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STOCHASTIC EVOLUTION EQUATIONS
WITH RANDOM GENERATORS

bv
Jorge A. Ledn */ David Nualart **!
Departamento de Matematicas Facultat de Matematiques
CINVESTAV-IPN Universitat de Barcelona
Apartado Postal 14-740 Gran Via 585
07000 Meéxico. D.F. 08007-Barcelona
Mexico Spain

1 Introduction

In this paper we study nonlinear stochastic evolution equations of the form
X, = §+/ $)X, + F(s. X,) ds+/ (5, X,)dW,. te[0.T). (L1)

where W is a cylindrical Wiener process on a Hilbert space UU. The solution
process X = {X;.t € [0.T]} is a continuous and adapted process taking
values in a Hilbert space H. The functions F(s,w.r) and B(s.w.r) are
predictable processes satisfying suitable Lipschitz-type conditions and taking
values in H and Lo(U. H). respectively.

We will assume that A(s.w) is a random family of unbounded operators
on H. A notion of weak solution for Equation (1.1) can be introduced as
usual (see Definition 5.2).

In the case where (1.1) is a coercive evolution system on a normal triple
(K.H.K'"), we can interpret (1.1) as an evolution equation to be solved in
K’ (see Krylov and Rozovskii [5] and Rozovskii [12]). In this case the proof
of existence of a unique weak solution for Equation (1.1) follows closely the
ideas of Pardoux [11].

When A(s) is a deterministic family of operators. in order to solve Equa-
tion (1.1) one looks for a mild (or evolution) solution. which satisfies the

* Supported by a CONACYT grant.
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evolution equation
t t
X, = sl’f.oyg-/ S(t.s)F(s.Xs)ds+/O S(t.s)B(s. X )dW, - (1.2)
40 . i

where {S(t.s).0 < s < t < T} is an evolution system determined by
A(t)S(t.s) = £S(t.s). We refer to da Prato and Zabeyk [1] for a basic
account of this theory.

In the case of a random family of operators {A(t)}. the corresponding
evolution svstem S(t.s) is also random and F,-measurable (where {F;.t €
[0.T1} is the natural family of o-fields determined by W'). As a consequence.
the process S(t. s)B(s. X;) is not F,-measurable. and the stochastic integral
appearing in Equation (1.2) is anticipative. That is. although both the solu-
tion process {.X;} and the random family of operators {A,} are adapted. the
-associated stochastic evolution equation involves an anticipating integral.

[t is well-known that a mild solution of Equation (1.2). where the antic-
ipating integral is interpreted as a Skorohod integral. is not a weak solution
of Equation (1.1) (see Ledn [7]) because a complementary term appears. We
show in Section 3 (see Proposition 5.3) that a mild solution of Equation (1.2)
where the stochastic integral is a “forward integral” is also a weak solution
to Equation (1.1). Roughly speaking the forward integral is defined as the
limit (in probability) of Riemann sums defined taking the values of the pro-
cess on the left-points of each interval. In the case of real-valued processes
this tvpe of integral was studied. among other authors, by Russo and Vallois
in [13]. The main difficulty in handling this stochastic integral is to obtain
suitable estimates for the LP-norm of the integral. One way to do this, in
the anticipating case, consists in expresssing the forward integral as the sum
of the Skorohod integral plus a complementary term.

In Section 4 we obtain an expression relating the forward and the Skoro-
hod integrals (Proposition 4.2) and we deduce an estimate for the LP-norm
of the supremum of an indefinite forward integral (Theorem 4.4). This theo-
rem is one of the main results of this paper and constitutes the fundamental
tool to solve the stochastic evolution equation (1.2).

The Skorohod integral is an extension of the Itd integral to the case of
anticipating integrands. and it was introduced by Skorohod in [14]. It turns
out that this generalization of the It6 integral coincides with the adjoint of
the derivative operator on the Wiener space. As a consequence. one can
apply the techniques of the Malliavin calculus (see Malliavin [8]) in order
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to construct a stochastic calculus for the Skorohod integral. This has been
done bv Nualart and Pardoux in [10]. among others. The Skorohod integral
of Hilbert-valued processes with respect to a cvlindrical Wiener process has
been studied by Grorud and Pardoux in i3]. In Section 2 we present the basic
facts on the Malliavin calculus with respect to a cvlindrical Wiener process.
We need to introduce random variables with values in the space of linear
operators L(H.G). where H and G are real and separable Hilbert spaces.
and the corresponding Sobolev spaces D*?(L(H.G)). which are more general
that the spaces of Hilbert-Schmidt operators ID'?(Ly(H.G)) considered in
[3].

The basic estimate for the LP-norm of a Skorohod integral (that is used
in Section 4 in order to control the LP-norm of the forward integral) is ob-
tained in Section 3. We need to estimate a Skorohod integral of the form
J5 S{t.s)®dW,. where {S(t.s).t > s} is an F-measurable random evolution
system on a Hilbert space H and ® = {®,.s € [0.T]} is an Lo(U. H)-valued
adapted process. We prove that

¢ T
E ( sup | [ S(t. s)q)de'sl’;1> < C/o E||®,l|ksds. (1.3)

0<t<T /0

assuming that S(t.s) is twice—differentiable in the sense of the Malliavin
calculus. The constant C depends on p. T and on the random evolution
system S(t.s). This estimate follows from the Ité—formula for the Skorohod
integral. using some ideas introduced by Hu and Nualart [4]. The semigroup
property of the system S(t.s) allows to show this estimate using only two
derivatives of S(t, s).

The inequality (1.3) plus the decomposition of the forward stochastic
integral obtained in Section 4 allows us to deduce an estimate similar to (1.3)
for the forward integral (see Theorem 4.4). Using this we prove in Section 5
a result on the existence and uniqueness of a mild solution to Equation (1.2)
(Theorem 5.4).

Finally, Section 6 contains an example that satisfies the assumptions of
our results. Namely. a random evolution system generated by a family of
random second order differential operators.



2 Preliminaries

In this section we will present some basic elements of the stochastic calculus
of variations with respect to a cvlindrical Wiener process. For a more detailed
account on this subject we refer to Grorud and Pardoux [3].

Let U be a real and separable Hilbert space. Suppose that 1" is a cvlindri-
cal Wiener proceas over U defined on a complete probability space (2. F. P).
That is. IV = {IV}(h).h € U.t € [0.T|} is a zero-mean Gaussian family such
that

E(WV (h)W(ha)) = (s At)(hy, ha)r.

for all h;. hy € U and s.t € [0.T]. We will also assume that the o-field F is
generated by .

o) T
If u € LYO0.T|;U) we set W(u) = ¥ A (u(s), e;)ydWi(e;). where
J=1

{e,.j > 1} is a complete orthonormal system on U. We will also use the
notation 1 (u) = fOT(ut,dWc)U.

If Uy and U, are two real and separable Hilbert spaces we will denote
by U} g U3 its tensor product which is isometric to the space Ly(Uy, Uy) of
Hilbert-Schmidt operators from U, to U;.

Let K be a real and separable Hilbert space. For any p > 1 we can
introduce the Sobolev space D'?(K) of K-valued random variables in the
following way. If F' is a smooth K-valued random variable of the form

F= ij ..... W (um))b;. (2.1)

where u, € L*([0,T];U). b; € K and f; € CP(R™) (f is an infinitely
differentiable function such that f is bounded together with all its partial
derivatives). Then the derivative of F' is defined as

DF = Zzgff oo W tm))b; B u;.

Jj=li1=1

So DF is a smooth random variable with values in L?([0.T); Lo(U, K)).
Then D'?(K) is the completion of the class of smooth K-valued random
variables. denoted by Sy with respect to the norm

T p/2
IFIE, = £ Ficr £ ( [ 1DFlRsat)
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For each p > 1 the operator D is closable from S C LP(Q. A’) into the
space LP(Q: L*([0.T): Ly(L . K))) and for F € D'?(K) we have that DF €
LP(Q: L([0.T): Ly(U.K))).

More generally. for any natural n > 1 the Sobolev space D“"’.‘(-K) is

defined as the completion of Sk by the norm

n

pi2
HFH'P;P = EIFIZ + Z E </{0.T‘,-’ ”Dtl e Dt]F“%Z(ljzl.K)dtl T dt]) .

J=1

In particular given two real and separable Hilbert spaces H and G we can
consider K = L,(H.G). and in this case. for any F € D"P(Ly(H.G)) we have
that DF € LP(Q: L¥([0.T}: Ly(H. Lo(U.G)))) because Lyo(U.Ly(H.G)) =
Ly(H. L,(U.G)).

We want to introduce Sobolev spaces of random variables with values in
the space L(H.G) of linear bounded operators from H in G. Taking into
account that L(H.G) is a nonseparable Banach space we cannot use the
preceding construction.

For p > 1. LP(Q. L(H.G)) denotes the space of all functions F : Q —
L(H.G) such that:

a) For every h € H. F(h) is a G-valued integrable random variable and
there exists an element EF € L(H.G) such that E(F(h)) = (EF)(h)
for all h € H. That is. F is Bochner integrable (see [1. page 24]).

b) /Q IFI 4 6y dP < 0.

