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1 Introduction

In this paper we study nonlinear stochastic evolution equations of the form

where W is a cylindrical Wiener process on a Hilbert space U. The solution
process X = {Xt. t £ [0. T]} is a continuous and adapted process taking
valúes in a Hilbert space H. The functions F(s,jj.x) and B(s. u\x) are
predictable processes satisfying suitable Lipschitz-type conditions and taking
valúes in H and L2(U.H). respectively.

We will assume that A(s.cj) is a random family of unbounded operators
on H. A notion of weak solution for Equation (1.1) can be introduced as
usual (see Definition 5.2).

In the case where (1.1) is a coercive evolution system on a normal triple
(K.H.K'), we can interpret (1.1) as an evolution equation to be solved in
K' (see Krylov and Rozovskii [5] and Rozovskii [12]). In this case the proof
of existence of a unique weak solution for Equation (1.1) follows closely the
ideas of Pardoux [11].

When A(s) is a deterministic family of operators. in order to solve Equa¬
tion (1.1) one looks for a mild (or evolution) solution. which satisfies the

’
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evolution equation

Xt = Sít.Q)S,+ í S(t. s)F(s. Xs)ds + í S{t. s)B(s. X,)d\Vs.- - (1.2)
7o 7o

where {S(f.s).0 < s < t < T} is an evolution svstem determined bv
A{t)S(t.s) = ftS{t.s). We refer to da Prato and Zabcvk [1] for a basic
account of this theorv.

In the case of a random family of operators {A(f)}, the corresponding
evolution svstem S(í.s) is also random and ^t-measurable (where {JFt-t €
[0. T]} is the natural family of a-fields determined by W). As a consequence.
the process S{t. s)B{s. Xs) is not /"s-measurable. and the stochastic integral
appearing in Equation (1.2) is anticipative. That is. although both the solu-
tion process {X£} and the random family of operators {At} are adapted. the
associated stochastic evolution equation involves an anticipating integral.

It is well-known that a mild solution of Equation (1.2). where the antic-
ipating integral is interpreted as a Skorohod integral, is not a weak solution
of Equation (1.1) (see León [7]) because a complementary term appears. We
show in Section 5 (see Proposition 5.3) that a mild solution of Equation (1.2)
where the stochastic integral is a uforward integral” is also a weak solution
to Equation (1.1). Roughly speaking the forward integral is defined as the
limit (in probability) of Riemann sums defined taking the valúes of the pro¬
cess on the left-points of each interval. In the case of real-valued processes
this type of integral was studied. among other authors, by Russo and Vallois
in [13]. The main difficulty in handling this stochastic integral is to obtain
suitable estimates for the Lp-norm of the integral. One way to do this. in
the anticipating case, consists in expresssing the forward integral as the sum
of the Skorohod integral plus a complementary term.

In Section 4 we obtain an expression relating the forward and the Skoro¬
hod integráis (Proposition 4.2) and we deduce an estimate for the Z^-norm
of the supremum of an indefinite forward integral (Theorem 4.4). This theo-
rem is one of the main results of this paper and constitutes the fundamental
tool to solve the stochastic evolution equation (1.2).

The Skorohod integral is an extensión of the Itó integral to the case of
anticipating integrands. and it was introduced by Skorohod in [14]. It turns
out that this generalization of the Itó integral coincides with the adjoint of
the derivative operator on the Wiener space. As a consequence. one can
applv the techniques of the Malliavin calculus (see Malliavin [8]) in order
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to construct a stochastic calculus for the Skorohod integral. This has been
done by Xualart and Pardoux in ¡101. among others. The Skorohod integral
of Hilbert-vaiued proeesses with respect to a cvlindrical Wiener process has
been studied by Grorud and Pardoux in [3]. In Section 2 we present the-basic
facts on the Malliavin calculus with respect to a cvlindrical Wiener process.
We need to introduce random variables with valúes in the space of linear
operators L(H.G). where H and G are real and separable Hilbert spaces.
and the corresponding Sobolev spaces ]Dl 2(L(H. G)). which are more general
that the spaces of Hilbert-Schmidt operators D12(L2(//. G)) considered in
P).

The basic estimate for the Lp-norm of a Skorohod integral (that is used
in Section 4 in order to control the iP-norm of the forward integral) is ob-
tained in Section 3. We need to estimate a Skorohod integral of the form
/o S(t. s)$sdWs. where {S(t. s).t > s} is an ^-measurable random evolution
system on a Hilbert space H and $ = {$s- s € [0. T]} is an L2(Í7, H)-valued
adapted process. We prove that

assuming that S(t.s) is twice-differentiable in the sense of the Malliavin
calculus. The constant C depends on p. T and on the random evolution
system S(t.s). This estimate follows from the Itó-formula for the Skorohod
integral, using some ideas introduced by Hu and Nualart [4], The semigroup
propertv of the system S(t.s) allows to show this estimate using only two
derivatives of S{t,s).

The inequality (1.3) plus the decomposition of the forward stochastic
integral obtained in Section 4 allows us to deduce an estimate similar to (1.3)
for the forward integral (see Theorem 4.4). Using this we prove in Section 5
a result on the existence and uniqueness of a mild solution to Equation (1.2)
(Theorem 5.4).

Finally. Section 6 contains an example that satisfies the assumptions of
our results. Xamely. a random evolution system generated by a family of
random second order differential operators.
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2 Preliminaries

In this secrion \ve will present some basic elements of the stochastic calculus
of variations with respect to a cvlindrical Wiener process. For a more detailed
account on this subject \ve refer to Grorud and Pardoux [3],

Let U be a real and separable Hilbert space. Suppose that U’ is a cylindri-
cal Wiener process over U defined on a complete probability space (H. T. P).
That is. W = h € U.t 6 [0. J]} is a zero-mean Gaussian family such
that

E(Wt(hi)\Vs(h2)) = (s A t)(hi,h2)u.
for all hi. h2 € U and s. t € [0. T}. We will also assume that the <7-field T is
generated bv W.

{cj-J > 1} is a complete orthonormal system on U. We will also use the
notation W(t¿) = ¡q (ut. dWt)u-

If L'i and are two real and separable Hilbert spaces we will denote
by U! S U-2 its tensor product which is isometric to the space ¿2(^2, U\) of
Hilbert-Schmidt operators ffom U2 to U\.

Let K be a real and separable Hilbert space. For any p > 1 we can
introduce the Sobolev space of K-valued random variables in the
following way. If F is a smooth A'-valued random variable of the form

m

F = '£fÁW(uí),....W(um))bj. (2.1)

where ut 6 L2([0, T\\U). bj € K and fj € C¿°(lRm) (/ is an infinitely
differentiable function such that / is bounded together with all its partial
derivatives). Then the derivative of F is defined as

DF = Y.Y. ^ (wa<*o. ■ ■ ■. s uí.j=i 1=1

So DF is a smooth random variable with valúes in L2([0. T]; L,2{U.K)).
Then Dlp(Af) is the completion of the class of smooth FC-valued random
variables, denoted by <Sa with respect to the norm
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For each p > 1 the operator D is closable from S« C LP(Q.K) into the
¿pace Lp(9l: L2({0. T}: L2{U. A'))) and for F G Dl p(/F) we have that DF G
LP(9: ¿-([0. 71: L2(U.K))).

More generally. for any natural n > 1 the Sobolev ¿pace is
defined as the completion of Sk by the norm

\ P/2

T]j II Ai ' • • Aj ¿2(6-3; ,K)dt\ ' ■ ■ dtjj
In particular given two real and separable Hilbert spaces H and G we can
consider K = L2{H. G). and in this case, for any F G Dl p(L2(H. G)) we have
that DF G Lp{Q:L2{[0.T):L2{H. L2(U.G)))) because L2\u. L2{H.G)) £
L2(H. L2(U.G)).

We want to introduce Sobolev spaces of random variables with valúes in
the space L(H.G) of linear bounded operators from H in G. Taking into
account that L(H.G) is a nonseparable Banach space we cannot use the
preceding construction.

For p > 1. LP(Q. L(H.G)) denotes the space of all functions F : Q. —*■

L(H. G) such that:

a) For everv h G H. F(h) is a G-valued integrable random variable and
there exists an element EF G L(H.G) such that E(F(h)) — (EF)(h)
for all h G H. That is. F is Bochner integrable (see [1. page 24]).

b) ¡miíH.odP < OC.
For more details on this definition see [1]. The following definition pro¬

vides a natural way to define derivatives of L(H, G)-valued random variables.
In order to simplify the exposition we will restrict ourselves to the case p = 2.
This will be sufficient for the subsequent application of these notions.

Definition 2.1 Let F G L2(Q: L(H.G)). We say that F belongs to the
Sobolev space Di 2(L(H. G)) if the following conditions hold:

a) For every h G H. F{h) belongs to D1,2(G).
b) There exists an element DF G L2([0, T] x Q; L(H. L2(U. G))) such that

for every h G H we have

Dt{F(h)) = (DtF)(h). (2.2)
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for almost all {t.¿) G [0. T] x fü.

Remarles: - -

1) D^ílaí/Í.G)) C ]Dl2(L{H.G)). and for any F in Dl2(L2(H. G)) we
have DF belongs to L2([0. T] x Q: L2(H. L2(U. G))).

2) In general we have that the inclusión D12(L2(H. G)) C JDl'2(L(H. G))
is strict. For instance if G = H and F is the identitv operator
on H. then Ih & IDL2(L2(/í. H)) because Ih is not a Hilbert-Schmidt
operator. but ///(h) = h G IDL2{H) for any h G H and DIh = 0.

