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Abstract

In this paper the global behaviour of an estimator is studied in framework
of Intrinsic Analysis, [7], Two índices of performance of an estimator in a
bounded región are analyzed: the average of the intrinsic risk (the loss
function is the squared Rao distance) and the máximum risk.

The Riemannian volume, provided by the Fisher metric on the mani-
fold associated with the parametric model, allows us to take an average of
the intrinsic risk. Cramér-Rao type integral inequalities for the integrated
mean squared Rao distance of estimators are derived using variational meth-
ods, extending the work of Cencov, [3]. Additionally, lower bounds for the
máximum risk are also derived, by using integral expressions.
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1 Introduction

The purpose of this paper is to give lower bounds of two indices of the global
behaviour of an estimator in a región of the parameter space: the average of the
risk and the máximum risk. In this introduction we describe the framework where
we are going to work and some results about local bounds of the risk that will be
useful later to derive global bounds. Previous work in this area can be found in
Prakasa Rao [8] and Cencov [3].

1.1 The framework

Let {(X, CL, Pe) ; 9 G 0} be a parametric statistical model, where 0, the parameter
space, is an n—dimensional C°° real manifold. Usually 0 is an open set of IR" and
in this case it is customary to use the same symbol, 9, to denote points and
coordinates.

We suppose the map 6 Ps to be one-to-one and we consider the set of all
probability measures in the statistical model, M, with the n-dimensional C°° real
manifold structure induced by this map. Let us denote this manifold by (Af, 21),
where 21 is the atlas induced by the parametrizations, that is, the coordinates in
the parameter space.

In the dominated case, which we shall assume hereafter, the probability mea-
sures can be represented by density functions. Then let us assume, for a fixed
cr-finite reference measure p, that Pe « ¡it, V0 € 0 and denote by p(•; 9) a density
function with respect to p, i.e., a certain versión of the Radon-Nikodym deriva-
tive dPe/dp. Now, through the identification Pe i-* />(•;#), the points in M can
be considered either densities or probability measures. Additionally, we assume
certain regularity conditions:

1. (M, 21) is a connected Hausdorff manifold.

2. When x is fixed, the real function on M, £ i-+ p(x;£), is a C°° function.
3. For every local chart (W, 9), the functions in x, dlogp(x; 9)/d9t i = 1,..., n,

are linearly independent, and belong to La(p(•; 9) dp) for a suitable a > 0.

4. The partial derivatives of the required orders

d/d9\ a2/30W, d3¡d9id93d9\ ... ,i,j, k = 1,... ,n,
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and the integration with respect to dp of p(x; 6) can always be interchanged.

When all these conditions are satisfied, for a versión of the density function,
we shall say that the parametric statistical model is regular.

In this context, given a sample size k, an estimator U for the true density
function (or probability measure) p = p(-;0) G M of the statistical model is a
measurable map

U : Xk M- M,

assuming that the probability measure on Xk is (P)k(dx) = pw(x]0) pk(dx) =

Ui=iP(xi^)p(dxi)'

1.2 Local bounds

Let hap be a Riemannian metric on M and gap the Fisher metric. Then consider
the Levi-Civita connection associated with hap and

A = expf1(U), B = Ep (expp *(£/)) ,

and estimators ti such that B is a C°° field on M. Let 6P = {£ G Mp, ¡£| = 1},
Mp being the tangent space at p; for each £ G &p we define

4(0 = sup{á > 0 : dÍPi 7c(5)) =«}»

where d is the Riemannian distance and 7^ is a geodesic defined in an open interval
containing zero, such that 7¿(0) = p and with tangent vector at p equal to £. Now,
if we set

4 = KgMp:0<í< Cp(0 ; £ € 6P}
and

Dp = expp(2)p),
it is known that expp maps 2)p diffeomorphically onto Dp (see Hicks [5]). We have

Theorem 1.1 (Riemannian Cramér-Rao lower bound) . Let U be an esti¬
mator for a sample size k, corresponding to an n-dimensional regular parametric
family of density functions. Assume that the manifold M is simply connected
and that (P)k 0 U~1(M\Dp) =0, Vp G M. Let us assume that the mean
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squared Riemannian distance given by hap, between the true density and an es¬
tímate, E(d?(U,p)), exists and that the covariant derivative of B can be obtained
by differentiating under the integral sign. Then,

E(d2{U,P)) >
{div(B) — £(div(A))}2

kc
2

where c = ha/3ga/3 and div(-) stands for the divergence operator.