For more details on this definition see {1]. The following definition pro-
vides a natural way to define derivatives of L(H, G)—valued random variables.
In order to simplify the exposition we will restrict ourselves to the case p = 2.
This will be sufficient for the subsequent application of these notions.

Definition 2.1 Let F € L*(Q:L(H.G)). We say that F belongs to the
Sobolev space D'*(L(H.G)) if the following conditions hold:

a) For every h € H. F(h) belongs to D“*(G).

b) There ezists an element DF € L*([0,T] x Q; L(H. Lo(U.G))) such that
for every h € H we have

Di(F(R)) = (D.F)(h). (

[®
o
S’
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for almost all (t.«) € [0.T] x Q.

Remarks:

1) DY¥(L,(H.G)) c DY*(L(H.G)). and for any F in D"*(Ly(H. é)) we
have DF belongs to L3([0.T] x Q: Ly(H. Lo(U. G))).

2) In general we have that the inclusion D*?3(Lo(H.G)) ¢ D**(L(H.G))
is strict. For instance if G = H and F is the identity operator [y
on H.then Iy ¢ D"*(Ly(H. H)) because Iy is not a Hilbert~Schmidt
operator. but Iy(h) = h € D"?(H) for any h € H and DIy = 0.

We will make use of the following technical lemmas concerning the deriva-
tive operator. We will denote bv H.G. J real and separable Hilbert spaces.

Lemma 2.2. If 2 € Ly(J. H) and F € D"*(L(H.G)) then we have Fy €
D'"?(Ly(J.G)) and D(F¢) = (DF)¢.

Proof: Let {ji.k > 1} be a complete orthonormal system on J. Clearly F¢
is a random element with values in Ly(J. G) and ||F¢llus < [|Flloaell¢llas
which implies that Fiz € L?(Q: Ly(J, G)). On the other hand. for each k > 1
we have (F¢)(jx) € D"*(G) and D{(Fy)(jk)] = (DF)(#(jk)). Hence

B ’é ID((F) G, .y ds

T X
= E[ S IDFIe)wads
0 k=1

IN

T
E/o HDsFH%(H.L,(U.G))dS”SGH%;(J.H) < x.

which implies the result. a

Lemma 2.3. Consider a smooth Lo(J. H)-valued random element . and let
F € D'*(L(H.G)). Then Fz € DY¥(Ly(J, G)), and

D(Fy) = (DF)¢ + F(De). (2.3)

Proof: Without loss of generality we can assume that ¢ = Rb where b €
Lo(J. H) and R is a real-valued smooth random variable of the form R =
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FOW (). W {um)) with v, € L*([0.T]:U) and f € CZ*(IR™). Clearly. the
composition F; belongs to L*(Q: Ly(J.G)).

Let us first prove that the right-hand side of (2.3) belongs to L%([0, T} x
O: Ly(J. Ly(U.G))). We have that Dy is a bounded random element with
values in L2([0.T): Lo(J. L,(U. H))) given by D¢ = b DR (that is. for each
je J. (Dg)(j)=0b()) 2 DR). As a consequence.

F(D,) = (Fb) 8 DR.
where Fb e L3(Q: Ly(J.G)). and

T 2 T 2 2
EA | F(Dse )l 1000nds = E/o I|Ds Rl HFb||L2(J.G)ds
< C(¢)E||Fb|liz(m) < C.

where C(,) is a constant. On the other hand. (DF)(¢) = R(DF)b. and

r 2
E/O I(Ds Y 2500 Lorcn @S
5 ,) T
< ilRllichHZz\J.H)E/o IDsFlI a1 Loy ds < .

For any j € J we have that (F)(j) = R(Fb)(j) belongs to D'*(G) and

bv Lemma 2.2 we can write
D[(F¢)(j)] = (Fb)(j) ® DR+ R(DF)(b(;)). (2.4)

Hence. it suffices to show that the right-hand side of (2.3) applied to j
coincides with the right-hand side of (2.4), and this is true because

(DF)¢](j) = R(DF o b)(j) = R(DF)(b(5)).
and F(D¢)(j) = (Fb)(j) & DR. O

Lemma 2.4. Let A € D'*(L(H,G)) and F € D"*(H). Suppose that
NAllrey < M and |Flg < M for some constant M > 0. Then AF €
D'%(G) and

D(AF) = (DA)F + A(DF). (2.5)
Proof: We can find a sequence {F,} of H-valued smooth random variables

such that |F,|g < M + 1. F,, converges to F in L?(Q: H) and DF, converges
to DF in L*([0.T] x Q: Ly(U. H)).



Clearlv AF € L*(Q:G). and AF, converges to AF in L*Q:G). By
Lemma 2.3 (with J = R) we deduce that AF, € D**(G). and

D(AF,) = (DA)F, + A(DF,). C (28

Finallv. from our hypotheses we get that the right-hand side of (2.6) con-
verges to that of (2.5) in L*([0. T} x Q: Ly(U. G)) as n tends to infinity. which
completes the proof. O

Lemma 2.5. Let A € D**(L(H.G)) and B € D**(L(J. H)). Suppose
that |Allcigey < M and |Bllrism £ M for some constant M > 0. Then
AB e DY¥(L(J.G)). and

D(AB) = (DA)B + A(DB).

Proof: Clearly AB € L*(Q: L(J.G)). Fix j € J. We know that Bj € D"?(H)
and |Bj|lg < M|j|;. By Lemma 2.4 we have AB(j) € D"*(G) and

D[AB(j)] = (DA)(Bj) + A(DB(j)). (2.7)

Finally notice that (DA)B + A(DB) is an element of the space L?({0.T] x
Q: L(J. Ly(U.G))) and [A(DB) + (DA)B](j) coincides with the right-hand
side of (2.7). O

For any subinterval I C [0.7T] we denote by F; the o-field generated by
the family of random variables {W (u), supp v C [}.

Lemma 2.6. Let A € D'*(L(H.G)), and suppose that A is F;-measurable
for some subinterval I C [0,T). Then D,A =0 for almost all (t.w) € I° x Q.

Proof: Let h € H. Then. by hypothesis. A(h) is an F;-measurable random
element belonging to ID'?(G). This implies that. for every ¢ € L*([0.T))
such that supp ¢ C I¢, 0 = [T ¢(s)Ds(A(h))ds. Thus. the fact that H is
separable and D(A(h)) = (DA)(h) give the result. O

In the sequel {e;,i > 1} will denote a complete orthonormal system on
U. We will write D¢F(h) := (DF)(h)(e) for any F € D"*(L(H.G)), and for
each h € H. e € U. Notice that DF belongs to L?([0.T] x ; L(H,G)).

Lemma 2.7. Let A € D"*(L(H.G)) such that

ES /0 1D% A2 1.5 < . (2.8)
=1
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Then. the adjoint of A. 4. belongs to D'"*(L(G. H)) and D*A* = [D*A]" for

eqach e = (.

Proof: Cearly A~ belongs to L*(Q:L(G.H)). Let F € D"**G), ¢ € G
and h € H. Then. it is not difficult to see that (F.g)ch € D**(H) and
D((F.g)ch) = h = [DF)*(g). Hence (A*(g).h)gh = {(g. A(h))gh € D"*(H)
and

D({A"(g). h)h) = h = [D(A(R)]"(g) = ([DA]*(9). hywh.  (2.9)
This implies that A*(g) belongs to ID'*(H), and D(A*(g)) = (DA)*(g).
Finlay we have to show that (DA)* belongs to L2([0.T] x Q: L(G. Ly(U. H))).
This follows from condition (2.8):

T' x| 2 = T e 2
E/O H(Ds"’l) HL(G,Lz(U,H)) S E;/(; HDstA“L(H.G)dS < x.

Thus the proof is finished. O

As in Grorud and Pardoux [3] we will denote by 8y the adjoint of the
derivative operator D acting on ID"?(H). That is, the domain of 6 is the
space of processes u in L2([0.T] x Q; Lo(U, H)) such that

T
‘E / (D, F. up)usdt
0

< cull Fll L2 ;1)

for any smooth H-valued random variable F. Then ég(u) is the element of
L?*(Q2: H) determined by the duality relationship

T
E /0 (D,F. u)usdt = E(F.65(u))u,

for any F € D"*(H). The operator 6y is also called the H-Skorohod inte-
gral. It is an extension of the Itd stochastic integral of H-valued adapted
processes in the sense that L2([0.T] x Q; Ly(U,H)) C Dom 6y, where
L2([0, T) x 2; Ly(U. H)) denotes the space of adapted processes in L?([0, T] x
Q; Lo(U. H)).

We will make use of the following property of the Skorohod integral.

Proposition 2.8. Let A € D"*(L(H.G)) and let B be an Ly(U. H)-valued
process which belongs to the domain of dy. Suppose that the following con-
ditions hold:



(1) AB € L*([0. T} x Q: L,(L. G)).
(i) Afg(B) € LA G).