We will make use of the following technical lemmas concerning the deriva-
tive operator. We will denote bv H. G. J real and separable Hilbert spaces.

Lemma 2.2. If ¿ G L2(J. H) and F G 1D12(L(H,G)) then we have F¿ G
D12(L2(J.G)) and D{F¿) = {DF)<f.

Proof: Let {jk-.k > 1} be a complete orthonormal system on J. Clearly F¿
is a random element with valúes in L2(J.G) and ||Fv?||hs < IIF1!)¿(//.oH^IIhs
which implies that F? G L2(Q: L2(J, G)). On the other hand. for each k > 1
we have (F*)(jfc) € DU(G) and D[(F^)(jk)} = (DF)&Uk)). Henee

O©

e Y.\)DMF*')ükmi,(v.c)<isJo fc=i

= E ¡T fi\\(D,F)(Mk))\\l,w.O)isJ0 k=l

— E f \\DsF\\2L{H.L2{U.G))ds^F\\2L2(J.H) <J (J

which implies the result. □

Lemma 2.3. Consider a smooth L2(J. H)-valued random element ¿ and let
F G TDh2{L(H.G)). Then F? G Dl2(L2( J, G)), and

D(F¿) = {DF)<p + F{Dif). (2.3)

Proof: Without loss of generality we can assume that <f = Rb where b G
L2(J.H) and R is a real-valued smooth random variable of the form R =
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f{\V(ui) II'(am)) with u, € L2{[0.T\:U) and / € C¿’c(IR'Tt). Clearly. the
composirion F¿ belongs to L2(Q\ L2{J. G)).

Let u¿ first prove that the right-hand side of (2.3) belongs to L2.([Q, T] x
f>: L2{J. L2{U. G))). We have that is a bounded random element with
valúes in L2{{0. 7~]: L2(J. L2[U. H))) given bv = b g DR (that is. for each
j € J. (Dr)Ü) = b(j) 2 DR). As a consequence.

F(D¿) = (Fb) g DF.

where F6 € L2(fi: L2(JG)). and

^ Jo = D fQ IIAs-ñll^ \\Fb\\2L2UG]ds
< C(¿)E\\Fb\\l2UG) < ao.

where C{¿) is a constant. On the other hand. (DF)($) = R(DF)b. and

E fT \\{DsF)^)\\i2(J,L2(l,G)]dsJ o
T

^ i!^!I1 i^11Z21-/■ w)^ í \\DsF\\2L(H L2{UG))ds < 3C.
>/ u

For anv j 6 J we have that {F?){j) = R(Fb){j) belongs to D1,2(G) and
bv Lemma 2.2 we can write

D[(Fsm = (Fb)(j)ZDR + R(DF)(b(j)). (2.4)
Henee, it suffices to show that the right-hand side of (2.3) applied to j
coincides with the right-hand side of (2.4), and this is true because

[(DFM(j) = R(DF o b)(j) = R(DF)(b(j)),
and F(D<p)(j) = (Fb)(j) 8 DR. □

Lemma 2.4. Let A € JD12(L(H, G)) and F € D12(/í). Suppose that
II^IU(tf.G) < A/ and |F|/f < M for some constant M > 0. Then AF €
DL2(G) and

D(AF) = (DA)F + A(DF). (2.5)
Proof: We can find a sequence {Fn} of tf-valued smooth random variables
such that |Freja < M 4-1. Fn converges to F in L2(fi: H) and DFn converges
to DF in L'2([0. T] x f>: L2(U. H)).
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Clearly AF 6 L2(Q: G). and AFn converges to AF in L2(Q\G). By
Lemma 2.3 (with J = IR) we deduce that AFn € B12(G). and

D(AFn) = (DA)Fn + A(DFn). ‘.(2.6)
Finally. from our hypotheses we get that the right-hand side of (2.6) con¬
verges to that of (2.5) in L2([0. T] x Q: L^(U. G)) as n tends to infinity. which
completes the proof. □

Lemma 2.5. Let .4 € 1Dl 2(L(H. G)) and B 6 Dl2(L( J. H)). Suppose
that 1].4||¿(h.g) < A/ and \\B\\l{j.h) < A/ for same constant AI > 0. Then
AB £JDV2(L(J.G)). and

D(AB) = (DA)B + A(DB).

Proof: Clearly AB 6 L2{Q: L{J. G)). Fix; € J. WeknowthatBj 6 B12(/í)
and \Bj\n < AI\j\j. By Lemma 2.4 we have AB(j) € BL2(G) and

D[AB(j)} = (DA)(Bj) 4- A(DB(j)). (2.7)
Finally notice that (DA)B + A(DB) is an element of the space L2([0. I"] x
Q\ L( J. L2(U. G))) and [A(DB) + (DA)B\(j) coincides with the right-hand
side of (2.7). □

For any subinterval I C [0. T] we denote by Ti the cr-field generated by
the familv of random variables {W(u), supp u C /}.
Lemma 2.6. Let A € JDl'2(L(H,G)), and suppose that A is T)-measurable
for some subinterval I C [0, T\. Then DtA = 0 for almost all (t. u) £ Ic x Q.
Proof: Let h £ H. Then. by hypothesis. A(h) is an ^/-measurable random
element belonging to B1,2(G). This implies that. for every $ £ L2([0. T})
such that supp p C /c, 0 = /0T p{s)Ds(A{h))ds. Thus. the fact that H is
separable and D(A(h)) = (DA)(h) give the result. □

In the sequel {e* ,i > 1} will denote a complete orthonormal system on
U. We will write DeF(h) := (DF)(h)(e) for any F £ Dl2{L(H. G)), and for
each h £ H, e £ U. Notice that DeF belongs to L2([0. T] x h; L(H,G)).
Lemma 2.7. Let A £ Di,2(L(H.G)) such that

OC a'J*

E'Yl j0 :xD- (2-8)
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Then. the adjoint of A. .4'. belongs to IDi'2{L(G. H)) and DeA* = [DeA\* for
each e 6 [’.

Proof: Cearly .4* belongs to L2{Q: L(G. H)). Let F E D1,2(GX. ? E G
and h e H. Then. it is not difficult to see that {F.g)ah E D1'2)#) and
D((F. g)Gh) = h 3 [DF]*(g). Henee {A*(g).h)Hh = (g.A{h))ch E DL2{H)
and

D((A*(g).h)Hh) = h 2. [D(A(h))\*(g) = ([DA]*(g). h)Hh. (2.9)
This implies that A*(g) belongs to DL2(tf). and D{A*{g)) = (DA)*{g).
Finlay \ve have to show that {DA)* belongs to L2([0, T] x Í2; L{G. L,2{U. H))).
This follows from condition (2.8):

^ lo fQ \(H.G)ds < 00 ■

Thus the proof is finished. □

As in Grorud and Pardoux [3] we will denote by 5h the adjoint of the
derivative operator D acting on JDl 2(H). That is, the domain of Óh is the
space of processes u in L2([0. T\ x Q; Z,2(tX H)) such that

EÍ (DtF.ut)ñSdt
Jo

< Cull-F||L2(n;í/)>

for anv smooth íf-valued random variable F. Then 6h(u) is the element of
L2(Q\ H) determined by the duality relationship

E íT(DtF.ut)mdt = E{F.6„(u))„,
Jo

for anv F E D1,2(üf). The operator <5# is also called the /f-Skorohod inte¬
gral. It is an extensión of the Itó stochastie integral of H-valued adapted
processes in the sense that L;i;([0.T] x Q; L2(U,H)) C Dom <5#. where
L2([0, T] x Q-. ¿2{U. H)) denotes the space of adapted processes in L2([0, T] x
Q-,L2{U.H)).

We will make use of the following property of the Skorohod integral.

Proposition 2.8. Let A £ IDi 2{L{H.G)) and let B be an L2{U. H)-valued
process uihich belongs to the domain of 6h- Suppose that the following con-
ditions hold:
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(i) AB e L2([0.T} x n-.L2(U.G)).

nú A6„(B) € L2(Q.:G). .

(ni) £^E J \\Des'A\\2L{H'C)ds^ < oc and B € L4{[0.T] x fi: L2(U. H)).
Then AB 6 Dom<5c and

óg(AB) = Aóh(B) - f; fT(D¡'A) BMi)ds. (2.10)ÍTiJo

Proof: Note first that by eondition (iii) the right-hand side of (2.10) belongs
to L2(Q: G). Let F be a smooth G-valued random variable. We can write

E í (ABS. DSF)l2(u.g) ds
Jo

E¿ fT!AB,(e,).D?F)a¿s7^Jo

E Z <B,(e,).A-DfF)„ds£¡J°

EYií (B3(e%).D¡'(A'F))Hdsi=iJo

~EE [T(Bs(el).(Des'A')F)Hds,
i=i

where A* € D12(L(G. H)) is the adjoint of A. and we have used Lemma 2.3
in order to compute D(A*F). Notice that. by Lemma 2.7. DeslA* = (Des'A)m.
Henee, we obtain

E (T{ABa, DSF) L2{U.G)ds = E(Óh{B). A*F)h
Jo

-EZ [T((rn'A)(B,e,).F)cis,=iJo
= E({R.F)g),

where R denotes the right-hand side of (2.10). □

Remark: Condition (iii) of Proposition 2.8 can be replaced by:

10



(iii)' : ^ D'.' A i //c; < M < x for all 5 € [0. 71. and B G L2{[0.T] x

0: L-i\U. H)). for some constant A/ >0.

