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Convergence within nonisotropic regions of
harmonio functions in Bn

Carme Cascante* Joaquín M. Ortega* -

Abstract

In this paper \ve study the boundedness in Lv of the projections over spaces of func¬
tions with .spectrum contained in horizontal strips. We obtain some results concerning
convergence along nonisotropic regions of hannonic extensions of functions in L7’(Sn),
with spectrum included in these horizontal strips.

1 Introduction

Tliis work deais with some topics related to the expansión of functions in L2{Sn), Sn the
unit sphere in Cn, in terms of hannonic homogeneous polvnomials H(r.s) of biclegree (;■, s).
The projections l\rs of L2{S") onto H(r.s), extern! to Lx{Sn) and pennit to define for every
/ G ¿'(Sn) the spectrum of /, spec/ = {(?•,*) G Z+ x Z+ ; I\rsf 7^ 0 }. The orthogonal
projectiou from to G?r//(r, 0) can be identified to the (’auchy-Szegó projection
and it is well known that it can lie continuously extended to D\ p > 1. What happens if we

project to others rh(r,s)6tt//(»', *)? This is a very difficult problem whose ansvver is not known
even for the Fourier expansions wlien n = 1. The first object of this work is to study the
boundedness in Lv when ü is a horizontal strip ü0k = {(?',.s) G Z+ x Z+ : 0 < .s < k}.

It is well known that the hannonic extensions of Lp(Sn) to Bn liave limit a.e. along
uon-tangential regions and that if the functions is in Hp, that is. its spectrum is in Z+ x {0},
there exist convergence along admissible regions that are tangential in some directions, if
n > 1. Is there some relation of this fact with the spectrum of the functions.'’ The seconcl
topic of this work is to study convergence along admissible and other tangential regions of
hannonic extensions of functions with spectrum in íi<u-.

The paper is organized as follows: in the seconcl section we show that. as it happens
with the (kiuchy-Szego projection, the orthogonal projection from L2{Sn) onto LQofc,
induces a bounded operator from Lp to Tn0(,., p > 1. This will be proved bv obtaining an
explicit formula, for the projections, from wliich we deduce that tliey are op»‘rators of order
0, in the sense of [NaRoStWa],

I11 the tliird section we show that the space of hannonic transforms of functions in Lv
with spectrum in Qou behaves very much alike the space of holomorphic functions in Hp{ Bn).

*Bot!i autliors partially.support.ed by DdK.’YT (iraut. f*Bt)5-U956-( 'Ü2-01
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In particular, tliere exists for such spaces of harmonio, functions, a strong Lp estímate of
the admissible maximal function. We also prove that the theorem of Nagel, Rudin and
VVainger, [NaRuj and [NaWa], which shows that for any function in H°°(Bn), there exists
radial limits at almost every point of a transverse curve, extends to bounded harmonio
functions vvith spectrum in flor¬

ín the fourth section we study convergence within tangential approaohes to the boundary
of harmonio tranforms of nonisotropio potentials of functions in Lq. The spaces of poten-
tials. given bv nonisotropio convolution witli Riesz-type kernels, coincide, in the integer, case
witli nonisotropio Sobolev spaces in the unit sphere, and for the general case, when restricted
to ¿Qofc, can be obtained by complex interpolation method. A direct proof of this last fact
is given in the appendix.

2 Boundedness in Lp.

We begin the section witli some definitions. Given íl C Z+, Z+ = { r G Z; v > 0}, let
“bp■.S)enH{r- *) be the algebran: sum of all spaces H(r,s) witli (?-, s) G fl. Here H(r,s)
is the space of harmonic homogeneous polynomials in Cn that have total degree r in the
variables • • • , ~n and total degree .s in the variables z\, ■ ■ ■ ,zn. If k < m we will write
Ílkm = {(?•, .s) G Zl; A: < .s < m }. If X is a Banach space of integrable functions on Sn,
containing the spaces H(r,s), Xq will denote the closure of the space ®(rjS)6n//(r, s) in X.
The space of harmonic extensions of functions in Xq will be denoted by QfXn]. The Poisson
kernel in the unit ball is given by

= ¡7r^r- --eB”, C6S-,
and if / G L'(Sn), and r G Bn, we denote the Poisson transform by

Q[/K--)= L Q(--,0/(0<MC).JS’1

When A' = L¿{Sn), the identification of the Hilbert space Lq(Sn) witli its harmonic
extensión will give for eacli z G Bn a function Cq(z,-) G Lq(Su) such that for any / in
Q{Ll}-

/(--)= / Cn(.-,C)/(C)<MC).
JS"

If Krs is the kernel associated to the orthogonal projectiou from L¿(Sn) onto H{r,s), it
is sliown in [Do] that for ( G Sn, ^ G Bn,

(a.i) c„(_-,o= Z Kr,(-,()■
{r,í)6ft

The convergence is uniformly in ( G Sn, z in compacts of Bn.



An explicit formula for the kernels Krs can be found in [Al] (see also [Ru]). If r G Bn.
C G Sn, and n > 2

\~\2

(2.2)

vvliere

(2.3) D{r,s,n) =
r + n — 2\ ($ + n — 2\ r + s + n — 1

n — 1

is the dimensión of H(r,s), and where

pi i i *F("Ac’c)=£,wc
is the hypergeometric function (here (a)¡. = a(a + 1).. . fn + k — 1)).

It is also well known that if ; G Sn,

(2.4) l|A'r,U,-)ll2 = KrS{z,z) = D(r.s.n).

Wlien r > .s, it is also shown in [Al] that

(2-Ó)

where

uCla
/\'rs(--C) = D{r,.s, n){z(Y >> — s n — 2 I -l¿s

*rv>-e{£
dlt =U

•s + i
m

s + a

8 — 171
(X~[)

are the Jacobi polynomials orthogonal, in L2([0, l], xa( 1 — .r)'idx), to all sucli polynomials of
degree les ser than .s, normalized by the condition ^^(l) = 1. Observe that when fi = f20o<
f o(~1 C) is the (’auchy-Szego kernel and when 0 = Z+, Cq{z,() is the harmonio Poisson
kernel Q(z. (,")•

First we will calcúlate, for any k G Z+, the kernel CnQk(:,(). We want to obtain
an expression to which we oould apply the theory of operators of order 0 (in the sense
of [NaRoStWa]).

For .s G Z+. r G Bu. f G Su. we will simplv write F's(-.(,") instead of f’n,.(-, 0 and Cok
instead of (\¡ok-

Theorem 2.1 A asume n. > 2. We then have for any z G Bu, Q G S".

(*) C(=,0 =

v (S+”‘ 2) n-yii _ i_r¿\s—m/-..y» ((n ~ m + * ~ 0! , s{n - m + s - 2)!\
¿o(» - l)!('S - ~ ~ ~ V(l-~On-w+s (1-zC)n"w+4_1 /

( ii) Cok{ = - C)
7? + A:

k (i¿v j-1 j (i-;c)”+j-'



Remark: Since |zC — |c|2| < |1 — ~£|, the limit as k —► +oo of the first summand in (ii)
is zero, whereas the second summand tends to

(i-Na) (, _ - 1~[¿N\~n = i - M2
(1 - :()n \ 1 — -C / IC -

the harmonic Poisson kernel in Bn.