)

x /T . - . o
(i) E (z/ HDj‘AH;"(H‘G,ds) < x and B € L(0.T] x % Ly(U. H)).
1=1J0
Then AB € Domés and
x T
5o(AB) = Abu(B) —Z/O (D% A) By(e,)ds. (2.10)
=1

Proof: Note first that by condition (iii) the right-hand side of (2.10) belongs
to L?(Q:G). Let F be a smooth G-~valued random variable. We can write

T x T
E/ (ABy. DyF) gy ds = EZ/ /AB,(e;). D% F)g ds
0 =1 0

x T
- EZ/ (By(e;). A"D F)y ds
=1 0

x

T
= EY [ (By(e). Dy (A"F))u ds
~EY. [ (Bule). (D AVF)u ds,

where A* € D'?(L(G. H)) is the adjoint of A. and we have used Lemma 2.3
in order to compute D(A*F). Notice that. by Lemma 2.7. D% A* = (D% A)*".
Hence. we obtain

T
E [ (4B, D.F)wuads = E(Eu(B).A'F)n

% T
-EY. [ (D A)(Bee). Flg ds
=1
= E((R.F)e)
where R denotes the right-hand side of (2.10). a

Remark: Condition (iii) of Proposition 2.8 can be replaced by:

10



i) 0 S DUAR 4o < M < xforalls€[0.T). and B € L¥0.T} x
=1
0. LU H)). for some constant M\ > 0.

The Sobolev spaces D*?(L(H.G)) for anv integer & > 1 are defined
as in Definition 2.1 replacing U" by U'®* and D bv D* in (2.2). If F €
D*?(L(H.G)) . and p > 2. we define

IFiR, = ENFlG g

[4

A 2
~LE (/O D FIE e s - ds,> .

Let us recall Ité's formula for anticipating Hilbert-valued processes (see
[3. Proposition 4.10]). We will use the notation

L*?(J) = LP([0.T]: D*?(J))

for any p > 1. k a positive integer and J a real and separable Hilbert space.
T

For any B € Dom 64 we will write 65(B) = / B,dWw;.
0

Proposition 2.9. Let ® € C*(H) and let X = {X,,t € [0,T]} be the
stochastic process defined by

¢ t
X, = Xo+ /0 Ayds + /0 BydW.,.

where

(i) Xo € DY3(H),

(i) Ae L3 (H),
(ii) B € L**(Ly(U, H)).
Then

t t .,
(X)) = B(Xo) + /O (@ (X,). A,) uds + /0 &' (X,)B,dW,

1 rt ..
+§/0 (@ (X5)(VX)s. Bs) Ly(v.ands.

11



with
[ »t
TN, = 2D, X, + 2/ DiAuds 2/ D,B.d\V, + B,
J0 0

Remark: The hvpotheses of Proposition 2.9 are slightly more general than
those in Proposition 4.10 of [3). The validitv of the [to's formula under these
more general assumptions follows from the finite-dimensional It6's formula
established in [9] under these kind of assumptions.

We will make use of the following Fubini's tvpe theorem for the Sko-
rohod integral whose proof is a straightforward consequence of the duality
relationship.

Lemma 2.10. Let u(t.r) be an Ly(U. H)-valued random field parameterized
by (t.x) € [0.T) x G. where G is bounded d-dvmensional rectangle. Suppose
that uw € L3([0.T] x Q x G). and for almost all £ € G the stochastic process
u(-.x) belongs to the domain of 6. Suppose also that E [ |6 (u(-. x))|%dr <
>xc. Then {J;u(t.x)dz.t € [0.T]} belongs to the domain of 6y and

[ ([ ute.nraz)aw = | ( [ ute z)dw;) dz.

3 An estimate for the Skorohod integral

Let H.U be real and separable Hilbert spaces. Let 11" be a cylindrical Wiener
process over U on the time interval [0. T]. We will make use of the notation
A={(t.s)e[0.T]*: t > s}.

Definition 3.1. A random evolution system is a random family of operators
{S(t.s);0 < s <t<T} on H verifying the following properties:

(1) S: A xQ— L(H, H) is strongly measurable.
(i1) S(t.s) is strongly F,-measurable for each t > s.

(i) For each w € Q, {S(t.s).(t.s) € A} is an evolution system in the
following sense:

(a) S(s.s)=1Tand S(t.r) =S(t.5)S(s.7) forany0<r<s<t<T.
(b) For allh € H. (t.s) — S(t.s)h is continuous from A into H.

12



Let us introduce the following hvpotheses on a given random evolution
system: -
(H1): For each (t.s) € A. S(t.s) € D**(L(H. H)), and JoilSt. S)H‘Q’_pdé < x
for all p > 2.
(H2): There is a version of D,S(t.s) such that for all w € Q2 and h € H. the
limit

D;S(t.s)(h) = lirgl DsS(t.s — z)(h)
]
exists in L,(U. H) and D S(t.s) belongs to D*?(L(H. L,(U. H))).

(H3): There is a constant M > 0 such that the following estimates hold for
allt >s>nr:
(H3.a): ISt s)lliman < M.
(H3.b): HD St )l Lo S M.
(H3.c): T2, 1D7 Dy St )1 ar.Lowrry < M2

Remark: Fixt > s —¢ > r, £ > 0. From property (a) of a random evolution
system we have

S(t.r)y=S(t.s—=)S(s—¢,71).

Suppose that the random evolution system S(t.s) satisfies the above hy-
potheses (H1), (H2) and (H3). Applying Lemmas 2.5 and 2.6 yields

D,S(t.r) =D,S(t.s —£)S(s —e.r1).

Now letting ¢ | 0 and using property (b) in the definition of a random
evolution system, (H2) and (H3) we obtain

D,S(t.r) = D;S(t,s)S(s,r).
Indeed, for any h € H we have
|DsS(t.s —2)S(s — z.r)(h) — D7 S(t.s)S(s.7)(h)|us
< |IDsS(t.s - ‘)(5( .7)(h) = §(s.7)(R))||us
+I|[DsS(t. s = 2) = Dy S(t. 5)]S(s.7)(h)||us
< |IDsS(t.s - ‘)“L(HLz(OH (S(s—2,7) = S(s.7))(A)|a
+[|[DsS(¢. s - S(t. s)]S(s. r)(h)|lus.

u.
-



and this converges to zero as : tends to zero due to hypotheses (H2) and
(H3).

Let us now prove the following theorem: o
Theorem 3.2. Fizp > 2 and a € [0.1/2). Let & = {®,.¢t € [0.T]}
T
be a Ly(U. H)-valued adapted process such that E/o |®sllhgds < . Let

S(t.s) be a random evolution system satisfying the above hypotheses (H1).
(H2) and (H3). Then the L,(U. H)-valued process {(t—s)7*S(t. s)®sl0.4(s).
s € [0.T)} belongs to the domain of &y for almost all t € [0.T). and we have

t t '
El [ (t=5)7S(t.s)0dWit < C [ (1= ) P El@lhsds,  (31)
0
for some constant C > O which depends on T. p. a and on the evolution

system S(t.s).

Proof: Let us denote by £ the class of Lo(U. H)-valued elementary adapted
process of the form

n n

O, =) lfmmf(u;) ..... Wl ))be Lty 1,01 (S): (3.2)

k=11=

where fu € C3°(R").bx € Lo(U. H).0 < t; < ... <tpyy < T and supp u} C
[0.t;). Let ® be an L,(U. H)-valued adapted process such that E [ ||®,]|ksds <
>c. We can find a sequence ®" of elementary adapted processes in the class
£ satisfving

T
lim E/ 18" — &, /%,sds = 0.
n 0
This implies that

T t
11;;113/0 (/0 (t = 5)"2)|@" — <1>,||{,Sds) dt = 0.

By choosing a subsequence we have that for all ¢ € [0.T] out of a set of zero
Lebesgue measure

~t
nan/ 't = 5)"2| M — &,|[Beds = 0.
Hence. we can assume that ¢ is of the form (3.2).

14



We are going to apply [to's formula to the fuction F(z) = |z|% on H.
Recall that
(x) = plzlfy -z
and ) ,
F'(z) = plo = D2l "z 2 2+ plalf In.
Fix tg > ¢, in [0.T}. and define

By = (to — 5)7%5(t1. s)®s Lo (s).

From hypothesis (H1) it follows that B € IL*(Ly(U. H)). for each ¢ > 2. As
a consequence. we can apply [to's formula (Proposition 2.9) to the process
X, = [5 B,dW;, and to the function F(z) = |{z{%. In this way we obtain for
each t € {0.t,]:

t 5 i
X8 = /plX 220X, BydW )
4o / (B, +‘>/ D,B.dW,). By)usds.  (3.3)

We claim that the Skorohod integral appearing in (3.3). that can be written

t 0
as p / |X3|’}{'ZB;(X,)dW5. has zero expectation. This might not be true
0

because this Skorohod integral is defined by localization. Nevertheless our
assumptions imply that the process | X2 >B*(X,) belongs to L!'?*(U) <
Dom 6. In fact, we have. by (3. Proposition 4.1},

T 2(p-2); Q= 2
E [ IX[ 1By (X0)Eds

IN

T
015/0 X, |21 gs

T T p-1
C, 1+E</0 /0 uD(,leﬁz(U@U.,,)deds) )(x.

due to hypotheses (H1) and (H2). Notice that hypothesis (H1) implies that
fOT EiX,%ds < o for any p > 2. On the other hand we have,

IN

E / / 1 Da[| X157 By (X,)] 1% vd0ds

15



< ¢l E/ X, [ 4P gs)! E/ / 1Do.Xs 12 0 1)6) ds) "2

+ E/ X, ey 1"(15/0 (/O 1Ds By, s myd8)2ds) 3] < .
where we use the fact that X € L"*(H) (see [15. Theorem 2.1]). Thus. we
have proved that | X, 22 B*( ;) belongs to L" 2(U).

