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ON CARDINAL SEQUENCES OF SCATTERED SPACES

~ Juan Carlos Martinez
Facultat de Matematiques, Universitat de Baréelona,
Gran Via 585, 08007 Barcelona, Spain

Abstract

It was proved by Dow and Simon that there are 2! (as many as
possible) pairwise non-homeomorphic compact, T5, scattered spaces of
height w; and width w. In this paper, we prove that if « is an ordinal
with w1 < a <wp and § = (ke : £ < @) is a sequence of cardinals
such that either kg = w or k¢ = w for every { < a, then there are
2¥1 pairwise non-homeomorphic compact, T», scattered spaces whose
cardinal sequence is 6.

Keywords: Cantor-Bendixson derivatives; scattered spaces; cardinal
sequences.

AMS classification: 54G12; 06E99.

A topological space X is called scattered, if every closed subspace of X has
an isolated point. A useful tool in the study of scattered spaces is the Cantor-
Bendixson process for topological spaces. If X is a topological space and «
- is an ordinal, we define the a-deriative of X by induction on « as follows:
X0=X;ifa=0+1, X*={z € X : zis an accumulation point of X*};
and if o is limit, X* = N{X? : 8 < a}. For every ordinal 3, we define the
B-level of X by I3(X) = XP\ XP*1. 1t is well-known that a space X is
scattered if and only if there is an ordinal o such that X* = §.

Suppose that X is a scattered space. Then we define the height of X
by ht(X) = the least ordinal 3 such that X7 is finite, and we define the

IThe preparation of this paper was supported by DGICYT Grant PB94-0854
2E-mail : martinez@cerber.mat.ub.es
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cardinal sequence of X by CS(X) = (| I3(X) |: B < ht{X)). All the spaces
we consider are Hausdorff. By an LCS-space we mean a locally compact,
Hausdorff, scattered space. Note that if X is an LCS-space with cardinal
sequence ¢ and X is not compact, then the one-point compactification of
X has also cardinal sequence 6. If o > 0 is an ordinal and X is an LCS-
space, we say that X is an (w, a)-space if CS(X) = 0 where 6 is the sequence
(k3 : 0 < a) with kg = w for every 8 < a. An LCS-space X is called thin-tall,
if X is an (w,w,)-space. It was proved by Rajagopalan and, independently,
by Juhédsz and Weiss that there exists a thin-tall space. In [3], it was even
proved by Juhdsz and Weiss that for every ordinal « such that 0 < o < ws,
there exists an (w, a)-space. However, it is known that the existence of an
(w,ws)-space is independent of the axioms of Set Theory (see [1]). On the
other hand, it was proved by Dow and Simon in [2] that there are 2“t (
as many as possible ) pairwise non-homeomorphic thin-tall spaces. From
the proof of this result we can infer by using a standard argument that for
every ordinal o such that w; < a < ws, there are also 2*' pairwise non-
homeomorphic (w, a)-spaces. The aim of this paper is then to prove that if
« is an ordinal with w; < o < wp and 8 = (ke : € < ) is a sequence of
cardinals such that either k¢ = w or k¢ = w; for every £ < o, then there are
2“1 pairwise non-homeomorphic LCS-spaces whose cardinal sequence is 6.

This paper is divided in two sections. In the first one, we consider the
case of cardinal sequences of length w,. In the second section, we first prove
that for every ordinal & < w, and every cardinal sequence 6§ = (k¢ : £ < @)
where k¢ € {w,w;} for each £ < ¢, there is an LCS-space with cardinal
sequence 6, and then we prove that the construction given in Section 1 can
be generalized to any uncountable ordinal < wy.

We want to remark that results on cardinal sequences for LCS-spaces
. have a direct translation to the context of superatomic Boolean algebras (
i.e. Boolean algebras in which every subalgebra is atomic ), since it is known
that the notion of a compact, Hausdorff, scattered space is the dual notion
of a superatomic Boolean algebra.

1  Cardinal sequences of length w,

We fix a cardinal sequence 6 = (k¢ : £ < wy) where k¢ € {w, w1} for every
£ < wy. /Thén b'y\_using a refinement of the argument carried out in [2,
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Section 2], we shall construct 2** pairwise non-homeomorphic LCS-spaces
with cardinal sequence 8. The underlying set of the 2*! spaces we want to
construct will be the set D = U{{&} X k¢ : £ < wi}. For every n < w, we
define the column C, by w; x {n}. Now suppose that X is an LCS-space of
underlying set D such that [((X) = {{} x k¢ for any £ < w;. Let S be a
stationary subset of w;. Then, for n < w, we say that S is associated to C,
in X, if for every x = (§,n) € C,, where £ is a limit ordinal, the following
holds:

(1) If £ € S, then for every neighbourhood U of z there is a { < & such
that {(s,n) : ¢ < < €} CU.