Proof of theorem 2.1:
If vve use (2.5), we obtain

E/'-(--o = E
V + „ '-V; + » + »

r>5 7* >5

xíS-l'
ó —íu / , 2 \ "il-Cl

n — 1

|2s

. m=0

s + n - 2\ í r N
, m I \ .s — m >

■ s C+"" l ¿ C+r2) (,-
= E

r>(J

5

) n — 1
'r + s + n — 2\ r + 2.s + n — 1

-E

r + -s

(,+r)
n — 1 i--?)' {t (‘+” “2) í; +1 idíp - w>)—wrm ,$ — m.

= E

3, (» - [)!(.« - m)!

(,+r)

E<>-++»-i )(’"lir + ’h, 2>W"‘(m2 - i»i»rw

„7^u (n - OK* - m)!
where we have defined

(7- + 777 )!

ci2-i--i¡r’"uc)’“o,

43,u(=.0 = ^(r + 2.S 4 n - l)(r + ■. + 'í — 2)(r + * + fi - 7) ■ ■ ■ {r + m + 1 )(zQr+m

v > 0

Next

•4, o = Y. ('■ + 2. - » + >> - 1 )(>■ + .' -m + u-2)!(i?),
(?7. — 777. + .S — 1 )! .s(7¿ — 777 + S — 2)!

(1 - (i--()
- £ (>• + 2,. - m + n - l)k+.a--£LÍ"_-:.2)!(^,

r<7/i —1
7 .

So we have obtained that

(2.6) f’,(-,C) = EAo(:,()

4



= £ o-£
r<$—\ ,„=o (” - OK* - ™)!

*Cla-l-l2)4"mK)w

v- (r 4- 2.S - m + n - 1 )(?■ + .s - m + n -2)1, _-^r l ,

(« - !)!(« “ m)!r!

+ E
s+n — 2

„^o ("• - OK* ~ m)¡

Now, for eacli r <

l~7p _ i -1 ^ \a—w /—/»\m [(» - m + .s - 1)! .s(n - m - 2)!H w 1 (i---0M-”*+* - -.(i-zC)n

?■ 4- >> — 2 .s + n — 2\ r + .s + n —

n - 1 £
r's!

=u í»(ni!)2
i-^ _ |-|2)"¿(3<; r |-<;'J2(r—7rií.

Tsing this formula, a raret'ul raleulation of the sum of the two first sumands in (2.6)
.shows that its valué is identirally zero, and ronse([uently we ohtain part (i).

The proof of the formula in part (ii) wi 11 he a consequenee of the following lemma.

Lemma 2.2 Assume n > 2 and let s > 1 be a nonnegative integer. We then llave that for
; e Bn. ( e sn.

C, ) +

¡71 -j~ s

n + * - (-C - l~|2)S 1
■S - 1 / ( 1 - zQn+s-l

/ (i -=0n+s
n + .s - 2\ (3( -\z\2)s-1

, .s-1 / (1 - -C)n+s-t
0-M2)-

Proof of lemma 2.2:
In the formula obtained in part (i) of theorem 2.1 we write

(I--CI2 - I--Ií)"" = ((-C - lpc + K - ■

develop the above sum, and group together the terms which llave the same power of (1 —

in the denominador. We then ohtain:

C(~,ü =

£ (*+:r2)
=u (” _ OH* - ">)■ Id- ~C)M_

m + s 1)!(-c)m(^c-i-í¿rmm+s

+£ (■-11 >j (<» -»•+—*)! (* j ”* j do'*-w -



- s(„ _ m +, _ 2)iQ _'¡‘j(jcr'+m(íc - |j|2)-”->+i
4(.,r^C-mt!-J)l( y)

(i - -C)n_1
Since

E ^lI(-1)<-w(k -m + -s -2)! = (,s+-!i 2)! E ('s )(-irw = o,“o (.S - m)!
the above formula can be rewritten as A + B, where

•s! “o Vm,

¿=E (5+m 2) i (n - m + S- 1 , ,2^-m■(~c)m(~c - \z\y
r'o (n - 1 )!(.s -m)! [ (1 - -C)n-m+S

| *g( + l)!('7")(-0-'+’“(-C —( 1 — ~(i')u-?íl + S-J

■ {n - rn + .S - 2)!(7_7)(JC)J~1+m(^C - \z\2y-m~j+1
=0 (" - [)'(s - m)¡ jrív L/ (i -

,;=i

5 C+::;2)

For each 0 < k < .s — 2, we will check that the sura of the terms in A that llave as

common denominator (1 — z()n+k is zero. Indeed this suni equals to

{‘Vr^in + k-1)!
(n — 1)! A:!

(=cr~k{=c-\z\2)k

s-k-1 fs+n-iN /

+ E \v,7 ■■■ v(-^rm-k(n-rn + ,-i)\[ *~m,^u (» - 1)'(* - m)! \s-k-m,
But

■s + n - 2)!(n + k - 1) s vA\_, y-k-m (n ~ m + -s ~ l)(.s + n - 2)!
(s — k)\(n — l)\kl )“) (r?. — l)!m!(.s — m — A;)!A:!
t-s +n - 2)! / (» + *•• -1) + s 1 (_! (Tl _ 771 + -s _ 1)
(n — 1 )!Ar! [ (s - k)\ ' ?^0 v m!(.s - m - k)\

-fc-m (» - m + .s - 1)1;.s + n - 2)! (s~k
(n — 1 )!Ar! He-i)*

•. m=Ü m!(.s — m — A)! J
And

£<-')
7U = 0 7n!(s — m. — A1)!

,fc { n + .s - 1 (» - k= (-i r
i s — k

(s - k)\
's -

m
m

(i



The faet that

Virv'-'m.
dx v m /

easilv ffives that the above sum is zero, sinre k < .s — 2.
In consequetice we obtain that

A +
+ s-2\ (z( - |r-12^5-1

•S - 1 / {[ - z()n+s~'í
ii + s — 2

•s - 1

u + ,-A(~C_|~|2)5

= <¡(n. + .s-2)

+

+

.s / (1 - cOn+s
n + s - l\ (¿C - Icl2)5

n+rVr::;2.
fn + * - 2\ (jC-I^I2)* l _

, .s-1 /(l-’Ó’1^"1

X |'2\s—1

(i - 2C),l+s_1

X)

(i - zQn+a

An analogous ealculation shows that

!n + .s - 2\ (z( - |c|2)5B =
•s - 1 J {[- zQn+*-i

Adding both formulas we finally obtain the lerarna. I

Now formula (ii) in theorem 2.1 is deduced from lemma 2.2 and the expression of the
Cauchv kernel. I

We will next clierk that the limit as j~j —> 1 of the kernels (\i0k arises as a singular
operator of order 0 in the sense of [NaRoStWa]. We reeall some definitions.

Let Ttr 1 </’<_/< n, the complex tangential vector íields

T ------ T - -- —

lJ ~'dz3 ~Jc)zx' ,J ~'&Zj ~Jc)zt'
We denote by A 1 — A\ • • • .A,u a eomplex difierential operator whose vector fields X[, 1 < / <
m are of type Tij or T¡j for some i < j. The weight of X1, u(X!) = y it X1 = X\ • • • Xm.