Notice that |F' (z)|lzz.m < plp—1 lr"’ . Hence. taking expectations
in the Equation (3.3) vields

EIXly < “E [0 (1B

2Bl [ DuBr Wi )i
Using the inequality 2||a||||b]l < llal|? + [|b]|* we obtain

t
EIXly < p(p—1E [ IXJ5IBlisds

1)t s |
E /0 X, 1272 /0 D, B,dW,|3ds.

Now we substitute B, by its definition and we use the adaptability of &, and
Lemmas 2.3 and 2.6 to get

t
EIXfly < plp~DE [ Xl (0 — )15 (b1, )2, sds
. t
x| / to — 1)7%(DyS(t1, 7)) 8, dW, | 2sds. (3.4)

Applying Holder’s inequality to the expectation in the right-hand side of
(3.4) yields

ElX.% < plp-1) /Ot(ElstI’_[)(P-?)/P(to - S)—2a %
X (E||S(t1. 5)®s|ls)"/?ds
N AL

K)
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<(Ell [ (to = 1)72(D, S(t1. 1))@,dW, s)*/7ds
- /(:(El.‘(sl‘,’{)""”""Agds.
Then Lemma in [16] implies that
EIXf < (2 [ Ads”
that is,
E[X,V;{
< {26-1) [ (to = 5) ISt )2, l5s)7ds
+p=1) [(Bl [ tto =) 2(D.S( r>>¢,dw,||%s)2/pds}p/2
< 20— 122272 [ty - o) R BN 01,51 ) Pds)
#2274 [ B (] [(to = r)7(D,S(t2,7)@,dW, s )|

< MPP-l(p—1)P / (to = 8) " E(||®,||ks)ds
+2(p/2)-1(p — 1)P/e/2-1

x /0 "B /0 “(to = 7)™ (D, S(t1. 7)) ®rdW, |Bsds. (3.5)

Using the remark at the beginning of this section. Proposition 2.8 and hy-
pothesis (H3), we can write

u / (to = )7(D,S(t1,7)@,dW, s
I [t = )77 S(t1, $))S(s. 7). dW, s
= ||Dy S(ths)/o (to = r)~*S(s,7)®.dW,
=5 [t = r)72(0F D7 S(t1.5)S(s. )8 e s

< .\.r|/0 to — 1)~ S (5. ) ®,dW.|

17



=y /(:(fo =)D DSty s)l|Lem Ly IS (s T) @ (el wdr
=1
< M /’(to — 1)7OS(s. 1) d WV
O Q
+.\12/ (to — )% 1|®, |l usdr. (3.6)
0
Substituting (3.6) into (3.5) yields
t b
ELXly < Curpl [ (to =) = E|@,[hsds
t s
+ / E| / to — )"0 (s. 7)®,dW, Brds
+ / ([ (to = r)72l@. lusdr)pds ). (3.7)

Applving Hélder's inequality (for the integral with respect to (to — r)~2dr)
and Fubini’'s theorem to the last summand in (3.7), and taking t, =t we get:

|t
Ei/o (to — 5)~S(t. 5)®,
¢ 2
< Cutpraf [ (to =) E|,|lhsds

+ [[(to - ) BN, sds

+ / E| / ty — )" S(s. )&, dW, ’},ds}.
0 0
By Gronwall's lemma we deduce

E ‘/ot(to — s)=°S(t. 5)B,dW,|

t
< C [ (to—9)7E|19,|fsds, (3.8)

where C is a constant depending on T.M, p and a.

Fix t € [0,T), and take to = t+ 1. From (3.8) for to t+ 2 and letting n
tend to infinity we deduce that {( t- 8)72S(t,5)® I y(s). s € [O T} belongs
to Dom 85 and (3.1) holds. The proof of the Theorem i 1s complete. O

Let us introduce the following hypothesis on a random evolution system
S(t.s) verifyinr (H1) and (H2):

18



H3): Conditions (H3.a) and (H.3.c) hold. and moreover. we have

(H3.b)’ V‘ | D& St )2 g gy < M2 forallt > s.r and for some constant
>0 ‘

Notice that (H3.b)" is stronger than (H3.b). and it implies that

x

S DSt s) el .y < M

1=1

forall t > s.

The following theorem provides an estimate of the L” norm of the maxi-
mum of a Skorohod integral. and it constitutes the main result of this section.

Theorem 3.3 Fizp > 2. Let & = {&,.t € [0.T)} be a Lo(U. H)-valued
adapted process such that E for |®;s]|5sds < x. Let S(t.s) be a random evolu-
tion system satisfying hypotheses (H1). (H2) and (H3)'. Then the Lo(U. H)-
valued process {S(t.s)®sljo4(s). s € [0.T|} belongs to Dom by and we have

E(sup [ st s)e, dWSI"> <CE/ 1, 1% ds,

0<t<T JO

for some constant C > 0 which depends on T'. p and on the evolution system
S(t.s).

Proof: We will make use of the factorization method in order to handle the
supremum in t. Fix a € (1/p.1/2). We can write

t
S(t )@, = Ca [ S(t.1)(E = )°7IS(r,5)(r = 5)°®ydr,  (39)
where C, = (sinma)/m. By Theorem 3.2 we know that for all r € [0.T] a.e.,
the process S(r.s)(r — s)"*®,[jo.i(s) belongs to Dom éy. Then applying
Proposition 2.8 and using hypothesis (H3)’ we obtain for almost all r € [0, t]

/’ S(t.1)(t = 12 S(r 8)(r — 5)"2®,dW, = S(t.r)(t — r)*"1Y,

Z/ )X DSt ) S(r s) (1 = 5) 7D (e:)ds, (3.10)
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where

Y, = /rsw. SHr—5)72®,dIl,.

Bv Fubini's theorem for anticipating stochastic integrals (see Lem.rna 2.10)
and using (3.9) we obtain

/ “S(t 5)®,dIV,
0
t ¢
— _ a-1 — ~-a ;
- C;,,/O (/ S(t.r)(t = P LS (R s)(r — 5) Cbsd'r)dWs
— ! r _ pya-t _ o\ r)
= CQ/O (/0 S(£.7)(t = )2 LS(r 8)(r — 5)"%®,dW, ) dr.  (3.11)
Substituting (3.10) into (3.11) vields
/ FS(t.5)®,dW,
o t
= C’a/ (t = F)"LS(t. r)Y,dr
0

-Cq /Ot(t ~r)et

x (/Ori(Dj‘S(t.r))S(r.s)(r - s)'“@s(ei)ds) dr.  (3.12)
i=1

Applving Holder's inequality to the right—hand side of (3.12) and using hy-
pothesis (H3.b) yields

sup | | S(t,s)®,dW,|y
o<t<T JO
A\VI t a-1 2 T
< = sup [(t =) Yiludr + 3 [ @, usds
T 0<t<T JO 0

1
M{p=1\"%F___1 /([T e T
< - a=y P 2
< - (ap_l) T (/0 IYrIHdr) +M/0 |®sllusds.

and. hence

T T
E < X 14 14
(sup | CS(t.5)®,dW, ) < CT,,O(E/O |Y,|Hdr+E/0 ||<I>s||HSds>.
(3.13)
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From Theorem 3.2 we deduce
rt
E(¥il%y) € [ (6= 517 E. fhsds. (3.14)

Finally. substituting (3.14) into (3.13} and using Fubini’'s theorem we deduce
the desired estimation. O

4 The forward integral

Let U and H be two real and separable Hilbert spaces and let W be a
cvlindrical Wiener process over " on the time interval [0. T]. We will denote
bv {e,.: > 1} and {h;.t > 1} complete orthonormal systems on U and H.
respectively.

Definition 4.1. Let Y : [0.T] x Q — Lo(U. H) be a measurable process such
that Y(u) € LY([0.T): H) a.s. for each u € U. We say that Y belongs to
Dom 6~ if

:—n/ ZY J(Wipstynrlen) — Wile))ds

converges in probability as n tends to infinity. The limit of the sequence Y™
T

is denoted by / Y, dW, and s called the forward integral of Y with respect
0
to W,

The forward integral has been studied by Russo and Vallois in {13] in
the case of real-valued processes. From Definition 4.1 it follows that for any
process Y belonging to Dom 6~ and for any A € F such that Y;(w) = 0.
dt x dP-a.e. on [0,T] x A we have

T
fo Y,dW- =0 as. on A

The next proposition establishes the relationship between the forward and
the Shorohod integrals of a process of the form {S(t.s)®,lj0.4(s).s € [0.T]}
where S(t.s) is a random evolution system and ®, is an adapted process.

