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Abstract

In this paper we introduce a class of square integrable processes, de-
noted by ¥, defined in the canonical probability space of the Brownian
motion, which contains both the adapted proceses and the processes
in the Sobolev space 1.22. The processes in the class LF verify that
for any time ¢, they are twice weakly differentiable in the sense of the
stochastic calculus of variations in points (r, s) such that r v s > ¢
On the other hand, processes belonging to the class L¥ are Skoro-
hod integrable, and the indefinite Skorohod integral verifies properties
similar to those of the Ito integral. In particular we prove a change-of-
variable formula that extends the classical It6 formula. Those results
are generalization of similar properties proved in [7] for processes in
L2,
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1 Introduction

A stochastic integral for processes which are not necessarily adapted to the
Brownian motion was introduced by Skorohod in [10]. The Skorohod integral
turns out to be a generalization of the classical Ito integral. In [3] Gaveau
and Trauber proved that the Skorohod integral coincides with the adjoint
of the derivative operator on the Wiener space. Starting from this fact, one
can use the techniques of the stochastic calculus of variations, introduced
by Malliavin in (5], in order to study the Skorohod integral. More precisely,
the Sobolev space L1'? is included into the domain of the Skorohod integral,
and in this space the Skorohod integral verifies some of the usual properties
of the classical Ito integral like the quadratic variation property and the
local property. Results of this type were proved by Nualart and Pardoux
in [7], where a change-of-variable formula was established for the Skorohod
integral of processes in the space 122 (twice weakly differentiable). So, we
know that a stochastic calculus can be developed for processes u in the
Brownian filtration which belong to one of the following classes:

(i) The class of adapted processes such that fol uldt < 00 as.
ii) The class L2 of processes that are locally in the Sobolev space L22.
loc

The purpose of this paper is to introduce a class of processes included
in the domain of the Skorohod integral, that contain both the space of
square integrable adapted proceses L2(f2, F, P), and the Sobolev space L2,
This class will be denoted by LF. A process u = {us,t € {0,T}} in LF is
required to have square integrable derivatives Dsu, and D,?’sut in the regions
{s >t} and {sV r > t}, respectively. We will show that the L2-norm of
the Skorohod integral of a process u in the space LF is dominated by the
L?-norm of the process u and the derivatives Dsu; and D? (u; in the regions
{s >t} and {sVvr > t}. Using this fact, we will establish the local property
and the quadratic variation property for the Skorohod integral of a process
w in LF. Afterwards we discuss the existence of a continuous version for
the indefinite Skorohod integral of a process in LF using the techniques
introduced recently by Hu and Nualart in [4], and we establish a change-of-
variable formula for the Skorohod integral of processes in L verifying some
additional properties. These results generalize similar properties proved in
[7] for processes in the spaces L2 or L22.

The paper is organized as follows. In Section 2 we present some pre-
liminaries on the stochastic calculus of variations on the canonical Wiener



space, we introduce the class LF of stochastic processes, and we show the
main properties of the Skorohod integral of processes in this class. Section
3 contains the change-of-variable formula for the Skorohod integral, which
extends both the cassical 1t6 formula and the It6 formula for the Skorohod
integral. Finally in Section 4 we introduce a class of processes containing
the space L2([0,T) x Q) for which the forward integral (see [9]) exists and
generalizes the It0 integral.

2 A class of Skorohod integrable processes

Let Q = C([0,T)) be the space of continuous functions from [0,T] into R
equipped with the uniform topology, F the Borel o-field on © and let P
be the Wiener measure on (2, 7). The canonical process W = {W,,t €
[0,T]} defined by Wi(w) = w(t) is a standard Brownian motion. Let F? =
c{W,,0 < s <t} and set F; = F VN, where N is the class of P-negligeable
sets. Let H be the Hilbert space L?([0, T]). For any h € H we denote by
W{(h) the Wiener integral

T
W(h) = / h(t)dW,.
0
Let S be the set of smooth and cylindrical random variables of the form:

F = f(W(hy), ... W(hy)), (2.1)

where n > 1, f € C;°(R™) (f and all its derivatives are bounded), and
hi,...,hn € H. Given a random variable £ of the form (2.1), we define its
derivative as the stochastic process { DiF,t € [0,T|} given by

DiF = 3 LW (ha), ., Wha)s(2), ¢ € 10,7)
j=1""

In this way the derivative DF is an element of L?([0,T] x Q) & L*(Q; H).