Let /\./(C) = /s„ /\ (C,',u;)/(u>) (Iit(jj), for / € C°°(S7i), where is a distribution
which is C00 outside the diagonal. The operator K is of order in if there exists a family of
operators AL [/]((,’) = /s„ l\\((,<x!)f(u;)d(7(uj), such that

(*') A%(0)6 C°°(Sn x Sn).
(**) I\J -» Kf in (r°(Sn), for each / in C°°(S”).
(iii.) The tollowing conditions hold uniformly on £ :

(i.u) - 1 For any X1 ,XJ \X^X¿ A'e(C,-;)| < CXY\ c—| m — uj( X1)—u/( .V J) — n

(iii) — 2 For any / > 0 there exists /V/, > 0. so that for any smooth function ip

¡



.supported in B\S) = {(,’ 6 S" ; Jl — CoCI ^ I and every X¡ witll u>(X!) = -y

|A"/d,b]U„)!<C,<S-!+"‘»Hp Z <S"(X'>|A'J^(()|.

The sanie estímales must hokl for the adjoint operator K“ with associated kernel A'(o;, £).

If / is a iionnegative integer, and ¿f(Sn) is the nonisotropic Sobolev space of functions
with tangential derivatives up to weight / in Lv, p > 1, and K is an operator of order m,
then (see [NaRoStWa]) K maps continuously ¿f(Sn) in Lvl+in{Sn).

It will be ronvenient for some computations to eonsider, for 1 < i,j < n the generators
of the tangent vector fields to Sn

ó d

'd7,~Zjd¥f
which verifies (see [Ge]) that for each smooth functions / : Sn —> C, and <í> : C —*■ C,

/ N^(;0f(Qda(0= í *(-C) W;/(C)<MC)J S’1 Js»

By induction it can be proved that if .V = AA • • • AT is a differential operator with Xt,
i = 1, ■ • • . k tangent vector fields with coefficients in C00(B’1), tbere exist differential oper-
ators V'a = V- • • • Vg, with |o| < k, Y" tangent, and smooth functions ^(z, £) satisfying
\ Z~y>a( Z. (,”)] < C|1 - -^|'»ax(0.w(V'')-^(.V)-^(Z)) s,u.h that

¿.I X-
/s»

M<fc

As we have alreadv commented, the operators C’s(z,C) when |z| —> 1 can be realized as
operators of order 0. It is easy to verifv that if we define = Cs(ru),Q, for in Sn,
and r < 1. then there exists lim,_i f’’[./](C)i for anv / in G<3°(S71), and it defines a func.tion
in C^S’1 )• We will write f’*[/] the valué of this limit. We then have

Proposition 2.3 For tach, .s > 0 tht oprrators C" art of order 0.
Proof of proposition 2.3:

Since the case .s = () is the (!auc.hy-Szegó projection and the result is well known, we
will assume that s > Ü. From the definition of C’ it is olear that conditions (i) and (ii) are
satisfied. We will next check condition (iii)-l. Formula (1) in theorem 2.1 shows that for
anv i < j,

T?jC;(u;. 0

0+::;¡)

+

+

m=0 (,l ~ 1 )'(-s - »»»•)!
.s(n — m + s — 2)!x

í(n-m + s- 1)!
V (1 - 7-U>()n-m+5

, +r(ü7C)m(M,T - l)5_m
(1 - ru,’C)M-m+a_l ) V S
s{n — m + s — 2)!(h — m -f .s — 1) _ _ _

(n - m + .s - 1 )!(n - m +• .s),_ - _ - .

-(w¿4 j - Uj(i)(1 - )
‘

\u — 7H +5+ 1

(1 - rujf)u~m+s

8



Novv the faet tliat ^ MC — ^bCl'2 = 1 — I^Cl¿ gives that

1 \

i<j

T?jc;{u,a = o
• I1 - wCl'•'«+5

The sanie argument can he used to show a similar estímate for r^(7j(ug (), and that for
any composition of complex tangential vector fields X¿, X¡!

\XlX¿C:^.Q\ = 0 |1 — ul((‘|n+u'(-V/)+u'(-'‘

uniformly on r.
In order to tínisli we just need to clieck that the kernels T’J satisfy condition (iii)-2

uniformly in r. We will use the following

Lemma 2.4 let k bt a noniugative interjer. Thtrc cxists (' > 0 so that for each £ > 0.
r € Bn,

\í _ T\u-(-,Ü<MO| <C.JU---t|>e

Proof of lemma 2.4:

It is inmediate to verify from formula (ii) in theorem 2.1 that all the summands tliere
satisfy that the integral over S" of tlieir modulus are bounded independently of z, except for

/n+fc-Ad.-CM:^
\ k ) (\-ZQn+k

So we are led to prove that tor ~ € Bn,

(2S) í (1-fT2 — | ~ i2)
- 1 ’ der(0 = 0(1).

ri>5 (1 - zf)n+k

Since for anv 0 < s < k

í (i - i-i2ni - i-cr2))^"
/s- |l-~ClK+*:

tile estimates in (2.8) will liold once we prove that

<L(t{Q = 0(1),

/ .

(1 - L-Cñ*l44-d(r(0 = ()(l)
|l-cCl>« (1 - = f)n+k

uniformly in T < |-| < 1, £ > 0. Let A = |r|. Tlien a unitary cliange of variables gives that
the above is equivalent to show that

(1 - A2|Ci|2)*í
_ j-dcr(C) = 0(1).

(1 - A(, )"+*■•

9



But the above integral equals to

(1 - X2r2)n~2+k—//7T J J{ re»

= —//7rA2 J J{pe<»£D-.p<\, e<\\-pe‘<>\} (l ~ pe-'9)n+k

GD ;e<|1 — Are'e| } (1 - Are~,d)n+k
(1 - p2)n-2+k

rdr (16

- pdpd6,

integral wliirh can be easily seen that is boundecl uniformly on c, and consequentely the
lemma is finished. I * '•

Going back to the proof of eondition (iii)-2, \ve llave to prove that

|,v'o-;M(Co)l d suP

for any C'Xl function on Su, sucli that sup i¿> C B((o, 8) for Co € Sn, 8 > 0, and any
X1 - Ab • • • Ab composition of c.omplex tangential vector fields. When 8 X 1 — r,

|A"c;M((.„)i ¿ í |.v'cJ(rCo,c)lwoi<MO K (i-r)-”-“,A"'í"iMU i
JB{Ca,(¡)

Tlms it is enongh to assume that 1 — r ■< 8.
Now, let A’ = .Y, • • • Ab be a diíferential operator, with c.omplex tangential vector

fields. By (2.7).

-vrbrb](0.) = E L ^Ko,C){^Ko,C)VcV(C)-^Ko,Co)^(Co)} da(Q.
M<* S”

Since íp is supported in B((o, 8), the previons lemma shows that the part of the above integral
over Sn \ Bi^oX) i« bounded by

11 * | < k j a | < A:

For the integral over B({o,8), the regularity of Yatp together with the properties of the
functions give that (see [BrOr])

|K<V(C) - rv(Cu)l ^ EII^VIUII -CColh
«<i

|^Ko,0) - <AvKo,Co)| r< - cColG

whicli easily give that

I / rb(rCu,C){yíf(Ku,C)V-'Tr(0-^K(nCü)rcV(Co)}^(C)l ^ ■*'B(Co.í>) y

As a corollary we olitain

10



Corollary 2.5 For any k, l nonnegative integers, and 1 < p < Too the sigular operator
CQok maps boundedly V¡{Sn) t.o itself.