Proposition 4.2. Let & = {®,.t € [0.T]} be a Lo(U, H)-valued adapted
process such that E [ ||®,|3sds < . Let S(t.s) be a random evolution
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system satisfying hypotheses (H1). (H2) and (H3)" Then for each t € [0.T).
{S{t. 510 [0, (s). s €[0.T]} belongs to Domé~ and

/(;S(t.r)q),dn}‘ = Fu(S(t ) 1a()

[ Z (D7 S(t.r) (), (e)dr.  (41)

In order to prove (4.1) we first state the following:

Lemma 4.3. Let & and S(t.s) be as in Proposition {.2. Then for each
t € [0.T]. and each positive integer n > 1

‘At

(Z 1[0.(:+%)/\T}(')/( " S(t.s)(Ds(e.) & ei)ds) € Dom 6y
=1 n

and

noopt+d)AT rat
z;/o (/(‘r_i)q._ S(tS)(@\;(@,) gei)ds) dWr

Z/ (t.5)651 (L 00 1 () s(e1) @ €,)ds
-3 [ / DSt (eldsdr. (42)

Proof: By (H3)' and Proposition 2.8 we have

Z /: S(t’ s)éH(l(s.s-#-%](’)q)s(ei) & ei)ds

n 1



Notice that S(t.s) € D'"*(L(H.H)) and 5501, )®s(e:) 8 e satisfy the
assumptions (i). (ii) and (iii)" of Proposition 2.8. Indeed. we have for all
s<r<t.

x

Z D5 S(t- )2 < M2

due to (H3.b)" Finally. Fubini's theorem for the Skorohod integral (see
Lemma 2.10) allows us to conclude the proof of the lemma. U

Proof of Proposition 42' Fix t € (0.T]. We only need to prove that
Avi=ny f5S(t.s)d, )[Ws+_( .) — Wi{e,)]ds converges in probability as
=1

n tends to infinity to the right-hand side of (4.1). Actually we will show the
convergence in L?(§2). Using (4.2) we have

A, = nZ/ (/r_:)+ S(t.s)(Ps(e) 2 e,)ds) dw,

(t+3)AT .
Y /0 /{ | _(DS(t.5))®,(e:)dsdr.

=1 (r=%)

Applying Theorem 3.2 with a = 0 and p = 2 yields
(t+L AT
Eln ( S(t. )(®s(e; ®e,-d>dW,
IZ/ for,. Ste-s)@s(e) B s
- /0 S(t,r)®.dW, |%

(t+3)AT ¢ n )
2E|/t n (/r_L)+ S(t.s)(3 ®s(e:) ® e,-)ds) dw, 2,

t=1

IN

t
+2C’EA Hn/( ZS (7. 5)(Ps(&:) ® €:)ds — ,||hsdr

IA

[ " s<t,s><; ®,(e)) © e:)dslfysdr

+4CE / In /r__) S(r.s)®,ds — ®,|4gdr

+4CE /0 In /(r-w( S S(r.s)(®s(e;) @ e;)ds]|Asdr.

1=n+1
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This expression can be estimated byv
[.._’.‘.
20/ / E'd, heds
- 4C/ / ENS(r. 5)®.ds — &, |}gdrds
r——)’

. 46\125/ \<1>( \2,ds = a1 + a2 + as.

Then terms a, and aj clearly converge to zero as n tends to infinity. uniformly
with respect to t € [0.T]. The convergence to zero of a; as n tends to infinity
follows from the estimate

2 T 2
a; < 8C(M? + 1)/0 E||®,|3ds.

which allows us to approximate ® by a process in C([0. T, L%(; Lo(U. H))).
In a similar way we can write

lni/u*?“‘r /(W (DES(t.s))®s(e,)dsdr

— L+
rn)

-3 [0 S(e. (e dedrls

< lnl}_;/t‘+ )AT/(:__) (D= S(t. ))&, (e;)dsdrl
+ 3 [0S edrn
t=n+l

HS [0 [0 ADrS(e5)@4le) = (D7 S(t.1))(e) () Yasdrl
— AlsAZaAl

Clearly A} and A2 tend to zero in L?(f2) as n tends to infinity. The term A3
can be estimated as follows:

N s 13 [ DSt s)(@e) - @(e)dsdrl
i=1 r=-
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+

l ['n [ [Desits) = (D7 S(e.r)(e)] @i (e)dsdrn
0 r—=

t r 1/2
/ 71/ 1D S(t. s)HiLH‘H)dsdr) X
0 r—%

1/2
}q)s(ez> - q)r(ei)ﬁ{d’Sdr>

i

IA
.../—\
M=

—

—

X
'_/"'\
i [M]4
S

-~
N
3

[ D7 SIrE)S(r5) = (e ndsdr

i

+
WL
S~

. | 1/2
< \[vt(/o n/% <I>,Hf{5dsd1">
o 1/2
\ - I)®,(e;)|%dsd .
VE(SS [0 [, 5090 = Dedsar)

and this converges to zero uniformly with respect to ¢ in L*(2) as n tends to
infinity. d

Combining Theorem 3.3 and the expression given in Proposition 4.2 for
the forward integral we deduce the following maximal inequality for the for-
ward integral.

Theorem 4.4. Fizp > 2. Let & = {®,.t € [0,T)} be a Ly(U, H)-valued
adapted process such that E [T ||®,||hsds < >. Let S(t, s) be a random evolu-
tion system satisfying hypotheses (H1), (H2) and (H3)'. Then the Lo(U. H)-

valued process {S(t,s)®Ij4(s),s € [0, T} belongs to Dom 6~ and we have

t T
£( sup | s<t.r><1>rdw:|z)scs’p,rz [ 1. fsds

0<t<T JO

for some constant Cs, T > 0 depending on T, p and the random evolution
system S(t, s).

Proof: By Proposition 4.2 we know that the Lo(U, H)-valued stochastic pro-
cess {S(t.s)®,l04(s), s € [0.T]} belongs to Dom §~ and we have

t t
/ S(t.r)d,dW" = / S(t.7)®,dW,
0 0
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/Z (D7S(t.r))(e)®(e)dr.  (4.3)

Then the result follows from Theorem 3.3 and hypothesis (H3.b)". - - O

As a consequence of Theorem 4.4. we have the following continuity result.

Corollary 4.5. Let ® and S(t.s) be as in Theorem 4.4. Then the H-valued
process {f; S(t.s)®,dW .t € [0.T)} has a continuous modification.

Proof: Fix a € (1/p.1/2) and set
Y, = / S(r.s)(r — 5)"°®,dW,.
0

We know that the process Y; is well defined for almost all r in [0, T]. From
Proposition 4.2 applied to the process {(r — s)™*®,,s € (0,7]} we deduce
that

Y, =Y+ [ SADISC (el -9 @e)ds, (44

where

Y, = /0 S(r.s)(r — )@ ,dW; .
On the other hand. susbstituting the relation

(D5 S(¢t.r))S(r.s) = (Dy S(t. 8))(e:) — S(t,r)(Dy S(r,5))(es)
into (3.12) yields

/0 *S(t. 5)B,dW, = C, / ‘(= 1S 8 1) Yodr
/ZDSM(MMW
+Ca /( )21S(8r) x
(/i (D7 S(r. s))(e)(r = s)’°‘<I>,(e,«)ds) dr
= ca/ t = r)eiS(t.r) Y dr

/ Z (D7 S(t. s))(e:)®,(e,)ds. (4.5)
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Hence. from Proposition 4.2 we deduce
t ¢ _
/ S(t.s)®,dW " = Ca/ (t — 1)2=1S(t. )V, dr. (4.6)
0 0 -

By (4.6). we onlv need to show that the right-hand side of this equation is
continuous in t. Fix 0 <ty <t < T. Then our hypotheses on the evolution
svstem S(t.s) and the dominated convergence theorem imply that

t —
;/ )2 =LS(t. )Y dr —/(’(t0 — 1218 by, 1) Vrdr|y

0

< 4/ PSPV T dr |y
H(S(Eto) = 1) [ (0 = 112 (b0, VT

+IS(t. to) /O“’[(t _ ) (g = 7)2 1S (b0, 7V T dr |y

converges to zero as t | to. In a similar way we show that the above expression
converges to zero as t T {o. O

5 Stochastic evolution equations with a ran-
dom evolution system

In this section we will study nonlinear stochastic equations of the form
X, = 5+/ )X, + F(s, X,) ds+/ (s, X,)dW,, te[0.T]. (5.1)

where £ is an H-valued Fy—-measurable random variable and W is a cvlindri-
cal Wiener process over the Hilbert space U on the time interval [0. T]. We
will assume the following conditions on the coefficients A, F' and B:

(A.1): The mapping F : [0.T}x QO x H — H is Pr x B(H)-measurable. where
Pr denotes the predictable o-field of [0,T] x Q.

|F(t.z) - F(t.y)la < Clz - yla,
IFt.o)ly < C*1+lalh),

for some constant C > 0 and for all z,y € H.
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(A.2): The mapping B: [0.T! x Qx H — Ly(U. H) is Pr x B(H )-measurable.

|B(t.x) — B(t.y)lus
1B(t. 1)l

Clr - ylu.
C*(1 + |zl%).

for some constant C' > 0 and for all z.y € H.