The Sobolev spaces JDk'2{L{H.G)) for anv integer k > 1 are defined
as in Definition 2.1 replacing U by l:Zk and D bv Dk in (2.2). If F 6
lDk-2(L{H.G)) . and p > 2. we define

ip
U-.p :=£||F 11P

IlLí/f.G)
£
2

Let us recall Itó's formula for anticipating Hilbert-valued processes (see
[3. Proposition 4.10]). We will use the notation

Lfc'p(7) = í,p([0. T]: JDkp(J))
for any p > 1. k a positive integer and J a real and separable Hilbert space.

For any B G Dom <5# we will write <5h{B) = / BsdWs.Jo

Proposition 2.9. Let $ G C2(H) and let X = {Xt,t G [0, T]} be the
stochastic process defined by

Xt — Xo + í Asds + í BsdW/s.
Jo Jo

where

(i) XQ G ID1,2(tf),

(n) A € L12(tf),

(iii) B £TL2A(L2{U,H)).
Then

*(Xt) *{X0)+ \t{$'(Xs).As)Hds+ f (Xs)BsdWsJo Jo
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'vith

\VX)t = 2DtXn t- 2 l‘ D>A,ds - 2 /' DtB,d\Vs + Bt.Jo Jo .

Remark: The hypotheses of Proposition 2.9 are slightly more general than
those in Proposition 4.10 of [3]. The validitv of the Itó's formula under these
more general assumptions follows from the finite-dimensional Itó's formula
estabiished in [9] under these kmd of assumptions.

We will make use of the following Fubini's tvpe theorem for the Sko-
rohod integral whose proof is a straightforward consequence of the duality
relationship.
Lemma 2.10. Let u(t.x) be an I >(C*. H)-valued random. field parametenzed
by {t.x) € [0. T] x G. where G is bounded d-dvmensional rectangle. Suppose
that u € L2([0.T] x Q x G). and for almost all x € G the stochastic process
u(-.x) belongs to the domain ofSn■ Suppose also that E fG |<5#(tz(-. x))\2Hdx <
oc. Then {¡G u(t. x)dx.t 6 [0. T]} belongs to the domam of <5# and

ÍALu(t x)dx^j d\Vt = J i^J u(t. x)d\Vt'j dx.
3 An estímate for the Skorohod integral
Let H. U be real and separable Hilbert spaces. Let IV be a cylindrical Wiener
process over U on the time interval [0. T}. We will make use of the notation
A = {(£. s) € [0. T]2 : t > s}.
Definition 3.1. A random evolution svstem is a random family of operators
{S(t, s);0 < s < t < T} on H venfying the following properties:

(i) S : A x Q —► L(H, H) is strongly measurable.

(ii) S(t,s) is strongly Jft-measurable for each t > s.

(ni) For each u € Q, {S{t. s).(t.s) € A} is an evolution system in the
following sense:

(a) S(s. s) = I and S{t. r) = S{t. s)S{s. r) for any 0 < r < s < t <T.
(b) For all h € H. (t.s) » S(t.s)h is continuous from A mto H.
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Let us introduce the following hypotheses on a given random evolution
¿ystem: ' '*

(H1): For each (t. s) e A. S(t. s) € D2/2{L(H. H)), and J0£ ¡|S{t. s)\\2pds < oc
for all p > 2.

(H2): There is a versión of DrS{t.s) such that for all u; € Q and h e H. the
limit

D~S{t. s)(h) = lim DsS(t. s — e)(h)

exists in L2(U.H) and D;S{t.s) belongs to E)h2(L(H. L2(U. H))).

(H3): There is a constant M > 0 such that the following estimates hold for
all t > s > r:

(H3.a): ||S(M|U(if.*) <A/.
(H3.b): |¡£>s5(í. r)]| l{h.l2(u.h)) <
(H3.C): E,“1ll^ff-S(t.s)|lí(K.ll(t,.„„ <M2-

Remark: Fixt>s — s>r. • > 0. From property (a) of a random evolution
system we have

S(t. r) = S(t, s — z)S(s — s.r).
Suppose that the random evolution system S(t.s) satisfies the above hy¬
potheses (Hl). (H2) and (H3). Applying Lemmas 2.5 and 2.6 yields

DaS(t, r) = DsS(t. s - z)S(s - c, r).
Now letting £ 1 0 and using property (b) in the definition of a random
evolution system, (H2) and (H3) we obtain

DsS(t.r) = DjS(t,s)S(s,r).
Indeed, for any h 6 H we have

||D,S(t.s - s)S(s - £. r){h) - D;S(t. s)S(s.r)(A)||„s
< \\D,S(t,s -í)(S(s - £.r)(h) - S(».r)(A))||Hs

+||[í>,S(t.s - s) - D;5(t.5)]S(s,r)(A)||„s
< |JDs5(í. s - ;)||í.(/í.£,2(6'.í/))|(5(s - s.r) - S(s.r))(h)\fí

+11 [D,S(t. s- ■) - D~S{t. s}]5(s, r)(A)!¡Hs.
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and this converges to zero as r tends to zero due to hypotheses (H2) and
(H3).

Let us now prove the following theorem:
Theorem 3.2. Fix p > 2 and a € [0.1/2). Let <í> = {^>t. ¿ 6 [0. T]}
be a L2{U.H)-valued adapted process such that E II^sIIhs^s < oc. Let

J o

S(t.s) be a random evolution system satisfying the above hypotheses (Hl).
(H2) and (H3). Then the L2{i'■ H)-valued process {(t-s)~aS{t. s)<J>s/(0.t](s),
s 6 [0. T}} belongs to the domain of for almost all t 6 [0. T], and we have

E\ ft(t-sraS(t.s)*,dWs\PH <C fit-sr'^EW^sds, (3.1)JO do

for some constant C > 0 which depends on T. p. a and on the evolution
system S(t. s).

Proof: Let us denote bv S the class of Lo{U. íí)-valued elementary adapted
process of the form

4>, = ¿ ¿ /.*<W'(ü¡) «-'(O)V(«,(3.2)
fc=11=1

where /,* € C¿,0(lRn), bk € Lo(U. H). 0 < t\ < .. . < tn+i < T and supp u* C
[0. U]. Let <í> be an L2{U. H)-valued adapted process such that E /0r ||<I>4||hSí¿s <
oc. We can find a sequence <I>'1 of elementary adapted processes in the class
£ satisfying

limEÍ ||*;-*.||&sd5 = 0.
J o

This implies that

lÍ™E lo ilo ^ ~ “ ^Hhs^) dt = 0.
By choosing a subsequence we have that for all t € [0. T] out of a set of zero
Lebesgue measure

lim£ f,t - s)-2‘>||4.;‘- - 4Xhs* = 0.1 J u

Henee, we can assume that «I> is of the form (3.2).
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We are going to apply Itó's formula to the fuction F{x) = \x\pH on H.
Recall rhar

F (x) = p\x\p^2x - ■.

and

F"(x) = p{p - 2)|xj^~4x 3 x +p|x¡^"2///.
Fix í0 > t\ in (0. T}. and define

Bs = {t0-s) QS{tl.s)$sI[0M](s).

From hypothesis (Hl) it follows that B € JL2'q(Lo{U. H)). for each q > 2. As
a consequence. we can apply Itó's formula (Proposition 2.9) to the process
Xt = fo Bsd\Vs, and to the function F(x) = \x\pH. In this way we obtain for
each t € [0. ti]:

\Xt\pH = f p\Xs\p¿l(Xs.Bsd\Vs)HJo

Í\f"(Xs)(Bs + 2 f DsBrdWr). Bs)nsds. (3.3)
2 Jo Jo

We claim that the Skorohod integral appearing in (3.3). that can be written
as p \Xs\Pff 2B*(Xs)dWs. has zero expectation. This might not be trueJo
because this Skorohod integral is defined by localization. Nevertheless our
assumptions imply that the process \Xs\P[f'B*(X3) belongs to JLl 2(U) C
Dom 6. In fact, we have. by [3. Proposition 4.1],

E ÍT \X.\f~2)\B;(X,)\lds
Jo

< CiE ÍT [X.^ds
Jo

< C2 ^1 + E ^ WDqBsW^uqujj^dOds'j ^ < oc.
due to hypotheses (Hl) and (H2). Notice that hypothesis (Hl) implies that
/0r E\Xs\pHds < oc for any p > 2. On the other hand we have,
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< C!(£^T!.Y!|«'”21*),'2(£jír(jír||D»X,¡r¿¡íc-m
-i- (£ fo |.Y,¡T"ds)Í!HE ¡\£ \\DtB,\\l{U2l.H)

defds)112

dd)2ds) 1/2 <' DC.

where we use the fací that X £ TLiA(H) (see [15. Theorem 2.1]). Thus. we
have proved that \XS\P^2 B*{XS) belongs to JLl'2{U).

Notice that \\F"{x)\\L{H,H) < p(p - l)!x|^”2. Henee, taking expectations
in the Equation (3.3) vields

E\X>\"„ < £Í^-il£|j.Y,|?,-2(||£.|¡¿s
+2||B,||„S|| f‘D,BrdWr\\„s)ds.

Using the inequality 2||a||||6|| < ||a||2 + ||6||2 we obtain

E¡Xt¡'„ < p(p-l)EJ'lX^WB.Wls^
+6EzHeJ‘ |X,|?,"2|I l‘ D,BrdWrfmds.