Proof: Let C be any vector field. Then, applying the Cauchy-Schwartz inequality
twice,

E (|<A - B, C)|) < E (|| A — B|| lldl) < JE(\\A-Br) ^5(||C||J),
where (, ) and || || denote, respectively, the inner product and the norm defined
on each tangent space.

Let C(x]8) = grad(logpw(ar; 8)), where grad(-) is the gradient operator. Tak-
ing expectations and using the repeated índex convention,

E (||C||2) = E (ha0 hM log pw haXd\\ogp{k)) = khaph^ha>ig^\ = khAxglX
where da = d/d8a. Furthermore, we also have

\E((A,C))\ = \E((A-B, C))| <E(\(A-B,C)\)

and

E (|[A - B||2) = B(||A||2) — ||B||2.
Thus,

\E «A, O) I < \¡E (||A||2) - ||B||2 VTc,
but ||A||2 = d2(U,p). Moreover,

div(fi) = E{dW{A)) + E((A,C)),

and the theorem follows.
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Remarks. We can choose a geodesic spherical coordínate system with origin U(x)-,
under this coordínate system, we have

dAa

~dF and A3 = -p
dlogy/9

dp
P,

where g is the determinant of the metric tensor. Then

div(A) = -1 - p
dp

Now we can use Bishop’s
dlog y/gestímate

dp
In the Euclidean case,

comparison theorems (see Chavel [4, pp.

dlog sfg
_ n - 1

dp ~ P

and thus div(A) = — n.
When the sectional curvatures are non positive, we obtain

71-73 ]) to

dlog y/9 n - 1
dp ~ p

and therefore div(A) < — n.
Finally, when the supreme of the sectional curvatures, fC, is positive and the di-
ameter of the manifold satisfies d(M) < tt/2\/K , we have

d!°g y/g
dp - ’

and then we obtain div(A) < — 1.
In any case, div(A) < —a, with a = n or a = 1, depending on the sectional
curvature sign.

Corollary 1.2 . Suppose there is a global chart such that hap = Sap; identifying
the points with their coordinates, we have,

M.S.E.(W) >
(div(E(U))f

kgpp
+ (Bias(¿7))2,

where M.S.E. is the mean squared error.



GlobaJ eíEciency 6

Proof: It follows straightforward by the previous theorem and the facts that d is
the Euclidean distance, A = U. — p and div(A) = — n. m

Corollary 1.3 (Intrinsic Cramér-Rao lower bound) . Ifhap = gap, we have

where p is the Rao distance.

Proof: If the Riemannian metric is the Fisher metric the distance is known by
Rao distance and c = ga^gap = S° = n. ■

1.3 Global bounds

Whatever loss function is considered, it is well known that, in general, there is
no estimator whose risk function is uniformly smaller than any other. Therefore,
given an estimator, it seems reasonable, in order to measure its performance over
a certain región of the statistical model, to compute the integral of the risk and
then to divide this quantity by the Riemannian volume of the región considered.
In the following, we take the Rao distance as loss function and the Riemannian
metric as the Fisher metric. This is the Intrinsic Analysis framework.

Let B C M be a measurable subset, with 0 < V(B) < oo, where V is the
Riemannian measure. We denote the Riemannian average of the mean squared
Rao distance by

KiB) =

dV

the performance Índex obtained is a weighted average of the mean squared dis¬
tance. This approach is compatible with a Bayesian point of view: a uniform
prior with respect to the Riemannian volume is a kind of noninformative prior
(see Jeffreys [6]). It can be shown (see Berger [2]) that, when the parameter space
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is a locally compact topological group, this Riemannian volume is a left invariant
Haar measure and it is unique up to a multiplicativa constant. In any case, this
volume is invariant under any group that leaves the parametric family of densities
invariant. In the first part of the paper we derive lower bounds for this global
Índex on balls of radius R.

Another way to measure the global behaviour of an estimator is to consider the
máximum risk in a región of the parameter space. This is a minimax approach.
The last part of the paper is devoted to obtaining lower bounds for the máximum
risk.

2 Variational methods to obtain global bounds
As we shall show, variational methods can be used to obtain global bounds. A
previous study in this direction can be found in Cencov [3], The idea is to consider
the integral of the local bounds for the Rao distance given above when the Rie¬
mannian metric is the Fisher metric and on a submanifold W C M with boundary
dW C M that is

y(B) = jw {||B¡|2 + ¿(d¡v(B) + a)2} dV,
where we take a = n if the sectional curvatures are non-positive and a = 1 in the
other case. The above functional depends only on B and we can attempt to find
the C°° vector field B that minimizes it. Since the minimum we obtain is in a

class of vector fields larger than that of C°° bias vector fields, this method gives a
lower bound for the average of the mean squared Rao distance.

