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Abstract

In this paper we establish a maximal inequality for the Skorohod in¬
tegral of stochastic processes belonging to the space LF and satisfying an

integrability condition. The space LF contains both the square integrable
adapted processes and the processes in the Sobolev space L2’2. Processes
in LF are required to be twice weakly differentiable in the sense of the
stochastic calculus of variations in points (r, s) such that r V s > t.

1 Introduction

A stochastic integral for processes which are not necessarily adapted to the
Brownian motion was introduced by Skorohod in [7]. The Skorohod integral
turns out to be a generalization of the classical Itó integral, and on the other
hand, it coincides with the adjoint of the derivative operator on the Wiener
space. The techniques of the stochastic calculus of variations, introduced by
Malliavin in [4], have allowed to develop a stochastic calculus for the Skorohod
integral of processes in the Sobolev space L2,2 (see [6]).

In a recent paper ([1]) we have introduced a space of square integrable pro¬
cesses, denoted by LF, which is included in the domain of the Skorohod integral,
and contains both the space of adapted processes and the Sobolev space L2,2.
A process ií={ti¡,íe [0, T]} in LF is required to have square integrable deriva-
tives Dsut and D^ sut in the regions {s > t} and {s V r > t}, respectively. We
have proved in [1] that the Skorohod integral of processes in the space LF veri-
fies the usual properties (quadratic variation, continuity, local property) and a

change-of-variable formula can also be established.
The purpose of this paper is to prove a maximal inequality for processes in

the space LF. Section 2 is devoted to recall some preliminaries on the stochastic
calculus for the Skorohod integral. In Section 3 we show the maximal inequality
(Theorems 3.1 and 3.2). The main ingredients of the proof are the factorization
method used to deduce maximal inequalities for stochastic convolutions (see [2])
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and the Itó formula for the Skorohod integral following the ideas introduced by
Hu and Nualart in [3].

2 A class of Skorohod integrable processes

Let (Í1,.F, P) be the canonical probability space of the one-dimensional
Brownian motion W = {Wt,t € [0,T]}. Let H be the Hilbert space Z/2([0, T'\).
For any h e H we denote by W(h) the Wiener integral W(h) = /QT h(t)dWt.
Let S be the set of smooth and cylindrical random variables of the form:

F = /(W(A1),...,W(An)), (2.1)

where n > 1, / € (Rn) (/ and all its derivatives are bounded), andhi,hn €
H. Given a random variable F of the form (2.1), we define its derivative as the
stochastic process {DtF,t € [O,!1]} given by

n

j=i

In this way the derivative DF is an element of L2([0,T] x fi) = L2(íl; H). More
generally, we can define the iterated derivative operator on a cylindrical random
variable by setting

Dl_tnF = Du---DtnF.
The iterated derivative operator Dn is a closable unbounded operator from
L2(Q) into Z/2([0, T)n x Q) for each n > 1. We denote by On’2 the closure of S
with respect to the norm defined by

^(W'(fti),...,W'(M)Mí), te [o,T].

II ^lln,2= ll ^lll»(n)+Eli D‘F
1=1

2
L3([0,T¡>xn) ■

We denote by S the adjoint of the derivative operator D that is also called
the Skorohod integral with respect to the Brownian motion {Wt}. That is. the
domain of 6 (denoted by Dom ó) is the set of elements u € L2([0,T¡ x Q) such
that there exists a constant c verifying

E í DtFutdt
Jo

<c\\F

for all F € S. If u € Dom 6. S(u) is the element in L2(íl) defined by the duality
relationship

E(6(u)F) = E í DtFutdt, F € S.
Jo
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We will make use of the following notation: /Qr utdWt = é(u).
The Skorohod integral is an extensión of the Itó integral in the sense that

the set I,2([0, T] x Q) of square integrable and adapted processes is included
into Dom6 and the operator 6 restricted to L2([0, T] x 0) coincides with the Itó
stochastic integral (see [6]).

