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Abstract

In this paper we introduce a class of square integrable processes, de-
noted by LF, defined in the canonical probability space of the Brownian
motion, which contains both the adapted proceses and the processes
in the Sobolev space L2,2. The processes in the class LF verify that
for any time t, they are twice weakly differentiable in the sense of the
stochastic calculus of variations in points (r, s) such that r V s > t.
On the other hand, processes belonging to the class LF are Skoro-
hod integrable, and the indefinite Skorohod integral verifies properties
similar to those of the Itó integral. In particular we prove a change-of-
variable formula that extends the classical Itó formula. Those results
are generalization of similar properties proved in [7] for processes in
L2'2.
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1 Introduction

A stochastic integral for processes which are not necessarily adapted to the
Brownian motion was introduced by Skorohod in [10]. The Skorohod integral
turns out to be a generalization of the classical Itó integral. In [3] Gaveau
and Trauber proved that the Skorohod integral coincides with the adjoint
of the derivative operator on the Wiener space. Starting from this fact, one
can use the techniques of the stochastic calculus of variations, introduced
by Malliavin in [5], in order to study the Skorohod integral. More precisely,
the Sobolev space L1,2 is included into the domain of the Skorohod integral,
and in this space the Skorohod integral verifies some of the usual properties
of the classical Itó integral like the quadratic variation property and the
local property. Results of this type were proved by Nualart and Pardoux
in [7], where a change-of-variable formula was established for the Skorohod
integral of processes in the space L2,2 (twice weakly differentiable). So, we
know that a stochastic calculus can be developed for processes u in the
Brownian filtration which belong to one of the following classes:

(i) The class of adapted processes such that /J v%dt < oc a.s.

(ii) The class of processes that are locally in the Sobolev space L2,2.

The purpose of this paper is to introduce a class of processes included
in the domain of the Skorohod integral, that contain both the space of
square integrable adapted proceses L2(fl, T, P), and the Sobolev space L2,2.
This class will be denoted by LF. A process u = {ut,t € [0,T]} in LF is
required to have square integrable derivatives Dsut and D%sut in the regions
{s > t} and {sVr > i}, respectively. We will show that the L2-norm of
the Skorohod integral of a process u in the space LF is dominated by the
L2-norm of the process u and the derivatives Dsut and D^sut in the regions
{s > t} and {s V r > ¿}. Using this fact, we will establish the local property
and the quadratic variation property for the Skorohod integral of a process
u in LF Afterwards we discuss the existence of a continuous versión for
the indefinite Skorohod integral of a process in LF using the techniques
introduced recently by Hu and Nualart in [4], and we establish a change-of-
variable formula for the Skorohod integral of processes in LF verifying some
additional properties. These results generalize similar properties proved in
[7] for processes in the spaces L1,2 or L2,2.

The paper is organized as follows. In Section 2 we present some pre¬
liminares on the stochastic calculus of variations on the canonical Wiener
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space, we introduce the class i/ of stochastic processes, and we show the
main properties of the Skorohod integral of processes in this class. Section
3 contains the change-of-variable formula for the Skorohod integral, which
extends both the cassical Itó formula and the Itó formula for the Skorohod

integral. Finally in Section 4 we introduce a class of processes containing
the space L2([0, T\ x Q) for which the forward integral (see [9]) exists and
generalizes the Itó integral.

2 A class of Skorohod integrable processes

Let Q = C([0, T]) be the space of continuous functions from [0, T] into 1
equipped with the uniform topology, JF the Borel cr-field on ÍI and let P
be the Wiener measure on (fb F). The canonical process W — {Wt,t e
[0,Tj} defined by Wt{u>) = u(t) is a standard Brownian motion. Let F? =

0’{W.s)O<s<í} and set Tt = J\í, where Ai is the class of P-negligeable
sets. Let H be the Hilbert space L2([0, Tj). For any h € H we denote by
W{h) the Wiener integral

W{h) = i* h{t)dWt.
Jo

Let S be the set of smooth and cylindrical random variables of the form:

F = f(W(hl)t...,W(hn)), (2.1)

where n > I, / € Cg°(Mn) (f and all its derivatives are bounded), and
hi,...,hn e H. Given a random variable F of the form (2.1), we define its
derivative as the stochastic process {DtF,t € [0,TJ} given by

D*F = * e [o, t].
j=zl u }

In this way the derivative DF is an element of L2([0,T] x Q) = L2(Q; H).
More generally, we can define the iterated derivative operator on a cylindrical
random variable by setting

DI tnF — Dti • • • DtnF.