Lemma 2.1 . The C°° field B minimizes the functional

y(B) = /w{l|Bf + ¿(d¡v(B) + <.)2}o(V'
iff it verifies

B — -^-grad(div(Z?)) = 0, Vp € W,

div(S) + a = 0, \/p€dW,
(1)
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and the minimum valué is given by

r - fn^W) - Vn Sm l|B'« * = rn™m) + Tn L^ (2)
where B* verifies (1).

Proof: Consider the first variation 5y(B,r]), where r/ is an arbitrary field. Then
it is easy to see that

lim —— ———= Sy(B, r¡) = í (2(B, r¡) + -^-div(?7) (div(B) + a)] dVe-+o t Jw \ kn /

and

y{B + n)-y(B) = 6y(B-,i) + /„,{NI2 + ¿(divM)!} <¡v,
thus the functional is strictly convex and the stationary point is a global minimum.
Now, the condition 5y(B;r}) = 0 is equivalent to

j(£, r¡) + ^-div(r/) (div(fí) + a)| dV = 0.
If we take into account that

div(/X) = /div(X) + <X,grad(/)>, (3)
we obtain

-—div(r)) (div(B) + a) = div (div(J5) + a)^ — (grad (j~ (div(B) + a)^ , rj)
= ¿¡‘div(r/ (div(#) + a)) ~ ^<grad(div(5)), 77).

We are able to write the stationarity condition as

Jw + -^div(r/(div(£) + a)) - -!-(grad(div(£)), 77) j dV = 0
and by the Gauss divergence theorem,

jw(B- -^-grad(div(B)), 7?) dV + ^ ^{(div(5) + a)r¡, v)da = 0,
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where da is the Riemannian measure on dW. Then (1) follows from the fact that
the previous equality must be verified for any r/.

Now we see the second part of the proposition. By the first stationarity condi-
tion (1) and by (3), we obtain

l|B*l|2 = ¿ (div(B> div(S-)) - (dlv(B')fí,
and, putting it in y(B),

y* = f j— (div(B* div(B*)) + a2 + 2adiv(B*)) dVJw kn

= ?-vo\(W) +-1-f (B* div(fí*) + 2aB*, u) da.kn kn JdW

Now, by the second stationarity condition in (1),

y+^ <4>

It is olear that 0 > div(R*) > —a, then since div(B*) = —a on dW and B* =

grad(div(B*)) it turns out that (B*,v) = —||B*||. Finally by the Gauss divergence
theorem we obtain the second equality in (2). ■

Remarks. Note that the mínimum valué oí y(B) depends only on div(¿?*), and
that /* = div(¿?*) verifies the partial differential equation

A/ = knf, with f(p) = —a, Vp G dW, (5)
as is easy to check from (1).

We have solved this boundary-value problem in the case where W = 5/?, a ball
of radius R, and constant sectional curvatures K.

Theorem 2.2 . When the parametric statistical model is a manifold of constant
sectional curvature K, we have the following lower bound for the average of the
mean squared Rao distance, in balls of radius R such that |/C|5^(i2) < 1:

K(sr)> kn
1 -

f{R)SV(R)

knfWj* Se"'(r)dr
(6)
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where

and

^ nj=i {kn + 2K(s - l)(n + 2s - 3)} c2uf(R) = tt„ 2^ ,i sic («)

sin (y/Kt)

SK{t) = t
Vk

sinh( y/—Kt)

ifK > 0,

ifK = 0,

ifK < 0.

(7)

Proof: By symmetry and uniqueness, the solution of the boundary problem in
Sr,

A/ = knf, with f(p) = -a Vp € dSR, (8)

depends only on the distance to the center of Sr. Then, taking geodesic spherical
coordinates (r, u) with origin in the center of Sr, since \Jg{r, u) = S£_1 fi(u) (see
Appendix), we have

A/ = 44 (yftíf) = ¿t4 (sn^Trf) ■

We can then write

yjg dr dr J S£ 1 dr

(n-l)fV+ /" = *"/•
Let v = S/c(r) and h(v) = f(SK1(v)); taking into account that

/» = S'ic(r)ti(v) and f"(r) = S'>c(r)ti{v) + S'l(r)h"(v),
we obtain

(n - 1) S'¿(r)h'(v) , , enf.LHf

Sdr)
+ SK(r)h'(v) + SK(r)hH(v) = knh(v).