Another consequence of the above corollary is tliat the functions in Z/PQo^(Sn) can be
characterized in terms of tlieir spectrum.

Corollary 2.6 Let 1 < p < Too, and k, l nonnegative integers. We then have

jsn) = { / G L?(S’‘); frs = Krslf) = 0. * > k ,

Remark: Observe tliat for k = 0 tliis corollary can be obtained directly. Using a
Boclmer-Riesz summation (see for instance [BoCl]), every function / in Lp(Sn) can be
approximated by polvnomials in T,■+s<a://(?', .s), whose spectrum is induded in the spectrum
of /. In consequence. if íl C Z+, the functions in Lp(Sn) with spectrum in O can be
approximated in Lv by polvnomials with spectrum in íl.

CJiven a smootli function F on B". we will sav that c)kF — 0 if r-=-k^—F = 0, for anv“

_ . ’M'\" z'k
i i, • • • , in 1. • • •, n. Then the following characterization of the harmonic extensions of the
functions in Lp with spectrum in íluh holds:

Proposition 2.7 ([Do]) If F is in Q[¿]’(S”)] and ()k+'i F = 0. then F 6 Q[^'?nofc(Sn)]-
('on verselg, any F in Q[U¡ilo k (Sn)] satisfies i)k+A F = 0.

3 Admissible convergence of harmonic functions
In tliis sertion we will show that some problems related to admissible convergence of holo-
morphic functions in the Hardy spaces, still liold in the spaces of harmonic extensions of Lp
functions with spectrum Iving in íluk- We recall some definitions.

(¡iven f : Bn —*■ C, the admissible maximal function will be denoted by Mndmf{ C ) =

suP--efM<) |y(-)l> where [)«{() is the admissible región given bv Dít{0 = { c G Bn ; |1 —-C| <
<y(i-\=\2)}.

Theorem 3.1 Let, 1 < p < Too and k a nonnegative integer. Then tlu re exists C > 0 so
that for any f in Lp{Sn),

ll«..í»C„„[/]||„ < C||/||„.
Proof of theorem 3.1:

If Mr„d is the radial maximal operator, it is a well known fact that

¡|V„„,Q(/]||„ < C||/||„
for any / ¡n ¿''(S”). By emolían- 2.<¡ < = Q[( n„|/]], and

Iiv,-,„,Q[<:'¿J/]]||p < C|KotJ/)||„ < C||/||„.

11



Next, by proposition 2.7, any F in Q[Ln0k] satisfies c)k+l F = 0, and ([AhBr, lemma 4.4])
shows that in tliis rase \\MadmF\\p < C||A/r(lfíF||p. I

Corollary 3.2 Let 1 < p < +oo. Any harmonio function in hp whose spectrum lies in ílok
has admissible lim.it at almost. every ( G Sn.

Remark: Corollary 3.2 could llave been obtained from last remark,.whjch together with
proposition 2.7 and lemma 4.4 in [AhBr], shows that HMn(¿TOQ[/]||p < C\\MradQ[f]\\p <
||/||p for any / G Z^,,.

In general, one rail not expect to obtain for au arbitrary fl that tile admissible maximal
function MadmC'U bounded in Lp, even in L2. Tliis would imply the existence. almost
everywhere, of admissible limits of of functions in L2, wliich as it is well known (see [Zy]) is
not true. One could ask if for some other regions, different from the strips Í7(n- tliere exist
surli Lv estímate. We will next see a simple result whic.h shows that if we restrict to the case
that ¿q(S“) is a. module over the hall algebra .4(S"), tlien the sets Í20fc are the only ones
for whicli the admissible maximal function M(Uí7HCq is bounded in Lp , P > 1- Such module
condition holds ( [Do]) if and only if for any (r, .s) in íl. (k,m) is also in fí provided k>r
and m < .s.

We show that if the sets íl llave tlieir second projection not bounded, then the admissible
maximal function is not even weakly bounded in L2(Sn).

Proposition 3.3 Assume íl C Z+ satisfies the moelulus condition. If the set of s G Z+ for
which there exist.s r G Z + with (r, .s) G íl is not bounded in Z+, then the admissible maximal
function does not satisfy the weak L2-type estímate, that is it does not verify that for some
C > 0

<r(K e S"; MA(huCQ[f}(0 > A}) < cMÜ,
for each f G L2(Sn). A > 0.

Proof of proposition 3.3:
If íl satisñes the module condition. and its second projection is not bounded in Z+, it

can easily be constructed a non-decreasing function <p : Z+ —► Z+ so that fí = { (r, s) G
z+ ; r > 9(.s) }.

Assume now that the weak L2-estimate holds, and take (o G Sn, 0 < p < 1. We then
llave that for any (j G B(Co,¿(l — /¿)), (e > 0 small enough), /¿Co € Da(Q. In particular, for
any / G C+(Sn), with ||/||2 = 1, and F = Cn[f],

5(Co.c(l - /i)) C {C e sn;MadmF(a > |F(Ko)|}.

(Ion sequen tlv

11/111
IWo)|a>

(1 - P)n í <T{{ c € S" ; M^FiQ > |F(Ko)|}) r<



and IF(,,Ú,)I S
The above estímate gives that for any / € ¿¿(Sn) with |¡,/ II2 = 1.

I / e0(K0,C)/(C)'MC)l = |F(/‘Co)[ S ,, r¡iJS» (1 — n)2

which by dualitv gives that
(3-1) \\Cu(^-)\[2< —-—-ir.

(1 ~ M)2
Next. formula (2.4) together with (2.5) leads to

IK'VdKn. -)ll* = E IIA'..(Ko.OII5= E
(r,5)gíi (r,s)gfi

'?• + n — 2\ / .s + n — 2\ r + s + n — 1
n — 1

-/*2(r+s)

If ^i(s) = max(i|j(.|i),.s), we then llave

||Gi(Ko,-)||2bI>2i £ (r + »-2)---(r+l)r/<2r>=
(5) (1 -

I>2<5+^i (s))

Sílice >?i(.s) > .s. tile above gives that

fí^ !>-<•'sikwc, 017
If í/(/0 = Y,^'(s]' let us clieck that r/(/¿) —► +00 as ¡i —> 1. Let .V 6 Z+ and consider

S>1)

/i < 1 satisfving that (2.V) > i Sílice is noiidecreasing, we llave that for i < 2N,
^‘b) > > i Henee </(/¿) > ^i¿^i > ¿V. which together with the previous
estímate contradicts (5.1). I

I11 the last part of tliis section we study the convergetioe of bounded harmonic functions
with spectrum in Í20¿.. Nagel. Rudin and Wainger (see [NaRu] and [NaWa]) showed that
everv fiuiction in //‘x,(Bu) lias radial limits at almost every point of a transverse curve in Sn
relativo to its arc-length measure. Recall that a curve 7 is transverse if for eacli t., 7'(i.) does
not lie in the complex tangential space at 7(t). We will prove that tliese tlieorems extend to
bounded harmonic functions in Bn with spectrum in S20a.--

We will assume that 7 : / —► Sn is a simple closed transverse curve of class C1. By making
a eonvenient reparametrization, we may assume that I = [—r, 7r], and that 7 is 2/r-periodic.
For C € Sn, a (.'-curve is a continuous map ^ : [0,1) —*■ Bn so that lim(_i *p(t) — (. It is
special if

lim MO ~ MOCR'P _ ()
i-MOCP

and restricted if it also satisfies that

MOC ~ jj
1 - MOCl

= 0(1),

13



for 0 < / < 1.
A function / : Bn —► C is said to llave restricted A'-limit L at (f € Sn if lim/(<¿>(í)) = L

for any restricted C-curve <p.