(2) If £ ¢ S, there is a neighbourhood U of z such that UNC, = {z}.
Then we say that X is an admissible 6-space, if the following conditions hold:

() (1) For each n < w, Cy, is a closed subset of X.

(2) For each n < w, there is a stationary subset of w; associated to C,, in
X.

(3) For every z € X there is a neighbourhood U of z such that U\ {z} C
U{Ch : n < w}.

Lemma 1 If X and Y are admissible 6-spaces and f : X — Y is a homeo-
morphism, then for every k < w there are an n < w and a £ < w; such that
fr(Cin X8 =C,NYS,

~ Proof. 1t is clear that for every z € X, if x € Ig(X) then f(z) € I5(Y).
We consider w; with the order topology. Then, if N C w; we write N/ =
{€ < w; : € is an accumulation point of N}. Let S be the stationary subset
associated to Cy in X. We have that f"(Cy) \ U{C, : n < w} is countable.
To check this point, note that otherwise if we put N = {{ < w; : ((,u) €
F(C)\ U{Cy. : n < w} for some p < wy}, then there isa p € SN N'. Now,
" by using (*)(3), we infer that no point of Y can be the image under f of
the point (p, k). On the other hand, if for £ < w there are m,n < w with
m # n such that Cp,, N f(Cy) and C, N f"(Cy) are uncountable, then if we
put M = {{ <w : ((,m) € f"{Ci)} and N = {{ < wy : ({,n) € f"(Ck)},
we have that there is a p € SN M’ N N'." Now, we would infer from (*)(1)
that no point of ¥ can be the image under f of (p, k). -

In what follows, if = is a point of an LCS-space X, when we consider a

mneighbourhood U of z, we shall tacitly assume that if 3 is the ordinal such
‘that z € I5(X), then UN XP = {z}.



By a decomposition of an infinite set a, we mean a partition of a in
infinite subsets.

Theorem 1 Let S be a stationary subset of w,. Then, there is an admassible
0-space X such that for each n < w, S 1s the stationary subset associated to

C, mn X.

Proof. We construct by transfinite induction on § < w; a space X, satis-
fying the following conditions:

(1) The underlymg set of X¢ is U{X(“ 1 < €} where X W = ) x w it
ky=worf <w, X& ={u} x€if K, =wy and £ > w.

(2) X is an LCS-space such that I,(X¢) = X W for every p < €.
(3) For every n < w, Cp, N X is a closed subset of X,.
(4) If € is limit and € € S, then for every n < w and every neighbourhood
U of (£,n) there is a ¢ < £ such that {(g,n): (< pu <& CU.
(5) If € is limit and € € S, then for each n < w there is a neighbourhood
U of (¢,n) such that U N C, = {{¢,n)}.

(6) For every = € X¢ there is a neighbourhood U of z such that U\ {z} C

U{Cn : n < w}.

(7) If £ < n and = € X¢, then a neighbourhood basis of z in X, is also a
neighbourhood basis of z in X,.

(8) If € < n, then every compact subset of X¢ is a compact subset of X,,.

We define X as the ordinal w with the order topology. Then, assume
¢ > 0. Without loss of generality, we may assume that £ > w and k¢ = w;.
First, we suppose § = u + 1. To construct X, we previously define for each
a < p an LCS-space Y, such that ht(Y,) = ¢, I5(Y,) = {8} x € if B < a and
ks = wy, and I5(Y,) = Ig(X,) otherwise. In addltlon we shall have that

L if f < a < pand z € Y, then a neighbourhood basis of = in Yj is also a

neighbourhood basis of z in Y,. The construction of Y; is immediate. Then,
assume that o is limit. Let Y be the direct union of {Yz: 8 < a}. lf kq = w,
we put Y, =Y. Then, suppose kK, = w;. We have to define a neighbourhood
basis of the point (o, p). Let {z, : n < w} be an enumeration of Y. For
each n < w, we construct an open compact neighbourhood U, of some y,
in Y as follows. We take Uy as an open compact neighbourhood of zy such
that Up \ {zo} CU{Cr : n < w}. If n > 0, let y, be the first element in the
enumeration {z, : n < w} such that y, € Uy U... UU,_;. Then we choose
U, as an open compact neighbourhood of ¥, such that:
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(+) (1) Un\{gm} S U{Ci : k <w}.
(2) For all m < n, if y, & Cy, then U, N C,,, = D.
B U, N (UgU...UU,_,) =0.

