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Convergence within nonisotropic regions of
harmonic functions in B”

Carme Cascante*® Joaquin M. Ortega* -

Abstract

In this paper we study the boundedness in L? of the projections over spaces of func-
tions with spectrum contained in horizontal strips. We obtain some results concerning
convergence along nonisotropic regions of harmonic extensions of functions in L?(S"),
with spectrum included in these Lorizontal strips.

1 Introduction

This work deals with some topics related to the expansion of functions in L?(S™), S* the
unit sphere in C*, in terms of harmonic homogeneous polynomials H(r, s) of bidegree (r, s).
The projections I, s of L3(S") onto H(r, s), extend to L'(S™) and permit to define for every
f € LY(S™) the spectrum of [, specf = {(r,s) € Z, x Z,: N,sf # 0}. The orthogonal
projection from -, ;H(r,s) to &, H(r.0) can be identified to the Cauchy-Szegd projection
and it is well known that it can be continnonsly extended to L, p > 1. What happens if we
project to others &, e (1, 5)! This is a very difficult problem whose answer is not known
even for the Fourier expansions when n = 1. The first object of this work is to study the
houndedness in L? when  is a horizontal strip Qo = {(r,s) € 24 X Z,: 0 < s <k}

[t 1s well known that the harmonic extensions of L?(S™) to B™ have limit a.e. along
non-tangential regions and that if the functions is in H?, that is. its spectrum is in Z4 x {0},
there exist convergence along admissible regions that are tangential in some directions, if
n > 1. Is there some relation of this fact with the spectrum of the functions? The second
topic of this work is to study convergence along admissible and other tangential regions of
harmonic extensions of functions with spectrum in Qqy.

The paper is organized as follows: in the second section we show that. as it happens
with the Canchy-5zego projection, the orthogonal projection g . from L*(S") onto L%Ok,
induces a bounded operator from L? to Lg,  , p > L. This will be proved by obtaining an
exphcit formula for the projections, from which we deduce that they arc operators of order
0, in the sense of ([NaRoStWa].

In the third section we show that the space of harmonic transforms of functions in L?
with spectrum in Qo behaves very mmch alike the space of holomorphic functions in H?(B").

*Both authors partially supported by DGICYT Grant PB95-0956-C'02-01




In particular, there exists for such spaces of harmonic functions, a strong LP estimate of
the admissible maximal function. We also prove that the theorem of Nagel, Rudin and
Wainger., [NaRu] and [NaWa], which shows that for any function in H*(B"), there exists
radial limits at almost every point of a transverse curve, extends to bounded harmonic
functions with spectrum in Qg.

In the fourth section we study convergence within tangential approaches to the boundary
of harmonic tranforms of nonisotropic potentials of functions in L ,. The spaces of poten-
tials. given by nonisotropic convolution with Riesz-type kernels, coincide, in the integer, case
with nonisotropic Sobolev spaces in the unit sphere, and for the general case, when restricted
to Lg,,. can be obtained by complex interpolation method. A direct proof of this last fact
is given in the appendix.

2 Boundedness in L”.

We begin the section with some definitions. Given Q0 C Zi, Z, = {re€Z;r >0} let
BirsjeaH (r.s) be the algebraic sun of all spaces H(r,s) with (r,5) € Q. Here H(r,s)
is the space of harmonic homogeneous polynomials in C* that have total degree r in the
variables zq, -+, z, and total degree s in the variables =z, ---,Z,. If ¥ < m we will write
Qe = {(rys) € Z25 & < s <m}. If X is a Banach space of integrable functions on S*,
containing the spaces H(r,s), Xq will denote the closure of the space &, eaH(r,s) in X.
The space of harmonic extensious of functions in Xq will be denoted by @Q{Xg]. The Poisson
kernel in the umt ball is given by

Vo 1 —|z)?
Q(“’é)_ IZ—CP"'

and if f € LY(S"), and = € B", we denote the Poisson transform by

z E B’Il’ C e S'Il’

QUIE) = [ Q=) 76 do ().

When X = L*(S"), the identification of the Hilbert space L§(S™) with its harmonic
extension will give for each = € B™ a function Cq(z,-) € L4(S") such that for any f in
Q[LE].

f12) = [ Cal=€) () do(0).

If IV, is the kernel associated to the orthogonal projection from L%(S") onto H(r, s), it
is shown in [Do] that for ¢ € S*, : € B",

(2.1) Ca(z.¢)= Y. K, o(50).

{r,s)EQ

The convergence is uniformly in { € S™, =z in compacts of B".
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An explicit formula for the kernels K, can be found in [Al] (see also [Ru]). If = € B™.
(eS* and n > 2

-2
(2.2) Ky s(2,¢) = D(r.s,n)(z0)(Z¢C)° F(=r,—s,n— 1.1 — k|:z‘|z )y
where
(2.3) D(r,s.n) = <1 +n— 2) <s +n— 2)7 +s4+n-—1 ’
r S n—1 .
is the dimension of H(r,s), and where
+
F(a,b,c,x) = Z (b)'k‘,"
k=0 ( ) L

is the hypergeometric function (here (a)y = ala + 1) ... (a + k = 1)).
[t is also well known that if - € S,

(2.4) A s(zo )2 = Ky s(2,2) = D(ros.n).

When r > s, it is also shown in [Al] that

12
(2.5) K. s(2.¢) = D(r,s.n) () P2 2(%) =%,

, s+ 8\ s+
7_3(.7 i3 r) = (f ‘ &L — l s-m“_m
=g () (e

are the Jacobi polynomials orthogonal, in L2([0, L], x*(1 - .r)"(l;z:), to all such polynomials of
degree lesser than s, normalized by the condition P& #(1) = 1. Observe that when 2 = Qqo.
C'g0(2,¢) is the Cauchy-Szego kernel and when Q = Z32, (’ ( , () is the harmonic Poisson
kernel Q(=.¢).

First we will caleulate, for any & € Zj, the kernel Cq,, (z,(). We want to obtain
an expression to which we could apply the theory of operators of order 0 (in the sense
of [NaRoStWa]).

Fors € Zy, - € B ¢ € §". we will simply write (7(z.() iustead of (7, (z.¢) and Cyy
istead of Cg .

where

Theorem 2.1 Assume n > 2. We then have for any = € B*, ( € S*.

(1) Csl=.0) =

m:t)( - 1) ( 7” (l —_ :E)n—-m+s (l —_ —,E)n-m-}-s—l

P £ e A e i C S AN - e L i S BT
(¢1) (L»k(~.ﬁ)—< . )——_—(1_~g n+k+z i T :

=1



Remark: Since |2¢ — |z]?| < |1 = z(][, the limit as & — +o00 of the first summand in (ii)

is zero, whereas the second summand tends to
(1 =1eP) (| _ 2= ep
==\ " ==

the harmonic Poisson kernel in B*.