<
<

(A.3): {A(s.w).5€[0.T).w € Q} is a random family of unbounded operators
on H such that Dom A*(s) D Hy where Hj is a dense subset of H. We
assume that A*(-)y € L*([0.T] x Q: H) for all y € Hy, and there exists

a random evolution system S(t. s) satifying hypotheses (H1), (H2) and
(H3)" such that

d
S*(t.s)A*(t)y = ES*(t,s)y, for all y € Hy.
Definition 5.1. We say that an adapted and continuous H -valued process
X = {X;.t € [0.T]} such that E(supyg;cr | Xilfy) < 20 for somep > 2 is a
mild solution to Equation (5.1) if
t t
X, = S(t.0)€ + /O S(t. s)F(s, X,)ds + / S(t,s)B(s, X,)dW.,  (5.2)
0

for each t € [0, T], where dW, denotes the forward integral (see Section 4).

Definition 5.2. An adapted and continuous H -valued process X = {X,,t €
[0.T)} such that E(supgg,<r | Xtlfy) < > for some p > 2 is a weak solution
to Equation (5.1) if for each y € Hy and t € {0, T} we have

(Xepn = (€v)u+ [ (A°(s)y, X,mds

+ [ Fls. X)uds + [ (B*(s, X )y, aW,)o.

Proposition 5.3. Under the assumptions (A.1), (A.2) and (A.3), any mild
solution to Equation (5.1) is a weak solution.

Proof: For each n > 1 we define

Xr = S(t.0) + /otS(t.s)F(s.X,)ds

+nzn: /OtS(t. s)B(s.Xs)(e,-)(WH%(e,-) — Wi(e;))ds.
i=l
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Notice that

rt
X! = Sits)X] - / S(t.r)F(r. X,)dr
+n Z/ S(t.r)B(r. X,)(e)(Wy 1 (er) = Wy (e))dr.
We know. by assumption (A.3). that for all y € Hy, £ € H we have

(8004 (r)y. 2)dr = (S7(t. 00y, b = (9. 2.

Hence. for all y € Hy we obtain
n t t
C, = nZ/ /(S'(r.a); “(r)y. B(o. Xo) (€)W, (&) — W (e)]) ndrdo
= nz/ (S°(t.0)y = v, B(0, X ) (€)W, 1 (&) = Wole)hudo
t
= (XPya — (S )X7Y)u - ([ SENFrX)dr )
noost
-n Y [y Bl X)(e) Wy (6:) = Wil wdr. (5.3)
i=17%
On the other hand. applying Fubini’s theorem we have

r, = nZ// (S*(r.o)A*(r)y, B(o. X,)(e)[W, ord (€;) — Wo(e))]) ydodr

ng [1a oy, [ $.0)B(0. X)€W 4 e = Wleldo) nr
- / (A" (P)y, X7 = S(r.8)XT = / " S(r,0)F(0, X,)do) dr
= [(A I X2 yudr — [(AC)y. S(r, )X mdr
- [ty [ S(r.0)F (o, X,)da) wr
=[0I XD wlr ~ (S(2. X7, Dhm + (X7 W)

/ / rly. S(r.0)F(o. X,))ydrdo
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~ L
= [ 1A g XD wdr = (S(89) X0y + (XD 9
‘ ot t
—/ (y.S(t.o\Flo. .Y,,))Hda+/ (y.Flo. X)) udo. - - (5.4)

Comparing (3.3) and (5.4) vields

(XPw = (XDy H+/ y, X7) sdr

+/A (y. F(r. X)) gdr

+nzn: /§t<y. B(r. X,) )[WNI( ) — We(e)]) gdr. (5.5)

We have that. by Proposition 4.2 with S(...) = Iy, the last summand in
(5.5) converges in L*(Q) as n tends to infinity to (Jf B(r, X;)dW,.y)y =
J{{B*(r. X, )y.dW,)y. Then it suffices to show that supoe,cr E(|X: — XP|%)
converges to zero as n tends to infinity. This is a consequence of the estimates
used in the proof of Proposition 4.2. a

Theorem 5.4. Let S(t.s) be a random evolution system satisfying hypothe-
ses (H1). (H2) and (H3)'. and let F and B satisfy (A.1) and (A.2). respec-
tively. Then Equation (5.1) has a unique mild solution.

Proof of uniqueness: Assume that X and Y are two mild solutions to Equa-
tion (5.1). Then. for arbitrary t € [0.T] and p > 2 such that

E( sup |X,1”)+E( Sup_ Yla) <

0<r<T

we have
Xe=Yilf = | [ S.n{F(X,) - FnYo)dr

+ /0 'S(t.){B(r. X,) - B(r,Y,)}dW P,

IN

-1 /Ot S(t.r){F(r. X,) = F(r.Y.)}dr[},

+20- /0 "S(t.7){B(r. X,) - B(r.Y,)}dW [,
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t
< PPCT [ X, - Viifdr
0
+2°=1 sup | sS(S.I‘)[;‘g,}(T‘){B(T‘.Xr) - B(r. Y} dW iy
seor /0 ' Co

Hence. from Theorem 4.4. we obtain
EIX, - Y5 < 20-'A[PCPTP! /O "EIX, - Yi[dr
+ 27'Cspr [ EIBUr. X)) = B, Y,)fhsdr
Therefore. using Hvpothesis (A.2). we get
EIX, - Y, < @ et [ "EIX, - Y.[dr
+271Cs, 2 | "EIX, - Y [5dr
= PIICPAPT + Csypr) | ‘E|X, - Y.dr.

which. together with Gronwall's lemma. implies E|X,~Y;|}; = 0, for arbitrary
t € [0.T)]. and the proof of uniqueness is complete.

Proof of existence: The proof of the existence is similar to that for a determin-
istic evolution system. We begin an iteration procedure with Xt(o) = S5(¢t,0)¢
and let us define. for n > 1 and t € (0.7,

XM = S(t,0)€ + /0 t S(t.r)F(r, X" dr + /0 t S(t,r)B(r, X" "VYdW~.
(5.6)
Using induction on n. it is easy to prove that assumptions (A.l) and
(A.2), Theorem 4.4 and Corollary 4.5 imply that X™ is an adapted and
continuous H-valued process such that sup,eio7) £ |X,(") 1% < o0.
Computations similar to those in the proof of Theorem 5.4 using and
Theorem 4.4 yield

x
3" E sup |X"Y - XME < . (5.7)
n=0 t€[0.T]

Therefore. from Borel-Cantelli lemma. the sequence {X™ n € IN} is uni-
formly convergent in [0.T]. for a.a. w. Denote the limit by X,. Since X is
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the uniform limit of a sequence of adapted and continuous H-valued pro-
cesses. it is also adapted and continuous. The estimate (5.7) implies that
X belongs to LP({0. T] x Q) and that {_X™.n € IN} also converges to X in
LA([0.T} x Q). Finally. from (5.6) and Theorem 4.4. it is easy to show that
X is a mild solution of equation (5.1) and so the proof is complete. O

Remark: The existence of a mild solution still holds if we suppose that condi-
tions (A.1). (A.2) and (A.3) are true locally. That is. we assume that for all
n (A.1) and (A.2) are satisfied for any .y € H with |z]g < n and |y|g < n.
and with some constant C,. and on the other hand. we also assume that
the random evolution system S(t.s) satisfies (H1), (H2) and (H3)’ locally.
This means that there exists a sequence {Q.k € IN} C F and a sequence
{S*. k € IN} such that 4 T Q. and for each k S = S* on (4 a.s., and S*(t. s)
is a random evolution system satisfying conditions (H1), (H2) and (H3)".

6 Stochastic partial differential equations
with random generators

Let O be a domain in IR" and consider the Hilbert space H = L*(0). As in
the previous sections W will be a cylindrical Wiener process over a Hilbert
space U on the time interval [0, T).

In this section we will first provide sufficient conditions for a random oper-
ator A on L?(O) given by a random kernel f(z.y,w) to be in D"?(L(H, H)).

Lemma 6.1. Let f: O x O — R, be a measurable function such that:
(i) f(z,') € L*O) for allz € O.
(”) SupzeO fO f(l', y)dy < x and SupzeO fO f(y I)dy < 0.
Then the mapping A : L*(O) — L*(O) given by
A = .
(A9)=) = [ f(z.)g(v)dy

is a bounded linear operator such that:

3 3
WAl Loy < (ilelg/of(z’y)dy> (31618 Of(r,y)da:)
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Proof: This !»mma is an immediate consequence of Fubini's theorem and
Schwartz's inequality:

[1geia = [[| [ fzvswiavias
/o /of Z. y)dy) /Of<I- y)9* (y)dy)dz

< (sup | flxyidy)(sup [ f(z.y)dz)lglixor

IA

a

Lemma 6.2. Let f: O x O x Q@ — R, be a random measurable function
verifying the following conditions:

(i) f(x.-) € L*O) for everyz € O a.s.

(i) There exist two nonnegative random variables M, My such that
sup [ flz,y)dy < M, a.s.,
€0 JO

sup | f(y,z)dy < M, a.s.,
:€0 JO

and E(M}) < 20, E(Mf) < > for some p > 2.

Then the random operator A(w) on H defined by

= /O flz,y.«)g(y)dy

belongs to the space LP(2: L(H. H)).