Let {z, : n < w} be an enumeration of X{*. Note that for every n < w
there is a k, < w such that z, = y;,. Then, we define W, = U, . Let
(B, : n < w) be a sequence of ordinals converging to « in a strictly increasing
way. Now, for each n < w we choose an element v, € Ig (X,) N W, and an
open compact neighbourhood V, of v, with V;, C W,,. Put v = (a, ). Then
we define a basic neighbourhood of v as a set of the form {v} UU{V,, : n > k}
where k£ < w. If o is a successor ordinal, we would proceed in a similar way.
Now, put Z =Y),. The underlying set of X¢is ZU {£} x €. If x € Z, a basic
neighbourhood of z in X is a basic neighbourhood of z in Z. Proceeding
as above, we construct for each n < w an open compact neighbourhood U,
of some y, in Z satisfying (+)(1) — (3) in such a way that {U, : n < w}
is a partition of Z. For each n < w, put v, = (u,n) and then consider the
neighbourhood V,, chosen for v,. Let {t, : n < w} be an enumeration of
{€} x €. Let {a, : n < w} be a decomposition of w. For n < w, we define a
basic neighbourhood of t,, in X¢ as a set of the form {t,} UU{Vk : k € a,\m}
where m < w. : ‘

Now suppose that € is a limit ordinal. If £ € S, we can construct Xe
by means of an argument similar to the one given in the successor case. So,
we assume that £ € S. Let Z be the direct union of {X, : p < &}. The
underlying set of X¢ is Z U ({¢} x §). If x € Z, a basic neighbourhood of
z in X¢ is a basic neighbourhood of z in Z. As above, for-every n < w we
choose a neighbourhood U, of some y, in Z verifying (+)(1) — (3) in such
a way that {U, : n < w} is a partition of Z. Put Y = {y, : n < w}.
For every n < w, put t, = (£,n). Let {t, : n < w} be an enumeration
- of the set {(£,¢) : w < ( < &}. Fix n < w. Our purpose is to define a
neighbourhood basis of ¢,. By using (+)(2), it is easy to check that for every
¢ <& Yn{(pn): ¢ <p<E}isinfinite. Set Y NC, = {vm : m < w}.
For each m < w, let V,, be the neighbourhood chosen for v,,. We put
W, = U{Vin : m < w}. Note that there is a { < & such that {(u,n): ¢ <
p < &} € W,. Then, we define a basic neighbourhood of ¢, as a set of the
form {t,} UU{Vi, : m > k} where k < w. Note that {W,, : n < w} is
pairwise disjoint. To define a neighbourhood basis of a point ¢/, we consider
a sequence of ordinals (§, : » < w) converging to £ in a strictly increasing



way and then, for each k¥ < w, we choose u; € Y NCy N Z%. Now, for k < w,
consider the neighbourhood V| chosen for ux ( as an element of Y). Note
that V] C W, for each & < w. Let {a, : n < w} be a decomposition of w.
Fix n < w. Then, we define a basic neighbourhood of ¢/, as a set of the form
{ YUU{V), :m € a, \ k} where k < w.

Now we define the desired space X as the direct union of the spaces X,
for £ <w;. A

Theorem 2 Let § = (ky : @ < wy) where ko € {w,w1} for each a < w;.
Then, there are 2! pairwise non-homeomorphic LCS-spaces with cardinal
sequence 8. '

Proof. Let (S¢ : € < 2*') be a sequence of stationary subsets of w; such
that if p < & < 2%, S\ S, is stationary. By using Theorem 1, for every
£ < 2“1 there is an admissible §-space X, such that S¢ is associated to each
column in X,. Now, we infer from Lemma 1 that if u < £ < 21, then X,
and X, are not homeomorphic.

2  Cardinal sequences of length greater
than w,

Our aim here is to extend the construction given in Section 1 to any un-
countable ordinal < wy. First, we need to prove the following result:

Theorem 3 Let a be an ordinal such that 0 < oo < wy. Let 0 = (ke : § < @)

be a sequence of cardinals such that either ke = w or kg = wy for every § < a.
. Then, there is an LCS-space X such that CS(X) = 4.