Proof of theorem 2.1:
If we use (2.5), we obtain

+n—-2\r+s4+n-1

Zl\',-s(:.(;):Z(T ,; > — (=0)
(T O e
<|:|2 1) (w) }"'

()~

r+n—2
()

(7'+s+n,~— r+2s+n—1

n-—1

r+s+n—1
P4

-

_ 1=l
e

(s

m=0

s+n—2 7
m s—m

q +777Ll— 2) (S ! m)(l Cll l I ).s-ml.,d?m}

2\ {r+s
s—m

>(|ZZ|2 - |z]2)3-m|za2m}

n—1
(S+7L—2)
(o — 1)!(5 — m)! 7})__?)(7 +2s4+n — [)
s (s+n_2> -

= (n- (s —=m)

>

m=0

i

1= = =) (=

where we have defined

An(z) =) (r+2s+n—-Dr+s+n=2)r+s+n-3) -
7'21)

Next
Asm(:~C) = Z('I 4+ 25 —m +n - l)

r>m

(n—=m+s—1)!

(r+m)!

2 ¢ (¢ = 12?7 (20)

C)”LAS,”(:,C),

(r+m+ 1)(z0)™™.

(r+s—m+n-—2)

r!

(=C)"

s(n—m+s—2)

(1 — :E)n—m+s

- > (r+2s—-m+n-1)

(1 _ :Z)n-—m-&-s—l
(r+s—m+n—2)!

(=0)".

r<m—1
So we have obtained that

=Y K, (=0

(2.6)
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s s+n—2
u RO SR SRR

(n=1)s —m)!

r<s—1 m=0
(r+2s—m+n—-1r+s—m+n-2)
8 {T<7X”:_I (n— 1)I(s —m)ly!
+ Z <s+77’l'- 2) l le I | s m(——C)m ( —m+s - 1) 7) —m+s— 2)‘
N U n — 1 s — 771, (1 — ~L)n m+s i ‘(1 - zc)n :

Now. for each r < s,
1 - |3l2)
|=¢|?

+n -2 +n—-2 7'+~“‘+7l—]~ . " m. - _m12{r-m
—( )( ) > (1=C1* = =)™ (=¢) 1=

r $ n—1 = m(ml)?

K, s(2,¢) = D(r, s, m)(z0) (ZCY F(~r, —s,n — 1,

Using this formula. a careful calculation of the sum of the two first sumands in (2.6)
shows that its value is identically zero, and consequently we obtain part (1).
The proof of the formula in part (ii) will be a consequence of the following lemma.

Lemma 2.2 Assume n > 2 and let s > | be a nonnegative integer. We then have that for
= e B?L‘ C e S?i.‘

- n4+s—22 (3@'_';,2)3—1
(s(~.c)+< - )U‘?‘z)‘T“
_ n+s—1 Eg_—-_‘:_l)'_): (n-}-s—z)w L Lp
_.( S )(l —:Z)n-{-s + s —1 (1 Z)”*‘*‘ ( l...l )

Proof of lemma 2.2:
In the formula obtained in part (i) of theorem 2.1 we write

(=0 = 1=y = (€ = D¢+ (3¢ = 1) T

s

develop the above stum. and group together the terms which have the same power of (1 — z()
in the denominator. We then obtain:

(2™ (% = |=4)~"

i (S+,7,L;2) { tn —m + 8 — l)'

me= U( A l) (S —_ UI)! ( l — :E)1L—’l!z+s

+SJX=7::(_1)J ((l _ :E)lh—wui-s—J <(7I. —-—m+ s — 1)'< J )( c)1+"l( Q ‘ l )s—m-]

oy |



—_ .,s‘(?l —-—m+ s — 2)'<q - Hl)( )J 1+7n( C I | )s m—]+1))

jg—1
cemS(n=m+4s=2)1 _ s}
—1 L =
R e =S

Since

s stn=-2 . s
" , s+n—2) s
Z ————( - >'(—l)s_'”(n,—7n+.s—2)!=—'————( b ' ) Z ( )( =" =0,
= (s =m)! s! o \m

the above formula can be rewritten as A + B, where

A= i (5+77,Ll_2) {(n —-m+ s — 1)

= = )(s —m)l | (1= z¢)n—m+s (ZO)™(=C - 121%)
s—=m (“ —-m _+_ 5 — 1) (s m) (EC)].-’-M(EC . l:"l)s—m—j } .

(l — :C)u—m+s—j

=1
s (s+n 2) s—m '" —1m + § — ))l(s 1;1) (Ec)j—l+m( Izl )s—m—1+1
B - m G- - .
\7nZ=O (71 - l s - 77), ' _]z—: (1 _ ZC)"-"H'S_J

For each 0 < k& < s — 2, we will check that the sum of the terms in A that have as
common denominator (1 — z¢)"** is zero. Indeed this sum equals to

s+n—2
=)=k (= ~|2\k ( )(77-}-/\—1)
FOTHEC= 1) { (n— )]

s—h=1 s+n—2 o
+ ( m.. ) '(_1)3—111—1»-(7’_7”_*_5._1)!( S mn )}

nzo (n=1)s —m) s—k—-m
But
(s+n—=2M(n+k-1) +s'il 1)e-be am=m4+s—1)(s+n-2)
(s = k)(n — 1)IK! = (n = 1)m!(s —m — k)'k!
(s +n=2)! (71+/\—1)+’_i sk_m(n—m-l—s—l)
T (=) (s — &) =, m!l(s —m — k)!
_(a+n—) SZL—I”" _aln=m4+s-1)
S T et m'(s -m=k) |
And

1{_‘1‘( [ o=k (n—m+s—1)

= m!(s —m — k)!

= s—k _"_+ sl (s—k m m -k
= { (s = &)! 7§>( m >(_1 - !,;U m( m )}
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The fact that

s—k L
_d_(.z; —yt =¥ ("“ k)(—l)’”.v’”"m.

dz — m

easily gives that the above sumn is zero, since & < 5 — 2.
In consequence we obtain that

n4 s =2\ (z¢ = |z} _

= {(n, + 5 —2)

An analogous calenlation shows that

B - n+s =2\ (3¢ —_|:|2)s ‘
§ —_ 1 (l — :(;)n+s—1
Adding both formulas we finally obtain the lemma. B

Now formula (i) in theorem 2.1 is deduced from lemma 2.2 and the expression of the
(‘fauchy kernel. B

We will next check that the limit as |z} — | of the kernels (g, arises as a singular
operator of order 0 in the sense of [NaRoStWa]. We recall some definitions.
Let T;,, | <t < j < n, the complex tangential vector fields

9] J = 17, i)
Ti,==i——-%;—, T;; = 35— — z,—.
! ! ()3.,' ]():‘Ti

o PR

We denote by X7 = X -+ X,, a complex differential operator whose vec tm fields X, 1 <1<

m are of type T;; or T;; for some ¢ < j. The weight of X7, w(XT)=2it X/ = X;--- X,,.
Let Kf(C) = Jgu K((,w)f(w)do(w), for f € C=(S"), where [\(Q w) is a (llstllblltioll

which is C"0 ()utsule the diagonal. The operator K is of order m if there exists a family of

operators N [f](¢) = fgu Ne(¢,w)f(w)da(w), such that
(1) K (C,w) € C™(S™ x S").
(ve) Kef — K fin C™(8"), for each f in C™(S").
(22¢) The following conditions hold uniformly on ¢ :
(i) — | For any XT.X7 | X! X7 K. (¢.w)| < Cyxy |l = (@] meXD=elE )
(22¢) — 2 For any [ > 0 there exists NV, 'y > 0. so that for any smooth function ¢

-1
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supported in B((o,6) = {¢ € S*; |1 = (o] < § } and every X! with w(X') =

LXK < Qi sap - Y0 82D 5(0)].