The iterated derivative operator Dn is a closable unbounded operator from
L2(ü) into T2([0, T]n x íT) for each n > 1. We denote by W1,2 the closure of
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S with respect to the norm defined by

II F Ii;,2=|l F ||2t,(n) + ]T || D>F ll!1(|0iT|,xn) .
/= L

For any Borel subset A of [0, Tj we will denote by Ta the cr-field gen-
erated by the random variables {/0 1 s(s)dWs,B e B({0,T}),B C . i}. The
following result is proved in [7, Lemma 2.4]:

Proposition 2.1 Let A be a Borel subset o/[0,T] and consider a random
variable F e ®1,2 which is TA-measurable. Then DtF = 0 almost everywhere
in Ac x fh

For any smooth random variable F e S and for any he H we can define

DhF = (DF, h)H-

We have that, for all h e H, D/> is a closed unbounded operator from L2(Q)
into L2(Cl), and we will denote D¿’2 the closure of S by the norm

II F \\l2,h=\\ F ||22(n) + || DhF \\lHU) .

When h = 1a, with A e 5([0, T|) we will simply write Da and ¡B>^’2. If
F e B>¿2, the derivative process {DtF,t e A} is well defined as an element
of L2(A x Ü).

We denote by 6 the adjoint of the derivative operator D that is also called
the Skorohod integral with respect to the Brownian motion {Wt}. That is,
the domain of 6 (denoted by Dom¿) is the set of elements u e L2([0, T] x Q)
such that there exists a constant c verifying

E f DtFutdt
Jo

<c|| F

for all F e S. If u e Dom<5, 6(u) is the element in L2(Q) defined by the
duality relationship

E{6(u)F) = E F DtFutdt, FeS.Jo

We will make use of the following notation: Jq utd,Wt = 6(u).
The Skorohod integral is an extensión of the Itó integral in the sense that

the set L2([0, T\ x fi) of square integrable and adapted processes is included
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into Domó and the operator Ó restricted to L2([0, T\ x Q) coincides with the
Itó stochastic integral (see [7]).

We will make use of the following lemma that can be proved easily by
duality.

Lemma 2.2 Consider a process u G L2([0, T] x ü) such that there exists a
sequence {un,n > 1} C Domó satisfying:

(i) un —> u as n tends to infinity, in L2([0, T] x Q).
(ii) There exists a randorn variable A G L2(Q) such that for all F g S,

E\6(un)F\ converges to E[AF}.
Then we have that u belongs to the domain of 6, and A = 6(u).

The next result is proved in ([7j).

Lemma 2.3 Let h G L2([0,T]), and F G D¿’2. Then the process {Fh(t),t €
[0,T]} belongs to Domó and

S(hF) = F6(h) - DhF.

Let Ln’2 = L2([0, T¡;E)n'2) equipped with the norm

n

I! v lln,2=ll v llL2([o,r]xn) + II Hl2([o,rp+1xO) •
j=i

We recall that L1,2 is included in the domain of ó, and for a process u in
L1,2 we can compute the variance of the Skorohod integral of tí as follows:

E(6(u)2) = E í u2dt + E í f DsUtDtusdsdt. (2.2)Jo Jo Jo

We will make use of the following notation

AÍ = {(s,í) € [0,T]2 : s > t},
A^ = {(r, s,t) € (0, T]3 : r V s > t}.

Let St be the set of processes of the form ut = Fjhj(t), where F¿ € S
and hj G H. We will denote by L1,2’^ the closure of St by the norm:

I! u lli 2 /= E f uídt + E [ (DgUtfdsdt, (2.3)’ Jo JaJ
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and the space LF will be defined as the closure of St by the norm:

II u IIf=II u II1 2 / +E [ (DrDsUt)2drdsdt. (2.4)

That is, L1,2’^ is the class of stochastic processes {vt,t € [0, Tj} that
are differentiable with respect to the Wiener process (in the sense of the
stochastic calculus of variations) in the future. For a process u in L1,2^
we can define the square integrable kernel {Dsut,s > t} which belongs
to L2(Aj x fí). Similarly, LF is the class of stochastic processes {ut,t e
[0, T]} such that for each time t, the random variable ut is twice weakly
differentiable with respect to the Wiener process in the two-dimensional
future {(r, s),r V s > t}. We also observe that i/” coincides with the class
of processes u € L1,2’^ such that {Z?sU(l[0,s|(t), t € [0,T]} belongs to L1,2 as
a process with valúes in the Hilbert space L2([0, Tj).
Remark: Notice that if u € L1,2^, then f^Usás € for any 0 < a <
b <T.