In the proof of Theorem 3 we will extend the argument given by Juhdsz
and Weiss in [3]. If § is an ordinal and 7 = (\¢ : & < ) is a sequence of
cardinals with A¢ € {w,w,} for every £ < 3, we denote by K the class of all
the LCS-spaces X such that CS(X) = 7.

Suppose that 71 = (A¢ : € < @), 2 = (A; : £ < ) are sequences of
cardinals such that A\ € {w,w,} for every & < oy, Ag; = w, Ay’ = w and
Ae € {w,w1} for every £ such that 0 < £ < ap. Assume that X € K, is
a o-compact space such that I, ,1(X) = 0 and Y € K., is a space such
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that X NY = 0. Then we define the LCS-space X ® Y as follows. The
underlying set of X @ Y is X U (Y \ [p(Y)). Let us consider an enumeration
{u, : n < w} of I,(X) and an enumeration {v, : n < w} of [H(Y). Since
X is a paracompact space, for every n < w we can choose a compact open
neighbourhood U, of u, in such a way that {U, : n < w} is a discrete family.
Then, if z € X we define a basic neighbourhood of z as a neighbourhood of
zin X, and if z € Y'\ I(Y) we define a basic neighbourhood of z as a set of
the form (V\ Io(Y))UU{U, : v, € V}, where V is a basic neighbourhood of z
in Y. Consider 7 = (k¢ : £ < a1 + az) where k¢ = A¢ for £ < a, and k¢ = /\:4
if £ = a; + p where 0 < p < . Then, it can be proved that X @ Y € K.
Note that if in addition Y is o-compact, then X ® Y is also o-compact.

Let 3 be an ordinal such that ¢f(8) < w. Let 7 = (A¢ : £ < ) be a
sequence of cardinals such that A\¢ € {w,w;} for every € < . Suppose that
X € K., is a o-compact space with Ig(X) =0 and T = {t;: £ < w} is a
set of different elements which do not occur in X. Then we define a space
H(X,T) of underlying set X UT such that H(X,T) is an LCS-space with
ht(H(X,T)) =08+, I(H(X,T))=I(X) for £ < 8, I3(H(X,T)) =T and
I3 (H(X,T)) = 0. First we assume that 3 = v+ 1 is a successor ordinal.
Then, if z € X we define a basic neighbourhood of z as a neighbourhood of
z in X. Since X is o-compact, we infer that I,(X) is a countable set. Let
{yn : n < w} be an enumeration of I,(X). For every n < w we consider
a compact open neighbourhood U, of y, in such a way that {U, : n < w}
is a discrete family. Let {as : £ < wi} be an almost disjoint family of w.
Then, for every £ < w;, a basic neighbourhood of t; is a set of the form
{te} UU{Um : m € ag,m > k} where k < w. Analogously, if ¢f(8) = w we
consider a sequence of ordinals (8, : n < w) converging to 8 in a strictly
increasing way, and then for each n < w we choose a point z, € Iz (X) and

. a compact open neighbourhood U, of z, in such a way that {U, : n < w} is a

discrete family. As above we consider an almost disjoint family {a¢ : £ < w1}
of w, and then we define as a basic neighbourhood of ¢; a set of the form
{te} UU{Um : m € ag,m > k} where k < w. Proceeding in a similar way, we
can define a space H(X,T) if T is an infinite countable set of elements not
occurring in X. Note that in this case H(X,T) is o-compact.

Proof of Theorem 3. We show that for every ordinal a < w, and every
sequence of cardinals § = (k¢ : £ < ) where k¢ € {w,w;} for each £ < a,
we can construct a space X € Ky with [;(X) = {£} x k¢ for every £ < «



and I, (X) = 0. We construct the space X by transfinite induction on a.
Without loss of generality we may assume that £, = w;. The case o =0 is
immediate. Then suppose o = +1. Let 85 = (k¢ : £ < 8). By the induction
hypothesis, Ky, # 0. Let 85 = (k¢ : & < B). Since Ky, # 0, it follows that
there is a compact space Zy € K%. Let Z; be the topological sum of a family
of w disjoint copies of Zy. Then we define Z = H(Z), {a} X w;). Now let us
consider a Y € Ky, such that Y N Z = 0. Let X be the topological sum of
Y and Z. Then, it follows that X € Kj.