More generally, we can define the iterated derivative operator on a cylindrical
random variable by setting

o, F =Dy D, F.

..... n

The iterated derivative operator D" is a closable unbounded operator from
L3(Q) into L2([0, T|™ x Q) for each n > 1. We denote by D™ the closure of



S with respect to the norm defined by

I FlR2=l F 2z + 2§ D'F Zaqozpixe)
=1
For any Borel subset A of [0,T] we will denote by F4 the o-field gen-
erated by the random variables { f; 1p(s)dW,, B € B([0,T}), B C ..}. The
following result is proved in |7, Lemma 2.4]:

Proposition 2.1 Let A be a Borel subset of |0,T] and consider a random
variable F € D2 which is Fa-measurable. Then DiF = 0 almost everywhere
in A° x 0.

For any smooth random variable F' € § and for any h € H we can define
DnF = (DF,h)y.

We have that, for all h € H, Dj, is a closed unbounded operator from L?(Q)
into L2(Q), and we will denote D, the closure of S by the norm

I F13en=ll F o) + 1| DaF 1320 -

When h = 14, with A € B([0,T]) we will simply write D4 and DY%. If
F e D};z, the derivative process {D;F,t € A} is well defined as an element
of L?(A x Q).

We denote by 6 the adjoint of the derivative operator D that is also called
the Skorohod integral with respect to the Brownian motion {W;}. That is,
the domain of § (denoted by Dom 6) is the set of elements u € L3([0, T} x )
such that there exists a constant ¢ verifying

T
E / DiFudt| < c|| F |la,
0

for all F € S. If u € Domé, 6(u) is the element in L?(Q) defined by the
duality relationship

T
E(8(u)F) = E / DiFudt, Fe€S.
0
We will make use of the following notation: fOT u dWe = 6(u).
The Skorohod integral is an extension of the It6 integral in the sense that

the set L2(|0,T) x Q) of square integrable and adapted processes is included
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into Dom 6 and the operator 6 restricted to L2([0, T] x ) coincides with the
It6 stochastic integral (see [7]).

We will make use of the following lemma that can be proved easily by
duality.

Lemma 2.2 Consider a process u € L?([0, T) x ) such that there exists a
sequence {u™,n > 1} C Dom$é satisfying:

(i) ™ — u as n tends to infinity, in L*([0,T) x Q).

(ii) There ezists a random variable A € L*() such that for all F € S,
E[6(u™)F) converges to E|AF).

Then we have that u belongs to the domain of 6, and A = 6(u).
The next result is proved in ([7]).

Lemma 2.3 Let h € L2([0,T]), and F € D}*. Then the process {Fh(t),t €
[0,T)} belongs to Domé and

§(hF) = F8(h) — DyF,

Let L™? = L?([0, T}; D™?) equipped with the norm
n .
v 13 2= v Z20,x) + 2 I D0 1320 7+ xq) -
j=1

We recall that L1'? is included in the domain of §, and for a process u in
L}2 we can compute the variance of the Skorohod integral of u as follows:

T T T
E(6()?) = E / u2dt + E / / DyueDyusdsd. (2.2)
0 0 0

We will make use of the following notation

A7
A7

f

{(s,t) €[0,T)?: 5 > t},
{(r,s,t) €0, T)3:rVvs >t}

Let St be the set of processes of the form u; = E‘}z 1 Fih;(t), where F; € S
and h; € H. We will denote by L%/ the closure of St by the norm:

T
luloy=E [ wldi+E [ (Douidsit, (23)
1
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and the space L¥ will be defined as the closure of S by the norm:

Vel oy +E [ (DrDou)drdsat (2.4)
AZ

That is, LV>/ is the class of stochastic processes {v¢,t € [0,T]} that
are differentiable with respect to the Wiener process (in the sense of the
stochastic calculus of variations) in the future. For a process u in L1'%f
we can define the square integrable kernel {D,u;, s > t} which belongs
to L2(AT x Q). Similarly, LF is the class of stochastic processes {us,t €
[0,T]} such that for each time ¢, the random variable u; is twice weakly
differentiable with respect to the Wiener process in the two-dimensional
future {(r,5),r V s > t}. We also observe that ¥ coincides with the class
of processes u € L2/ such that {Dsus1p 4 (t).t € [0,T]} belongs to L2 a
a process with values in the Hilbert space L2([0 T)).

Remark: Notice that if w € L1%/ then fa usds € D(ﬁ?’f! for any 0 < a <
b<T.

