e
= Euo ] - —ﬁg —ﬁacugiasgb) 9

we can write the mean squared error of @ as:

Euwl@*8] = 0% + 50:45,67 + Ew[(8* = ¢*2)(@ - ¢20)].  (9)
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A

Let oo = (ficoy ) = (foo — U, V). Ti = ni(, ), can be expanded at (uo,0) as
Z: = ni(uo) + Oami(uo) g, + 3 3 Bami(uo) bW, + Op(N72).
If we put By = 0afi(uo) and Coagi = 0,08mi(uo), we can write:
o ~a 1 ~a ~f -3
I;= Bm'woo + -§Cag,-woowoo + OP(N 2)
and, by inversion,
~ o at 1 ak vt R8J ~ = -3
w, = B*%; — EB BB C.ygkxle -+ Op(N 2)

' . 1 . .
= ¢*°Bs'i; — 50*“3;3515:@]- + O,(N™%),

where B* is the inverse of B, indices are raised and lowered by multiplication

by g* and g, and Cs,* = Cp,xB°*. Since g°* = 0, we can write
~a abBi~ 1C'y&zB iBj~~ 0 N—é
g = 9" By'%i — 5 Y Bs'Z:&; + Op(N72).

Notice that

A 1 - 1 .
Ba2~i = _Bazail = —aal = ~a,
since 80’“ 96
By’ = Bajg? = Oanjg” = 0.0%g" = ow g = owe’
Moreover,

m
Capy =Tapy -

This is easily prooved because, since the coordinate system 7] has the property
of bemg flat with respect to the —1-connection, we have that Va- &’ =0, where
0 = 577— hence Va 8’ = 0. Thus,

8a 8ﬁ =%aa ngc‘)j = (8(,ng)61
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and, by taking the inner product of each member with 8, = B.;0", we obtain
the result. Thus we can rewrite the expansion for 42, as:
ab ~

ftgo =g Ty — T["l'ysai,y.’ig + Op(N-%)

(SN

By (4), . .
4 = g“b:ib _ _2_ F‘Y&aiyié + [—v-aa(i) + Op(N-l). (10)

We can now calculate the bias of 4. By (10) and relations (8),

Upias = Eug [@*(2)] - ug = Euol[ﬁa(i)] (11)
= =5 B E e + 5 Bul@(@)] + oV
1

m 1 m 1
_ a bc _ a_ KA ~a -1
= TON Isc"g 2N Ho "9 + VU +o(N7),

where & = u(ug) and ?IKAQ=FRAQ. By substituting (10) and (11) in (9), we
obtain:

Eyo[at1®] =
_ L 1 e(b T a) de 1 c(b T @) kA 2 e(bg ~a)
= Ng —Nfg ac(Fde g)——ﬁgg 3C<H~,\ g >+Z—V-2-g d.u
m 1m 1
+E., [(—% [*%%,i5 + %a“(f)) (—§ L% %5 + Na”(z))] + o(N72).
Since
1m 1 lm 1
R CICLE RS )
0 5 [ Zap + i (z) 5T x,,x5+Nu(z)
1m . . 1._ 1m 1 _ _
= Bu |(~5 Foreaazs 4 5oo) (-5 Fo0e 4 520)] 4o
3 m m 1
—_ afla §b —a~-b
- 4N2 F F’Y g(a)@g‘hs) + —Aﬁu u
1 m 1 m
___Za(a chb)gcd _ ﬁ'l—t(a H oy b)gm\ + O(N_z)
1 m g,m |
= N re® Fwsb(gaﬁg-ys + 29a~gps) + Z—V-Eu a°
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= 4—1—5 (ch°g°d+ H m"g“> (ﬁf b9 + Hou bg“") + -2%5 T 77,955
+’ﬂ1ﬁaaﬂb - 7v1—2a(“ Tedg — %ﬁ(" HaPg™ + o(N7?)
= ;1—1—2 (?cd“g°d+ H nx“g“> (ﬁf bg* 4 H bg“”) + gllv; Tea® Tes P99
+2_13 ([";,m B g +2 H ;‘IdAbgcdgm\>
+—%a“a” - Lza(“ Tea¥g™ — —A}ﬁﬁ(“ HaPg™ + o(N72)
= Zﬁ% (?cd“g“{-# H m“g“) (rﬁej bg* + Ho bg“") + 51—2 Fea® Tesg™g?
+5]1T73 (?[““ H* geugsn +2 H™" ;Ibd'\gcdgm>
+7V1—2a“a" - z—vl?a(a Tea?g* - 1—V1—2ﬂ(“ Ho g™ + o(N7?),
we can finally write:
Euo[a“ﬁb] = (12)
_ l_ga.b _ _Lgc(bac ('fldea)gde) _ _1__gc(bac (Flu a)gn/\) n _Q_gc(bacaa)
N N? N? N?
+£_1_]1§7_2_ ('I:‘cd agedy By agm\> (’Iﬁef bt 4 ?Iw bg;w> n 5—11\72_ P e Tf‘lef bgee gt
b (B B +2 0 000
+N1§fz“a" - %ﬁ(“ TePg* - —]\lﬁ‘(“ HaPg™ + o(N7?).
Since 37 = O,(N~!) and it is a smooth function of Z,
By [6187] = —= 5757 4 o(N-?). (13)