Lemma 2.4 The space L2([0,T] x Q) is contained in LF. Furthermore, for
all u € L2((0,Tj x íí) we have DsUt = 0 for almost all s > t, and, henee,

II u IIf=II u lli2([o,rixH) • (2-5)
Proof: We will denote by Sj- the class of elementary processes of the form

N

^ = EFAb,b+1l(í)i (2-6)
3=0

where 0 = ío < íi < ■ • • < í/v+i = T and, for all j = 0,..., N, Fj is a smooth
and ^-measurable random variable. The set Sf is dense in L2([0, Tj xíl).
On the other hand, we have Sf c L1,2’^ and for any v of the form (2.6)
we have, using Proposition 2.1, Dsvt = 0, for any s > t. This allows us to
complete the proof. QED

The next two propositions are extensions of known resuls for the space
ID1’2 (see [6, Proposition 1.2.2 and Proposition 1.3.7)).
Proposition 2.5 Let tp : Km —> IR be a continuouslp differenciable function
with bounded partial derivatives. Suppose that u = (u1,...,um) is an m-
dimensional random process whose components belong to the space L1,2’^.
Then u) € ¡L1’2’^, and

Ds(ip{ut)) =
j=i u 7
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for all (s,t) 6 Af.

Proposition 2.6 Let u € L1,2’^ and A £ E, such that ut{uj) = 0 a.e. on the
product space [0, T) x A. Then Dsut = 0 for almost all (s,t,u>) in A^ x A.

The following result provides an isometry property for the Skorohod
integral of a process u in the space Ll,2,/ satisfying an additional condition.

Lemma 2.7 Consider a process u in ¡L1,2^. Suppose that for almost all
9 £ [0, T\, £)¿ii¿l[O 0j belongs to the domain of 6 and, moreover,

E DgUsdWs
2

d6 < oo.

Then wl[o,t| belongs to the domain of 6 and

E u2ds + 2 E DgusdWs)d9.

(2.7)

(2.8)

Proof: Suppose first that u has a ñnite Wiener chaos expansión. In this
case we can write:

E u2sds + E [ f DsUgDgUsd9dsJo Jo
rt rO

u2sds + 2E / DsugDgusd9dsJo Jo

u2ds + 2E J Ug DgUsdWs^j d9.

Now, let us denote by un the sum of the n first terms in the Wiener chaos
expansión of u. It holds that un converges to u in the norm || • ||as n
tends to infinity. For each n we have

E
2

= E 2ds + 2 E Deunsd\Va)dO. (2.9)

It suffices to show that the right-hand side of (2.9) converges to the right-
hand side of (2.8). This convergence is obvious for the first term. The
convergence of the second summand follows from condition (2.7). QED
Remark 1: In the statement of Lemma 2.7 the assumptions are equivalent
to saying that u £ L1,2’^ is such that (s), s £ [0, T]} belongs to
the domain of S as a processes with valúes in the Hilbert space L2([0,T]).
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Remark 2: Lemma 2.7 generalizes the isometry properties of the Skorohod
integral for processes in the spaces L2([0, T\ x fi) and L1’2.

The following estímate of the ZT-norm of the Skorohod integral is a
consequence of Corollary 2.2 of [4].

Lemma 2.8 Let p € (2,4), a — Consider a process u in n
La([0, T] x fl). Suppose also that, for each interval [r,6\ C [0,T\, Dsul^j
belongs to the domain of 5, and, moreover,

E DeusdWs
2

dO < oo. (2.10)

Then ¿(ul[r í¡) belongs to LP for any interval [r, í] C [0,T] and we have:

EI i' usdWs P < Cp{t — r)?~l{E f \us\ads + E f \ f DeusdWs)\2de},\Jr Jr Jr Jr

(2.11)
where Cv is a constant depending only on p and T.