Theorem 3.4 Let 7 : [—7r,7r] —> C be a simple closed transverse curve of class Cx, and let
k be a nonnegative integer. If F is a bounded harmonic function with spectrum in fío*.-, then
F has restricted K-iimit. at ~f(t), for alinost every t. € [—7T, 7r].

Proof of theorem 3.4:

Tlie hypothesis 011 F implies that vve may assume that F = CfloiJ/l» with / € L°°{Sn).
Next, part (ii) in theorem 2.1 shows that

F(z) (n + k - 1)!
(?i - 1 )\k\ Js (z( - Id2)*t¿¿/(C)<MC) +S» (1 - z()n+k'

^ (n+J-2)! (?c-j5la)i-1
s» (1 - _C)n+J-1

mda(C).

Now, for ea.rhl<j <k

(7 J.-~l^2 /(C)(to(C)| ||/|U|log(l - |.-|2)
aml

/S" (1 - zf)n+i-

(-C - i~r2)j1
—/(C)^cr(C) = 0.

1=1-1' ■ ■ ' js„ (i _ cc,')’*+>-
Tlms in order to Hnish we just need to deal with the function

f (zC —

¿) F \ c) F
A direct computation gives that - = 0((1 — I-i2)-*), ——- = 0((1 — |z|2)_1), i =

()~x (JZ{
and for any A' complex tangential operator, lA’Fi(r)! = 0((1 — |í|2)_?).

Now, the transversality of 7 allows to construet (see [Ru, page 238]) a “quasianalytic”disc
= (<I>i, ■ • •, 4>n) from the closed unit disc D in C, into B" with the following properties:
(i) 4>(e,e) = y(0), 1 — |<I>(7-et<J)| ~ 1 — r-, and for any 9 in [—7r, 7t], the curve r —► <í>(re,e)

is a restricted 7(0)-curve.(ii)|¿^| = ()(l-|,|).
1=1 (,~

The above properties of <{> together with the estimates on the derivatives of F\ show
that the function F = Fi o <I> satisfies that = 0((1 — |^r| —2), and consequently, (see for
instance [BrCa]) that there exists h. in Lipi(D) so that ¥¡= = |=. Now, Fatou’s theorem in
one complex variable applied to the bounded analytic. function (J — h gives that there exists
at almost everv t £ [—w, 7r] \im(lr(relt) — h(rezt)), and henee it exists lim(F o (Pjíre1*).

r — 1 r—*l'

14



Sinre for each i tile curve <t>(relt), 0 < r < 1 is a restrictecl 7(f)-curve, we will fínish once
we clieck tliat Chirka's theorem (see [Ch]), concerniiig sufficient conditions for the existence
of restricted A'-limits of bounded liolomorphic functions, extends to our context. In the
proof of it we will follow c.losely the ideas in Chirka’s theorem, modifying some arguments
due to the fact that our functions are not holomorphic.

Proposition 3.5 Let F be a bounded harmonic function witli spectrum in íloh, and let 'I'o
be a special. (-curre, £ in Sn. Assinne that lim(_i F(ipo(0) = L. Then, F has restricted
K-liinit L ai (.

Proof of proposition 3.5:
Let he a special (.'-curve, and ?/’ = (^C)C the orthogonal projection onto the complex

Une joinning 0 and £. We will first show that,

(3.2) \im(F{'l>{t)) - F(ip{t.))) = 0.

We liave that ('I' — ir) _L ir, and if t £ [(), 1), tlien for aiiv jA| < R = R.(t.) witli R2 = ,

the point (1 — A)ir{t) + A4'(f) is in B". The fact that is a special (."-curve gives that
R(t.) —» +oc as t —► 1.

Arguing as in theorem 3.4 we just need to show that (3.'2) liolds witli F = Cq0Jj[/]
¿)F,

l-l¿) 2), / = 1. • • • , n, gives that the function
[j{A) = Fi((l — A)i¡'{t) + A'I'(f)), defined in |A| < R satisfies that

replaced bv F\. The fact that —- = 0((1
O~ i

l%\)\s r"A (1-|(1-A)0 + A'I>|*)í
Now. |(1 — A)í/’ + A'P|'2 = |(/’|¿ + IA|21'k — </’|2, and the above estímate leads to

|(í£(a)| -< !—r()x (/?* — |A|-^)ár
IA | < R.

In particular, the function /í(A) = (/(RX) defined in the unit dise, is in C'( D) and
i)h 1

It??(A)| = 0(— )• Henee there exists A in Lipi(D), witli ||/m||l.p, < ||/||oo, such
O A ( 1 _ |Ap)2 2 2

that the function h — /í 1 is a bounded holomorphic function in D. Schwarz’s lenima applied
to h — h\ gives

iFimm - FA>;>m = :<ad -</(0)i = im-¿) - nm <
P - M(¿) - {h - A )((>)! + |A,(i) - Ai(0)| r< +

IMU**
ñ¡

A
R?'

wliich since R(t) —>■ +oo, gives (3.2).



Applying (3.2) tu the given spedal (-curve 4V tlie hypothesis on 'I'o gives tliat

(3.3) lim Fi{4'0{t)) =

with </’o = (^oC)C- Next, we want to pass from this particular curve to any restricted
C-curve by applying, like in (’hirka's theorem, Lindelóf’s theorem. Since the function A —►
Fi(A(), defined in D is not holomorphic, we will correct it by solving a ¿Fequation. An
argument like the previous one shows that there exists a function f\ in ¿?'pi(D) with F\(-Q —

J\ in //°°(D). And (3.3) gives that Iini(/^t(-0o(<)) - /i(tf0(*)C)) = L- /i(l).
Finally, if 4' is anv restricted (-curve, the orthogonal projection is nontangential,

and Lindelof’s theorem (see [Li]). shows that \nn(F\(i^(t.)) — = L — f\(\) and
lim Fx(t¡'(t.)) = L. Equation (3.2) gives theu that lim F1('I'(t)) = L. I

4 Tangential convergence

In this sertion we will show that for harmonio extensions of nonisotropic. potentials with
speetrum in Í20there exists at almost every point in S", the limit along tangential approach
regions. We first need sume deñnitions. Let tv £ C .so that 0 < Reo < n, z € B , C, € Sn.
The nonisotropic kernel ¡a(z,() is defined by

(Vi n + \)-
where ('(n.ot) - is a constant of normalization. If 1 <p< +oo, and / G Lp(Sn),
r G B1*, the nonisotropic convolution with I„ is given by

/«*/( = )= í la{ = ,0f{0títT(0-
JS-*

The space of functions /(, * /, with / G ¿?,(Sn), will be denoted by ln * Lp. We tecali that if
0 < Re o < n, nrs G H{r..s), - G B^. then, see ([AhCa]),

In * Urs(-) —

(4.1) r(2ft)2r(2=a + r)r(^ + .s) _.n-o n-aF(—-— + r, —— + s,r + .s + n, |2|2)ura(¿),
r(«)r(^)*r(r + .s + u)

where F(a, 6, c,.r) is the hypergeometrir function. The fact that if n — Re 2a > 0,

r(7- + .s + n)r(n — 2a)F{a + v, a + .s, v .s -f- ti, 1) =
r(M 4- r — a)T(n + ,s — a)'

gives in particular that I(, * l|s>* = 1. If T = Yhcj T tjTtJ and T = J2i<j TtJTtJ, then [AhBr],
(4.2) Tu,-s = -c(.s + n - 1 )urs Turs = -s(r + n - l)urs.
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In [Ge], it is provecí tlmt í\ i.s tile fundamental solution fot' the sublaplacian

(4.:i) C = ^ + TaTu)] .
This operator can be used to show that the spaces of potentials /,„ * Lp, m positive

integer, coincide with the nonisotropic Sobolev spaces Lfrt(Sn). This is the result of the next
proposition. - .