N2
By (10) and relations (8),

E, [@4%4°] = (14)
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1 . 1
= Fu [(gc‘did———l“""“ wﬁ’ﬁ“)

2N
1 m 1 1 1
be ~ o ~8b ~ = . — ees —_—
<g Ty T x"““sz“)(g gy ”<+N“)]
1 e C 9 afla ey C ab—-¢ —
_ N2 (Tdcfgad gl — 2 PaBghed gl g g0 + 3¢a )) +o(N™?)
aoc 9 apla € [+1 [ -
- = (Tb 51“ a( gbl 109 grasder) + 39 ))+o(N 2),
E,[utubs]] = ]\{,2g“bsl+o(N %) (15)
and 3 ,
B, lutatacdd] = Nzg(“bg“” +o(N7?). (16)

We can now use (12), (13), (14), (15), (16) and (6) to calculate each term of
expression (7). We have that:

1 ety
2gabEu0( b) -

= om 1 e g [ 0a020:pOcp 1 e de / 820.p020.p
= gv ~awade" [ TR alde) - grnee® [ SR ud)
1 ac de 8aacpadpa¢p T dec ab 1 T cde ab
toN29 9 /————2— (dz )+§N5 Tasel *gaeg + 5Nz Tasel “*gaeg
1 ec a ca 1 abc
2N2 Fabch gdegb‘f“m[‘abcr b—mrabch
1 m
_Wa"' (Hm\agm\) + __a @ + — 4N2 Fachabc
+_1__[2(,;,2)+<H )]+ Fmeg L
4N? P A 4N? abe m\g 2N2 cda G

1 Lm a KA —b o u.u) -2\,
+2N2gab (u 5 Holg ) (u ~3 Hu 9" ) +o(N~%);

1 ol n 1
5911Euo[313J]— syzIs 187 + o( N7%);

la o
(5 Cabe +'§Tabc) E, @34 =
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o — 5 m abe 3a dec ab 3 abe
= TUNT Labe T — NE Fabc T%“g4eg + ToN? Top. T

1 ™ dea 1l - m xAa be 1 ™ cab
2N2 Fach gdeg 2N2 F abcH [25%!) N2 Fa cF

. F Fdec 1 F Hrw\c 1 'I'i Fabc
4N2 abc gdeg 4N2 abe gnxg 2N2 abe

1 -ea

+—A72- T ee'u® + 51—\5 Fabc g% + o(N72);

1

5Nz Habr 9257 + o(N72);

1l a a
('2‘ Tass + Tars +aTab1> E,[u*a*s'] =

Kapea B[00t a°a] =
_ (e —3?}(\[02— 5) o cd/ 3apab;;?cpadp#(dx)
4 (98_1'_*\}_21 _ Q%ﬁ) ab cd/ aaabpgcpadpu(dx)
(94_]“;71 _ ﬁ12'> gacgbd/ aaabppachadpu(dx)
+é_]i_ﬁgabgcd/ a“ab%padpu(dw) 4 _8_1]\_[_zgabgcd/ aaabl;)acadp'u(dx)
+é_uivigacgbd/ 3a3b1;3c3dpﬂ(dx) +o(N72).
Putting all together, with some further calculations, leads to the result. =

It should be noticed that each term in (5) is a scalar, that is, it does not
depend on the coordinate system.

1
4N? (H *‘) +

1 ~a 1 ma KA =b 1 m b _uv 1 “z° —a 1 m a KA
+Wgab<u —§H,;,\g )(u —"H;wg )+—2 Va(u —§Hﬂ/\g )



Prediction and a-connections 17

is the only part involving the estimator ¢ y;

1
e (9118 = Habr 9“b51>
is the only term depending on §, and the rest depends only on the model. Ex-
pression {3), calculated in s = 0, can be used to study the asymptotic behaviour
of 4 with respect to an a-divergence. For a = —1 the last term disappears

and we obtain the result present in Komaki (1995), Proposition 1, p.10.