C (X )<N,

L
2

The same estimates must hold for the adjoint operator A= with associated kernel K (w, ().

If [ is a nonnegative integer, and L7(S™) is the nonisotropic Sobolev space of functions
with tangential derivatives up to weight { in LP, p > 1, and A is an operator of order m,
then (see [NaRoStWa]) A maps continuously L7(8"*) in L}, (S™).

It will be convenlent for some computations to consider, for 1 <, < n the generators
of the tangent vector fields to S*

a _ 0
=g T i

()ZJ' ():,'

which verifies (see [Ge]) that for each smooth functions f: 8" - C,and ®: C — C,

/” JVqu)(:Z) ) do(¢ / ®(=C) Ni; f(¢)do(C)

By induction it can be proved that if X - X, is a differential operator with Xj,
¢ = 1. -+ .k tangent vector fields with roefhments in C*(B"), there exist differential oper-
ators Y“ = Y- Yo, with [a] < kY tangent, and smooth functions pq(z, () satisfying
| Z.pa(2.0)] < O] = = |max(Qei)=w(X)=w(2)) gycly that

(2.7) No =0 f(Qdo(C) = Yo [ @(=0)wal=, QY f(C) da(C).

S i<k 7S

N

As we have already commented, the operators (7y(z, () when |z] — 1 can be realized as
operators of order 0. It is easy to verify that if we define ('7(w, () = Cs(rw, (), for (,w in S*,
and r < L. then there exists lim,—; C7[f](¢), for any f in C>*(S™), and it defines a function
in C™(8"). We will write ("7[f] the value of this limit. We then have
Proposition 2.3 For cach s > 0 the operators C'7 are of order 0.

Proof of proposition 2.3:

Since the case s = 0 is the Cauchy-Szego projection and the result is well known, we

will assume that s > 0. From the definition of C7 it is clear that conditions (i) and (ii) are

satisfied. We will next check condition (iii)-1. Formmula (1) in theorem 2.1 shows that for
any 1 < j,

THCHw.C)

s s+::l 2 a _ _ —1 '
=y () ] {(5 — )@, — B¢ @) (w2 = 1 <(" mts-1)

= (= Ll{(s —m)! (1 = rwC)n=m+s

s(h—m+s— 2)!) 4 7'(«;'5C)m(|wf|2 e ((71 —m+s—D{n—m+s),_ =

(l h 'wz)n_m“_l (1 —rwC )“—1n+s+1 (W:’C]' - wi(i)




Now the fact that Z lw:(; — w2 =1 = |wCf? gives that
i<y

TC7w,¢) = O (——1——) .

[

. . . e
The same argument can be used to show a similar estimate for T';;C7(w, (), and that for
any composition of complex tangential vector fields X/, X/

XL 0l =0 : )

|1 — wz|71+u(.\")+w(.\”)

uniformly on r.

In order to finish we just need to check that the kernels ("7 satisfy coundition (iii)-2
uniformly in 7. We will use the following

Lemma 2.4 let k be a nonnegative integer. There exists (7 > 0 so that for each ¢ > 0.

::eBH.Y
Tol=s. € N < (.
I/“ - Col= Qo)) S €

Proof of lemma 2.4:

[t is inmediate to verify from formula (i1) in theorem 2.1 that all the summands there
satisfy that the integral over 8" of their modnlus are bounded independently of =, except for

(71, + k— l) (|=CI* = |z]%)*

b=

So we are led to prove that for = € B®,

T2 a2k
(2.5) A*ﬂﬂg%%jf%%?dﬂff=0“*

Since for any 0 < s < k

{12y — {2 Yk—s
/”U PP — =™ ey = o),

, | — :Z:ln-kk

the estimates in (2.8) will hold once we prove that

S YA
'/|“:E|>€ (1 = =()n+* do(¢) = O(1)

uniformly in 3 < [z] < l.c > 0. Let A = [z, Then a nnitary change of variables gives that
the above is equivalent to show that

(L= NGPY
/ll—/\z-x_|>s (1 - /\C1 )n+lc do () (1)

9



But the above integral equals to
(1 - )\27.2)11—2+k

, rdr df
reweDe<[1=Ared|} (1 — Ape=if)n+k

”—1// (=P oo,
WAZ {/)?'GED p< A\, 5<“ 0819|} (l pe—to)n+L /) p

integral which can be easily seen that is bounded uniformly on &, and consequentely the
lemma is finished. B -

n—1

Going back to the proof of condition (iii)-'.Z, we have to prove that

X1CT[l(o)l 2 67X sup &Y |,
u(l’J)SN)’(
for any C™ function on S*, p such that sup ¢ C B((,é) for (o € S*, § > 0, and any
X! = X .- X, composition of complex tangential vector fields. When § <1 — r,
Lo - - - - —n—w(X)n —~w(X1
X fpl )] = /B( X C3(rGo, Ollp(Q) do(¢) 2 (1=r) D6 [l oo = 67D lplleo
Co,9)

Thus it 1s enough to assume that 1 —r < 4.

Now, let X = X, .-- X} be a differential operator, with X; complex tangential vector
fields. By (2.7).

X (G Z/ Cs(rCo, €) {wa (760, )Y (€)= walrCo, ()Y “0(o)} do(().

Jal<k

Since 2 is supported in B((g, 6), the previous lemma shows that the part of the above integral
over 8™\ B{(y, 6) is bounded by

Z 6max(0.w()"")—§)H}/npum < Z 6—§6w()”~‘)“)ra‘pnw
<k o <k
For the mtegral over B((o, d), the regularity of Yy together with the properties of the
functions ., give that (see {BrOr])
Y (C) = YelGo)l X L NITY “plleolt = ¢Tol?,
1<
126 (160, $)) = a(rGo, Go)| = EmxO=0=2)|1 — (T,

which easily give that

I/B(C ,)("s(v‘c'u,c'){aa.(r-cu,g')\" 20 = 2alrGo, )Y 0(C0)} do ()] 2 675 38N ||Y ||, B
0,0 Y

As a corollary we obtain

10



Corollary 2.5 For any k. | nonnegative integers, and 1 < p < 400 the sigular operator
Cg . maps boundedly L (S™) to itself.

0k

Another consequence of the above corollary is that the functions in Lq,,(8") can be
characterized in terms of their spectrum.