Lemma 2.4 The space L2([0,T] x Q) is contained in L. Furthermore, for
all u € LE([0,T] x Q) we have Dsus = 0 for almost all s > t, and, hence,

lulE=lu ”%2([0,T]XQ) : (2.5)

Proof: We will denote by St the class of elementary processes of the form

N
Ve = Z Fjl(tj,tj+1](t), (26)
3=0

where0 =tp <t <---<tyy1 =Tand, forall j =0,...,N, Fjis a smooth
and F;,-measurable random variable. The set St is dense in L2 ([0,T] x Q).
On the other hand, we have 8¢ C L%? and for any v of the form (2.6)
we have, using Proposition 2.1, stt = 0, for any s > t. This allows us to
complete the proof. QED

The next two propositions are extensions of known resuls for the space
D2 (see (6, Proposition 1.2.2 and Proposition 1.3.7]).

Proposition 2.5 Let ¢ : R™ — R be a continuously differenciable function
with bounded partial derivatives. Suppose that u = (ul,...,u™) is an m-

dimensional random process whose components belong to the space L%/,
Then ¥(u) € LY%7, and

Ds((ue)) Z —Bl u)Dsu{,

=]



for all (s,t) € AT.

Proposition 2.6 Letu € L'%f and A € F, such that u,(w) = 0 a.e. on the
product space [0.T] x A. Then Dsus =0 for almost all (s,t,w) in AT x A.

The following result provides an isometry property for the Skorohod
integral of a process u in the space LV%/ satisfying an additional condition.

Lemma 2.7 Consider a process u in LY*f. Suppose that for almost all
6 € [0,T], Dyuljgg belongs to the domain of 6 and, moreover,

T
B
0
Then ulypy belongs to the domain of 6 and

t
/ udW,
4]

Proof: Suppose first that u has a finite Wiener chaos expansion. In this
case we can write:

¢
/ usdWs
0

2

6
/ DousdW,| d < co. 2.7)
0

2 t ¢ 6
E - E / wlds + 2F / ol / Dy, dW,)do. (2.8)
0 0 0

2

t t t
E - E / wds + E / / Dyug Dyusddds
0 o Jo

t t p0
- E / u2ds + 2E / / Do Dousdods
0 0 JO

t t 0
- E / wlds + 2E / o ( / Dgudes> do.
0 0 0

Now, let us denote by u™ the sum of the n first terms in the Wiener chaos

expansion of u. It holds that u™ converges to v in the norm || - || 2,5, as n
tends to infinity. For each n we have
t 2 ¢ t 0
E / WrdW,| = E / (u™)%ds + 2E / ul( / DaudW,)do.  (2.9)
0 0 0 0

It suffices to show that the right-hand side of (2.9) converges to the right-
hand side of (2.8). This convergence is obvious for the first term. The
convergence of the second summand follows from condition (2.7). QED

Remark 1: In the statement of Lemma 2.7 the assumptions are equivalent
to saying that u € LY/ is such that {Deusligg(s).s € [0,T]} belongs to
the domain of § as a processes with values in the Hilbert space L?({0,T)).
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Remark 2: Lemma 2.7 generalizes the isometry properties of the Skorohod
integral for processes in the spaces L2([0, 7] x ) and L!2.

The following estimate of the LP-norm of the Skorohod integral is a
consequence of Corollary 2.2 of [4].

Lemma 2.8 Let p € (2,4), a = 4_2_.";, Consider a process w in LY%f N

L([0,T] x 2). Suppose also that, for each interval [r,0] C [0,T], Dpuly, g
belongs to the domain of 6, and, moreover,

T
J/

Then 6(uly,,)) belongs to LP for any interval [r,t] C [0,T] and we have:

t
/ uedW,

where Cyp, is a constant depending only on p and T

0 2
/ DousdW,| df < oo. (2.10)

p t t g
E < c,,(t—r)’%-l{E/ ]uslads+E/ |/ DeusdW,)[2d8},
r r r

(2.11)

Proof: We deduce from Lemma 2.7 applied to uly. 1) that ulj,, belongs
to the domain of é for any interval [r,t] C [0,T]. Now using Corollary 2.2
of (4] we deduce that (2.11) is true in the set Pr of processes u of the form:

N
U = Z Fjl[tj'tj+1](t)’ (2.12)
—~

where 0 = top < --- < ty41 =T and for all j = 0,..., N, F; are smooth
random variables of the form (2.1), f being a polynomial function. We know
that Pr is dense in L*([0, T x 2) . So, we can get a sequence {u",n > 1} of
processes in Pr so that u™ — u in L*([0,T] x 2). Moreover, if we consider
the Ornstein-Uhlenbeck semigroup {T;,¢ > 0}, we know that, for all ¢, Tiu
is also an element of Pr, and we can easily prove that, for all [r,¢] C (0,7 :

T
limlimE/ |Tiuy —ugl®ds = 0,
n  k 0 k
t 0
lim i E / | / (Do(Tyu7) — Dous)dWs?dd = 0,
T r
which allows us to complete the proof. QED

The next proposition provides estimates for the L? and L norms of the
Skorohod integral of processes in the space LF.



Proposition 2.9 LY ¢ Domé and we have that, for all u in LF,
El§(u)f* <2l u|f . (2.13)

Consider p € (2,4) and o = ;12_1-”—,. If, furthermore, u belongs to the space
L2([0,T] x Q) we have that, for all [r,t] C [0,T}, 6(uly.y) is in [P and

El6(ulyg)lP < Cp(t — )5~ 1( / Elug|®ds (2.14)

/]
\E / |Dyus|2ds + E / / lDaDguslzdsda),

where C, is the constant appearing in (2.11).

Proof: Because u € LF we have that {Dgus1j(s), s € [0,T]} belongs to
L2 C Dom§ for each 4 € [0, T}, and furthermore we have

E /0 | / DousdW,[2d6 < E /0 / (Dgus)?dsdd  (2.15)
0 1]

T p6 (8
‘E / / / (Dy Dyus)*dodsde. (2.16)
0 0 JO

Then, applying Lemma 2.7 we obtain that « is Skorohod integrable and

El(u)? = E / ulds + 2E / o / Dou,dW,)d

Using now the Cauchy-Schwartz inequality we have

T T T 9
Elsw) <E / w2ds + 24| E / 20| E / | / Dou,dW,|2d8,
1] 0 0 0

and using the fact that, for all a,b € R, 2ab < a? + b? it follows that

T T 6
El6(w)? < 2E / w2ds + E / | / DeusdW;|2d8.
0 0 0

Now applying (2.15) we obtain

T T 8
E|§(u)? < 2E / u2ds + E / fo (Deus)?dsdd
0 0

T 8 r6
E / / / (Do Dyus)?dodsdf
0 0 Jo

2wl

+

IN



which proves (2.13). Similarly, using Lemma 2.8 we can prove (2.14). QED

Note that u € L¥ implies uly,, € LF for any interval [r, t] C [0, T, and,
by Proposition 2.9 we have that ul,; € Domé.

We have the following commutative relationship between the derivative
and the Skorohod integral for processes in L (see [6] , property (3) of the
Skorohod integral).

Lemma 2.10 Suppose that u = {us,t € [0,T|} belongs to LF. Then the
process {6(uljpy),t € [0,T]} belongs to L'*/ and, for all (s,t) € AT we
have

Ds(6(uljp ) = 6(Dsulpy). (2.17)

The next result provides sufficient conditions for the continuity of the
process

t
§(ul o) = / wdW,,
0
where u € LF.
Theorem 2.11 Let u = {u;,t € [0,T)} be a process in LF such that for

some 3 > 2, EfOT lus|®ds < oo . Then the process X; := fot usdW, has a

continuous version. More precisely, for any 0 < v < %‘32, there is a random

variable C such that

2
Proof: Let p:= ﬁ‘%. We have EfOT ]uslf}x’ds < 00, and applying Proposi-
tion 2.9 we obtain

t
E|X; = X, < Cy(t - )51 / Elugl®d6

t rs t prs ps
+ / / E|Dyug|2drd + / / / E| D, Dyug|?dodrdo).
s J8 s JO J@O

Therefore, there exists a nonnegative function A : [0,7] — R4 such that
ST Ardr < oo and

t
E|X, - X, < |t — 557! / Ardr. (2.19)

10



For any 2 < a < 242, applying Fubini’s theorem, we obtain

T T|X, - X.|P
E/ / [Xe = X PP dsdt<2/ /lt o= ”E/Adr \dsdt
0 |t — s]™

(rrotitE (1 )t ) A g

:(a—g)(l—a+§)/o

Hence the random variable

_ TIXt sl
b= // T

is finite almost surely. By the Garsia-Rodemish-Rumsey lemma (see (2]),

we have that for any v := (—"‘—“—g}ff—"i), there is a random constant C,, almost
surely finite such that

[ Xt — Xs| S Cyft —s]".
2

Noting that 2 < a < 22 is equivalent to 0 < v < %%—, we prove the
theorem. QED

We have the following local property for the operator é:

Proposition 2.12 We consider u a process in LF and A € F so that
u(w) = 0, a.e. on the product space {0,T] x A. Then 6(u) = 0 a.e. on
A.