Proof: We deduce from Lemma 2.7 applied to ul¡r T] that ul¡r>fj belongs
to the domain of 6 for any interval [r,t\ C [0,T]. Now using Corollary 2.2
of [4] we deduce that (2.11) is true in the set Vt of processes u of the form:

N

”í = E01|.,..j« |(0. (212)
j=0

where 0 = to < • • • < í/v+i = T and for all j — 0,..., N, Fj are smooth
random variables of the form (2.1), / being a polynomial function. We know
that Vt is dense in LQ([0, T] x Q) . So, we can get a sequence {un, n > 1} of
processes in Vt so that un -+ u in LQ([0,T] x íl). Moreover, if we consider
the Ornstein-Uhlenbeck semigroup {Tt,t > 0}, we know that, for all t, Ttu
is also an element of Vt, and we can easily prove that, for all [?\ t\ C [0, T\ :

limlim EÍ |Tiu" - iq¡|ads
» fc Jo *

lim lim E
n k J* | j\De(Tiuns) - Dgus)dWs\2de

0,

0,

which allows us to complete the proof. QED
The next proposition provides estimates for the L2 and LP norms of the

Skorohod integral of processes in the space lF.
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Proposition 2.9 l/ C Dom¿> and we have that, for all u in LF,

E\6(u)\2 < 2 ¡| u \\2F . (2.13)

Consider p € (2,4) and a = If furthermore, u belongs to the space
La([0, T] x Q) we have that, for all [r,t\ C [0,T], £(til¡r>t]) is in LP and

E\6(ul[rA)\p < Cp(t - r)?-1 ^ £ E\us\ads (2.14)
p0 p0 p0 \

+ EJ \Dgus\2ds + EJ J \DaDgus\2dsda\,
where Cv is the constant appearing in (2.11).

Proof: Because u € LF we have that {Aj«<í1(o,0)(s), s € [0,T]} belongs to
L1,2 C Domó for each 6 € [0,T], and furthermore we have

E [T | DeusdWs\2d9 <E T F(Dgus)2dsd9 (2.15)Jo Jo Jo Jo
pT p0 p0

+E / / / (DaDgus)2dadsdO. (2.16)Jo Jo Jo

rT r0

Then, applying Lemma 2.7 we obtain that u is Skorohod integrable and

E\6(u)\2 = E F u2ds + 2E [T ue( f9 DeusdWs)dd.Jo Jo Jo

Using now the Cauchy-Schwartz inequality we have

E\8(u)\2<eJ^ u2ds + 2y u2$d9\JE^ |jí DeusdWs\2d9,
and using the fact that, for all a, b € IR, 2ab < a2 + b2 it follows that

E\8{u)\2 <2E fT u2ds + E F \ [° DeusdWs\2dO.
Jo Jo Jo

Now applying (2.15) we obtain

£|ó(u)|2 <2EÍ u2ds + E¡ í (DgUsfdsdOJo Jo Jo
pT p0 p0

+ E / / (DaDgUs)2dodsdQJo Jo Jo
< 2 II u \F>
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which proves (2.13). Similarly, using Lemma 2.8 we can prove (2.14). QED
Note that uelf implies ul[r,í| 6 LF for any interval [r, í] C [0, T], and,

by Proposition 2.9 we have that ul|rt] 6 Domó.
We have the following commutative relationship between the derivative

and the Skorohod integral for processes in LF (see [6] , property (3) of the
Skorohod integral).

Lemma 2.10 Suppose that u = {ut,t € [0,T]} belongs to LF. Then the
process {ó(ul¡o,í]),í € [0,T]} belongs to L1,2’^ and, for all (s,t) € AF we
have

Ds(ó(ií1[o,£|)) = ¿(DíUljo.íj). (2.17)

The next result provides sufficient conditions for the continuity of the
process

ó(iil[o,£j) = J usdWs
where u € LF.

Theorem 2.11 Let u — {ut,t e [0,T]} be a process in LF such that for
some j3 > 2, E /0r \usfds < oo . Then the process Xt := /0( «sdiys has a
continuous versión. More precisely, for any 0 < 7 < , there is a random
variable C7 such that

\Xt - X,\ < C7|i - s|T (2.18)
A/3 'T' 2p

Proof: Let p := We have E f0 |us|4-pds < oo, and applying Proposi-
tion 2.9 we obtain

E\Xt - X,\p < Cp(t - s)*~l{j‘ E\ue\0d6
+ i* E\Drue\2drdQ + í f f E\DaDrue\2d<Tdrd9}.Js Je Js Je Je

Therefore, there exists a nonnegative function A : [0, T] —> 1+ such that
Jq Ardr < oo and

(2.19)
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For any 2 < a < applying Fubini’s theorem, we obtain

Henee the random variable

is finite almost surely. By the Garsia-Rodemish-Rumsey lemma (see [2]),
we have that for any 7 := -—-4^'—, there is a random constant C7 almost
surely finite such that

\Xt — Xs| < C7|í — s|7.