Now we substitute Bs by its definition and we use the adaptability of $s and
Lemmas 2.3 and 2.6 to get

E\Xtf„ < P(p-l)£jí'|X»IS'2(to-s)-2“l|S(t1,s)$.&á5
+ÉEjHEJ‘\x,\F
XII j\to - r)-a(D,S(tu r))<t>rdWr\\2HSds. (3.4)

Applying Hólder’s inequality to the expectation in the right-hand side of
(3.4) yields

£|Y«r* < pIp -1) J\E\x,\”Hy’"^(ta - s>-2“ x
x(£||S(i1.S)$,!j'HS)22'’<¿s
+PÍP~ 11 J\e\X3\ph)íp~2)íp x
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x (E\\ j\to - r)~a(Ds Sih.r^rdWrW^fPds
= [t(E\Xs\pH)p-2hpA,ds. . .Jo • .

Then Lemma in [16] implies that

£T|-V«ISf < (- í‘A,ds)^.
p Jo

that is,

E[Xt\f„
< {2(p — i)J‘(ta-sr2‘(E\\sitl.sm\iiSf'’’dS

rt / rs \ 2/p ^ p/2
+(p-l) / (£11 / (to-r)-‘>(£>>S(t1,r))*r<flVr||&s) dsJo \ Jo / )

< 2^'-‘(P - - s)-2“(E||S(f1,S)'MíiS)2/,<fe)P/2
+t(p/«-i J‘ £^|| j\tf¡ _ r)-“(D,S(f„ j-))<MWXs)ds

< Mp2p~l(p - 1 f¡2 jf‘(t0 - s)-2<>B(||4,||Sis)ds
+2Wa>-‘(p-1 )p/2(W2)-> x

* 1' £|1 “ r)‘“(O.S(ti, rO'MWr&ds. (3.5)
Using the remark at the beginning of this section. Proposition 2.8 and hy-
pothesis (H3), we can write

|| r(ío-r-)-a(DsS(í1)r))$rdWrj|HS
Jo

= I! /> - r)"*(Z>,-S(í1, a))S(4. r)$rdlV,||HS
= i¡D7S(ti, s) (t(¡- r)-°S($,r)$,dWT

- £ f («o ~ r)-a{D*r‘S{ti. s))S(s, r)$r(e,)dr||Hs
1 = 1 J0

< A/| j’(ta - r)-S(s, r)4>rdW;|w
17



-E /’(ío-r)-<“!|^£)rS(tl.s)l|I.(«.l.!(í-.H„l|S(s.r)'tr(e,l¡[„<ir
< M\ I fío ~ r)~aS{s. r)$rdlVr\H '

7o

+.U2 r(í0-r)-Q||<í>r||Hsdr. (3.6)

Substituting (3.6) into (3.5) yields

£Uf!P* < Cv/.r.p{j(í(ío-5)-2Q£:||$s||?[Sds
4- ÍE\ fS(to-r)-aS(s.r)$rdWr\pHds7o 7o

+ J‘E(J’(t0 - r)-“||*r||Hs¿r)'(¡j), (3.7)
Applving Hólder's inequality (for the integral with respect to (í0 - r)~Qdr)
and Fubini's theorem to the last summand in (3.7). and taking ti = t we get:

E í\t0-s)-aS(t.s)^3dW3
Jo

p

H

<

+ /‘(to - S)-“£||4't||f„sdSJO

4-f E\ J\t0 - r)~aS(s. r)$TdWr\pHdsy
By Gronwall’s lemma we deduce

í\to-sraS(t.s)^3dW3
Jo

f\t0 - S)-2“£ii$JrHS*,Jo
< C (3.8)

where C is a constant depending on T, M, p and q.
Fix t € [0, T), and take t0 — t + ±. From (3.8) for t0 = t + ¿ and letting n

tend to infinity we deduce that {(t - s)~aS(t, s)$3/[0,{](s), s € [0, T]} belongs
to Dom 6h and (3.1) holds. The proof of the Theorem is complete. □

Let us introduce the following hypothesis on a random evolution system
S(t.s) verifvim (Hl) and (H2):

18



H3)’: Conditions (H3.a) and (H.3.c) hold. and moreover. we have

(H3.b)': \\Der‘S{t.s)\\2UH H) < M2. for all t > s.r and for some constant
;=i

M > 0.

Xotice that (H3.b)‘ is stronger than (H3.b). and it implies that

1 = 1

for all t > s.

The following theorem provides an estimate of the W norm of the máxi¬
mum of a Skorohod integral, and it constitutes the main result of this section.

Theorem 3.3 Fix p > 2. Let $ = {<£{. t € [0.T]} be a LziU. H)-valued
adapted process such that E /0r 11^5IIhsc^,s < se- Let S(t. s) be a random evolu-
tion system satisfying hypotheses (Hl). (H2) and (H3)'. Then the L2HJ, H)-
valued process {S(t. s)$sI¡o.t\{$)- s € (0. T]} belongs to Dom6h and we have

E ( sup | í S(í.s)$
\0<t<T JO

for some constant C > 0 which depends on T. p and on the evolution system
S(t. s).

Proof: We will make use of the factorization method in order to handle the
supremum in t. Fix a. € (1/p. 1/2). We can write

S(t,s)$3 = Ca J* S(t.r)(t - r)a 1S(r, s)(r — s) a$adr, (3-9)

where Ca = (sin7ro;)/7r. By Theorem 3.2 we know that for all r € [0. T\ a.e..
the process S(r.s)(r - s)-Q$s/[0.r¡(s) belongs to Dom 5H■ Then applying
Proposition 2.8 and using hypothesis (H3)! we obtain for almost all r 6 [0,t]

í S(t. r)(t - r)a~lS(r. s)(r - s)~a$3dW3 = S(t. r)(t - r)a~lYrJo

r)a~[( Df S(t. r))S{r. s){r - s)-Q$3(eí)ds, (3.10)
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where
Yr = / S(r.s)(r - .s)-*<S>sd\Vs.

By Fubim's theorem for antieipating stochastic integráis (see Lemma. 2.10)
and using (3.9) we obtain

lo
S(t.s)$sdWs

= Ca J S(t. r)(t — r)a LS(r. $)(r — s) a$sdrjdWs
= CaJ^J's(t.r)(t-r)a-lS(r.s)(r-s)-a<f>sdW^dr. (3.11)

Substituting (3.10) into (3.11) yields

T S(t.s)*ad\V3
Jo

= Caj\t-r)°-xS(t.r)Yrir
-Ca í‘(t-r)°-1Jo

x (£jt(D?S(t.r))S(r.s)(r-s)-“$,(e,)ds^dr. (3.12)
Appiving Holders inequality to the right-hand side of (3.12) and using hy-
pothesis (H3.b): yields

sup | í S{t,s)$sdWs\H
<t<T JO

sup f (t-r)a~l\Yr\Hdr + M2 í ||<£>s||Hsds7T Q<t<T JO JO

T \1/? rT

\Yr\pHdrj +M2Jo |[*,||hs*.

<

< —
M/p-l\1_;Ta.í/fr 'l/p
7r \ap — 1

and. henee

E( sup | f‘s(t.s)*,dlV,\1l) < Cr.p.a [E í\Yr\p„dr + E í HMIfeds'
0<t<T -10 \ Jo Jo ,

(3.13)
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From Theorem 3.2 we deduce

E(\Yt\pH) < C fit - sr2aE^s\\pHSds. .(3.14)Jo

Finallv. substituting (3.14) into (3.13) and usmg Fubini's theorem we deduce
the desired estimation. □

4 The forward integral
Let U and H be two real and separable Hilbert spaces and let W be a

cylindrical Wiener process over U on the time interval [0. T]. We will denote
by {e¡.i > 1} and {/i¡.í > 1} complete orthonormal systems on U and H.
respectively.

Definition 4.1. Let Y : [0.T] x Q — L2{U. H) be a measurable process such
that Y(u) G Ll{[0.T}\H) a.s. for each u E U. We say that Y belongs to
Dom S~ if

V" := n /r¿U(e,)(W%+J.1Ar(e,) - W,(e,))ds

converges in probability as n tends to infinity. The limit of the sequence Yn
is denoted by / YgdW'Y and is called the forward integral of Y with respectJo
to \V.

The forward integral has been studied by Russo and Vallois in [13] in
the case of real-valued processes. From Definition 4.1 it follows that for any
process Y belonging to Dom 6~ and for any A € T such that Yt(u>) = 0.
dt x dP-a.e. on [0, T] x A we have

J YsdWf = 0 a.s. on A.
The next proposition establishes the relationship between the forward and

the Shorohod integráis of a process of the form {S(t, s)$s/(o.tj(s), s G [0, T]}
where S(t. s) is a random evolution system and is an adapted process.

Proposition 4.2. Let $ = ¿ E [0. T]} be a L2{U, H)-valued adapted
process such that E/0r ||$s||HSds < oo. Let S(t,s) be a random evolution
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system satisfying hypotheses ÍHlJ. ÍH2) and (H3) Then fot each t £ [0. T],
{S[t. s)<$J-qJ]{s). 5 6 [0. T]} belongs to Dom¿~ and

ís(t.r)MV- = 1 •„.,;(•)) • -Jo

+ f,'t(D;S(tr)Ke,)1’Áe,)dr. (4.1)Jo fs.
In order to prove (4.1) we first State the following:

Lemma 4.3. Let $ and S(t.s) be as in Proposition 2^.2. Then for each
t £ [0. T], and each positive integer n > 1

(¿ ho-d+^ATÁ-) f{ _1)+ S{t.s)($s{et) S e^ds') £ Dom 8H
and

JL /-(t+i)AT / [-rAt \
El {Jír_xr Sl-L s1^>M S «.)ds)

= E / 5(í,s)¿íí(l(J„j.)(')'J,í(ei) Se,)<¿s
1 = 1 -70

JL r{t+-^)AT rr/\t

-E/0 J^^JD'sSit.sm.Mdsdr. (4.2)

Proof: By (H3)’ and Proposition 2.8 vve have

H / 5(t, s)¿/f(l(s-s+i](-)$a(ej) ¡S e¿)d$1=11/0 ”

■ w: " S(t. s)($3(el) 0 ei)dWr)ds
+ E /‘(É ryiK'S^s^M^uejhd^ds

,.i-™ ¡.i*

= E jf(/'** S(í. s)(*.(e¡) X e,)<ÍWr)ds
+ E /' r+"(0''S(í.s))í,(e,)dr<Í5.