Proof: Consider the sequence of processes defined by

2"' l 2171 T]2_
(] usd$)Y(rjo-m 1(j41)2-m)(t)-
T(;j-1)2—m™

It is easy to show that for all m , u — u™ is an linear bounded operator from
LF into LF whose norm is bounded by % and that limm—co || 4™ —u || p= 0.
Using now Proposition 2.9 we have that 6(u™ — u) tends to zero in L*(f)
as m tends to oco. But, on the other hand, using Lemma 2.3 we have

2m -1 om Tj2~
s(u™) = Y == ((/ usds)(Wr(i41)2-m — Wrjo-m)

j=1 T r(g-1)2-m

T(4+12~™ pTj2~™
— / / Dousdsdf | ,
Tj2-™ T(j-1)2-™

11



and by the local property of the operator D in the space L.1'2/ (Proposition
2.6) we have that this expression is zero on the set { j;)T u?ds = 0}, which
completes the proof.

QED

If we have a subset L C L2([0,T} x ) we can localize it as follows. We
will denote by L, the set of random processes u such that there exists a
sequence {(2n,u"),n > 1} C F x L with the following properties:

(i) 2,19, as.
(ii) u = u™, a.e. on [0,T] x Q.

We then say that {(Qn, u™)} localizes u in L. If u € Lf, by Proposition
2.12 we can define without ambiguity é(u) by setting

6(u)la, = 6(u")la,,

for each n > 1, where {(2,,u™)} is a localizing sequence for u in LF. The
following result says that the operator § on Lf_ is an extension of the Itd
integral.

Lemma 2.13 Let u be an adapted process verifying fOT u?ds < 00 a.s. Then
u belongs to LE . and 6(u) coincides with the It integral.

Proof: For any integer £ > 1 consider an infinitely differentiable function
Yr : R — R such that ge(x) = 1 if 2] < k, and pi(z) =0 if |2| > k + 1.

Define
¢
uf = UtPk </ ufds) )
0

T
Qk:{/ ugdssk'}.
0

Then we have Q. T Q a.s., u = u* on [0,T) x Q, and v* € L2([0.T] x Q)
because u* is adapted and

T T t
/ (uf)2dt = / urpl </ uids) dt <k +1.
0 0 0
QED

The next result will show the existence of a nonzero quadratic variation
for the indefinite Skorohod integral.

and
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Theorem 2.14 Suppose that u is a process of the space iLf;c‘ Then

n—1

Z(/ wdWy? ~ [ alds, (2.20)

in probability, as |x| — 0, where ™ runs over all finite partitions {0 = ty <
ty < - <tn =T} of [0,T]. Moreover, the convergence is in L'(Q) if u
belongs to L.

Proof: We will describe the details of the proof only for the case u € LF.
The general case would be deduced by an easy argument of localization. For
any process u in L and for any partition 7 = {0 =tp < t;, < --- < tn, = T}

we define
71—

"(u) = Z(/ ™ ude

Suppose that u and v are two processes in LF. Then we have

B(VT(w) - VW)l) < (El (/tfi+l<us-vs>dws)2>%

i=0
n—1 tiv1 2 %
X <Z (/ (ug + vs)dWs> )
i=0
< dllu—viFlu+vlr. (2.21)

It follows from this estimate that it suffices to show the result for a class of
processes u that is dense in L¥. So we can assume that

m~—1

Ug = Z Fil(s;si1)

i=0
where F} is a smooth random variable for each j,and 0 = sp < -+ - < s, = T.

We can assume that the partition 7 contains the points {so,...,sm}. In this
case we have

m-—1 tiv1 2
Viw) = Y. > (Fj(W(t¢+1)—VV(t,-))— /t Dstds>

J=0 {i:s;<ti<sj1}

m—1
= Z [ Z F2W (tigr) — W(t:))?