Noting that 2 < a < is equivalent to 0 < 7 < we prove the
theorem. QED

We have the following local property for the operator 6:

Proposition 2.12 We consider u a process in and A € F so that
Ut{u>) = 0, a.e. on the product space [0,T\ x A. Then 6(u) = 0 a.e. on
A.

Proof: Consider the sequence of processes defined by
2m —1 2m rTj2~m

UT — ~7r( / 'W«d5)l(rj2-m,r(j+i)2-mi(í)-
jrí 1 Jt(í-i)2-m

It is easy to show that for all m , u —► um is an linear bounded operator from
¡Lf into Lf whose norm is bounded by ^ and that limm_oo \\um — u ||f= 0.
Using now Proposition 2.9 we have that S(um — u) tends to zero in L2(íí)
as m tends to 00. But, on the other hand, using Lemma 2.3 we have

rTj2~m
I Usds)(WT(j + l)2-m - WTj2-m)
ro-i)2-™
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and by the local property of the operator D in the space L1,2’^ (Proposition
2.6) we have that this expression is zero on the set {J^ u^ds = 0}, which
completes the proof.

QED
If we have a subset L C L2([0,T) x fí) we can localize it as follows. We

will denote by Lioc the set of random processes u such that there exists a

sequence {(Qn,un),n > 1} C T x L with the following properties:

(i) t D, a.s.

(ii) u = un, a.e. on [0,T] x Qn.

We then say that {(Dn, un)} localizes u in L. If u € L^, by Proposition
2.12 we can define without ambiguity S(u) by setting

$(u)|nB=5(ti")|nB,
for each n > 1, where {(Qn,un)} is a localizing sequence for u in LF. The
following result says that the operator Ó on Lis an extensión of the Itó
integral.

Lemma 2.13 Let u be an adapted process verifying /0T u2sds < oo a.s. Then
u belongs to L^. and 6(u) coincides with the Itó integral.

Proof: For any integer k > 1 consider an infinitely differentiable function
: 1 —> IR such that <Pfc(x) = 1 if |a:| < k, and <Pk{x) = 0 if |a?| > k + 1.

Define

«t = (jf ulds) ,
and

Dfe = u*ds < k

Then we have íí* T a.s., u = uk on [0,T] x and uk G L2([0, T\ x D)
because uk is adapted and

j (uk)2dt = J ufol {^J ulds'j dt < k + 1.
QED

The next result will show the existence of a nonzero quadratic variation
for the indefinite Skorohod integral.
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(2.20)

Theorem 2.14 Suppose that u is a process of the space LThen

in probability, as ¡7r| —♦ 0, where ir runs over all finite partitions {0 = ¿o <
ti <■■■< tn = T} of [0, T}. Moreover, the convergence is in Ll(U) if u

belongs to LF.
Proof: We will describe the details of the proof only for the case u G LF.
The general case would be deduced by an easy argument of localization. For
any process u in LF and for any partition 7r = (0 = to < h < • • • < tn = T}
we define

^

v*(u) = i£(ft'+1usdWs)2.
i=o Jti

Suppose that u and v are two processes in LF. Then we have

£(1^» - V"»|) < (j2(Jtt,+ \us-vs)dWs
x ^E (/ + (u* + vs)dWs

< 4 || u-v ||f|| u + v ||f • (2.21)
It follows from this estímate that it suffices to show the result for a class of

processes u that is dense in LF. So we can assume that
m—1

Ut = E +

J=0

where Fj is a smooth random variable for each j, and 0 = so < • ■ • < sm = T.
We can assume that the partition 7r contains the points {so,..., sm}. In this
case we have

V*(u) =

m~l / fti+1
E E (Fjmu+Ú-Wiu))- DsFjds
j=0 {t■.sj<ti<sj+1} K Jti
m— 1

= £ E d(M/(‘.+>) -
j=°

-2(W(íi+i) - W{U)) ft'+1 DsFjds + Qtl+1 DsFjds')
13



With the properties of the quadratic variation of the Brownian motion, this
converges in Ll(ü) to

m—1 .j'

2 Fj(si+1 - Sj) = / Ulds>
j=0 Jo

as ¡ 7r| tends to zero.
QED

As a consequence of this result, if u G L^. is a process such that the
Skorohod integral usdWs has a continuous versión with bounded variation
paths, the u = 0.