Proof: First notice that by Lemma 6.1 for each «w € Q a.s.. A(w) is a bounded
linear operator on H = L%*(0) and ||All s < (M1 M;)Y2 as. Then the
result follows from the fact that f is measurable and we have:

E|IANE 4.y < (E(MP)E(ME))? < 2.
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We can state a Hilbert-valued version of Lemma 6.2 whose proof would
be identical. .

Lemma 6.3. Le* G be a real and separable Hilbert space. Consider a mea-
surable function F : O x O x Q0 — G verifying the following conditions:

(i) F(z.-) € L*(O:G) for everyz € O a.s.

(i) There exist two nonnegative random variables M; and M, such that
sup | |F(y,2)ledy £ My as,

sup IF(~, Nedy < M, a.s.
:€0

and E(M}) < x. E(M}) < x.
Then the random operator from H to L*(0:G) = Lyo(G, H) defined by
(A)9)(2) = [ Flz.y.w)g(y)dy
belongs to the space LP(Q: L(H, L*(0;G))) and
IAllac2o6)) S (MyM)Y2.
Lemma 6.4. Let f : Ox O xQ — R, be a measurable mapping veriying the
hypotheses of Lemma 6.2. Assume, in addition. that f(z,y) € D"? for each

r.y € O. and that there ezists a version of the derivative D, f(z,y) which is
measurable from [0.T] x O x O x Q into U and verifies:

(i) Df(z.-) € L¥([0.T) x O x Q; U) for allz € O.

(u) SUP.¢o fO |Drf(I Z)IL'dl' < al(r)e a.s.,
Sup.co Jo |Drf(z.2)ldx < ax(r) as.,

where a\(r) and ay(r) «w¢ nonnegative measurable processes such that
E [T(ay(r)¥dr < xc. E jT 1,0r))%dr < .
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Then the random operator \(w) : L*(0O) — L?*(O) defined by
= | flz.gwdy .. (61)
belongs to D'*(L(H. H)) and for all (r.w) almost everywhere. D, \(w) 15 the

operator in L{(H.L(U. H)) gwen by the kernel D, f(z.y).

Remark: Notice that for all r € [0.7T] a.e.. the kernel D, f(z.y) verifies the
assumptions of Lemma 6.3.

Proof: Bv Lemma 6.2 we know that \ € L?(Q:L(H.H)). According to
Definition 2.1. in order to show that \ € D"*(L(H. H)) we have to show
that conditions a) and b) of this definition are satisfied:

a) We must show that for every g € L?(0). Ag belongs to D"?(H).
From condmon (i) it follows that (Ag)(x) € ID*? for each r € O, and
D[(Ag)(x)] = o Df(x.y)g(y)dy. Furthermore. using condition (ii) we
get

E/T/ |D.[(Ag)(x)]|3dzxdr
< B[ [([1D5@ vl low)idy)dudr
E(/O (itelg | Prf(z. y)ludy)

IN

X(z‘elg/o iDrf(y,I)IUdI)W‘) lgliZ2 .0y
T .
E (_/0 01(")02(7")‘1") lgllE2(0)

T T 12
(e[ wrans [ @eran} oo < .

IN

INA

This implies that Ag € D"?(H) (see [15, Theorem 3.1)).

b) Clearly D.(Ag) = (D,\)(g), where D, A is the random operator belong-
ing to the space L(H. Ly(U. H)) associated with the kernel D, f(z.y).
Hence. it suffices to show that D,A belongs to the spaceL?([0.T] x
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O: L(H.L,(U. H))). This follows from the fact that
L1DA0g) @) dr < av(rlas(r)lglo

which implies | D M|z a Loy < (ar(r)aa(r))V2. a
We can also show a version of Lemma, 6.4 for k—th differentiable operators:

Lemma 6.5. Let f: O x O x Q — R, be a measurable mapping verifying
the hypotheses of Lemma 6.2. Assume that f(z.y) € ID*? for each 1.y €
O and for some integer k > 1, and there exist versions of the derivatives
DI f(z.y). 1 <j < k. which are measurable from [0. T}’ x O x O x Q into

rlr

U?®I and verify:
(i) DI f(z..) € L*([0.TP x O x Q;U??) forallz € 0,1 < j<k.

(1) sup.eo Jo 1D}, ;. F(z.2)usidz < ayy(ri.....rj),
SUP.¢o Jo 107, . - f(z r)IL 2;dz < ag;(ry, . ... r;), where ay ; and ay ; are
nonnegative measurable random fields such that E [ig 1y, (ay;(r))%dr <
x and Ef[o_ﬂ,(ag_](r))'zdr < 20, foreachj=1,....k.

Then the random operator A{w) on L2(O) given by (6.1) belongs to D**(L(H,
H)), and for all ry,....7j,w a.e. DI _ A(w) is the operator belonging to

rt.. r
L(H.L,(U®_ H)) given by the kernel DI " flz.y) .
Consider now a random second order differential operator of the form

n

At= Z a,-j(r t a

iy=1

+Zb z. t +c(z,t). (6.2)

;0

The coefficients a;;. b; and ¢ are measurable functions from 0 x 0,T] xQin

R. Let us introduce the following hypotheses on the random operator 4,:

(Al): For each (z,t) € O x[0.7), aij(z.t), bi(z.t) and c(z, t) are F,-measura-
ble (adaptability).

(A2): The matrix (ai;)i<ij<n is symmetric and uniformly elliptic. That is.
there exist constants 0 < ¢; < ¢ < o0 such that

alfl? £ 3 ay(z.)6& < clél*. forall £e R™

t.y=1
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(A3):

(Ad):

(A4):

The coefficients a,,.h, and ¢ are continuous and uniformly bounded in
O x [0.T]. and. in addition they verify the following Holder continuity
property:

a (e t) —a,ly.8)] < Kl —=y|*+ s —t[*?).
b(z.t) = b(y.t)] < Klr—y~.
<

le(z.8) — cly. t)| Klr —y|*.

for some constants 0 < K < x.a >0andforallz,y € 0. s.t € [0, 7).

Furthermore a;,(-.t) is of class C' with uniformly bounded partial
derivatives.

For each (z.t) € O x [0. T we have that a,,(z.t). S2(z,t), bi(z.t), and
c(z.t) belong to ID*?. and the derivatives

{Dray,(z.t)|u. ID (;r v, |Debi(z. t)|y.|Drc(z, t)|u

are bounded by a nonnegative process ®(r) such that

E( [ 12(r)Parl?) <

for all p > 2. We also assume that

lDrlrzalj(I‘ t)'U@U ID
|Dr1r2 (r‘t)|U®U’ |DT1I‘2 (I’t lU®U

are bounded by a nonnegative process ¥(ry, ;) such that

Eq orlz(\p(rl’ 2"2))2dr1dr2[?) <x. forall p>2.

We assume that the following quantities are uniformly bounded:

Zsup{ Di*ay(z.t)? +|D$*‘; (z.t)[?
k=1 Tt



+1D%b,(z.8)] + | D%c(z. m?}.

x da; 5 "
ZSLIp{inszaiJ(I.t)‘z--F | Dgx s—a—l]—(r‘ t)|3 -
k=1r.s.t xl

+|Dg* D;bi(z.t)|7 + | Dg* Dyc(z. t)i'i'}-

In what follows we will assume that O = IR". The case of a bounded
domain O with Dirichlet or Neuman boundary conditions would be treated
in a similar way.

Suppose that 4 is a random second order differential operator verifying
hypotheses (Al). (A2) and (A3) with O = IR". We will denote by ['(z.¢;y, s)
the fundamental solution of

% = 4421-‘. t>s
IimI(z.t:y.s) = 6.(y). (6.3)

tls

(For details. see [6]).
Conditions (A2) and (A3) imply that there exist constants ¢;, ¢c; > 0 such
that:

T(z.t:y.s) <ci(t—s)""2exp (-_c%;——y?) , (6.4)
2
g tusl Salt-s W ep (- EZM (6s)

Proposition 6.6. Suppose that A, is a random second order differential
operator verifying hypotheses (A1), (A2) and (A83). Let I'(z,t;y,s) be the
fundamental solution of (6.3). For anyt > s, t,s € [0,T] let S(t,s) be the
random operator on L*(IR™) given by

(S(t.9)9)(@) = [ T(z.tiy.s)o(w)dy. (6.6)

Put S(t.t) = Id. Then {S(t.5).0 < s <t < T} is a random evolution
system on L*(IR™) in the sense of Definition 3.1.

Proof: By construction (see Friedman [2]) the random kernel [(z,t;y, s;w)
is a measurable mapping from R" x R" x 2 — IR, for each t > s. From
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(6.4) we deduce
[(r.t:-.s) € L*(R") forall reR" t>s
and
T(z.t:y.s)dy < cy(2m)/? (6.7)
Rﬁ.
/ T(r.t:y.s)dr < c (2m)™2 (6.8)
Hence. by Lemma 6.1. S(t.s) is a bounded linear operator on L?(IR"). More-
over the mapping (t.s.«) — S(¢t.s.w) is strongly measurable from A x Q2 in
L(H.H). and S(t.s) is F,—strongly measurable from 2 in L(H. H). Condi-

tion (iii.a) of Definition 3.1 clearly holds. and the continuity property (iii, b)
is also known (see [6]). O

Proposition 6.7. Let A, be a random second order differential operator
verifying hypotheses (Al), (A2), (A3). (A4) and (A4)’. Then the random
evolution system S(t,s) given by (6.6) verifies hypotheses (H1), (H2) and
(H3)".