1=1 ■'O 2s
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Xotiee that S{t.s) € BL2(L(H.H)) and e¡) S e¿ satisfy the
rx '

assumptions (i), (ii) and (iii)‘ of Proposition 2.8. Indeed. we have for all
■s < r <t. .

J=1

due to (H3.b)!. Finallv. Fubini's theorem for the Skorohod integral (see
Lemma 2.10) allows us to conclude the proof of the lemma. □

Proof of Proposition f.2: Fix t € (0. T]. We only need to prove that
n

An ■— n £ fo S(t. s)$s(e,)[Ws+i(et) - H\,(e,)]ds converges in probabilitv as
i=i a

n tends to infinity to the right-hand side of (4.1). Actually we will show the
convergence in L'2(Q). Using (4.2) we have

n /"(t+^jAT ( rrAt \
A„ = nlljQ yy( _i)+ S{t. s)($s(e,) ei)dsj dWr

n r(t+±)AT rrAt

/ , (D?S(t,3))*.(ei)d8dr.fZ[J0 J(r-1) +

Applying Theorem 3.2 with a — 0 and p = 2 yields

JL r(t+^)AT / rrAt \

£|n£/ (/ , Sft.SÍft.MS^dsjdlVr
- f S(t,r)*TiWT?HJ0

/>(t+i)AT ( rt A \
< 2E\J nij ^S(t.s)('£<l>,(eí)3e¡)ds)dWr|J,* V ir n^+ Í=1 /

+2CE¡‘\\n[ (¿S(r.s)(4.,(e.)®e,)íis-$r¡|2HSÍ¡rJa Jlr-¡1<- lm¡

< 2E n Un , S(f,S)(¿Xe,)®e,)<fs||2„s<irJt
1=1

+4CE í ||ni S{r.s)$sds - QrWhsdr
J 0 J(r— —)+' a '

+4CE [ ||ní ( S{r1s)($s{ei)®ei)ds\\2Hsdr.
JO 7(r-¿)+ ,v a• i =n+I
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This expression can be estimated by

2U< l'^'T E^yis
-r 4C [T n fr £||S(r.s)<Ms -$r\\2HSdrds

JO

rT x
-t- 4CM2E Y' \$s{et)\2Hds = ai + a2 + a3.Jo

Then terais and a3 clearlv converge to zero as n tends to infinity. uniformly
with respect to t 6 [0. T]. The convergence to zero of a2 as n tends to infinity
follows from the estimate

a-2 < 8C(M2 + 1) [T £11^,11Jo

which allows us to approximate $ by a process in C([0. T], L2(Í2; L2(Í7. H))).
In a similar wav we can write

(Der‘S(t. s))$s(et)dsdr
r-¿) +

<

-E í‘(D;S(t. r))(e,)ir(e,)dr\H
n /■(í + -)AT rt

E/ : {Der‘S{t. s))4>s(e,)dsdr|//t=1yt -Ar-¿)+
n

+| f; f(D;S(t.r))(<¡i)$r(e%)dT\H
t=n+l v'°

-HE f‘nj'[x{(D’;S(t.s))<t¿e,) - (D;S(t.r)){et)9r{el)}dsdr\H
! ss t n

Ai + Aj+A*.

Clearly A* and A2 tend to zero in L2(fl) as n tends to infinity. The term A^
can be estimated as follows:

Al < I E/ nÍ 1 Dtr‘5(t■$))($s(ei) - $r(ex))dsdr\H
^ | 0 J r — —
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+¡¿/ nfr . {DVS[t- s) - {Dr S{t. r))(e¿)] $r{el)dsdr\H
l = 1 'i

< (f jt»jCx IB?*».««W*»*)
X 1 ¿ í n I , l$s(e,) - «MOlffdsdr

w = iy° Jr~

X

1/2

+ / n/_i K^r 5(f. r))(e:)(5(r.s) - /)<í>r (e») |//c¿sc¿r
¿ = 1 ^ r n

30 /■(

|$a - «MÍlS^r
1/2

/ -~ ,c ,r \ ^2

Jq n J t |(5(r. s) -/)$r(eí)|^dsdrj
and this converges to zero uniformlv with respect to t in L2(Q) as n tends to
infinity. □

Combining Theorem 3.3 and the expression given in Proposition 4.2 for
the forward integral we deduce the following maximal inequality for the for-
ward integral.
Theorem 4.4. Fix p > 2. Let $ = 6 [0, T]} be a L,2(U, H)-valued
adapted process such that E /0r ||$s||hS¿s < oo- Let S(t, s) be a randorn evolu-
tion system satisfying hypotheses (Hl), (H2) and (H3)’. Then the ¿-¿{U. H)-
valued process {S(í, s)$s/(o,t](s), s € [0. T]} belongs to Dom 6~ and we have

E{ sup | f S(t.r)$TdWr-\pH) <Cs,p,tE [T\\*.\\$sds,
\0<t<T JO ) Jo

for some constant Cs.p.r > 0 depending on T, p and the random evolution
system S(t, s).

Proof: By Proposition 4.2 we know that the Li(U, tf)-valued stochastic pro¬
cess {5(í. s)$3/[0.t](s), s € [0. T]} belongs to Dom S~ and we have

í S{t. r)$rd\V~ = f S{t. r)$rdWTJo Jo
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(4-3)+ ÍZ^Sit.rme^rie^dr.
Then the result follows from Theorem 3.3 and hypothesis (H3.b)'. □

As a consequence of Theorem 4.4. we have the following continuity result.

Corollary 4.5. Let $ and S{t.s) be as in Theorem 4-4■ Then the H-valued
process {/0f S{t. s)$sdW~. t € [0. 2~]} has a contmuous modification.
Proof: Fix a € (1 /p. 1/2) and set

rr= / S(r.s)(r-s)-Q$sdWs.Jo

We know that the process Yr is well defined for almost all r in [0,T]. From
Proposition 4.2 applied to the process {(r — s)_a$s,s € [0,r]} we deduce
that

Yr = Yr +
rr 30

/. S{r,s))(ex){r - s) a^i(eí)ds, (4.4)

where

Yr= / S(r.s)(r-s)-a<P3dW3-.
JO

On the other hand. susbstituting the relation

(■Des'S(t.r))S(r,s) = (D;S(t. s))(et) - S(t,r)(D;S(r< s))(et)
into (3.12) yields

T S(t, s)$3dWs = Ca í\t - r)a~lS{t, r)Yrdr
Jo Jo

~ ft'Z(D;S(t.s))(et)<!>,(ei)dsJo >=i

+Ca í\t-r)a~lS{t.r) x
Jo

x (fQ YÁD7s(r'S))(ei)(r - sy^siejds'jdr
= Ca í\t- r)a-lS(tr)Yrdr

Jo

- L S(t- S)){et)$3{ex)ds. (4.5)
Jv

t = l
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Henee, from Proposition 4.2 we deduce

T S(t. s)$sd\\7 = CQ í\t - r)a~lS(t. r)Y rdr. (4.6)
Jo Jo • -

By (4.6). we only need to show that the right-hand side of this equation is
continuous in t. Fix 0 < t0 < t < T. Then our hypotheses on the evolution
svstem S(t. s) and the dominated convergence theorem implv that

| f (t - r)a~lS{t.r)Yrdr - í (t0 - r)a~lS(t0,r)Yrdr\HJo Jo

< \ ¡\t-rr-lS{t.v)Yrdr\HJto

+ \{S{t. t0) - I) í {t0 - r)a~lS{t0,r)Yrdr\H
Jo

+\S{t.t0) í [(í - r)a_1 - (í0 - r)a_1]5(ío,r)Fr(irj/í
Jo

converges to zero as t 1 tQ. In a similar way we show that the above expression
converges to zero as t j t0. □

5 Stochastic evolution equations with a ran-
dom evolution system

In this section we will study nonlinear stochastic equations of the form

Xt = S+ ft(A(s)Xa + F(s,Xs))ds+ rB(s,X,)dWat íg[0,r], (5.1)
Jo Jo

where f is an if-valued J^-measurable random variable and W is a cvlindri-
cal Wiener process over the Hilbert space U on the time interval [0. T}. We
will assume the following conditions on the coefficients A, F and B:

(A.l): The mapping F : [0, T] x Q x H —* H is Vt x fí(/í)-measurable. where
Vt denotes the predictable cr-field of [0, T] x Q.

|F(í.i) - F(í,y)|« < C\x~y\H,
|F(í. x)\]f < C2(l + tó),

for some constant C > 0 and for all x, y € H.
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(A.2): The mapping B : [0. T] x f> x H —► ¿2(í/. #) is Vt x fí(/í)-measurable.
Üfí(f.x) - B(t. {/)¡|Hs < C\x-y\H.