Moreover, since

S£(r) + /CS¿.(r) = l and S£(r) +/CS^r) = 0,
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it turns out that

v(l — tCv2)h"(v) + (n(l — ICv2) — 1 )h'(v) — knvh(v) = 0.

If we try h(v) = J2JLq ajvj? since
00 OO

h\v) = h"(v) =
j=l j=2

we have

OO OO OO

¿ a¿j(j ~ ¿ ajj{j ~ 1)^J+1 + (« - 1) S
j=2 j=2 ; = 1

OO OO

—Kn ^2 ajjv3+l — kn^2 djV3+l = 0,
j=i j=o

that is

(n — l)ai + (2 (n — l)a2 + 2a2 — kna0)v
OO

+ S {fli+2(i + 2)(n + j) - aj(fcn + Kj(n + j- 1))} v3+l = 0.
j=i

Now, if n 1, then

ai 0 and
kn + Kj(n + j — 1)

°’+2 = (n + l)ü + 2) “ i >0.

Thus,

and

oo rrl
h(v) = a0^2

1=o

m=i {kn + 2K(s — l)(n + 2s - 3)} 2j

iKfP U

^ nLi {kn + 2K(s - l)(n + 2s - 3)}Ar) = 0°1¿
where a0 is determined by the condition f(R) = —a. It is easy to see that this series
is convergent iff |^|S^(r) < 1. This is always true in the case of non-negative
sectional curvatures.
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Furthermore, we have to evalúate fsRfdV. In spherical coordinates (see Ap-
pendix)

í f dV = ar(5) [** S^-1/(r) dr,
J Sft Jo

Since (•S£-1(r)/'(r)), = knS^~l(r)f(r), we find that

r 2nn/2
JsRf ^ knT(n/2)

and

Sl-'(R)f(R)

(
y' = ^vo1(Sh) i - f(R)Sr1(R)

knf(R)J*Sl-‘(r)d,
\

Corollary 2.3 . When the parametric statistical model is an Euclidean manifold,
we have the following lower bound for the Riemannian average of the mean squared
Rao distance, on a ball of radias R:

oFi (f + 1;^)
C ( n . knR2 \

U’ ~)
(9)

where 0Fi (o; 2) is a generalized hypergeometric function (see (16) of the Ap-
pendix).

If the Euclidean manifold M is complete and simply connected, we obtain the
following lower bound in the manifold:

Ká(Af)=Um 7$ (&)>£.
Proof: It is a particular case of the previous theorem with K = 0. The second
part of the proposition follows by taking the limit when R —¥ 00 in (9). ■
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Example 2.4 . As an example, consider the n-variate normal distribution with
known covariance matrix S. Given a sample of size k, the Riemannian den-
sity of the mean squared Rao distance corresponding to the sample mean Xk is
TZy (Sr) = n/k, which coincides with the previous bound.

In the case n = 1, the manifold is Euclidean and we can apply the previous
result; we obtain

y* 1 / tanh(\/kR)\
2R~ k\ VkR /’

which coincides with the result already obtained by Cencov [3].
In fact, if we take a Cartesian coordínate System with origin p and try to solve

the variational problem for a cube with center p, Cr = {x : |x¿| < R, i — 1,..., n},
we have to solve the Dirichlet problem:

n
^

Y, -¿—zf = kn/, with f(x) = —n if |x,-| = R for some i = 1,..., n.
dxi

If we try f(x) = E"=1 we obtain

¿ = k ¿ ¿ M±R) = ~n-
Í= 1 OXt Í= 1 ! = 1

Obviously, a solution is given by f(x) = £"=1 g(xi), with g such that
r\2

-q^9(z) = kng(z), g(±R) = -1.
The solution of the last equation is

g(z)
cosh \/kñz
cosh \fknR ’

m = -±
j=i

cosh \fkñx{
cosh y/knR

and then
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This provides the bound

vol(Cfi)
n ( _ p/(fi)ar(Cfl) \
k \ kn*g{R)vol{CR) j
n (^ 2nR\/kñ tanh. \ZknR
k\ 2kn2R
n ( tanh \fknR\
k\ \/knR ) ’

which improves upon the result given by Cencov ([3]). By Corollary (1.2), we
can also give, in the general non-Euclidean case (fixed coordínate system), for the
mean squared error (M.S.E.), a bound of the form