Let Ln'2 = L2([0, T]; D"’2) equipped with the norm

v n,2~II v IIÍ2([0.T]xíí) +5^ II D*v llí2([0,T]J'(-1xn) •
j=l

We recall that L1,2 is included in the domain of ó, and for a process u in L1-2
we can compute the variance of the Skorohod integral of u as follows:

E(6(u)2) = E í u2dt + E f f DsutDtusdsdt. (2.2)
Jo Jo Jo

Let St be the set of processes of the form ut = -Fjój(í), where Fj € S
and hj € H. We will denote by LF the closure of St by the norm:

l{»>*} (D3ut)2dsdt + E 2drdsdt.

(2.3)
That is, Lf is the class of stochastic processes {ut, t e [0,T]} such that for

each time t, the random variable ut is twice weakly differentiable with respect
to the Wiener process in the two-dimensional future {(r,s),rVs > t}. The
space L2([0,T] x Q) is contained in LF. Furthermore, for all u 6 L2([0,T] x Q)
we have Dsut = 0 for almost all s >t, and, henee,

II « 11^=11 u lk2([o,T]xn) • (2-4)

The next proposition provides an estímate for the L2 norm of the Skorohod
integral of processes in the space LF.

Proposition 2.1 LF C Dom <5 and we have that, for all u in LF,

E\6{u)\2 < 2 || u \\2f . (2.5)

Proof:
Suppose first that u has a finite Wiener chaos expansión. In this case we

can write:

u2ds + E í í DsugDgusd8ds
Jo Jo
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= E

= E

í
/

u2ds + 2E í f D3ugDgu3d6ds
Jo Jo

u2ds + 2E DgUsdWs d9.

Using now the inequality 2{a,b) < |a|2 + \b\2 we obtain

T T pB

E\6{u)\2 <2E í u2ds + E f \í Deu3dW3\2d6.
Jo Jo Jo

(2.6)

Because u has a finite chaos descomposition we have that {Deusl¡o0](s),s €
(0,71]} belongs to L1,2 C Dom6 for each 0 G [0,T\, and furthermore we have

P i PX) pT pB

E | / Deu3dW3\2dO <E / (Deu3)2dsd9Jo Jo Jo Jo
pT pB pB

+E / / / {DvDgUg^dadsde.Jo Jo Jo

Now substituting (2.7) into (2.6) we obtain
rT rT re

E\6(u)\2 <2EÍ u2ds + E f f {Deus)2dsd6Jo Jo Jo
pT pB pB

+ E / / (D„Dgu3)2dadsdB
Jo Jo Jo

< 2 || u 1,2F’

(2.7)

which proves (2.5) in the case that u has a finite chaos descomposition. The
general case follows easily from a limit argument. QED

Note that u € LF implies ul¡r tj € LF for any interval [r,t] C [0,T], and, by
Proposition 2.1 we have that ul¡r (j € Domó.

The following results, which are proved in [1] are some basic properties for
the Skorohod integral of processes u in hF.

(1) (Local property for the operator 6) Let u € LF and A 6 T be such that
ut(oj) = 0, a.e. on the product space [0, T] x A. Then 6(u) = 0 a.e. on A.

(2) (Quadratic variation) Let u € LF. Then

in T1(D), as |7r| —> 0, where 7r runs over all finite partitions {0 = í0 <t\ <
■ <f„ = T} of [0.T].
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The local property allows to extend the Skorohod integral to processes in
the space Lfoc. That is, u € Lfoc if there exists a sequence {(í"2n. un).n > 1}C •
JF x hF such that u — un on íln for each n, and On | Q, a.s. Then we define
6(u) by

«5(u)bn =¿(un)|n„.

Suppose that u is an adapted process verifying JQr u\ds < oo a.s. Then one
can show that u belongs to Lfoc and 6(u) coincides with the Itó integral of u.