3 Itó formula for the Skorohod integral
Our purpose in this section is to prove a versión of the change-of-variables
formula for the indefinite Skorohod integral. For a process X € L1,2’^ we
will denote D~X the element of Ll(\Q,T] x fi) defined by

lim í sup E\DsXt - (£>~X)s|ds = 0, (3.22)
”

(s-±)V0<t<s

i 2 /
provided that this limit exists. We will denote by L1_ the class of processes
in L1’2’-^ such that the limit (3.22 ) exists. It is easy to show that a process
of the form

Xt — Xo + / usdW3 + / vsds,
Jo Jo

where Xo € JD>¡^, u G L^., and v 6 belongs to the class Lj’2’^ and

(D X)t - DtA"0 + í Dtvsds + / DtusdWs.
Jo Jo

We will also denote by Lf the space of processes u € LF such that
|| Jo u2ds||oo < oo.

Theorem 3.1 Consider a process of the form Xt = Xo + Jq usdWs + vsds,
| n n \ 0 f

where X0 € «e (LO,*:, and v e Lfa'. We will also assume that the
indefinite Skorohod integral Jq usdWs has a continuous versión. Let F : 1 —*■
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E be a twice continuously differentiable function. Then we have

F(Xt) = F(XQ) + f F'{Xs)dXs + ± /* F"(Xs)u2dsJo 2 Jo

+ f F"(XS)(D~X)susds. (3.23)Jo

Proof: Suppose that (fí’1,1, A"”). (Qn,2,un) and (Qn’3,vn) are localizing se-
quences for Xo, u, and v, respectively. For each positive integer k let ipk
be a smooth function such that 0 < ipk < L ipk(x) = 0 if |x| > fc + 1, and
i>k{x) = 1 if |a;| < k. Define

Vt’k = v?ipk{ í \v"\2ds).
Jo

Set Xfn,fc = X¿1 + Jq u”dWs + Jq Vg'kds, and consider the family of sets

Gn,k = Qn, 1 n nn,2 R 3 R { gup ^ < fc} n { fT \v”\2ds < k}.
te[o,i] Jo

Define also Fk = F'ipk■ Then it suffices to show the result for the processes

X£, un, and vn'k, and for the function Fk. In this way we can assume
that Xo G E>1,2, u G I/, ¡q u2ds < M, for some constant M > 0, v G L1’2’^,
¡q |i>.¡|2ds < k, and that the functions F, F' and F" are bounded. Moreover,
we can assume that the process Xt has a continuous versión.

Set t" = 0 < i < 2n. Applying Taylor development up to the second
order we obtain

F(Xt) = F(Xo) + £ F'(X(t?))(X(i?+1) - X(%))
i=0

+ 2¿' ií"(Xi)(X(í?+1) - XK))\ (3.24)
i=0 ¿

where X¿ denotes a random intermedíate point between X(t") and X(t"+1).
Now the proof will be decomposed in several steps.

Step 1. Let us show that

2¿' F"(Xt)(X(tr+1) - X(í?))2 - f F"{Xs)u2ds, (3.25)
i=0

15



in L^Q), as n tends to infinity.
The increment (A"(í”+1) — X(tf))2 can be decomposed into

Using the boundedness of F"(Xt), the property /0' |us|2ds < k, and Theorem
2.14 we can show that the contribution of the last two terms to the limit

(3.25) is zero. Therefore, it suffices to show that
2n —1

£ UsdWt )2 F"{Xs)u]ds, (3.26)

in Ll(fl), as n tends to infinity. Suppose that n > m, and for any i =

1,..., 2n let us denote by í-m) the point of the mth partition which is closer
to t” from the left. Then we have

E Fn(Xi)( /t,+l usdWs)2 - f F"(Xs)u2ds
~n Jtn Jo

E

< E

¿=o

2"-l

E [F"m ~ f"(x (t.•ai

¿=o

2m — 1

h+i
MWS)2

+F E E
j=o

( [ ,+1 usdWs)2 — [ ,+l u2dsJt? Jt?