Proposition 4.1 Let 1 < m < n — 1 and 1 < p < +oo. 77» n /„, * Lp = Lpn(Su).

Proof of proposition 4.1:
The operators Im are of order m, and henee map Lp into Lpu{Sn). The other inclusión is

a consequence of the followitig faets:

(ii) I\* */) * Lv c Im * LV-
The nonisotropic eonvolution I]* *f¡ is an operator of order m (see [NaRoStWa]),

and consequently maps Lp into Lpn. Of cutirse, C,IL applies L\’n in Lr. Since Cm{I\* -”l* *I\)
and (Ii* ”l- *¡\)£’n are the identity oti regular funetions ley (¡eller’s result, we obtain (i).

For (ii) consider the diífereutial operator given by

xm
m-1

JJ (ftiT -f d,T + 7,Id),
¡=o

where

o/i =

X = -

7 i = (

1
/ n + m

n - 1( 2
n - m

- l-¿),

+ /).

n — m

•>
+ ’)(

n — m

■>
+ w - -/).

Applving (4.2) we easilv deduce that if urs 6 H(r..s), then

/1* *¡\ * Urs ~ ImXm I\* ■ */i * Urs.

Bv density we liave that the above equality also holds for Lv. The fact that u;(.Ym) = m, and
that /)* • • • *11 is a diíferential operator of order m give finallv that g — Xm ¡i* * f
is in Lp. and consequently that /T =♦= */] * / = Im * g is in Im * Lp. Observe that /,„ gives
a topological isomorphism from Lp to Lpn. I

Remarle: It is also easy to check that the operators /„, give a. topological isomorphism
from Lq to L\’ní¡, which in particular gives that Im*Lplok = L1’nU(¡k. If a is real and noninteger,
and k is a nonnegative integer, the spaces Ia * LJQ0k arise as the interpolated by the complex
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method of Sobolev spaces with spectrum in Llok- A direct proof of this fact will be given in
the appendix.

It is a well known fact that if ap > n, the space Ia * Lp consists of regular functions. If
/ is a holomorphic function in the Hardy-Sobolev space Hp, or an M-harmonic extensión of
a potential in I„ * Lp, ap < n, then for any £ 6 S", except for an exceptional set of small
suitable size. there exists the limit of /(r), as z tends to ( within c.ertain tangential approach
regions (see [Su] and [CaOr]). We will show that this tangential convergence remains true
for the space of hannonic transforms of functions in Ia * Lp with spectrum'in fío*-

Cíoing back to the Lp-boundedness of tangential maxinial operators, we recall some more
definitions. Let 1 < p < +oo, 0 < «, m = n — ap > 0, and let £ G Sn, C > 0. If rn > 0, and
1 < r < ^, we (’onsider the tangential approximation regions given by

PT(0 = {--SB“;!l---(r<C(l-W)}

Observe that if r = 1, V\ is the admmissible región, whereas if r = ^, is the tangential
approach región considered in [NaRuSh]. If m = 0 and p. > 1, we also consider the regions

wdC) = { ~ e Bn ; |1 - r(| <
c

(log 1
}•

If / : Bn —► C, the corresponding maximal functions will be denoted by Mrf(Q =

suP.-eiMo 1/(01 aiul MJ(0 = sup.ef(i(<:) |/(~ )| respectively.
We then llave the following theorem

Theorem 4.2 Let. 1 < p < +oo, a > 0, rn = n — ap > 0 and k a nonnegative integer.
(i) If m > 0. 1 < r < —, and v is a positive Borel measure on Sn such that for any

C G Sn. ¿ > 0.
u(B{

then there exists C > (). such that. for any f € Lr{S”),

tVrCu„(/„ * < C! V

(ri) If m = 0. p > 1 and u is a finite positive Borel measure on Sn such that for any
c € S". S > 0,

then there exists C > 0, so that, for any f G Lp{Sn),

< c p-

Proof of theorem 4.2:

The proof is based in the following lemma
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Lemma 4.3 Ltt h be a nonntgatnn integrr and O < o < n. Thtn for nny z £ Bu, u £ Sn

JSn 71 —tV

Proof of lemma 4.3:
Let - = rza. ~o G Sn. Assume first that |1 — z0üJ| < 1 — |z|. we then llave that

|1 — zUJ| ~ 1 — |z|, and formula (ii) in theorem 2.1 gives that

i Caok(^OL(C^)da(C)\< [JS" JE

T /Jb<(

da{()
B(w,/v(i-|s|)) |1 - -Cl’1!1 - Cwln"0r

d<r{ C)
'(u,.A-(i-|=|)) |1 - ~C|U|1 - C^|n_rt’

wliere K is big enougli. The first integral on the riglit is bounded by

L x i
|1 - Cce|’‘-a ~ (1 - |c|)u-c*

The seeond summand is bounded bv

1

Lflf(w,A'(l-|-l)) (1 - I-I)’*-"

If 1 — (~ | < |1 — r0u.’| we then llave that |1 — zui\ — |1 — zou:|, and then the estímate is deduced
trom the faet that the operators ('í¡ * ¡a are of order <>, and then satisfv

l/Siiouc^moi ^
uniformly on r = |z|. I

Coing back to the proof of the theorem, let / £ Lv{Sn) and eonsider F = Cnok[/c, * /].
Then the previous lemma gives that

JS" js»

i I i A4,(í.()/„(C.-)^{)||/(«)|*r(«-) á i |, l/(llllJS» JS" JS» 11 — rud’1
da(ui).

In particular, the above estímate together with [CaOr, lemma 2.21] gives that |.F(z)| <
P[Ia * |./|](z), with P the Poisson-Szego kernel in Bn. Now (i) and (ii) of theorem 4.2 is a
consequence of [CaOr. tlims. 2.10 and 2.17] together with remark 2.20 there (see also [Su]).

A straightforward argument using Frostman’s theorem gives the following
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Corollary 4.4 Let 1 < p < 4-oc. o: > 0, m = n — ap > 0 and k a nonnegative integer.
(i) If m > 0. 1 < t < and f us a harmonio extensión of a function in Ia * Lp, with

spectrum in íí()fc. ¿/'ni fxi.-ts a set E C Sn with HTm(E) ~ 0, so that for any £ ^ E,
there exists the linút of f(z) as z approach.es ( within VT(f).

(ii) Ifm = 0, /¿ > 1, and f is a harmonio extensión of a function in Ia*Lv, with spectrum
in fíoic, then there exists a set E C Sn with H»(E) = 0, so that for any ( (fc E, there exists
the limit. of f(z) as z approaches £ within £,,(£).