Let LF denote the space of processes u 6 LF such that || u2sds ||=c< oo.
We have proved in [1] the following Itó’s formula for the Skorohod integral:

Theorem 2.2 Consider a process of the forrn Xt = Jq usd\Vs, where u €
(Lf)Ioe. Assume also that the indefinite Skorohod integral f* usdWs has a con-
tinuous versión. Let F : R —► R be a twice continuously differentiable function.
Then we have

F(Xt) = F(0) + J* F'(Xs)usdWs + ^£ F"{Xs)u\ ds
+ f F"{Xs){fJo Jo

DsurdWr)usds. (2.9)

3 Maximal inequality for the Skorohod integral process

The purpose of this section is to prove a maximal inequality for the Skorohod
integral process where its integrand belongs to the space hF, using the ideas of
[3],

Theorem 3.1 Let 2<p<oo,q>^,q>2 and ¿ Let u = {ug,6 e
[0,T]} be a stochastic process in the space hF such that

(i) f0T E\usrrds < oo,

(ü) ¡{s>0} \E(Dsug)\qdsdO < oo,
(iü) /{rVs>9} \E{DrDsue)\qdrdsd6 < oo,

Then u¡dWs is in Lp for all t € [O, T] and

e{ sup i
O<t<T Jo Jo

+ í \E(Dsug)\qdsd9 + í E\DrDsug\qdrdsd9}, (3.1)J {^>0} J {rVs>0}
where Kp<q is a constant depending only on T, p and q.
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Proof:
We will assume that u € St- The general case will follow using a density

argument similar to the one in [1], pg. 8. Let a 6 (¿, |). Using the fact that

f (1 - u)a~1u~adu = -r~j-—rJo sin(a7r)
and applying Fubini’s stochastic theorem and Holder’s inequality we obtain that

E( sup | [ u3dW3\p)
0<t<T JO

^sm{mr)E{ ^ ( A {t _ a)a-\a - srada)u3(iW3\p)
K 0<t<T Jo Ja

= Sin(Q7r-)-¿;( sup I [ { r{a - s)-au3dWs)(t - a^-'da\p)
n 0<t<T Jo Jo

< sm-a7r-E( sup { / | í{c - s)~ausdWs\pda)
K 0<t<T Jo Jo

P (q- l)p

x| / (t — a) (p-v dta\p *})
Jo

= ——r)p_1T’QP_1£'( í | /V - s)-ausdW3\pda).7T ap — 1 Jo Jo

Let us now define for any cr € [0, T] the process

V" ■ - í (cr - s)~ausdWs, í€[0,<r],
Jo

and denote

c = sin(QTr) p- 1 'P_irap_!p’“
tt y ap — l

We have proved that

E( sup
0<t<T

usdW3\p) < Cpa \V¿\pda). (3.2)

Now we are going to use the same ideas as in [3]. Applying Theorem 2.2 to
F(x) = \x\p and taking the expectation, we obtain:

E\vt°\p = rttlA - s)-2axftd8

+p(p- 1) í f3 D3ue(a - 6)-adWe}dsJo Jo
h + h-
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Applying Hólder’s inequality we get

h <
P(P~ !) ,ml,

Jo
(E\Vf\P)r(E\ua\P)H<T-s)-2ads

and

h

Denote

<p(p-l) ¡\E\V?\*)*r(E\ut f° Dsue(a - eradWe\$)hJo Jo

A, := ^-^(E\uanH^-s)-2a
+p(p-l){E\us f D3u9{a-d)-adWe\$)í{o-sJo

and G3 = E\Vf\p. Then we have that, for every t < a

ri £^2
Gt< Gs p Asds.