!"‘-l m (

^ F"(X(í™)) / ,+1 u2ds - / F"(Xs)u2sdsj^o JtT Jo
+E

bi + b% + 63.

The term 63 can be bounded by

E ( sup |F"(XS) - F"(Xr)| f u2ds) ,
\|s-r|<t2-m JO )

which converges to zero as m tends to infinity by the continuity of the process
Xt. In the same way the term b\ is bounded by
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which tends to zero as m tends to infinity uniformly in n. Indeed, if we
write

Am = sup \F"(XS) - F"(Xr)\,
\s-r\<t2~m

and
2n —1 tn

r U‘dW»)2'
t=0 Jti

then, for any K > 0 we can write

E{AmBn) < KE(Am) F2\\F"\\0OE(Bnl{Bn>K}),
and this implies that

lim lim sup E(AmBn) = 0.
A'_oom-oon>m

Finally, the term 62 converges to zero as n tends to infinity, for any fixed m,
due to Theorem 2.14.

Step 2. Clearly the term

vsds)

converges a.s. and in Ll(ü) to F'{Xs)vsds, as n tends to infinity.

Step 3. From Lemma 2.4 and Proposition 2.6 we deduce
ftn ftn

F'(X(0) ,+1usdWs= f 1+1 F'(X(t?))usdWsJv> Jt?

4- [ti+l Ds[F'(X(t^))]usdsJt:
= fti+l F'(X(t?))usdWs

Jt?

+F"{X(t?)) /t,+1 DsX(t?)usds.
Jt?

Notice that

ft1} ftn ftn rt1}
/ *+1 DsX{t™)usds = / (DsXq + / * DsurdWr + / ’ Davrdr)u$ds.Jt? Jt? Jo Jo

(3.27)
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We will show that 1 F'^-X^í”)) ír+1 DsX(tf)usds converges in L1 to
fo F"(XS)(D~X)ausds as n tends to infinity. In fact, we have

£ F"(X(i?)) I DsX(t?)usds - / F"(XS){D~X)susds
¿=o

+
i=0 '"■i

Consequently, we obtain

/ 22z} r*
E

£ F"(X(í?)) [i+1[DsX(t?)-(D-X)s}usds*to •'í?

fi+l{F"{X(t.")) - F"(XS)\(D~ X)susc

£ F"{X{t?)) [ i+1 DsXWusds - f F"(XS)(D~X)susdsí=o ^

< v^?||F,/||oo (f^1 /t,+1 |DaX(C) - (F>-X)s|2ds)2l »=o ■'‘r J

+F ( sup |F"(Xa) - F"(Xr)| C\(D-X)aus\ds) = di + d2.
\|s-r|<2-" ^0 /

The term d2 converges to zero as n tends to infinity, because

E í \(D~X)sus\ds < oo.
Jo

For the term di the convergence to zero follows from the estimates
2n —1

F V' ÍÍ+1 / DaUrdWr - i DsUrdWr
i=0 Jt? J° J°

2"-1 I /•* I2
= eJ2 \ DsUrdWr\ ds

t=o •'*" r*" I
1 rS 2"~} ft?+1 r4 fs

/ / |F>sur|2drds F E ¡ / / |-De.Dst¿r|2d0drds,
«/t? •/(? -/t;* •/«? ■A'»¿=o 's

and a similar estímate for

2n —1 -en Ir^ixi r*’i
• X * J'* I /*{ . /*£

£ V / *+1 / Dsvrdr — / Dsvrdr
£o K0 •/o

ds.
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Step 4■ Finally, we will show that for all t e (0, T], the process

$$ — F1 {Xs)us1\q¿\(s)

belongs to the domain of 6 and that
t rt

F'(Xs)usdWs = F(Xt) - F{Xo) - / F'{Xs)vsds (3.28)
o

To get this result we will apply Lemma 2.2 to the sequence of processes

2" —1

i=0

We have that $n converges in L2([0,T] x fí) to $ as w tends to infinity.
From Step 1, Step 2 and Step 3, we have that

converges in L^Q) to a random variable A equals to the right-hand side
of Equation (3.28). Then in order to complete the proof it suffices to show
that A belongs to L2(Q). This follows from the fact that u € Lf, Xo € ID)1,2
and v € L1,2’^. QED

Remarks:

1.- The assumptions of Theorem 3.1 can be slightly modified. For instance,
in order to insure that the process uadWs has continuous paths we can
assume that u e (Lf Pi L,P([0,T] x ü))ioc for some 0 > 2, due to Theorem
2.11. On the other hand, notice that the fact that jjf u2sds is bounded is
only used to insure that the right-hand side of Equation (3.29) is square
integrable. Then, instead of assuming that the process u is locally in the
space Lf we can assume that the processes u, v and the initial condition Xo
verify locally the following properties:

(i) u € LF and £(/0r u2ds)2 < oo.