K
n

* h¡
1 -

tanh y/Jcr¡R
y/kr¡R 7

where g is an upper bound of 90(3 in Cr-
We can also give lower bounds to the general case

Theorem 2.5 . When the parametric statistical model is a manifold with sectional
curvatures bounded from above by K,, then we have the following lower bound for
the average of the mean squared Rao distance:

*l(SR)>-r- 1-
£(fl)ar(Sfl)

knfic{R)vol(Sfí)
>0, (10)

where ar(Sr) is the area of the n-dimensional sphere of radius R, voI(Sh) its
volume and f>c(r) is the solution of the boundary problem in Sr, (8), on a manifold
of constant sectional curvature K..

Proof: Consider a geodesic spherical coordinates (r, u). Let /(r, u) be the solution
to the boundary problem (8) on a manifold with sectional curvatures bounded from
above by fC. Let //c(r) be the solution to the same problem but on a manifold
of constant sectional curvature IC, which, as we know, only depends on the radial
coordínate. Then,

1 d ( d \ d2 dAflC~
y/gdr \^dr f*) - ( °S ^ dr ffC'
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By Bishop’s comparison theorems we have

(n-l)|^<|;(log y/g),
and, since

d_
dr ftc< 0,

we have

AfK — kn f/c < Afzfn - kn f/c = 0,
with Ac the Laplacian for the constant sectional curvature case. Thus

A/yc - kn f>c < A/ - kn f = 0.

Now, since fic(p) = f(p) — —a, P € dSRl we can apply the comparison theorem
for elliptic differential equations (see Rauch, [9, Theorem 6 p. 243]). We find that

f{p) < h(p), P € Sh,

and, since equality holds on the boundary,

§¿f(p) > ^k(p) P € dSR.
Finally, by (4) and (1),

Y = ^vol(5ñ) + -£-[kn kn Jd jrffo > t-voI(Sji)asR or kn
f'MarjSn) \

knfK(R)vól(SR)) ’
and the proposition follows.

Remarks. Estimates for the volumes of balls given in the Appendix are useful to
give a final expression for these bounds. Note that if the sectional curvatures are
bounded from below by k and from above by /C, by proposition (4.3), we have

ar (SR) Sn~l(R)
voi(Sh) - /„* sr'w*'
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3 Lower bounds for the máximum risk

Even though we could use the Riemannian average of the risk to derive bounds
for the máximum risk, we can obtain sharper minimax bounds and more directly

Lemma 3.1 Let X be a smooth field on M such that div(X) < —a, let f be a
non-negative function on M and let W be a submanifold with boundary in M, then

aÍJdv^ L/iw*+ Lmu™¿(f)\\dvJW JaW JW

Proof:

aí fdV < f «X,grad(/))-div(/*))dVJW JW

< fw\\X\\\\m¿(f)\\dV +Jswf\\x\\d* (11)
(12)

Theorem 3.2 . We have the following lower bound for the local minimax risk of
an estimator U on W

sup E (p2{U,pj) >
p€W K '

a
2

far(dW)
V vol(VE)

+ Vkñ
2 •

Proof: By the previous Lemma if we take p = p^(x;0), X = exp l(U), by
integrating (11) with respect to dp and by Fubini’s theorem, we have

avol(W) < Jw^mW)Jmcf)dV + fswE(\\A\\)d^
< Vto Jw ,jE(\\Ar)dV + jsw /E(\\Ar)da. (13)

sup E
pew

a vol(LK)
ar{dW) + \/kñvo\{W)

2
Thus
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If the Euclidean manifold M is complete and simply connected, we obtain the
following lower bound over the manifold:

Km = lim K (Sr) >
n (n + 2)2

4 k (n + l)2'
Proof: Since

vol (5r)
2WV

nT(n/2) ’
we have

and

then

J y/vol (Sr)dr
87r”/2JRn+2 y/2

n(n + 2)2 T(n/2))

2lTn/2Rn+l

n(n + 1) T(n/2) ’

0 <
n (n + 2) R

(n + 1) + 2 + 2\/kñRj
< K. •

We derive the second statement taking the limit when R —► oo.