Remark. From (5) we can obtain a decomposition of the average a-divergence
from the true distribution to any predictive one, in two parts:

Evo {Da (p(z; u0), plz; iin(%), §(2)))} (17)
= E, {Da (p(z; uo), p(z;un(Z)))} + 2]];/2 [g”s 8- Habl gabsl +0(N—2)'

The first term in (17) depends on the choice of the estimative distribution
and the other on the shift orthogonal to the model P. It is well known that
the problem of choosing a second-order efficient estimator un(Z) has not, in
general, a unique solution. On the other hand the following theorem solves the
problem of the choice of the optimal shift orthogonal to the model.

Theorem 3.2 The second order optimal choice of $'(Z) is given by:

8(®) = 5 Fra (in(2))g™(n(2)) (18)

where un(Z) is any asymptotically efficient estimator.

Proof: By Theorem 3.1,

E.{Dq (p(z; u), p(z; in(Z), 3(2)))} ~ Eu {D (p(z; u), p(2; 4n(Z), Sope(2)))} =

1 -
9ts (VEGDEW) - § ! Broaa0™)

1

~ 57 Bar g (NEG) = 3 fa'6) +o(N7)
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1 A A 1 i & ab ¢
= §QIJE(SI)E(SJ) + e Heo! Hea? 9*°9% g1y
1

5 oot P E(5) + o(N™2)
1

1 . o a N 1 @ . _
= o (VEG) = 5 Haso™) (NEG) = 5 a6 +o(N72)

Since gy is positive definite, 3., is asymptotically optimal. ]
Let us now define, for a, b=1,...,m,
he = %g}a@bla— V 51Ol (19)
1 +a 1-a a .
= aa.abla + Plz Gab— Cab acla

1—
2

l4+a

= ps_z_a (8a6bl + a(’)alabl -+ Gab— Iq‘ab cacl> .

Vectors hy are, by definition, orthogonal to the original model P. Moreover
they belong to H,. The following theorem explains the important role they
play in our analysis.

Theorem 3.3 The difference in average a-divergence from the true distributi-
on, between the estimative distribution p(z;un(Z)) end the optimal predictive
distribution p(z; un(Z), Sopt(Z)), s mazimal if and only if vectors hy, a, b =
1,...,m, belong to the linear space spanned by the hy’s. In this case, the opti-
mal predictive distribution is

p(x; i},, Sopt) = (20)
= Pl ) [L+ 510 (0000 + L o+ L% g i“abcacz)] + o(N"1).

2

Proof: By (19) and definition of H.ss, we have that

14+a
2

(hashr) = (aaabza+ P gas— Fafacza,h,) (21)
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= (BuOhla, Orla) =Habr .
By substituting (18) in (17),

E.{D. (p(z;u), p(z; 4n(T)))} — Eu {Da (p(z; ) (x5 Un(Z), $opt(Z)))} =

1 o a . . i}
8N HabtHeas 9%°979" + o(N7?) = 8N2 =7 Hast 99" 8slal|* + o(N7%)
= xallthas hr)gg bl + o(N),

that depends only on the projection of the hg’s on the linear space spanned by
the h;’s. Thus, it is maximal if and only if the hg’s are included in this space

and its maximal value is

Ey{Dq (p(z;u), p(z; in(T)))} — Eu {Da (p(l‘;U),P(w'ﬁN( )ydop(2)))} = (22)

1 ab IJ -— a,b ...
sz {ha h1)g™g hil|* + o(N7?) = 8N2Hg ha|* +o(N7?).

In this situation, by (18), (21) and (19), we have that

a 1 1
_ I ab ab 1J _ _—_,ab
opthl = 2N Ha g%hr = 2N9 (hw,hz}g hy = 539" ha (23)
1 l+a c
= 2NP ( > ~n Gab— Fab acl) s
and the result follows by substituting (23) in (2). [

Remark. Including vectors hy’s on the enlarged model, allows us to attain the
best improvement on the estimative distribution. For this reason, in the sequel
we consider only models M containing directions hy’s. Since (20) depends only
on the hg’s, Theorem 3.3 assures that the same optimal predictive distribution
is obtained from any regular parametric model M containing P and the hg’s.
In this sense, (20) gives a predictive distribution that can be considered optimal
in the space F of all probability distributions equivalent to p.