Corollary 2.6 Let | < p < 400, and k, | nonnegative integers. We then have

l00 (8" ) ={f € LI(S™); frs = Kio[f1 =00 s >k ) .

Remark: Observe that for & = 0 this corollary can be obtained directly. Using a
Bochner-Riesz summation (see for instance [BoCl]), every function f in LP(S™) can be
approximated by polynomials in &, < H(r, s), whose spectrum is included in the spectrum
of f. In consequence, if 8 C Z2%, the functions in LP(S") with spectrum in Q can be
approximated in L” by polvnomials with spectrum in ().

Given a smooth function £ on B". we will say that JF=0if ’—?,%F = 0, for any
try oy ig o Lo- oo ne Then the following characterization of the hzu’molniv e‘xtensious of the
functions in L? with spectrium in 4 holds:

Proposition 2.7 ([Do]) If F is in Q[L}(S™)] and T =0 then F € QLR (S™)].
Conversely, any F in Q[Ljg,  (S™)] satisfies THE=0.

3 Admissible convergence of harmonic functions

In this section we will show that some problems related to admissible convergence of holo-
morphic functions in the Hardy spaces, still hold in the spaces of harmonic extensions of L?
functions with spectrum lying in Q4. We recall some definitions.

Given f : B* — C, the admissible maximal function will be denoted by Mg, f(¢) =
sUPLep.) [f(2)], where D () is the admissible region given by D, (¢) = { - € B*: |1 -0 <

all =215 1.

Theorem 3.1 Let | < p < +oo and k a nonnegative integer. Then there exists C > 0 so
that for any f in LP(S"),
|I‘/\'](tfl7ll(7$70k[f]”l) < UH./”P

Proof of theorem 3.1:
[t M, .4 is the radial maximal operator, it is a well known fact that

HALwaQUAl < ClAL
for any fin L"(8"). By corollary 2.6 Cq,, [f] = Q[Cq, [f]], and

Qo x

100 QUG M < CNCR, Ll < CHLL

1



Next, by proposition 2.7, any F' in Q[Lq,,] satisfies FF =0, and ([AhBr, lemma 4.4))
shows that in this case ||Mygm Fl|, < Cl|MraaFll,. B

Corollary 3.2 Let 1 < p < +00. Any harmonic function in h? whose spectrum lies in Qg
has admissible limit at almost every ¢ € S™.

Remark: Corollary 3.2 could have been obtained from last remark, whjch together with
proposition 2.7 and lemma 4.4 in [AhBr], shows that [{M.am Q[N < CliMraQf1ll, <
/1], for any f € Lf, .

In general, one can not expect to obtain for an arbitrary Q that the admissible maximal
function My, Cq is bounded in L?, even in L?. This would imply the existence. almost
everywhere, of admissible limits of of functions in L?, which as it is well known (see [Zy]) is
not true. One could ask if for some other regions, different from the strips Qg4 there exist
such L? estimate. We will next see a simple result which shows that if we restrict to the case
that L{H(S™) is a module over the bhall algebra A(S"), then the sets Qg are the only ones
for which the admissible maximal function M4, Cq is bounded in L?, p > 1. Such module
condition holds ( [Do]) if and ounly if for any (r,s) in ©, (k,m) is also in Q provided k > r
and m < s.

We show that if the sets  have their second projection not bounded, then the admissible
maximal function is not even weakly bounded in L?*(S").

Proposition 3.3 Assume ) C Z2 satisfies the modulus condition. If the set of s € Zy for
which there exists v € Zy with (r,s) € Q is not bounded in Z,, then the admissible mazimal

function does not satisfy the weak L?-type estimate, that is it does not verify that for some
C>0

U({C € Sn; Madm(jﬂ[f](C) > A }) S C”%li’

for each [ € L*(S"). A > 0.

Proof of proposition 3.3:

[f Q satisfies the module coudition. and its second projection is not bounded in Z4, it
can easily be constrneted a non-decreasing function p : Z, — Zy so that @ = {(r,s) €
755 > p(s) )

Assume now that the weak L%-estimate holds, and take (o € S™, 0 < u < 1. We then
have that for any ¢ € B((s,&(1 — p)), (¢ > 0 small enough), ulo € D(¢). In particular, for

any f € L2(S"), with ||fll = 1, and F = Cq[f],
B(CU.S(I - /l)) C {C € Sn; JV\Aade(g) 2> 'F(.UCO)' }

Consequently

AU T
(1 —p)* 20 ({¢€S™; MamF(¢) > |F(ulo)| }) =X [F (Gl



and |F(uo)l 2 (lllfi'“
The above estimate gives that for any f € L*(S™) with {|f||, = 1.
.. . . l
| L., CaliGo ) S o ()] = | Flpo)] 2 ———
Sn (1 -7

which by duality gives that

3. e oy My X ——.
(3.1) 1Ca(uco, )2 =2 e

Next, formula (2.4) together with (2.3) leads to
N . : , ) : +n=2\(s+n—=2\r+s+n—-1 ,. ..
ICation M= 3 NGuolf = 3 (70 TE) (0T A Lo,
(r.s)EN (r.s)eN r S n
If p1(s) = max(p(s),s), we then have

NCa(uCo, M3 = Do p® D (rdn=2)--(r+ L =

r>@1(s)

Z 2o (s),

;1‘.2 n

© Since oq(s) > s, the above gives that

1 .
=51 < Calpo- )12

(l —/L 520

If g(p) = D p”*®) let us check that g(p) — +00 as p — 1. Let .V € Zy and consider
s2>4

i < | satisfving that @ > 1. Since oy is nondecreasing, we have that for i < 2NV,
e > ;t"(“) > 1. Hence g(u) > SH 2 > N. which together with the previous
estimate contradicts (3.1). @

2N)

In the last part of this section we study the convergence of hounded harmonic functions
with spectrim in Qyg. Nagel. Rudin and Wainger (see [NaRu] and [NaWa]) showed that
every function in H>(B") has radial limits at almost every point of a transverse curve in S*
relative to its arc-length measure. Recall that a curve ¥ is transverse if for each ¢, v/(t) does
not lie in the complex tangential space at v(t). We WIl] prove that these theorems extend to
hounded harmonic functions in B™ with spectrum in .

We will assume that v : [ — S" is a simple closed transverse curve of class C'. By making
a convenient reparametrization, we may assume that [ = [—nx, 7], and that v is 27-periodic.
For ¢ € 8", a (-curve is a continnous map o : [0,1) — B™ so that lime—; p(t) = (. It is
special if

iy [P0 = (@(t)C)C)?
m — =
== ()]
and restricted if it also satishies that

lp(t)¢ = 1]

= 0O(1),
L= ()]

13



for 0 <t < 1.
A function [ : B" — C is said to have restricted N-limit L at ( € 8™ if Ein} flep(t) =L
for any restricted (-curve p.

Theorem 3.4 Let v : [—7m, 7] — C be a simple closed transverse curve of class C', and let
k be a nonnegative integer. [f ' is a bounded harmonic function with spectrum in Qqy, then
F has restricted I\ -limit at 4(t), for almost every t € [—7, 7).