!IW.x)llí,s < c2(i +

for some constant C > 0 and for all x.y 6 H.

(A.3): {A(s.u/).s € [O.T].^ 6 H} is a random family of unbounded operators
on H such that Dom .4*(s) D Hq where Hq is a dense subset of H. We
assume that A*(-)y G L'2([0.T] x fh H) for all y € Hq, and there exists
a random evolution system S(t.s) satifying hypotheses (Hl), (H2) and
(H3)' sueh that

S*(t. s)A*(t)y = ^-S*{t,s)y, for all y G Hq.at

Definition 5.1. We say that an adapted and continuous H-valued process
X = {Xt.t G [0. T]} such that E(sup0<t<T \Xt\pH) < oo for some p > 2 is a
mild solution to Equation (5.1) if

xt = S(t, 0)£ + S(t, s)F(s, Xs)ds + jí* S(t, s)B(s, Xs)dW~, (5.2)
for each t G [0,7], where dW~ denotes the forward integral (see Section 4)-
Definition 5.2. An adapted and continuous H-valued process X = {Xt, t G
[0, T]} such that E(sup0<t<T \Xt\pH) < oo for some p > 2 is a weak solution
to Equation (5.1) if for each y G Hq and t G (0. T] we have

(Xt,y)H = (&v)h + f (A*(s)y,Xs)fjdsJo

+ [t(y,F(s,Xa))Hds+ í\B*(s,Xt)y,dWa)u.Jo Jo

Proposition 5.3. Under the assumptions (A.l), (A.2) and (A.3), any mild
solution to Equation (5.1) is a weak solution.
Proof: For each n > 1 we define

X? = S(t. 0)5+ r S(t.s)F{s.Xs)ds
Jo

+n ¿ f S(t. s)B(s. Xs)(et)(Wa+1(et) - Ws(et))ds.
«=i Jo
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Xotice rhar

A7 Sít. s)X¡ — j S(t. r)F(r. Xr)dr
+n ¿ f S(t. r)B(r. Xr)(ei)(Wr+±(et) - Wr(et))dr.

t=i Js

We know. by assumption (A.3). that for all y € Hq, x € H we have

f {S*{r.a)A*{r)y.x)Hdr = (Sm{t. a)y, x)H - (y,x)H.
Ja

Henee, for all y G Hq we obtain

r„ := nj^f ¡t{S*(r.o)A'(r)y.B{o.Xa)(el)[W<J+±{ei)-W(J(ei)\)Hdrdcj
1 = 1 Js J(T n

= n¿ í‘{S-(t.cr)y-y,B(a,X„)(e,){W„¡.(ei)-Wl,(ei)})„d<71=1Js

= (.Y(".¡/)„ - {S(t.s)X?,y)„ - {f‘S(t,r)F(r, X,)ir,y)H
-n¿ A!/,B(r,Xr)(el)[Wr+1(ej)-Wrr(ei)l)íf<¡r. (5.3)' / - n

!=1

On the other hand. applying Fubini's theorem we have
rt rr

rn =
»=1 •/s

- W»(6i)])ffíio-dr

= / M*(r)y! / S{r,a)B{a. X<,)(ei)[Wv+i.(ei) - W^e^da)Hdr
t=i

= J‘(A'(r)y, X? - S(r. s)X" - jT S(r, <7)F(a, X,)dv)Hdr
= t‘(A-(r)y,X?)Hdr- [‘(A-(r)y, S(r,s)X?)HdrJs Js

- (A’tr)y. ^ 5(r, a)F(a, Xa)da)ndr
= j’(A-(r)y.X;)H,lr - (S(í. J,)« + (X?, y)H

- í í (A*(r)y.S{r.a)F(<7.X„))Hdrda
Js J<7
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- f <.-nr)i,. .Y?;wdr - (S(t. t)x;. v>* + (X;. *>»
- j [y. Sít. a\Fia. X„))Hda * J (t/. F(a. X,))Hdcr. ■ ■■ (5.4)

Comparing (5.3) and (5.4) vields

(X?.y)H = {.Y". y)H + J‘(A'(r)y,X^)f{dr

We have that. by Proposition 4.2 with S(-.-) = /#, the last summand in
(5.5) converges in L2(Q.) as n tends to infinity to (J¡ B(r, Xr)d\VT.y)h =

Xr)y. d\Vr)u. Then it suffices to show that sup0<É<T E(\Xt - Xf\2H)
converges to zero as n tends to infinity. This is a consequence of the estimates

□used in the proof of Proposition 4.2.

Theorem 5.4. Let S(t.s) be a random evolution system satisfymg hypothe-
ses (Hl). (H2) and (H3)\ and let F and B satisfy (A.l) and (A.2), respec-
tively. Then Equation (5.1) has a umque mild solution.

Proof of umqueness: Assume that X and Y are two mild Solutions to Equa¬
tion (5.1). Then. for arbitrary t € [O.T] and p > 2 such that

E( sup PC.I5,) + £( sup \Yr\1,) < oo
O<r<T O<r<T

we have

< 2P"L¡ í S(t.r){F{r. Xr) — F(r.Yr)}dr\PffJo

+2<"l| S(í. r){B(r. ,Vr) - B(r. yr)}dW-|&
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< 2p~l MpCpTp~l í \Xr~Yr\pHdv
Jo

-r'2p~l sup ¡ ÍS S(s.r)L0,i(r){B(r.Xr) - B(r.Yr\}dW-\pH.
se.o.r Jo ■

Henee, from Theorem 4.4. we obtain

E\Xt-Yt\pH < 2p-lMpCpTp~l t E\Xr-Yr\pHdTJo

+ 2p-lCs.P.T f E\\B(r.Xr)-B(r,Yr)\\pnsdr.Jo

Therefore. using Hypothesis (A.2). we get

E\Xt - Yt\pH < 2p-lMpCpTp-1 f E\Xr - Yr\pHdrJo

+2p-lCs.p.TCp f E\Xr — YT\pHdrJo

= 2p~1Cp{MpTp~l + Cs.p.r) f* E\Xr-Yr\pHdr,
Jo

which. together with Gronwairs lemma. implies E\Xt—Yt\pH = 0. for arbitrary
t G [0. T]. and the proof of uniqueness is complete.
Proof of existence: The proof of the existence is similar to that for a determin-
istic evolution system. We begin an iteration procedure with X¡0) = S(t, 0)£
and let us define, for n > 1 and t € [0. T}.

X{tn) =S(í,0K+ r S(Lr)F(r,Xln-l))dr+ f S(t,r)B(r, X^dWp.Jo Jo
(5.6)

Using induction on n. it is easy to prove that assumptions (A.l) and
(A.2), Theorem 4.4 and Corollary 4.5 imply that Xín) is an adapted and
continuous /f-valued process such that supfe(0 T] E\Xt < °°-

Computations similar to those in the proof of Theorem 5.4 using and
Theorem 4.4 yield

¿E sup pc¡"+l,-x,<"li;,<3c. (5.7)
a=o te[o.r]

Therefore. from Borel-Cantelli lemma. the sequence {X(n), n € IN} is uni-
formly convergent in [0. T}. for a.a. u>. Denote the limit by Xt. Since X is
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the uniforra limit of a sequence of adapted and continuous H-valued pro-
cesses. ít is also adapted and continuous. The estímate (5.7) implies that
X belongs to Lp{{0. T] x fi) and that (X(n). n £ EN’} also converges ta X in
Lp{[0. T] x f>). Finally. from (5.6) and Theorem 4.4. it is easy to show that
X is a mild solution of equation (5.1) and so the proof is complete. □

Remark: The existence of a mild solution still holds if we suppose that condi-
tions (A.l). (A.2) and (A.3) are true locally. That is. we assume that for all
n (A.l) and (A.2) are satisfied for any x.y £ H with \x\h < n and \y\n < n.
and with some constant Cn. and on the other hand. we also assume that
the random evolution system S(t.s) satisfies (Hl), (H2) and (H3)’ locally.
This means that there exists a sequence £ EN’} C T and a sequence
{Sk. k £ IN} such that T ÍT and for each k S = Sk on fl* a.s., and Sk(t. s)
is a random evolution system satisfying conditions (Hl), (H2) and (H3)‘.

6 Stochastic partial differential equations
with random generators

Let O be a domain in IR'1 and consider the Hilbert space H = L2(0). As in
the previous sections W will be a cylindrical Wiener process over a Hilbert
space U on the time interval [0,T].

In this section we will first provide sufficient conditions for a random oper-
ator A on L2(0) given by a random kernel f(x. y,u) to be in JD1,2(L(H, H)).
Lemma 6.1. Let f : O x O —► IR+ be a measurable function such that:

(i) f(xr) G L2{0) for all xe O.

(n) supl60 J0 f(x, y)dy < oc and supl60 fQ /(y, x)dy < oo.

Then the mapping A : L2(0) —♦ L2(0) given by

(Ag)(x) = [ f(x, y)g{y)dyJo

is a bounded linear operator such that:

I|A|U(/í.h) < sup / f(x, y)dy
xeo Jo
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Proof: This Intima is an immediate consequence of Fubini's theorem and
Schwartz s inequality: .

í \{\g)(x)\2di = í | í f{x.y)g{y)dy\2dx
Jo Jo Jo

< [([ f{x,y)dy){í f(x.y)g2(y)dy)dxJo Jo Jo

< (sup / f{x.y)dy)(sup f f(x,y)dx)\\g\\l2{oy
x&0 JO y€0 JO

□

Lemma 6.2. Let f : O x 0 x Q. —► IR+ be a random measurable function
venfying the followmg conditions:

(i) f(x. •) € L2(0) for every x € O a.s.