{i:sj<ti<sj41}

tiv1 tiv1 2
—2(W(tisr) — W(t:) / D, Fds + ( / Dstds> ] .
t; t;

13



With the properties of the quadratic variation of the Brownian motion, this
converges in L'(Q) to

m—1 T
> Fisie—s5) =/ ujds,
=0 0

as |7| tends to zero.
QED
As a consequence of this result, if u € Lf_ is a process such that the
Skorohod integral fot us;dW; has a continuous version with bounded variation
paths, the u = 0.

3 1t6 formula for the Skorohod integral

Our purpose in this section is to prove a version of the change-of-variables
formula for the indefinite Skorohod integral. For a process X € L2/ we
will denote D~ X the element of L!([0,T] x ) defined by

T
lim sup  E|D;X: - (D~ X),lds =0, (3.22)

™ JO (s-i)vogt<s
provided that this limit exists. We will denote by ]L}'_” the class of processes
in LY/ such that the limit (3.22 ) exists. It is easy to show that a process
of the form

¢ t '
X, = Xo+ / uedW, + / veds,
0 0

where X € pl?

loc?

L,2,f
loc

1,2,f

belongs to the class L and

uelf andvel
t t

(D~ X)¢ = DiXo + / Dyvsds + / DiugdW.,.
0 0

We will also denote by L the space of processes u € LF such that
1o uidsliee < oo

Theorem 3.1 Consider a process of the form X; = Xo+ fot usdWs+ f(f veds,
where X € D}i, u € (ILf Yioe, and v € Il.llc‘j'f . We will also assume that the

indefinite Skorohod integral f(f usdW, has a continuous version. Let F : R —

14




R be a twice continuously differentiable function. Then we have
t 1 t
F(X) = F(Xo) + [ PxdX,+5 [ Fr(X)ulds
0 0
t
+ / F"(X,)(D™ X)susds. (3.23)
0

Proof: Suppose that (™!, X7), (™2, u") and (™3, v™) are localizing se-
quences for Xg, u, and v, respectively. For each positive integer k let
be a smooth function such that 0 < ¥, < 1, ¥(x) = 0if |2| > k + 1, and
Yr(z) = 1 if |z] < k. Define

= ol [ 1o ds).
Set th,k = X§ + [fuldWs + f5 vkds, and consider the family of sets

G = QM A2 A QM A { sup |X,| < kYN {/ ™ 2ds < k}.
tejo, 1)

Define also F* = ka Then it suffices to show the result for the processes
o, u”, and V" k. and for the function F*. In this way we can assume
that Xo € D2, u € LF, [T u2ds < M, for some constant M > 0, v € L1'2/,

fo |vs|2ds < k, and that the functions F, F’ and F" are bounded. Moreover,
we can assume that the process X; has a continuous version.

Set t = 2,,, 0 <i £2". Applying Taylor development up to the second
order we obtain

F(X:) = F(Xo) Z FIXENX () — X ()

2" -1
> L P (R)(X () - XU, (3.24)

where X; denotes a random intermediate point between X (t/') and X (t7, ).
Now the proof will be decomposed in several steps.

Step 1. Let us show that

2" -1

ZF” (X)X (E0,) — X(t9)? — /F” Yulds, (3.25)
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in L}(Q), as n tends to infinity.
The increment (X (¢t ¥ 1) — X(t™))? can be decomposed into

(/ u,dW)2+(/ vbds)2+2(/ u,dW)(/ veds).

Using the boundedness of F"(X), the property [, |vs|2ds < k, and Theorem
2.14 we can show that the contribution of the last two terms to the limit
(3.25) is zero. Therefore, it suffices to show that

g t
S () / g dWe)? — / F"(X,)ulds, (3.26)
i=0 4 0

in L'(R2), as n tends to infinity. Suppose that n > m, and for any i =

.+2" let us denote by tﬁ"’) the point of the mth partition which is closer
to t} from the left. Then we have

2" ~1
B| 3 FI(X / wedW,)? / F"(X )ulds
2n ! 5 ( i1
<E|S[F"(X) - F'(XE™))) / UuedW,)2
1=0 t;.‘
2! t?+l t?+l
VBl S P 2 () wawr - [T ulas
J=0 X CnE[Cm t1+1) 7 t7
2m_1
+B| 3 P / wids ~ [ F"(X s
= by + b2 + bs.