Proof of theorem 3.4:

The hypothesis on F implies that we may assume that F = Cq,, [f], with f € L*(S").
Next, part (ii) in theorem 2.1 shows that

oo k=D (30— 12
Fiz) = (n—1)%! /n (1 — =C)ntk

Ao - =C )1
Z +J ) (1= =% / (T——:lg_)"—hg—l (€) do{().

= (n—1)

J(()da(C) +

Now, foreach | < <k

S
/Sn (1 — zQ)n+i-1 F() do ()] 2 1S Il tog(L = |=1)]

and

- J i
lim (1 — |z]?) /S -i—'-l——/(g)da(g)=0.

-_,1 n 1_ -())u-f-] 1

Thus in order to finish we just need to deal with the function

= _ | ~|2\k
Fils) = [ E—I—‘—;ﬁ)—f(c)da(o.

:Q )11+k
)F 0 F
A direct compntation gives that — T L= (1 =1=1% ;- (Tl =0((1=1|z)™"),i=1,---,n
0z 0z
and for any X complex tangential operator, [ X Fi(2)] = O((1 = |z|*)~%

Now, the transversality of y allows to construct (see [Ru, page 238]) a ‘qua.siaua]ytic” disc
® = (dy,---,9,) from the closed unit disc D in C, into B" with the following properties:

(i) ®(e) = v(0), | — [®(re?®)| ~ 1 — r, and for any 8 in [—n, 7], the curve r — &(re¥)
1S & l'estxicted ¥(0)-curve.

P,

(i |Z—:—<>1—||

The d.lm\e properties of ¢ together with the estimates un the derivatives of F; show
that the function {7 = Fj o ® satisfies that |"”| = O((1 — |z|~7), and consequently, (see for
instance [BrCa)) that there exists h in Lip, (D) so that; 22 = 2. Now, Fatou’s theorem in
one complex variable applied to the bounded analytic fumtlon [ — h gives that there exists
at almost every t € [—m. 7] li_x}}((/(re”) — h(re')), and hence it exists ll_!}%(F o ®)(re').

14



Since for each ¢ the curve ®(re't), 0 < r < 1 is a restricted v(¢)-curve, we will finish once
we check that Chirka’s theorem (see [Ch]), concerning sufficient conditions for the existence
of restricted A'-limits of bounded holomorphic functions, extends to our context. In the
proof of it we will follow closely the ideas in Chirka's theorem, modifying some arguments
due to the fact that our functions are not holomorphic.

Proposition 3.5 Let F be a bounded harmonic function with spectrum in Qqy, and let g
be a special C-curve, ¢ in S™. Assume that Yim,_y F(Wy(t)) = L. Then F has restricted
N-limit L at .

Proof of proposition 3.5:
Let W be a special ¢-curve, and v = (W()C¢ be the orthogonal projection onto the complex
line joinning 0 and ¢. We will first show that,

(3.2) lm (F(W(t)) — F(w(t))) = 0.

t—1

We have that (W — ) L v, and if £ € [0, 1), then for any |A] < R = R(t) with R? = l\l, li,llz,
the point (1 — Ayw(t) + AU(¢) is in B*. The fact that ¥ is a special (-curve gives that
R(t) = +oc ast — .

Arguing as in theorem 3.4 we just need to show that (3.2) holds with F = Cq,,(f]
replaced by Fy. The fact that ()—_]— =0O((l - I:IZ)'%), ¢ = 1.+, n, gives that the function
uz; '
g(A) = Fi((1 = M) () + AP(t)), defined in [A] < R satisfies that

dy
ax

¥ = o]
(L= [(1 = A)p + A2y

(M) =

Now. [(F =N+ M2 = ] + AW = ]2, and the above estimate leads to

dg l
(V] =

—= T Al < R.
7)) (R? — |A|2)3 A

In particular, the function A(A) = ¢g(RA) defined in the unit dise, is in CY(D) and

i/ I —_
‘(—I M= ——————) Hence there exists by in Lip (D), with |}, =2 1S}, such

(1 =A%) 2 5
tlmt the func tlon h — h] is & bounded holomorphic function in D. Schwarz’s lemma applied
to h — hy gives

[FU W) = Fu(o(t)] = (1) - g(0)] = |h = h(0)] <

lh = hall | Wl 1

— N (0)] =
) Il( )l— 1_‘{ R2 —R%

)

'(h—hl)(il?) (}1—'/11) ) l+“11

x| -

which since R(t) » +oo, gives (3.2).



Applying (3.2) to the given special (-curve Wy, the hypothesis on Wo gives that
((3.;) ll_.llll F‘(’l/‘o(t)) = L,

with o = (WeC)(. Next, we want to pass from this particular curve ¥y to any restricted
C-curve by applying, like in Chirka’s theorem, Lindeldf’s theorem. Since the function A —
Fi(XCQ). defined in D is not holomorphic, we will correct it by solving a J-equation. An
argument like the previous one shows that there exists a function fi in L?{p;_‘(ﬁ) with Fy(-¢)—

frin H(D). And (3.3) gives that lim(Fy(so(t)) = fi(o(H)C)) = L = fi(1).

Finally, it W is any restricted (-curve, the orthogonal projection 1 is nontangential,
and Lindelof’s theorem (see [Li]). shows that Ei_‘llll(Fl(‘l/)(t)) - fi(¥(t))) = L — fi(1) and
lg}ll Fi(y(t)) = L. Equation (3.2) gives then that %Lnl\ F¥(t) =L 1

4 Tangential convergence

In this section we will show that for harmonic extensions of nonisotropic potentials with
spectrum in Qg there exists at almost every point in 8*, the limit along tangential approach
regions. We first need some definitions. Let o € C so that 0 < Rea < n, z € B, ( € S™.

The nonisotropic kernel 1,(=z.¢) is defined by

) C'(n, «)

[o(2.0) = ——=—,
'1 — :cln—a

(F(4=))?
(n=1)" ()
= € B", the nonisotropic convolution with I, is given by

where (7(n. ) = is a constant of normalization. If 1 < p < 400, and f € LP(S"),

[ f(z) = | Ta(z.O)f(C) do(C).

Sn

The space of functions [, = f, with f € LP(S"), will be denoted by [, * LP. We recall that if
0 < Rea<n, ug€ H(r.s), =€ B". then, see ([AhCal),

Io*u,s(z) =
(L-:n) (n—-a _+_’) (n—cr_*_q) (n__a+r n— o
F(a)(252)20(r + s + n) 2 T2

(4.1)

+c1+s+ni|)u,.,()

where F'(a,0,¢,x) is the hypergeometric function. The fact that if n — Re 2a > 0,

F(r+s+n)l'(n—2aq)

F((‘+,._(t+s,r+s+n,1)= 1"(7;,+7-——(L)F(n+5‘—“)'

gives in particular that [, liga = 1. U T = ¥,(; T Ty and T = T, T, T, then [AhBr],
(4.2) Tu,s = —=r(s+n—1)u. Turs = —s(r+n— Duys.
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In [Gel. it is proved that [y is the fundamental solution fov the sublaplacian

. 1 1 — _
(4;) L:('E—): —;Z(TJTz]‘f‘T:]TzJ)
2 =<y

This operator can be used to show that the spaces of potentials I, * LP, m positive
integer, coincide with the nonisotropic Sobolev spaces L? (8™). This is the result of the next

proposition.
Proposition 4.1 Letl <m<n—1andl <p < +4oo. Then [, x LP = L? (S™).