(ii) X0 € P1'2 and E(/0T |DaX0|2ds)2 < oo.

19



(iii) v € Ll’2J and £(/{s>t} IDsvt\2dsdt)2 < oo.2.- If Xo is a constant, and Ut and vt are adapted processes such that
¡q \ut\2dt < oo, Jq |vt\2dt < oo a.s., then these processes satisfy the as-
sumptions of the theorem because u € (TL[)ioc by Lemma 2.13, v e
(this property can be proved by a localization procedure similar to that used
in the proof of Lemma 2.13), and the process Xt = Xo + usdWs + /0‘ vsds
has eontinuous paths because it is a continuous semimartingale. Further-
more, in this case (D~X)S vanishes, and we obtain the classical Itó formula.3.- Instead of working with processes v € we can rewrite the proof
of Theorem 3.1 assumig that v is a process verifying locally the following
properties:

0) Jo < k-

(ii) The process V = {/q vsds,t € [0,T]} belongs to the space

In this case the proof is the same, changing the term f¿¡ Dtvsds by the
term (D~V)t■ Notice that if we assume this hypothesis for v, taking into
account Remark 2, the change-of-variable formula for the Skorohod integral
established in Theorem 3.1 is a generalization of the classical Itó’s formula,
in the sense that v is an adapted process satisfying \vt\dt < oo a.s.

4 Forward integral
The forward integral introduced in [1] is an extensión of the Itó integral to
nonadapted processes which differs from the Skorohod integral. In [9] this
type of integral is defined using the following approximation approach. Let
u = {ut, t € [0,T)} be a process in L2([0,T] x ü). Then for every m > 1 we
can introduce the term

2m fT
Fm(u) = — yo Ut(W{t+T2-”>)AT - Wt)dt

Definition 4.1 We say that a process u — {ut,t € [0,T]} in L2([0,T] xíí) is
forward integrable if the sequence Fm(u) converges in probability asm —> oo,
and in this case the limit will be denoted by fj utd~Wt.

The next result gives us the relationship between the forward integral
and the Skorohod integral:
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(4.29)

Theorem 4.2 Let u e (LF_ )ioc. Then u is forward integrable and

Proof: By a localization argument we can assume that u e Lf_. Thanks
to Lemma 2.3 we have that, for every m > 1,

'(t+T2-m )AX
Drutdr)dt.

Now the proof will be descomposed into two steps.

Step 1. Let us show that

(4.30)

in L2(f2), as m tends to oo. Using the Fubini theorem for the Skorohod
integral (see [6], Exercice 3.2.8) we have that

where

It is easy to show that for all m, u —► Um is an linear bounded operator from
LF into LF whose norm is bounded by ^ and that limm_oo II Um —u ||p= 0.
Using now Proposition 2.10 we have that 6(Um) tends to S(u) in L2(ü) as
m tends to oo.

Step 2. Let us prove that

(4.31)

tends to zero as m tends to oo.

We have that

(t+T2~m)AT
Drut - (D u)rdr)dt\
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2"l rT r{t+T2-m)/\T rT

+E\jr J (y (D~u)rdr)dt- JQ (D~u)rdr\
< í sup E\Drur — (D~u)r\dr

Jo (r—T’2_m)V0<t<r
/*T rr rT

+E|— / / {D~u)rdtdr — / (£>-u)rdr|.1 Jo J (r—T2~ m)VO JO

Now, thanks to the definition of the class Lf_ and the dominated convergence
theorem we have that these two terms tend to zero as m tends to oo, and
now the proof is complete.

QED

Remark: The forward integral is an extensión of the Itó integral. In
fact, notice that L„([0, T] xü) C Lfl and that for a process u € £„([(), T) xü)
the forward integral coincides with the Itó stochastic integral.
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