(n) There exist tuio nonnegative random variables Mi, A/2 such that

sup i f{z,y)dy < Mi
ceo J'0

sup I
;€0 •/'

f
f(y,z)dy

0
< m2

and £(A/f) < 00, E(M$) < 00 for some p >2.

Then the random operator A{u) on H defined by

(A(u)g)(x)= f f(x,y,uj)g{y)dy
Jo

belongs to the space ¡/(Q: L(H. H)).
Proof: First notice that by Lemma 6.1 for each oj € Pl a.s.. A (a/) is a bounded
linear operator on H = L2(0) and ||A||¿(/í,/f) < (A/iA/2)1/2 a.s. Then the
result follows from the fací that / is measurable and we have:

£||A||pL[H.h) < (E(A/f)E(A/*))1'2 < 00.

□
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We can ¿tate a Hilbert-valued versión of Lemma 6.2 whose proof would
be identical. -

Lemma 6.3. Lt‘ G be a real and separable Hilbert space. Consider a mea-
surable functio n f:OxOxfi-*G verifying the following conditions:

(i) F(x. •) € L2(0: G) for every x £ O a.s.

(n) There exist two nonnegative random variables Mi and M2 such that

sup / \F{y,z)\cdy < Mi a.s.,
-go jo

sup í \F(z,y)\cdy < M2 a.s.
z&o Jo

and E(Mi) < oc, E(M$) < oc.

Then the random operator from H to L2(0:G) = L2(G,H) defined by

(AM0)(x) = í F(x, y, ui)g(y)dy
Jo

belongs to the space If(Q\ L(H, L2(0\G))) and

l|A|U(ff,¿2(o;G)) < (MiM2)1/2.

Lemma 6.4. Let f : O x O x Q —* IR+ be a measurable mapping veriying the
hypotheses of Lemma 6.2. Assume, in addition. that f{x,y) € ID1'2 for each
x. y € O. and that there exists a versión of the derivative Drf(x,y) which is
measurable from [0. T] x O x O x Q mto U and verifies:

(i) Df(x. •) € L2([0. T] x O x Q; U) for all x e O.

(ii) sup2e0 fQ |Drf(x. z)\cdx < ai(r). a.s.,

sup.60 ¡o\Drf{z. x)\rdx < a2(r) a.s.,

where aL(r) and a2{r) m? nonnegative measurable processes such that
E fo (ai(r))2dr < oc. E J0r -/>i r))2dr < oc.
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Then the random operator A(~/) : L'~{0) — L2{0) defined by

(Ag)(x) = [ f{x. y)g\y)dy - -.(6.1)Jo
.

belongs to 1Dl2(L(H. H)) and for all {r.jj) almost everywhere. £>rA(~¿) is the
operator in L(H. L2{U. H)) given by the kemel Drf(x.y).
Remarle: Xotice that for all r € [0. T] a.e.. the kernel Drf(x.y) verifies the
assumptions of Lemma 6.3.

Proof: By Lemma 6.2 we know that A E L2{Q: L(H. H)). According to
Definition 2.1. in order to show that A 6 1D12{L(H. H)) we have to show
that conditions a) and b) of this definition are satisfied:

a) We must show that for every g £ L2(0). Ag belongs to D12(tf).
From condition (i) it follows that (Ag){x) € D1-2 for each x 6 O. and
D[(\g)(x)\ = l0 Df{x. y)g(y)dy. Furthermore. using condition (ii) we
get

E I í |Dr[(A^)(x)]|2rdxdr
Jo Jo

< EJo j0(j0\Drf(x'y^u Ig{y)\dy)2dxdr
< E{jQ(*¡wj0\Drf(x'y)\udy)

*{supJo\Drf{y,x^udxWr'j \\g\\2L2{o)
~ E(lo ai(r)a2(r)dr) Mino)
- {E^Io (r))2<ir)E(j0 (a2(^))2ár)| \\g\\lHO) < oc.

This implies that Ag £ JDÍ,2(H) (see (15, Theorem 3.1]).

b) Clearly Dr(.\g) = (Dr\)(g), where DrA is the random operator belong-
ing to the space L{H. L2{U. H)) associated with the kernel Drf{x. y).
Henee, it suffices to show that DrA belongs to the spaceL2([0. T] x
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O; L(H. L2{U. H))). This follows from the fact that

Jo\Dr[(\g){x)]\ldx < ai(r)a2{r)\\g\\2L2{o)- - ■.

which implies \\DrM\uH.L2(U.H)) < («i(r)a2(r))1/2. □
We can also show a versión of Lemma 6.4 for fc-th differentiable operators:

Lemma 6.5. Let f : O x O x Q —► IR+ be a measurable mappvng venfymg
the hypotheses of Lemma 6.2. Assume that f{x.y) € ID*'2 for each x.y €
O and for some integer k > 1, and there exist versions of the derivatives
D]ri r f(x. y). 1 < j < k. which are measurable from [0. T]J x O x O x Q into
U2] and verify:

(i) DJf(x. •) 6 L2([0. rp x O x íí; U:5J) /or all x € O, 1 < j < k.

(n) sup,gQ /q \D^X f{x. ~) | u'S} dx < ai.]{ru...,r]),
sup.e0 lo\Dil...rJf{~-x)\usjdx < a2j(ri,... .r,), where anda2j are
nonnegative measurable random fields such that E/[o,rp(ai.j(r))2^r <-
oc and E Jj0,Ty (a2,j(r))2dr < oo. for each j = 1,.... k.

Then the random operator A(w) on L2(0) given by (6.1) belongs to JDk,2(L(H.
H)), and for all ri,... ,rj,u a.e. D} _r A(u/) is the operator belongmg to
L(H. L2(U9j. H)) given by the kemel DJri r]f(x.y) .

Consider now a random second order differential operator of the form
n

At = ^2 aó(x^)
•0 = 1

d2

dxtdxj

n d
+ '£,bi{x:t)—+c{x,t). (6.2)

The coefficients aX]. bx and c are measurable functions from üx [0.1] x Q in
IR. Let us introduce the following hypotheses on the random operator At:

(Al): For each (x,t) 6 üx [0. T], aij(x. t), bi(x. t) and c(x, t) are /‘t-measura-
ble (adaptability).

(A2): The matrix (a¿j)i<x.j<n is symmetric and uniformly elliptic. That is.
there exist constants 0 < c\ < c2 < oo such that

CilCl2 < aij(x.t)fáj < c2¡Z¡2. for all £ € IRn.
i.j=i
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(A3): The eoefficients aand c are continuous and uniformly bounded in
O x [0. T}. and. in addition they verify the following Holder continuitv
property:

\atJ{x.t) - au[y.s)\ < A'(|x - y\a + \s - t\a/2).
\bt(x.t) - b,{y.t)| < K\x-y\a.
\c{x.t) — c[y.t)\ < K\x — y\a.

for some constants 0 < I\ < oc. a > 0 and for all x, y e O. s.t e [0, T].
Furthermore a1J(-.í) is of class Cl with uniformly bounded partial
derivatives.

(A4): For each (x. t) € O x [0. T] we have that atJ(x. t), £), 6¿(i. t). and
c(x.t) belong to D2‘. and the derivatives

\Dral](x. t)\u, \Dr^-{x.t)\u. \Drbi(x.t)\u.\DrC(x,t)\u
are bounded by a nonnegative process $(r) such that

E{| ÍT\Z(r)\¿dr\r) < oc
Jo

for all p > 2. We also assume that

I D2rir2atj(x. t)\u2>U- \^nr2 t)\U(&U,

\Drir,t>i(x.t)\U9U- \D2rlrAX’t)\U®U
are bounded by a nonnegative process '£(r1,r2) such that

E{\ f (^{ri. r2))2dr1dr2|p) < oc. for all p> 2.
JíO.Tj2

(A4)’: We assume that the following quantities are uniformly bounded:



+ \Derkb,{x.t)\2 + \Derkc{x.t)\2

In what follows we will assume that O = IR". The case of a bounded
domain O with Dirichlet or Neuman boundary conditions would be treated
in a similar way.

Suppose that .4 is a random second order differential operator verifying
hypotheses (Al). (A2) and (A3) with O = IRn. We will denote by T{x. í; y, s)
the fundamental solution of

(6.3)

(For details. see [6]).
Conditions (A2) and (A3) imply that there exist constants c\, Ci >0 such

that:

(6.4)

(6.5)

Proposition 6.6. Suppose that At is a random second order differential
operator verifying hypotheses (Al), (A2) and (A3). Let r(x,f;y, s) be the
fundamental solution of (6.3). For any t > s, t,s 6 [0, T] let S(t,s) be the
random operator on L2(lRn) given by

(S{t, s)g){x) = í r(x, t; y, s)g(y)dy.
J1Rn

(6.6)

Put S(t.t) = Id. Then {S(í.s).0 < s < t < T} is a random evolution
system on L2(1R'1) m the sense of Dejdnition 3.1.