Proof of proposition 4.1:
The operators [, are of order m. and hence map L? into L2 (S™). The other inclusion is

e
a consequence of the following facts:

() Iix - sly« L = LP

e
. m
() Iyx---xly =« L" C [, = L".
> . . n . .
The nonisotropic convolution [y* -+ [} is an operator of order m (see [NaRoStWa]),
. - . A s e m
Of course, £ applies L? in L7 Since L7(Iy* -+ x1h)

and consequently maps L? into L7 p

m’

m - . . . . R . . .
and ([y* -« =[)L™ are the identity on regular functions by Geller’s result, we obtain (i).

For (ii) consider the differential operator given by

m=-1
X" = H (O’,‘T + /7’,’7 + “,’,‘I(l),
i={)
where
I n4+m .
v = ——— (= = 1 —),
| n—1m
5 = —— ).
o A R
no—m . n—=1m )
‘,’,-=(—_—)—+1,)( +m =1 =)

*)

- -

Applying (4.2) we easily deduce that if w«,, € H(r.s), then
[1* S *[l *Ups = [m‘\’m[l* S *[1 * Uy .

By density we have that the above equality also holds for L?. The fact that w(X™) = m, and
that f;* - *1; is a differential operator of order m give finally that ¢ = X" [i% ™ [ * f
is in L', and consequently that Jy+ -~ «Iy x f = I, % g isin [,, * L?. Observe that [,, gives
|

a topological isomorphism from L? to L?

m*

Remark: [t is also easy to check that the operators [, give a topological isomorphism
P . 4 1cho S . . 1€ real ane 4
from Lg to L7, o, which in particular gives that £, xLf = L7, . If ais real and noninteger,
and k& is a nonnegative integer, the spaces I, * Ly arise as the interpolated by the complex

17



method of Sobolev spaces with spectrum in Qox. A direct proof of this fact will be given in
the appendix.

It is a well known fact that if ap > n, the space [, x L consists of regular functions. If
f is a holomorphic function in the Hardy-Sobolev space H?, or an M-harmonic extension of
a potential in I, * L?, ap < n, then for any ( € S*, except for an exceptional set of small
suitable size, there exists the limit of f(z), as z tends to ¢ within certain tangential approach
regions (see [Su] and [CaOr]). We will show that this tangential convergence remains true
for the space of harmonic transforms of functions in I, * LP with spectrum’in Qq.

Going back to the LP-boundedness of tangential maximal operators, we recall some more
definitions. Let | <p < 400, 0<a,m=n—-ap>0,andlet ( € S*,C >0. If m >0, and
I <7 < 2 we consider the tangential approximation regions given by

D(¢)={:€B*; |l -z < C(1 —|z]) }

Observe that if 7 = |, Dy is the admmissible region, whereas if 7 = 2, is the tangential

approach region considered in [NaRuSh]. If m = 0 and g > 1, we also consider the regions

C
1 2ol }
) ” g

Q) ={zeB";[1-=(|<

If f: B* — C, the corresponding maximal functions will be denoted by M, f(()

sup.ep, () S (O] and M f(C) = sup_es. ) |f(2)] respectively.
We then have the following theorem

Theorem 4.2 Let ]l <p < +oo,a >0, m=n—ap >0 and k a nonnegative integer.
(i) Ifm >0, 1 <7 <2 and v is a positive Borel measure on S" such that for any
CesS*. §d>N0,

I/(B(C.(S)) = 5T
then there exists (" > (), such that. for any [ € LP(S™),
Ill‘dr(-"i'lok[lu * f]HLl'(ltu) < CHpr-

(i) If m =0, p > | and v is a finite positive Borel measure on S™ such that for any
(eSS §>0,
v(B(¢,8)) 2 b,

then there exists C > 0, so that, for any f € LP(S"),

HMuCQOk[lﬂ * f]HL"(:lu) < CHfHP

Proof of theorem 4.2:
The proof is based in the following lemma

18



Lemma 4.3 Let k be a nonnegative integer and 0 < o < n. Then for any = € B*, w € §*

L Clorl5- O () do ()] 2 :

M=

Proof of lemima 4.3:

Let = = rz. zp € S™ Assume first that |1 — %@ < | — |z]. we then have that
[1 — :T] ~ 1 — |z|, and formula (ii) in theorem 2.1 gives that
do(¢)
| Cana(=, O (¢ do(O)] < e
ol Bw.h(1-[z]) |1 = zC|*|1 = (D|r-=

+/ do(()
Be(w.K(1-]2)) [l — ¢ |1 = (@’

where ' is big enongh. The first integral on the right is bounded by

1 / do(C) 1 N 1
(I =)z Jwra=j= |1 = ¢ — (1 = |z])r=e 7 |1 = =5

The second summand is bounded by

/ do(C) l - !
Be(w.K(1=|z)) |1 — (T[F= = (1 = |z])r= 7 |1 — z@|-e
If I —|z] < |1 = z=Z] we theu have that |1 — =] >~ |1 — =@, and then the estimate is deduced

from the fact that the operators (5 [ are of order «, and then satisty

{
{/ (uok (,Qu)(lO'

' - ,l _ len—(!’
nniformly on r = |z, B
Going back to the proof of the theorem, let f € LP(S™) and consider F' = Cq, [ * f].

Then the previous lemma gives that

Iz |—|/ / P09 (2 O a((w) flw) do(w) do(¢)] <
/;7"/ Slo;. (Q w’ (l(T Hj ‘(lO' ).< |/(w)|

l — :wln-:v

- do(w).

In partic nl(u the above estimate together with {CaOr, lemma 2.21] gives that |F(z)] <
Pl = | fl)(=), \\1th P the Pmsson Szego kernel in B*. Now (i) and (ii) of theorem 4.2 is a
consequence of [CaOr. thins. 2.10 and 2.17] together with remark 2.20 there (see also [Su]).

A straightforward argument nsing Frostman's theorem gives the following
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Corollary 4.4 Letl <p< +4oc. >0, m=n - ap >0 and k a nonnegative integer.

(i) Ifm>0.1 <71 <% and f is a harmonic extension of a function in I x LP, with
spectrum in Quy, then theve erists a set £ C S™ with H™(E) = 0, so that for any ( ¢ E,
there exists the limit of f(z) as = approaches ¢ within D.(().

(it) Ifm =0, p > 1, and f 1s a harmonic m:tenazon of a function in I, * LP, with spectrum
in Qok, then there ezists a set E C 8™ with Hu(E) = 0, so that for any ¢ ¢ E, there ezists
the limit of f(z) as = approaches { within £,(().