5 Appendix
In this appendix vve will give a constructivo proof of the fact that the spaces of potentials
¡a * ¿4, avise as the interpolated spaces, hy the eomplex method, of the Sobolev spaces

. We begin with the case 0 < a < 1, from which we deduce the general case.

Theorem 5.1 Let. 0 < o < 1 and let k be a nonnegative integer. We then have that

Ww ¿u¡0 Jh = * L’éi0 k ■

Proof of theorem 5.1:

We will first prove the inclusión

I * ípl<* * Lu0k C [LZ Litio kJw-
It will be enough, given / in L¡¡ok, to construct a continuous vector valued function from
the closed strip 5 = {A + zígC;0<A<l}to Lqqi¡ + L\ÜQk = Lqo(¡, holomorphic on S,
with = ¡tt * /, and satisfying that for some 7 € R,

(5.1) IM*t)llw < IWl +>í)IIl; < Ce^ll/ll,.
If 0 < A < 1. define i^( A -f- it) = I\+lt * f. Let us first check that for g 6 Lp, \\I\+it *g\\P <

('e~'^ 11<y 1for some 7 6 R.
Formula (4.1) gives that if urs € H(r,s),

f\+ it * Ur s{ £) = f '^)^ri(C)»

with

f A+iíí?'. •‘‘O
r( )2 r(r + + 2i=A=ií)
r{'^±Z1L)2 r(r + lüAÜi)F(.s +

(,.-l + *z±=i¡.)
(r - 1 + !i±^) ^li±^±íl^ ( s _ L + ü±A±il) ^n±2i±ÍÍ) ’
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for r, s > 1. Si 11 cp for eaeli x > 1 añil 0 < A < 1.

|C,\+i't(r'•!¡í)| 5: 1- The case r or .s equal to zero are treated in a siminilar way. Then \ve
deduce that 11/\+i'íí7|U < IMI2, for <J € L2■

Next if i = l-|-o € B", C G S’\

|V/A+lí(c,C)| < C(n+\t\)Ax+«^—^-^.
vvliere C is a constant iiidependent of A and and

_ re±|±i!y''+,‘ 1
r(A + it)

Stirling's formula gives easily that = ()(e'TI) for some 7 £ R. Since the estimates
011 the derivatives implies that the kernels ¡\+tt satisfy Hormander’s condition [GaRu] with
bounds we finally get that ||/.v+ú * </||?J < ^e7'^||<7|[P, for g G Lp.

Next observe that formula (5.2) shows that for any tQ G R, and uTS G //(r,.s), there
exists lim,\+,í—,t0 I\+u * urs, and equals urs if t.0 = 0. Since <-b//(r..s) is dense in Lv, this
fact. together vvith the uniform boundedness of ||/\+lí||;,;), for t bounded. shows that for any
g G Lp. to G R. there exists the limit in Lp of /\+lt * g as A + ¡t. tends to If we denote
it by /¡¡0 * g. we also liave that H/állp.p < and /() = Id. Tlius we llave continuously
extended to a 11 S. and proved that ||<7?(¿<)IIP — T,e"TI||/||f). Since p;(s + ¿t.) is in ^n0Jk, y?(¿£)
is also i 11 Lo .

We now will show that ||i¿>(l + it)\\u¡ — f Oliven 0 < /¿ < 1, we denote by
/í+<í(C>^) = /i+¿t (/*<,% <■*;), G S\ Since the pointwise estimates of the derivatives of
order two of /(‘+1((C,are bounded uniformly in /í by (7e'y!tl [1_(-^,1+1, the classical theory of
singular integráis operators shows that the desired estimate in (5.1) for ||¡¿>(1 + ¿í)||¿/> will
follow once we show that

(5-3) ||£/.+1í*u||.¿<CV^I||u||2,
for every a G L'¿{ Sn).

Now, if ars G //(/%.s), we have that /1+</ * urs(() = 0i+lt(r, s)urs{Q. where

Since

and Cars

71—1 — ítr(n±i±a)»r(r + a=i=ü)r(j+ a/’l+Uoi*) r>/u-l-iír(! )2 r(r + íi±i±it)r(.s + ü±i±ü

|''/’i+n(7\.s)| ^
\n - 1 + í/p

|r + + ^I±ü|'
(?• + + ’±Y-)uyS, we obtain (5.3).

)
)'

Remark: The above shows, in particular, that for i G R the operator >’< — C-h-it verifies
*^'í[./]I|P < TV'y|!!H/||;, for any f G Lp. Since for every urs G H{i\.s). St( lx * urs) = Ii-it*uTS,
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and St o A, I\-u are bounded in Lp, we deduce that for any h 6 Lp, ||/i_,í * h\\p < Ce7líl||/i *
h\\P.

In Rn, the Riesz kernels are additive vvith vespect to the convolution. Next lemma, which
will be used to finish the theorem, gives some results concerning the non isotropic. convolution
of the kernels Ict.

Lemma 5.2 Let 0 < j < n — 1, 0 < a < 1, and k a nonnegative integer. We then have:
(i) If f 6 L\lok and CIi_a * f 6 Ll¡ok, there exists g 6 L^ok such that &Ia+j * g = /.
(ii) In * LvUok = {J € Lv; l\-a * f G L\Qok }.
(iii) [j * {Ia* Lnok) = /«+j * Lnok-
(iv) If f G Lp, l\ * f admits an expression I\ * f = 7a * g with ||</||p ^ ||A-a * f\\p-
Proof of lemma 5.2:

Observe that (i) vvould follow if we could find a bounded operator in Lp such that
D I„+lS£I\-a = ¡di,-. We will show that, except for some terms with good behavior,
tliis is what happens. The proof is based in the action of these operators on the spaces
H{r,$) and assvmptotic developments of Camina functions.

Assume 0 < j < n — 1, 0 < r* < 1 and k a nonnegative integer. It suffices to show the
lemma for each ¿q 0 < .* < k. Applying (4.1), we obtain that for any urs in H(r,s),

Ij+a * I\—a * ríj s(C) — I
, r(2=i=^ + r)r(2=i±a + r)
sr(ü±i±i + r)r(2±i=a + r)

Ur,(C),

where Cs is a constant depending on n, « and .s.
The assvmptotic development in [TrEr] together with Stirling’s formula give that there

exist A¿(o,n), z 6 Z+, with A0 7^ 0 so that for each / > 0,

l)r l
r(2=a + r)^% n-1 n - 1 l+1\

- 1 ~

f(ñ±i^7y + —2~) + ••• Az-Rz + ——) J,•)

verify \br¡\ < , if r is big enough.
I11 particular, there exist A,•(«,».), /tj(a, n) such that

f(2i=p- + r)r(a=l±a + r) , n — 1 , ;j_, 7i-l
n «+./+« ’ n+1 — Or + -p: (A0(r + 71-^-)j+a + ■■■ Az-i(r + ü_J.)i+«-'+1)

2 +r)T(í 2

/¿o(r H —)' a + • • • /</-1(?' 4 —)1-1,_í+1 ) = l — cr¡,

with |cH| ^ Next

W>' + ^4)J+« + ... A,_,(r +

W + + • • •*-,(.• + «.») . ¿ lt(r +
“ J k=3-2l ¿
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U —1Sime L* i¿t s — (i “i- T 2 loi u?1 s G R (7, -s), <iih! í \ * mv s «-t i/,_l »■! i2 (r+2=l)(,+ üyi)
we can write

n — 1

k=:i-2l

_ 21-3

Y 7lc(?' + " .-, * Y + t:Urs = 7CJ + lUT3 + Y l'kC^h* ' • ' */l) *
k-ü

with 7 7^ 0.
We defíne the operator in AjrH(i\.s) given by

Ur s

TrsUrs = { ^£j+ l
if V < 7’o

+ HÍLo Ík&{I\* • */l) ) * /«+./ * h-a *urs, if r > 7’0,

where 7*o is to be chosen. Tlien

(/d - Trs)urs =
0 if 7' < 7'0

(,r ¡ lLr s, lf 7 7* 7 Q.