The term b3 can be bounded by

t
E( sup |F"(Xs) - F"(X,JI/O ufds),

fs—ri<te—m

which converges to zero as m tends to infinity by the continuity of the process
X;. In the same way the term b, is bounded by

2" -1
E( sup  |F"(X,) - F"(Xrlzj(/ sdws)i’),

|s—r|gt2-m
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which tends to zero as m tends to infinity uniformly in n. Indeed, if we
write
Ap = sup |F"(X,) - F"(X,)],

ls—r|<t2—m

and
n_]

B, = Z(/‘HudW

then, for any K > 0 we can write
E(AmBn) < KE(Am) + 2||F’l‘|ooE(Bn1{Bn>K}):
and this implies that

lim lim sup E(A,,Bn) =0.

K —o00 m—oo n>m

Finally, the term by converges to zero as n tends to infinity, for any fixed m,
due to Theorem 2.14.

Step 2. Clearly the term

2" -1

ZF’ X () / vyds)

converges a.s. and in L}(Q) to f§ F'(X;)vsds, as n tends to infinity.

Step 3. From Lemma 2.4 and Proposition 2.6 we deduce
i t
F(X(t) / Uy dW, = / F(X (7)) usdW,

/ D (X () usds

T

R F (X (t7))usdW,
tn

(X (D)) / B DX () uads.
o
Notice that

tin i t7 t
D, X (£)uyds = / (DsXo + / DsurdW, + / Dyv,dr)ueds.
e t 0 0
(3.27)
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We will show that Y2 1 F”(X(t;‘))f:_,?+1 D X (t")usds converges in L! to
Jo F"(X)(D~ X )susds as n tends to infinity. In fact, we have

2"-1 ¢ t
S FUX (L) / Dy X () usds — / F"(Xs)(D™ X )susds
i=0 & 0
-1 thh
<[ P [ TIDXE) - (DX Juds
i=0 &
= [t " n " -
H [ TPE) - FUXOIDT X susds).
i=0 Y&

Consequently, we obtain

(
1
2"—-1 2

< mllpunw{g 3 /:;1 ,DSX(t;‘)—(D-x)slads}z
=0 "%

2" —1 t:' t
3 FX(E) / DX () uyds ~ / F"(X,)(D™ X)suyds
£ 0

=0

)

+E ( sup  |F"(X,) — F"(X.)| /(;1 I(D—X)susms) =dy +ds.

|s=rl<2n

The term dy converges to zero as n tends to infinity, because

1
E/ (D™ X)suslds < o0.
0

For the term d; the convergence to zero follows from the estimates

2"-1

B i1
2
1=0 i
N1 yn

i+1

=F

2 Jo
=0 i

2m] t".' s on_| t:‘ s s
<E Z / +1/ leUrl2d7’d3+E Z / +‘/ |Dstur|2d0drds,
i=0 "0 H i=0 Y& /e

and a similar estimate for

A
E

2 )y

1=0 13

t:‘ s 2
/ Dyu.dW, — / Do dW,| ds
0 0

s

2
D,u.dW,| ds
t

2
ds.

t? s
/ Dv,dr — / D,v,dr
4] 0
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Step 4. Finally, we will show that for all t € {0, T}, the process
¢, = F,(‘Ys)usllo,t](s)

belongs to the domain of § and that
£ t
/ F'(Xs)usdWs = F(X:) — F(Xo) ~ / F'(X)usds  (3.28)
0 0
t
—% / F'(X,)(D™ X)susds.
0

To get this result we will apply Lemma 2.2 to the sequence of processes

2n—1
OF =us » F(XE)Lgnem, 1(5)-

1=0

We have that ®" converges in L?([0,T] x Q) to ® as n tends to infinity.
From Step 1, Step 2 and Step 3, we have that

-1 4
som =Y /t T RX(ER) usdWe
1=0 i

converges in L!(€) to a random variable A equals to the right-hand side
of Equation (3.28). Then in order to complete the proof it suffices to show
that A belongs to L?(R). This follows from the fact that u € LY, X, € D2
and v € L1'%/, QED

Remarks:

1.- The assumptions of Theorem 3.1 can be slightly modified. For instance,
in order to insure that the process fot usdW, has continuous paths we can
assume that u € (Lf N LA([0,T) x ©))i0c for some B > 2, due to Theorem
2.11. On the other hand, notice that the fact that f] u2ds is bounded is
only used to insure that the right-hand side of Equation (3.29) is square
integrable. Then, instead of assuming that the process u is locally in the
space IL,’,v we can assume that the processes u, v and the initial condition X
verify locally the following properties:

(i) u e LF and E(ff u?ds)? < co.