5 Appendix

In this appendix we will give a constructive proof of the fact that the spaces of potentials
I * L’?Ok arise as the interpolated spaces, by the complex method, of the Sobolev spaces
L, . We begin with the case 0 < o < I, from which we deduce the general case.

Theorem 5.1 Let 0 < o < | and let k be a nonnegative integer. We then have that

P P 14
[LQMv uzo;][al = [y * LQOk'

Proof of theorem 5.1:
We will first prove the inclusion

» P 14
IC' * LQOL- C [L('lok’ H‘IOL-][G]'

It will be enough, given fin Lf , to construct a continuous vector valued function ¢ from
th.e closed strip § = { A + 7# € .C; 0< A< 1} to Ly, + Lhg,, = LG, ,, holomorphic on S,
with @(«) = I, * f, and satisfying that for some v € R,

(5.1) le(iller < CMiiflly el + ity < Ce™ifll,.
If0 <A< L define o(A+it) = [\ * f. Let us first check that for g € LP, || x g}, <

Ce?l)|gl], for some 5 € R.
Formula (4.1) gives that if u,; € H(»,s),

(3.2) [,\+it * urs(C) = (-7,\+it(7's 'f")urs(C)»

with

r(n+\)+xt) F(7 + n—\ zt)F g+ n—,;—-it)
r( " —\) zt) F( + n+\+”)f‘(% + n+,\+£t)
(7. ~ 1+ u—}—zt) (n—} zt)( -1+ n—\ 1t) (n—é—t:t)
(7_ -1 + u+;+ll) (n+;\!+zt)('. 1 + 71+$L) (njz;-i-xt))

Crpielr.s) =
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for r.s > 1. Since foreach e > L and 0 < A < 1,
£ —
|

o+ ,\;-zt

)l_’

|Cagie(r.s)} < 1. The case r or s equal to zero are treated in a simmilar way. Then we
deduce that ||Iv4ugll2 < llgllz, for g € L2
Next if z = |z|zp € B*, ( € S",
1

|1 _ :Uan—,\ﬂ :

(VIi(2, O L Cn+ [t]) A

where (7 1s a constant independent of A and ¢, and
ndA$it\2
P(25)

(A +it) :

Artic = |
Stirling’s formula gives easily that Ay = O(e") for some v € R. Since the estimates
on the derivatives implies that the kernels [\, satisfy Hormander’s condition [GaRu] with
bounds Cel, we finally get that ||[Iysi * g, < Celd|g][,, for g € L7,

Next observe that formula (5.2) shows that for any ¢, € R, and u,, € H(r,s), there
exists imayi—io Iagie * trs, and equals w, 5 if g = 0. Since S5 H(r.s) is dense in LP, this
fact. together with the nniform boundedness of ||/ 4ill,,, for ¢ bounded. shows that for any
g € L". ty € R. there exists the limit in L? of Iy ; * g as A + it tends to ity If we denote
it by [y * g, we also have that ||1]],, < Celland [, = [d. Thus we have continuously
extended p to all S, and proved that ||p(it)|], < CeX|| f[],. Since o(s+ it) is in Lg, ., w(it)
is also in Lf .

0k
We now will show that [lp(1 + it)|[pr < CeM||f]],. Given 0 < p < 1, we denote by
tea(Cow) = Nypa(pC,w), (,w € S™ Since the pointwise estimates of the derivatives of
order two of [{',,((,w) are bounded uniformly in x by (76:7”[—1_(—#‘3';;,—.
singular integrals operators shows that the desired estimate in (5.1) for ||(1 + it)|[ e will
follow once we show that
(5.3) HC T 4i * ully < Ce™ful],
for every v € L?(S™).
Now, if .y € H(r,s), we have that [, * up (C) = 1401, $)ur5(C). where

the classical theory of

F(1L+;+it )2 I“(7 + ”'—_12_“)F(S + n—.lz—il)
l'*(n—}z—it)z F(7 + "+.lziit)r(.9 + 7L+}2+it)'

Prpa(r,s) =

Since .
| — 1 + it
n—?z-f—it Hs + 11—-L+it | [}

Pigi(r, ) =X
[hrgae(r, )] = T
and Lu, s = (r 4 250 (s + 2=y, o, we obtain (5.3).

Remark: The above shows, in particular, that for t € R the operator S, = L[, _;, verifies
SN < CeM|f], for any [ € L. Since for every w, s € H(r, s). S(ly %ty s) = Li—ig % tns,

21



and Syo I, [1_i; are bounded in L?, we deduce that for any h € LP, |[Ij_i % k||, < Ce™||I; *
Rl

In R", the Riesz kernels are additive with respect to the convolution. Next lemma, which
will be used to finish the theorem, gives some results concerning the non isotropic convolution
of the kernels [,,.

Lemma 5.2 Let0 < j<n—-1,0< a< 1, and k a nonnegative integer. We then have:
(i) If f € Ly, and Lh_o+ [ € LYy, there ezists g € Ly, such that Ll ;+xg = f.
(ii) Lo+ Loy, = {f € L7; hoo * [ € Ly, ).

(2”) IJ * (10 * L?Iok) = ]a+j * LQO;..'
(iv) If f € L?, Iy * [ admits an expression Iy = f = [, * g with ||g]l, 2 [|T1=a * fllp-

Proof of lemma 5.2:

Observe that (i) would follow if we could find a bounded operator in L? such that
Lo, SLL_ = [dpe. We will show that, except for some terms with good behavior,
this i1s what happens. The proof is based in the action of these operators on the spaces
H{r,s) and assymptotic developments of Gamma functions.

Assime 0 < j < n—1,0 < a <1 and k a nonnegative integer. It suffices to show the
lemma for each Lf , 0 < s < k. Applying (4.1), we obtain that for any u,, in H(r,s),

r(n_—gz'_—ﬁ + 7-)1‘(1%1@ +7)
F("+;+a +7,)F(nilll—a +7)

™~

Ij+a * [_o * Uy 5(C) = Cf

urs((),

where (7 1s a constant depending on n, « and s.
The assymptotic development in [TrEr] together with Stirling’s formula give that there
exist A;(a,n), 1 € Z,, with Ag # 0 so that for each { > 0,

Lz +7)

byy=1~-—ZL
YT

n—1,, n—1 .-
( ' 2 )+"-/\1—1("+_2_) H-l)’

verify |b, | < ﬂ%-,‘-, if 7 is big enough.
[n particular, there exist A;(c, n), g;(a, n) such that

(/\0(1' + z : 1 P4 A (4 n : ! )j+a-l+1) %

-~ 4

F(“-—',IZ_“ +1')F(”-L+" +7.)