Prediction and a-connections 20

In the case when P itself is a full exponential family, we have:
l(z;0) = 6'z; — ¥(9),

O0ul(z;0) = 2, — 0,9(0)

and

0, 0hl(z;8) = — B0y (8).

Since the second derivatives of {(z;6) do not depend on z,
Baabl = E(@a(')bl) = —4dab

and

P E [<8a8bl+ ! ;“aaza,,z> acz]

1 -0« _1—a

= = E(0,10,10.1) __‘Z_Tabc'
Thus, we can write (20) in a simpler form:
p(x;d, 80pe) = (24)
1—
= p(e;d) [1 0" (0,10 — gus Ta,facl)} +o(NY)
~ l-a a a c
= plai ) [1+ 2 (6720 — 0u) (25 — hth) = m = gz — 0.0))]
+o(N71).

Notice that for @ = 1 there is no correction, that is, we do not move out of the

full exponential model. Moreover, for o = —1 we obtain

p(x;aaéopt) =
. 1
= plasd) [1+ 5 (¢ (2a = 0u0)(2s = Ou) = — gV Tui (2 — 0u9))]
+o(NTH),

that is exactly the same result as Vidoni (1995), expression (3.1), p.7.
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Example 3.4 We consider m-dimensional multivariate distributions N(u, I,,),

p(z; ) =£Il \/g?eXp [—%(wi _ ui)z] ’

where y = (u'), ¢t = 1,...,m, is unknown. We have that
9ii(p) = &

and
Lijk (1) =0,

for all a. Let now z({),! =1,---, N, be independent N(u, I,) and i = in(Z)

be any estimator for the mean vector p, where

1 i (
==Y z(I).
N =1
By (19), -
h, ={ LT - -] =y
Tl BT )@ ) i
By (24),

p(x; 2, 3opt) = p(; 1) [1 + 14_1”\;1 i ((w' — ) — 1)] +o(N71).

p(z; by Sopr) = pla;fo) exp | 5=9% 5 — Gu| + o(N7H)
2N p 2

1__1-—0 1 1 —a m i i
— 2N - _ §: T A2 -1
- 27 exp[ 2(1 2N )id(”” ")]”(N )

We thus have that the optimal predictive distribution is

N (p, (1 - 12&‘1)—1) .
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For o = —1, it is distributed as

1 -1
v (- 7)
V(e -5))
that coincides, up to order N~!, with the result of Barndorff-Nielsen and Cox

(1994), p.318. From (22) we can calculate the difference in average a-divergence

between the estimative distribution and the predictive distribution:

(1-a)? :

32N?

1 - a)? il a2 2 1 -a)?
(32N2) /[Z [(x'—p) —1]] pd:cz(?ﬁ%m,

=1

1
8NV

g hyl|?

P [ - Y 1]

that does not depend on [i, the eflicient estimator used. Let now 4 be the
James-Stein estimator for y, that is, '

\ s m — 2 ,
)= (1= )

Then
fio(Z) = lim fi =3,
L m-—2 _
Tr) = ~— —T
A3 =~y
and
A=) =~y
U (ML

We can use expression (5) with s = 0 to compare the two estimative distribu-
tions obtained respectively from the maximum likelihood estimator fimie = Z,
and the James-Stein estimator:

E.{Dqs (p(z; 1), p(2; fimic))} — Eu{Da (p(z; 1), p(2; )} =
1 i 1, N 1 (m-2)?
= —ng]” HJ - Fz'auu' + O(N 2) = IN2 T'T-l—1(/1i)2

+o(N72).
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Remark. Let us consider an f-divergence Dy as loss function. Without loss
of generality, we can suppose f(1) = 0 and f”(1) = 1. Theorem 3.1 can be
easily generalized to this case by putting a = 2f”’(1) + 3 and by substituting
the coefficient

(a —11){a—-1)
32
of the term b
Qabcdga gc
N2
with
5= SE1) = 27(1) - 4
3 .

In fact, in the expantion of Dy, the first and second order terms remain unc-
hanged. The coefficient of the third order term is

1 1 +3 1 e
M—lTABC + 3 TaBc,

6
and it can be written as
Tapc+ = T
3 ABC 2 ABC

with a = 2f"(1) 4 3. The coeficient 3 is calculated by

SO e+l fU)-2/"(1) -4
8 8 8 ‘
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