Proof: The proof will be done in several steps:

Proof of (H1): By Lemma 6.2 and the estimates (6.7) and (6.8) we deduce
that

1S(t. )| Lemmy < c(2m)™/2,

So S(t.s) € L¥(Q; L(H. H)) and the norm of S(t,s) is uniformly bounded.
In order to show that S(t.s) belongs to D*?(L(H, H)) for t > s we will
make use of Lemma 6.5. We have to show that ['(z,t;y,s) € D*? for each
r.y € R™ t > s and that conditions (i) and (ii) of Lemma 6.5 for j = 1,2
hold.

Let us first show that [(z.t:y,s) € D2 We recall that ['(z,¢;y,s) is
the fundamental solution of

88_1; = .4tF. t >s
lim [(r.tiy, 5) = 6:(y).

In the sequel we will write [, ;(z.y) for ['(z,t:y, s). Using the characteriza-
tion of the space ID'? giveu by Sugita in [15] we can show that T, 4(z,y) is
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RAC (rav absolutely continuous). and the derivative D,.I'; s(z. y) verifies

9
ot

for r € [0.t]. Hence.

T,
Drrt.s(r-y) = /IR"/ 1-‘t'r' I S { Z D al] g T)aftasj(f y)

Drrt.s(r- y) = "1tDrrt.s(I-g) -+ (DrAt)rt.s('r' y)

z] 1
ZDb er1 5 e )
+Dr0(£=T)Ff.s(§‘y)}de§- (6.9)

Integrating by parts this can be written as
aaij [5) R
pruy) = [ [Toteo] - T 0 (Gen) ey
+ Z D,bi(€

artr arrs
) Dr i [] d d . 6.10
/n/ > G E VD i (610

ol
)2 (641 + Drcl6, )Tl y)}drds

From (6.4), (6.5) and (6.10) we obtain the following estimate:

2
1D Tes(z. 9l < C’(t-—s)’gexp(—i—g-:-—y!—)

c(t — s)
[{ae|2

p, %% daij
i.j=1

+Z|Db (£.7)] }

35:
x(1T — s)'% + Sup |Dre(§. T)|v

+ sup Z |Drai; (&, T)|u(t — 7)) J2‘(1' - s)'%}dr

EEanlJ 1

< C{t—s) Texp <-|;t'_y£> ®(r), (6.11)
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for some constants c.C > (). Hence. conditions (i) and (ii) of Lemma 6.5
holds for j = 1.
For the second derivative we have

5 | .
C) Dflrzrt.s(‘r-g) = 439,1,2[‘ta( )+(Dr3‘4t)0r1rts(-n y)
+(Dr A)DryUes(x y) + (D,m AT s(z.y).
Hence.
a D, T,
Dru‘zrts / / F"' r.§ {UX:I D”all §. T 86;651 (Ey)
oD, T.,
+ZDrzbz(€=T) a& (§.y) + Drye(§. 7) D, Tr 56, y)
0*°D,,T+s

+ Z Dra;(§.7)——5—

) c)g,agj (€. y)

2 aDFZFT.S
+ Z Drlbi(f- T)T(& y) + DT‘1C(§Y T)Drgr‘f..!(f? y)
821',3
D ij rad ()
drr.s
+ZD?‘1r2 asz (&y)

+D72'1r2 (& )T-s(Ey) }dde-

Integrating by parts and using the estimates (A4) and (6.11) we get

|D3mFt,s(I- Ylese
< C(t—-s)""%exp ( %) {®(r))®(ry) + ¥(ry,72)}. (6.12)

Hence conditions (i) and (ii) of Lemma 6.5 hold for j = 2. Furthermore,

15(t. )12,
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! | p/2
= E|S(t. s\ gy +E (/O D, S(t. 513 HALg(L’,[-{))dT)
p/2
£ </ / 'tD”” (t. )iz, H LU0 H dmdr2>

{1+E|/ Ve

+ 51/ P)2driP + El/ / drldrgjp/z} < x.

and Hvpothesis (H1) holds.
Proof of (H2): Fix an element h € H = L*(R"). Then

IN

D.S(t.s)(h) = /IR" D,T;(z. y)h(y)dy. for r e [s.t],

where D.I'; s(x.y) is given by formula (6.9). Let us define D;S(¢,s) as the
operator given by the kernel D; T, ¢(z. y). where

D;Tis(z.y)
dn or
rtr 3] .8 ’
// rs{ > (0&(&)) e (6:)

ar,
+ZDsbi(§~T) 6€ (§.y)+Dsc(§.r)F,_s(§,y)}d7'd§
artr
Dga; drd
/n/ IJZI aE; aé] (E y) aJ(£ T) T €

The difference D,S(t.s — z) — D;S(t.s) is the operator in L(H, Ly(U, H))
given by the kernel

s da; Ol
Jeo [ Ferta 6{ > D (daj )> o, &Y

1y=1

n o ._.
+ ) Dgbi(€. —7E (€.
; (&.7) 13 (E.y)

+Dsc(€, )l rs-2 (€. y)}d‘rdf



§= Oer (o9l ,
cy)Dga,, (€. T)dTd
/n/ _l] 1 361 S) df_} (S U) -a]€ ) 5

0az] - arrs—s _ arr.s) -
+/ /rtTIE{ 1y=1 <d§1<§ )>( ()51 a’f} (E'y)
Olrs—. O,
+ZDb€ﬂ<d& %)@w

+Dsc(§. 7)(Frs-: = Trs)(€- y)}de§

drt a]--'r:s--;- 01', s
_/ "/ Z 0& ( Ok, o€, )(5 y)Dsa;;(§, T)drdg.

t.y=1

Let us denote this kernel by &. ,,(x.y). We have for any h € H

I/<I>s¢ry y)dyly

< C{/ —[(D(S}(T‘S+f)—%+‘I’(S)+@(s)(t—r)'%(7_3+ -

NI'-'

]dr}

2 Iz = y)?
x/n(t—s+:) ? exp(— m)'h(y)ldy

+C {/:[@(s)(r —5)7F 4+ B(s) + B(s)(t — 1)~ H (7 — s)-%]dr}

X /W | /W s s-e(z, y)R(y)dy — h(2)|(t — 5)"% exp (_Icazt—_zs)

I‘Z

Ydz.

As a consequence,

fol [ @itz w)hln)dylhdz
S CR){(VE+2+(t-9) VA hll
b [l oo Basmelw)h )y — Rz,

and this converges to zero as = tends to zero.
On the other hand. D; S(t. s) belongs to D*3(L(H, Ly(U, H))) (see first
step of the proof of Proposition 6.7).

Proof of (H3)": We have already seen that ||S(t. s)||ym.m < c1(2m)™2. We
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have
D Sit )i v
= sup [ [ DETilryh(y)dylds

hin<l

1/2
< <<sgp [ DETestzy)dy)isup [ 102 rt.su,y)\dz)) .

Hence. the boundedness of f: 1D S(t. s)!l'i(H_H) follows from (6.9) and Hy-
=1
pothesis (Ad)".
x
Finally. let us show that 3 |D¢* D7 S(t. s)|2 4 1,z i bounded. We
k=1
have. forr < s < t.

DDy Tes(z.y)
9*D;T
r Dek . _‘_3_.2 ,
/n_/ t.r {l] | a](f T) a&;a&_] (§ y)
oD;T -, e -
+ Z Deebi(€. 7) 5&- 2 (€. y) + Dexc(€, 7) Dy Trs(€,y)
i=1 4
n 82Dskrr.s
+UZI Dsaij(EeT)—aE—l—an—'(fs y)
ODT, e
+sz 6, 7) =5z 1 6:y) + DaclE TIDIT5(6,3)
e oL Y
+l§‘:lD *Dsai, (€. T)aglds, (€-y)

ol
3

+Y_ D& Dibi(E.7)—==(E.y) + Di* Dyc(€, )T (&, y)}dfdé-
i=1

Again using (A4)'. integration by parts and (6.9) we show the boundedness
of ¥ sup [ge | DD T, o(x.y)ledy. and LZ sup fgn |DED; e o(z, y)|vdz. O
k=1l T =1 ¥

Remarks:

1) Theorem 5.4 togethier with Proposition 6.7 allow us to deduce the exis-
tence of a unique il <olution for stochastic partial differential equa-
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tions of the form

5 = A+ f(t.r.u) +g(t.z.wWi(z). te[0.T].zeD
u(0.r) = 2(x) Co

(6.13)
where D C IR" is a bounded domain with smooth boundary, f.g are
continuous functions on [0. T} x D x R which are Lipschitz and have
linear growth in the last variable. uniformly with respect to the first
two variables. and W' is a Wiener process in L?(D) whose covariance
operator is bounded on D x D. Here 4, is a second order operator of the
form (6.2) with random and adapted coefficients satisfying assumptions
(A1), (A.2). (A.3). (A4) and (A4)"

2) The above method allows to handle stochastic partial differential equa-
tions of the form (6.13) without motononicity or coercivity assumptions
on the coefficients.
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