(i) Xo € D'? and E([ | DsXo[%ds)? < oo.
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(iii) v e L%/ and E(f(;5, |Dsvel?dsdt)® < co.

2.- If Xp is a constant, and u; and v; are adapted processes such that

fOTlutIth < 00, fOT |ve|?dt < oo a.s., then these processes satisfy the as-
sumptions of the theorem because u € (L )joc by Lemma 2.13, v € H,,li’f
(this property can be proved by a localization procedure similar to that used
in the proof of Lemma 2.13), and the process X; = Xp + fot usdWs + fot vsds
has continuous paths because it is a continuous semimartingale. Further-

more, in this case (D~ X), vanishes, and we obtain the classical It formula.

3.- Instead of working with processes v € m;i’f we can rewrite the proof

of Theorem 3.1 assumig that v is a process verifying locally the following
properties:

(i) ST |vslds < k.

(ii) The process V = { J§ vsds,t € [0, T]} belongs to the space IL}’_M.

In this case the proof is the same, changing the term fot D.vsds by the
term (D~ V);. Notice that if we assume this hypothesis for v, taking into
account Remark 2, the change-of-variable formula for the Skorohod integral
established in Theorem 3.1 is a generalization of the classical It0’s formula,
in the sense that v is an adapted process satisfying fot lugldt < o0 a.s.

4 Forward integral

The forward integral introduced in (1] is an extension of the It6 integral to
nonadapted processes which differs from the Skorohod integral. In [9] this
type of integral is defined using the following approximation approach. Let
u = {u;, t € [0,T)} be a process in L3([0, T} x ©2). Then for every m > 1 we
can introduce the term

2m T

F™u) = T J ut(Wiesr2-myar — We)dt.

Definition 4.1 We say that a processu = {u¢,t € [0, T)} in L3([0, T} xQ) is
forward integrable if the sequence F™(u) converges in probability as m — oo,
and in this case the limit will be denoted by fOT ud~ We.

The next result gives us the relationship between the forward integral
and the Skorohod integral:
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Theorem 4.2 Let u € (ILf_ Yioe- Then u is forward integrable and

T T
/ wd= W, = 8(u) + / (D~u).dt. (4.29)
0 0

Proof: By a localization argument we can assume that u € ILIF_. Thanks
to Lemma 2.3 we have that, for every m > 1,

gm (T ((t+T2-™AT om (T p(t+T2"™)AT
= / ( / wdW,)dt + / ( / Dyudr)dt.
0 t 0 t

Now the proof will be descomposed into two steps.

Step 1. Let us show that

om (T  p(¢4+T2-™)AT T
2 / ( / wdW, )dt — / urdW, (4.30)
T Jo Jt 0

in L2(Q), as m tends to oo. Using the Fubini theorem for the Skorohod
integral (see [6], Exercice 3.2.8) we have that

gm T  (t+T27™)AT T
- / ( / udW,)dt = / Umdw,.,
T 0 t 0

2m r

where

ur udt.

T T Jir-12-m)v0

It is easy to show that for all m, u — U™ is an linear bounded operator from
LF into LF whose norm is bounded by 4 and that limm—.ce || U™ —u || p= 0.
Using now Proposition 2.10 we have that §(U™) tends to 6(u) in L%(2) as
m tends to oo.

Step 2. Let us prove that

om T ((t+T2"™)AT T
E|—‘/ (/ Drugdr)dt —-/ (D™ u)pdr| (4.31)
T 0 t 0

tends to zero as m tends to oo.
We have that

om (T ((t+T2"™)AT T
B~ / ( / Dyupdr)dt — / (D™ u)rdr|
T Jo *Je 0

om T  ((t+T27™)AT
< E / ( / Dy — (D™ u),dr)dt]
T o Jt
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gm (T (t4T2"™)AT T
+E = [ / (D~ u)dr)dt — / (D™ w)rdr|
T Jo Jt 0

T
< / sup E\Dyu, — (D™ u).|dr

T Jo (r-T2-m)vo<t<r

om T pr T
+E|— / / (D™ w),dtdr — / (D~ u).dr].
T Jo Jir—T2-myvo 0

Now, thanks to the definition of the class lLf_ and the dominated convergence
theoremm we have that these two terms tend to zero as m tends to oo, and
now the proof is complete.

QED

Remark: The forward integral is an extension of the Ito integral. In

fact, notice that L2([0, T)x ) C L. and that for a process u € L2([0, T|xQ2)
the forward integral coincides with the Ito stochastic integral.
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