Remarles. Example (2.4) shows that the bound obtained here is worse than the
variational one if R goes to infinity, but it is better if R goes to zero:

n

lim <
R—tQ

k
1 -

ofi (| + l;fe^)'
»n(?;

n2(n + 2 )2R2
(n + l)2
n(n + 2)

(n + l)2(n + 2 + 2 y/knR)2

> 1.

Remark. Note that global bounds for the average of the mean squared Rao
distance also provide bounds for the local minimax risk in an obvious way. It can
be shown these last bounds are sharper than bounds provided by the variational
methods.
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4 Appendix
4.1 Comparison theorems and volumes
We can use Bishop’s theorems to obtain the volume of a ball of radius r in a
Riemannian manifold whose sectional curvatures are constant and to give bounds
for this volume when the sectional curvatures are bounded. We have the following
propositions:

Proposition 4.1 . If the sectional curvatures are constant and equal to K, the
volume of a Riemannian ball of radius r and center p 6 M is given by

vol(5r)
2W2

P)
Proof: We have

vol(Sr) = í f y/gdudp,Jo J(-HSn)
where Sn is the unit sphere in Mv. On the other hand, by Bishop’s comparison
theorems, when the sectional curvatures are constant,

Yp loS \¡ 9 (p,u) = (n - l)^(p),
S'r

with

S>c(t) =

sin(\/£í)
y/JC iífC>0,

if K = 0,
sinh(\/—Kt)

Then, integrating this expression, we have

if£ <0.

\¡9 (p,«) = SI 1 Qic(u).
However Cl/c does not depend on K. In fact

yj9 ÍP,u)lim -—■, = 1,
p-*o pn~xPl{u)
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where ü(u) du is the area element of the unit sphere in a Euclidean manifold and,
since

p-¥0 p

we conclude that fije = ÍF Thus, we may write

vol(S’r) = í ü(u)du í S1£~l(p) dp,Jo

and finally,
2KnG

T(n/2)'

Proposition 4.2 . When the sectional curvatures are constant and equal to K and
¡A^|S^(r) < 1, we have the following expression for the volume of a Riemannian
ball of radias r:

vol(£r) =
2ttn/2

■SJWO + E nrü + i) &S%(r)
nr(n/2)~’-'' ' y ' j¿,/ñ(n + 2j) j\

Proof: From the previous proposition,

2lTn/2
Vol(5r) = írsrl(t)dt.

Jo

(15)

r(n/2) Ja K
Then, since by the definition of S¡c,

and, making the change y = S2K(t)/S2K(r), we have

£si~'(t)dt= jSJ(r) - KSUr^y* dy.
Moreover, there is a relationship between integráis of this kind and the generalized
hypergeometric functions. These functions are defined by,

Fin n-h l \ _ v-' (ai )j ‘ * ’ (ap)j z'3
P* g(®l, • • • , Pl VI, • • • , bq, Z) — / ,

(h)¡ ■ ■ ■ (b,), j!’ (16)
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where (a)¿ = a(a + 1) • • • (a + j - 1) and z is any complex number if p < q, ||z|| < 1
if p = q + 1 and they diverge for all z ^ 0 if p > q + 1 (see Abramowitz [1]). The
relationship is the following:

2F1(a,b-,c-,z) = jf ‘ (‘-‘(1 - - tz)-° dt, flc(c) > Re(b) > 0.
This leads to

1 Sc'W - =

Vf,1 1 fUX|+j)^S£(r)
2 t( 'rdl.t, I + J ü ’

and the proposition is proved. ■

Proposition 4.3 . Let vo\(Sr(p)) be the volume of a ball with center p and radius
r, on a manifold with sectional curvatures bounded from below by k and from above
by K,. Then

vol*(5r) > vol(Sr(p)) > vobc(Sr),

where vol„(5r) and vobc(5r) are, respectively, the volumes of balls of radius r and
arbitrary centers on manifolds with constant sectional curvatures k and K.

Proof: If we intégrate, from po to p, the inequalities in Bishop’s comparison
theorems, we obtain

ST'(p) > \¡9(p, «)
1(Po) yjg (p0, u) &£ 1(Po)

Moreover,

Üm \/9 (Po, u)Po~+Q v

st1(p)
srl(po)

> 9 ÍP,u)> lim Jg{p0,u)v po ->-0 v

str\p)
srHpoY
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and, since

we conclude that

.. \Jg(po,u) \Jg (p°, u)lim -- _r¡-—- = lim V, , ,—- = S í u ,

Sk ÍPo) sic ÍPo)

STHpMu) > jg(p,u) > Sr'[p)ñ(u).
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