Jo

Using the lemma of [8], p.171 we obtain

Gt < (- f* A,ds)*.
P Jo

Therefore

E\vt°\p < {(p-i) í\E\u3nH^-sr2ads
Jo

+2(p — 1) í (E\us í D3u$(<T-e)-adW0\i)Í(<T-s)
Jo Jo

< (p- 1 ['(E\u3\P)H<7 - s)'2ads}$Jo

+2P-1(p-l)S{/ (E|ua I* D3u6(<t - 9)-adWe\t)Jo Jo

By Hólder’s inequality we have:

h ■= {[ (E\u3 [S D3u8(a-6)-adWe\i)$(<T-s)-ads}$Jo Jo

< {f\E\u3\r)HE\ fS Dsue(a - e)~adWe\^(a - s)-Jo Jo

< {[ {E\u3\r)T^((7-s)^ds}EÍ^11Jo

p(c

- s) ads.

ads}%

—s) ads}%.

ads}2
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< Ci

{f E\ í Dsue{a - e)-adWe\qds}%Jo Jo

{ fiElusn^-s^ds}2^Jo

{[ E\[ Dsue(a-eyadWe\qds}^1Jo Jo

for some constant c\ depending only on p, q. a and T. Since 4- ^ = 1,
using the inequality ab < 2^2~f + -£jb~p for a, b > 0. we have

< C[ { f (E\usJo
r)(a - s)T^ds + fE'f Dsue{a-e)-adWe\qds}.

Now we can estímate the Skorohod integral using Meyer’s inequalities (see [5],
Section 3.2) and we obtain

h := Í E\ f Dsu9{a-e)-adWe\qdsJo Jo

< C21 j\j\v - 0)~2a\E(Dsug)\2de)Us
+ [ E{[ í (cr - 6)~2a\DrD3ue\2d8dr)%ds\.Jo Jo Jo I

for some constant c2. Henee, taking into account (3.2), we get

E( sup I r usdWs|P) < c3(/5 + I6 + I7 + h)),
0<t<T Jo

where c3 is a constant depending on p, q, a and T, and

h ■- í (f (£K|p)p(<t - s)-2ads)%dcr,
Jo Jo

pT y* <7
le := / / (<7 - 5) l-9.E|tfs|rdsdcr,Jo Jo

/7 := í í(f\<J-e)-2a\E(Daug)\2de)idsd(T,Jo Jo Jo
/*Tt /»(7 /*T y*s

h := / E( / (<7 - #)-2a|.Dr.DsU0|2d0d7-)$dsd<7.
Jo Jo Jo Jo

Now using Hólder’s inequality and Fubini’s theorem we obtain that

rpl-2a fT pu
h < T—T" / / £|^|P(<7-Sr2Qd5d<71 — 2a Jo Jo
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'T’l —2a rT fT
= (_/ (* - s)-2ad<T)E\ua\pds

T

í E\us\pds,
Jo

< C4

for some constant C4. Similarly,

le < c5 í E\us
Jo

rds,

I7 <C6 í
J{s>6}

and

<crfJ ir

\E(Dsu$)\qdsdQ,

E | DrDs v.01q drdsdO,
I {rVs>0}

for some constants C5, c§ and c7. The proof is now complete.

As a corollary, taking q = 2 we have the following result:

QED

Theorem 3.2 Let p e (2,4), r = Let u = {ua,s £ [0,T]} be a stochastic
process in the space LF such that /QT E\us\rds < 00. Then usdW3 is in Lp
for all t € [0, T] and

E( sup |/ usdWs\p) < Kp{[ E\us\rds+ f E\D3ue\2dsde
o<t<T Jo Jo J{s>e}

+ í E\DrDsug\2drdsdO},
J írVs>e)-'{r\/s>6}

where Kp is a constant depending only on p and T

(3.3)

Remark: Theorem 3.2 implies the continuity of the Skorohod process f0 usWs
assuming that u € LF and fQ E\u3\rds < 00 for some r > 2. This result was
proved in [1] using Kolmogorov continuity criterion and the technique developed
in [3].
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