F( n+£+¢, + ,)r( 71+L-u _+_ 7,)

n—1 . n—1 .
(,“'0(7' + )I—Lx + .- ,’”__1(7' + l 5 )l—u-H-l) =1 -,
with |e, | <~ +1)' Next
-1 +(r n—1 Fa-{41
Ao(7 + ) A ‘—;—)J o X
n—li. n =1 iamin itk
po(r + ) + (e + "—)—) z (T + )
= = h=3-2!
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.. - - —1 . . . — n—1 1
Since Lu,, = (r + ”—21)(s + 5w, for u, g € H(ros), and [ * u, s = TW”TS»

we can write

1 20-3
n—1 .., .
z : 7/\'(r+ 9 )J+kurs =7L] “rs+ E ‘7k£7 11* *11)*ll.rs,
hk=3-2{ = k=0

with ¥ # 0.
We define the operator in 4, H(r, s) given by

Up s ifr <rg
]17'3151'5 = +1 203 k :
‘CJ +Z 7‘-‘6'](11*"' *11) *Ia+_j*[1—a*urs» if r > T,

where rg is to be chosen. Then

0 if r S o
Criltlrg, if7r >0

(Id=T, Hu,, = {

We will check that there exists = < | such that for any f € Ly, M =T Ay < elifll
Asstme first that p < 2. and take f € L2(S"). In [Al page 118], it is shown that ifw,( €

‘ L — 2\ (s =2\ r+ s -1
S*, (r.s.n). Since D(r.s,n) = (7 o )( o )ﬁ—i—, we

r s n—1
deduce that [K, (w0, ¢)] 2 (r + 1)"=", with constant depending on s and n. Hence

o)l = 1 [ Rl Ao (O] 2 (4 1)1l

This gives that if [ € LY .

W =THE =X sl =Y m/s 1Sy o(w)? do(w) <

r2rg r>719

(7 +1)2(n 1) »
> WT”/”I < ellfIR,
r>70

provided rg is big enough and [ satisfies that 2/ — 2(n — 1) > 1.
Finally, since 1 < p < 2,

W =Tfll < W =TAI5 = ellf117 =<l

In particular, the operator T is invertible in Ly, . and there exists an operator S : Lh,  —

Ly, ., with ST TS =1Idy

The case p = 2 can he de(lu( ed from the previons one by duality, since the operator T is
selfadjoint.
The definition of T gives that we can write

(5.4) T'=T+ Ry + R,,
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where

I = (—;-EJHIM-J * 11 a,

is an operator of order zero,

Z Gl (Iyx 5 D) % Loy * Do

is an operator of order greater or equal to 1, and where

2-3
R, = Z (ld- (—~ (70“ + Z 7"‘0 L+ 3 *11)) * Loy * 11—0) K,

Tsro k 0

is an operator of finite range, and consequently, hounded in L§ ,. If we apply S to equa-
tion (5.4), the boundedness in L? of the operators S, Ty, and R, 7 = 1,2, together with the
fact that they conmute in L?, shows that if we take f € L? satisfying that LI;_, * f is also
in LG, then,

5 A 1 .
f = 2y SED s [ LT < K T Ko

C,
where
-3 . ‘
K f= Z'ﬂ (hi* - xh)« L, * f
5 k=0

is in L*. and A, is of finite range. Thus we have obtained that if f € Lfl.-.- and Lo * f is
also in L) . then f = L7114, * g with g in LP. Thus (i) is proved.
Next, part (i) with j = 0, gives that

{fe[/())_ []—LY*[GLIQ }CIQ*LE.-:'

The other inclusion follows from the fact that I,_, * I, is an operator of order 1 and,
consequently, maps L? to LY.
Since L7179 = Idp, and [PL7 = [dy», (ii1) will follow once we show that
J

10 * Llf)zsa = L:] 10+J * Lgss'
Now, I1_oL7 [,4; is an operator of order 1, and this gives that
l:][(""] * Lass C {j‘ e Lass ; [1—0 * f e Lqﬂ-‘-‘ }.

Part (i) gives that the inclusion in the other direction also holds, and finally (i1) gives (iii).
If we take j = 0 in (i), and apply S followed by [; in (5.4), it is then easy to check from
the above calculations that (iv) is fullfilled. W

Let us now finish the proof of theorem 5.1. We must show that
» » p
[LQOI\-’ Llﬂo k][ﬂ] C [0 * LQOA"
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By a lemma of Stafney (see [St]) it is enough to show that if 4 are holomorphic on §
and continuous up to S, and hy € L’('ZM, then

> () s * hidlgerr <
P

(5.5) ' max (sup et > orlit) Iy * byl sup e S on(l — i) * hkl|11,_L,,)
By (iv) of lemma 5.2,

HZ<P( V% bl ez =< e (ZW( Yhill, =
(5.6) sup 1/12,% Mima® hi$)g(0) dor ().

gl <1

Now the map

weS = [ T wrlw)h-uhi(0) g(0) do(c),
k
is holomorphic in § and continuous up to S. By lemma 4.3.2 in [BeLo], this implies that

| ol imahi(€)) () do(©)
1 FoNs 1—cx
< (l _(Y/_x [/ (er(it) i —ihi(C)) g(C) da(C)|Polev. t (h‘)

X (l /_: 1/8' (@il + i) _;ehi(C)) 9(C) da ()| Py t (lf)l',

Y

where if m = 0. 1.

e~ ™= ginrs

pm('s + lf T) =

sin? 75 + (cos ms — efmron(T-0))2’

Taking supremum ou ¢ in the previous estimate we get

(5.7) “Zw Myow hllgey,
N l + 0 -«
(5.8) < T a/ “Z\Pk i)y —ir * bl Pola f)(lf)
1 «
S G AR DRI f)(lf) .

But we have seen in the previons remark that |[[_; * h|l, < e||[; * h]], and the definition
of I_i shows that [[7_;(2)|], < *VI|k||,. Thus (5.8) can be estimated by

1 1—-a
(1 / WII'HZ /’ I] */Ik'lpr() o, f)(lf) X

[§
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% (% /+°° ewlt‘H Z»?k(l + i) hi] [, Pr(a, t) dt)

-0 a

e 4

1-a
< sup (e""u S enlit)h hknp> X sup (e""n Sek(l+ z‘t)hkup) <
t k t k

max (sup 13" onit) Iy * il sup || 37 i(1 + it)thp) ,

where we have used that

|
l —«a

[Tyt == [Pty =1.
0(07')('—5/_00 1o t)dt = 1.

-
Theorem 5.3 Let j € Z,,0<j37<n—-1,0< a <1 and let k be a nonnegative integer.
We then have that

[L’J'JQOL-’ L?+190k][“] = ["'*'j * L?)M-

Proof of theorem 5.3:
<Ly, — LYy, ,and [ LYq, — L', q, ., are topological isomorphisms and
consequently

Ij : [L?z“’ L’x’n,,][a] - [Li)(z,,’ L?Hrz,,][a]a

is also a topological isomorphism. But theorem 5.1 gives [L§, , L¥q, Jjo) = [« * L, ,- Hence
. e el 1 esd
Lix(Io* LY, ) = (L7, . L4, )i} Now, part (iii) of lemma 5.2 finishes the proof. #
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