We vvill check that there exists s < 1 sucli that for any / G , ||/ — Tf ||p < ^hj nP.
A.ssnme fírst that p < 2. and take / G L2(Sn). In [Al, page 118], it is shown that if w, £ G

Sn, | A',.s(u;. C)| < D(r.s,n). Since D(i\s,n) =
r + n _ •>' .s + n — 2 \ 7- -f s + 7Í — 1

?• J \ s J n — 1
deduce that j/\ ,.5(<-*-’> OI E: (r + l)n-1, with constant depending on .s and n. Henee

we

I./-MI = | / A'rs(r,0/(0<M0I ^ ('•+ ir’ll/lli-JS"

This gives that if / G ¿jf2 ,

II/- 77112 ^ E '711/,,115 =< E 7TTTS L l/,.MI2'^M s
r>r0 r>r0 vd + W •'S”

,^77
provided 7-0 is big enough and / satisfies that 2/ — 2(n — 1) > 1.

Finally, since 1 < p < 2,

ll/-7’/l|J<||/-r/||Hí|l/llH£ll/li;-
In particular, the operator T is invertible in L¡la and tliere exists an operator S : ¿q,, —*
Lq^ ( with ST = TS = I(lLi’t .

The case p > 2 can lie deduced from the previous one by dualitv, since the operator T is
selfadjoint.

The definition of T gives that we can write

(5-4) T = TX + RX + /?,,
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wliere

Tl = lrCj+1Ia+j*Il-(„
( ' s

is an operator uf order zero,

1 2'-3 t

Ri = íkD(I\* • • • */i) * * A_a
^ « fc=0

is an operator of order greater or equal to 1, and where * -

«2 = Y. (ld - 7T (W"1 + IlikC’ih* ■■■ o,)) « Ia+i * Kr.

is an operator of finite range, and c.onsequently, bounded in LqIf we apply 5 to equa-
tion (5.4), the boundedness in Lv of tile operators S, Ti, and Rj, j = 1,2, together witli the
faet tliat tliev conmute in L2, shows tliat if we take / 6 Lpss satisfying that CI\-a * f is also
in then,

/ = ^aia+J*sci^( ' s

* f + ^-cjla+j * K\f + ±-CjIQ+j * I<2f,{■'3 ^'S

wliere
2/—i

R\.f - TrYL lkR(h* ■■ ■ *h)* /\-a * f( * fc=ü

is in Lp. and I\¿ is of finite range. Tlius we llave obtained that if / 6 Lq,. ant^ £A
also in Lpu, then / = D Ij+a * g witli g in Lv. Tlius (i) is proved.

Next, part (i) witli j = 0, gives that

* / is

{ / 6 Tq? í ; Ii_rt * / € í>\nri } C T» * Di, , •

The other inclusión t’ollows froni the fact that /i_(, * /„ is an operator of order 1 and,
consequently, maps Lp to V[.

Since DI3 = Idi,, and PD = IdLv, (iii) will follovv once we show that

Ia*LpQtt=Dla+j*L^t.
Now, /i-aD Ia+j is an operator of order 1, and this gives that

c {/ € ¿s„ e ¿?0„}.
Part (i) gives that the inclusión in the other direction also liolds, and finally (ii) gives (iii).

If we take j = 0 in (i), and apply S followed by R in (5.4), it is then easy to check from
the above ealculations that (iv) is fullfilled. I

Let us now finish the proof of theorem 5.1. We must show that

[L V
^0 k

’ Aivío Jw C la* L V
fio k '
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Bv a lemma of Stafney (see [St]) it is euough to show tliat if ~pk are holomorphic on S
and continuous up to S, and , then

(5.5)

II 'Pk{a)h * h-k\\in.u< <
k

C max ísupe'y|i|||^V3A;(íí)/1 * hk\\p, sup | 9fc(1 ~ ‘*)A * MI/i-lp
\ 1 k 1 k

By (iv) of lemma 5.2,

llH<r>fc(«)/i * MI/a-LP ^ IIA-a * (52'Pk{-)hk)\\p =
h k

(5.6) sil]) \f ^v?fc(a)/i_„ * MC)</(C)'MC)I-7s“ a-

Now the map

^ € S -* í J2'r>k{u)I\-whk(Q</{Qd<r{Q,
JS" A

is holomorphic in 5 and continuous up to S. By lemma 4.3.2 in [BeLoj, this implies that

I J&n {<Pk(ot)I^-nhk{0) (/(Qdcr{()\
< J_ ljg„ (¥k[it)Ii-ithk(Q) y(()<l'T(O\V0(al.t)dt^
X {al- IJs» + id)I-udk{Q) (/{O d<T(0\Vi{a,t)df^ ,

where if 7H = 0. 1.

A\„(-s + ¿A 7")
e 7r(T () sin tt.s

sin2 7r.s + (eos 7r.s — eim'_ir(T"1))2

Taking supremum on g in the previous estímate we get

(5.7)

(5.8)

II ¿2*k{c*)I\ * hk\\InmLr
k °k

< {y~ j_ ||^2<pk{it)I\.it* hk\\pVo(a,t)dt
x (“/ II^LV^O + it)I-u * hh\\pVx{a,t) dtj

But we have seen in the previous remark that ||A-¡í * /i||7, < e'l'^||/i * /i|¡;, and the definition
of /_(í shows that 11/_¿t(//-)11;> £ ' ’^'11A11?• - Thus (5.8) can he estimated by

(//)/, * hk\\pV0{a.t)dt
1-0

X
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| y'+oo \

x J-°° k )

< sup ^e'y|t||| Y^ipk{it)I\ * /ifcllpj x sup ^e7|í||| ^^fc(l + ?0MIPj <
max ^supe7,t,||^^fc(*0A * /u-||p, sup e7,i||| ^ ^.(1 + *t)/**||pj ,

where we llave used that

1 r+,x‘1 /•+<» 1 r+oo
/ V0{a,t)dt = — V\(a,t) dt = 1

— Cí J—oo CV J — ooi

Theorem 5.3 Let. j 6 Z+, 0 < j < » — 1, 0 < a < 1 and leí k be a nonnegative integer.
We then have that

^i+m0 J[«l = Ín+J * Lnok-

Proof of theorem 5.3:
If 7 < 1, I3 : Lq" —► L^Q", and I3 : ~1" Lrj+ in<<, are topological isomorphisms and

consequen tly
h '■ i^u,; • ^ui, J[t»l ,t ^j+i fi, J[«b

is also a topological isomorphism. But theorem 5.1 gives [£q,., = /« * ¿q,,- Henee
/j * (Ia * Lft") = [Z^n_, Z-j+m. <][«]• Now, part (iii) of lemma 5.2 finishes the proof. I
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