Proof: By construction (see Friedman [2]) the random kernel T(x, í;y, s;u)
is a measurable mapping from IRri x IR/1 x Q —► IR+ for each t > s. From
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16.4) we deduce

and

F(x. t: •. .s) € L2(]Rn) for all x e IR", t > s

[ T{x.t: y. s)dy < c,(2rrr7 (6.7)
JJRn

í T(x.t:y, s)dx < Ci(2-r12. (6.8)
'IRn

Henee, by Lemma 6.1. S(t. s) is a bounded linear operator on L2(IRn). More-
over the mapping (t. s.x) —► S(t. s.a/) is stronglv measurable from A x Q in
L(H.H). and S(t.s) is ^-stronglv measurable from Q in L(H.H). Condi-
tion (iii.a) of Definition 3.1 clearly holds. and the continuity property (iii, b)
is also known (see [6]). □

Proposition 6.7. Let At be a random second order differential operator
verifying hypotheses (Al), (A2), (A3). (A4) and (A4)’- Then the random
evolution system S(t.s) gzven by (6.6) venfies hypotheses (Hl), (H2) and
(H3)
Proof: The proof will be done in several steps:

Proof of (Hl): By Lemma 6.2 and the estimares (6.7) and (6.8) we deduce
that

l|S(t.s)||1(*.m<c1(2^)"'2.
So S(t.s) € L2{Pl\ L{H, H)) and the norm of S(t,s) is uniformly bounded.
In order to show that S{t.s) belongs to D2 2(L(H, H)) for t > s we will
make use of Lemma 6.5. We have to show that T(x,t;y, s) e D2,2 for each
x. y € IR", t > s and that conditions (i) and (ii) of Lemma 6.5 for j = 1,2
hold.

Let us first show that F(x.t.y.s) 6 D1,2. We recall that r(x,í;y, s) is
the fundamental solution of

— — 4 r
dt ~ •

limr(x.í;y,s) = 6x(y).
11$

t > s

In the sequel we will write rLs(x.y) for T{x,t\y,s). Using the characteriza-
tion of the space ID1'2 giveti by Sugita in [15] we can show that rt,s(x.y) is
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RAC (rav absolutely continuous). and rhe derivative Drrt 3{x. y) verifies

^DrTtAx-y) = AtDrTtÁx-y) + iDrAt)Tt,s{x. y).
for r € [0. t\. Henee.

Drr,,(i.y) = /__ / r„(i.í)| ¿ Drail(lr)^^/lRn Js

n

i&y)

+ YiDMlr)^(ly)1=1

+Drc(^. y) \dTd£. (6.9)

Integrating by parts this can be written as

Drrt.s(x-y) =
IIRn Js

n

+ '52Drbi(£,T)?^-(Z.y) + £>rc(£,r)rr„,(f,y)jdrdf
* pt n Gp ap

- ¿ -¿L(x-0-^:1{^y)Drav{^r)dTd^. (6.10)•/IR Js
, J=1 o$i a$j

Prom (6.4), (6.5) and (6.10) we obtain the following estímate:

\Drr,.,(x- y)W < C(t - S)-Í exp

x / < sup
>s { í€R"

i

*

^(í.r.*-7=1
+ Z\DMZ-r)\v

u i=l

x(t - s) 2 + sup |Drc(£,r)|tf
?€Rn

+ sup Y. \Draij(Z,T)\U(t-T)-b(T-s)~t\dT
t J = 1 J

< C(i-.)-í«p(-|^Í)íM, (6.11)
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for some constants c.C > 0. Henee, conditions (i) and (ii) of Lemma 6.5
holds for j = 1.

For rhe seeond derivadve we have . •.

2
rlr2

r tÁ*-y) AtD2rir2rt.s(x. y) + {Dr2At)Drirt.s(Z‘ V)
+(DrxAt)DrSt.s(x- y) + (D’2¡r2At)rt.3(x. y).

Henee.

D2rir2rt.s(x- y)
( n b2d r

IVrOr.Os ¿ Dr2av{^. t)
<■7 = 1 dSidtj

n dd r
+ £ DrMí ^ + VrAS> T)DriTrAS, V)

1=1
n

d$i

n dD r
+ £ DnI*(í■ r)~+ D'>C<«' ^A,IV.(Í, »)

1=1 °Sl

+D;ir2C{^T)TrM-y) }d£d,T.

Integrating by parts and using the estimates (A4) and (6.11) we get

\Drir^tAX-y)\csU
< C(t-j)-"^xp(-^^Wrl)*(r2) + *(r1,rJ)}. (6.12)

Henee conditions (i) and (ii) of Lemma 6.5 hold for j = 2. Furthermore.

l|S(í.s)||§,
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/ í( \ p/2
= £«S<f.*)!IW + E(yo ÜWIt.sMÍawrjn.*-)

ai /-t \P/2JQ s)\\LH.L2[l'-H'.H'ndrldr2j ■ -

< cjl + EI jf'o&ír))^'2
+ E\ j {${r))2dr\p + E| y J ('P(r1. r2))¿(ir1(¿r2|p/2| < oc.

and Hypothesis (Hl) holds.

Proof of (H2): Fix an element h <E H = L2(IR'Í). Then

DrS(t.s)(h) = í DrTt,s{x. y)h{y)dy. for r € [s. í],
yiRa

where Drrt.s(x.y) is given bv formula (6.9). Let us define DjS(t,s) as the
operator given by the kernel D~Tt.s(x- y), where

Ds TtAx.y)

E D,
í.j=i

dntJ
Ota

(f-r)
dErs
dti

($>y)
n sr )

+ 12DMS-T)-Q£±(S,y) + Dac(Z.T)rTA£,y)
art.r
#6 {^.y)Dsalj{tx)drd^.

The difference DsS(t. s - s) - Ds S(t. s) is the operator in L(H, Li{U, H))
given by the kernel

IR" Js-¡
Ff.r(^- 0

n r)r
+ E r)-¿5 ;(£- y)

(=1 aSí

+DJc(^,r)rT.i_f(^. y)\dTd£
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, y or; - . dr-
■(x.o-

%
(£• y)DsalJ(£. r)drd£

+¿Dj6,{í,r)(^r_^f)(í,,)
+D,c(í,r)(rr.a_f - rr s)(^. y)\clTd£

t^drt.r/ rJdTr.s-s drTS\fr ^ w J(.L -5T*(x-O t —^ —) &y)DsaijfoT)dTdz-RnJs d&

Let us denote this kernel by ,s.t(x. y). We have for any h G H

IR"
^c.s.t{x.y)h{y)dy\u

< cj [$(s)(r - s + s) 2 + $(s) + $(s)(t - r) ^(r — s + s) 2]dr|
x / (t - s + - ) 2 exp(-J¡Rn

\x - yI2
c(t-s + 7)mtl)'iv

+C [<i>(s)(r - s)~I + $(s) -t- *(s)(t - r)"I(r — s)"I]dr|
I 12

x í I í T3^s{z,y)h{y)dy - h(z)\(t - s)~% exp ~\)dz.J IRn JIRn C(t — S)

As a consequence,

/ I í ^s,3,t{x,y)h{y)dy\2udxJ IR" VIRn

< C(4(S))2 {(v/i + £ + (t - s)-I^)2||ft||2H
+ Ír" I Ír> y)h(y)dy - /i(-)|2d^|,

and this converges to zero as £ tends to zero.
On the other hand. DjS(t.s) belongs to TDi 2(L(H,L2(U,H))) (see first

step of the proof of Proposition 6.7).
Proof of (H3)’: We have alreadv seen that \\S{t. s)\\L{H.H) < cl{2ir)n/2. We
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have

;DerJ S\t. S)\\¿.h.H)
= sup / : [ D^rt.á(x.y)h{y)dy\2dx

k \H<\ •/Rr> -'Rr'
/ \ 1/2

< ((sup/ Der-rtJx. y)\dy){sup í \De/ rt.,(x, y)|dx)) .
\ X /R'! s/ •/R" /

Henee, the boundedness of £ ¡|Z?®‘5(í. 5)|||_(W /Í) follows from (6.9) and Hy-
;=i

pothesis (A4)\
Finallv. let us show that £ \\DerkD~S{t. s)\\2mi.L2{u.H)) bounded. We

have. for r < s < t.

DerkDs Tt.a{x.y)
r et ( n 82D~ r

= / / r,,(x.O £ D^a^r) • yj(C,y)•'Rn / s ( O&Otj
n r)D~ T

+ £ y) + Wé, T)D:rrAS, y)
j=i

n nefc p
+ 'LiD’a'^-T)-aédf~(i-v)

n ñB** r

+¿ £>a(í, t)° l y) + ¿Mí, ’-Wtv.K, y)
1=1

n

%

¿>rr;
+ £ r)-^¿(£, y) + r)rT,i=i r,S(^y)| drd£.

Again using (A4)'. integration by parts and (6.9) we show the boundedness
of £ sup/^a |D^DsTt.s(j.y)|c'dy. and £ sup/^n |£>«fc£>¡Tt,3(x,y)|t/dx. □

fc=i x k-l y

Remarks:

1) Theorem 5.4 together with Proposition 6.7 allow us to deduce the exis-
tence of a unique unid solution for stochastic partial differential equa-
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tions of the form

í — = Atu 4- f(t. x. u) + g{t. x. u)\Vt(x). tS[0.T].xeD
{ u(O.l) = ¿ÍX) - •'

(6.13)
where D C IR'1 is a bounded domain with smooth boundary, f.g are
continuous funetions on [0. T] x D x R which are Lipschitz and have
linear growth in the last variable, uniformly with respect to the first
two variables, and W is a Wiener process in L2(D) whose covariance
operator is bounded on D x D. Here .4t is a second order operator of the
form (6.2) with random and adapted coefficients satisfying assumptions
(A.l). (A.2). (A.3). (A.4) and (A.4)\

2) The above method allows to handle stochastic partial differential equa-
tions of the form (6.13) without motononicitv or coercivity assumptions
on the coefficients.
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