Next assume that « is a limit ordinal such that ¢f(a) = w. Let {(an : n <
w) be a sequence of ordinals converging to « in a strictly increasing way. For
each n < w, we put 8, = (ke : £ < ay). By the induction hypothesis, for
each n < w there is a compact space Y, € Kp,. We may assume that the
Y, are pairwise disjoint. Let ¥ be the topological sum of the Y, for n < w.
Then we define X = H(Y,{a} X w;). We have X € K.

Now assume that « is a limit ordinal such that c¢f(a) = w;. Let (v, : u <
w;) be a closed sequence of ordinals converging to « in a strictly increasing
way such that cf(y,) € w for each p < w;. Let (a¢ : £ < v) be the
order-preserving enumeration of the v, such that x,, = w;. Without loss of
generality we may suppose that v = w;. In order to find.a space X € Kj,
we construct by transfinite induction.on € € (w,w;) an “approximation” X
such that the following conditions hold:

(1) The underlying set of X is U{X B < agb U Xéa) where Xéﬂ) =

{8} x kg if B¢ {a,: pn<Eui{a} andxg’) ={f}x¢if8e{a, n<
¢} U {al.

{2) X is a o-compact LCS-space such that Xéﬁ) = Ig(X¢) for each 8 < o
and Xéa) = a€+1(X€).

(3) Xe\ Xga) with the relative topology of X is a o-compact LCS-space.

(AHfw<p<fandz e X}f’) for some 8 < «, then a neighbourhood
basis of z in X, is also a neighbourhood basis of z in X.

5) fw<pu<€&and C C XM\X("‘) is a compact subset of X,,, then C
is a compact subset of X,.

Moreover if w < € < wy, we will deﬁne for each z € X () a canonical

neighbourhood W& of z in Xe in such a way that the followmg two conditions
hold:
(DIfw<p<é<wyandz € Xl(f‘), then W# C W),



2)fw<pu<é<w and z,y € Xff‘) with z # y, then W N Wy(“) =
W& nwi,
T y

For each z € Xéa), we will define a clopen neighbourhood basis of = in X,
from the canonical neighbourhood W{¥. Furthermore, we shall have that
W8 is a compact neighbourhood of z.

In order to construct X, we define by induction on n < w a o-compact
LCS-space Y, with ht(Y,) = an+1, I, +1(Yn) = 0 and such that if m < n <
w, Yo, is an open subspace of Y, and for any ¢ < am, [;(Yn) = I(Y,). We
assume a9 > 0. Let 79 = (k5 : 8 < ap). By the induction hypothesis, there
is a compact space Zy € K;,. Then we define Y, as the topological sum of w
disjoint copies of Zy. Next assume n = m + 1. Let 6 = o.t.(a, \ ). Let
T = (A : ( < 6) where Ay = w and A = Kq,4¢ if 0 < ( < 6. Again by
the induction hypothesis, there is a compact space Zy € K,. Let Z; be the
topological sum of w disjoint copies of Z;. Then we define Y, = Y, ® Z;.
Let Y’ be the direct union of the spaces Y, for n < w. Without loss of
generality we may suppose that a,, is the limit of {a, : n < w}. Then we put
Y = HY', {a,} x w). We define the underlying set of X, as Y U ({a} x w).
If z € Y, a basic neighbourhood of z in X, is a neighbourhood of z in Y.
For each n < w, we put y, = (a,,n) and z, = (@,n). For each n < w we
can choose a compact open neighbourhood U, of y, in Y in such a way that
{Un : n < w} is a discrete family. Let {a, : n < w} be a decomposition of
w. Then we define for each n < w, the canonical neighbourhood of z, in
X, by W) = {z,} UU{Ux : k € an}. Now, for every n < w, we define
a basic neighbourhood of z, in X, as a set of the form Wéfj) \ C where
C C W\ {z,} is a compact open subset of Y.

Now we assume £ = p + 1 with w < g < w;. In order to construct
X¢ we define for each ¢ < p a o-compact LCS-space Y, such that ht(Y;) =
“ay, +2,1p(Y) = {B} x €M B € {a,: p < (}Is(Ye) = I5(X,) otherwise.
First we fix an enumeration {z, : n < w} of {a} x u. In order to define
Yy, we assume that g is a successor ordinal, say g = Gy + 1. If ap is
a limit ordinal, we would use a similar argument by using the fact that
cf(ap) = w. For every z € X,,, we define & basic neighbourhood of z in Y; as
a neighbourhood of z in X,,. Now we consider a discrete family {V, : n < w}
of compact open neighbourhoods of the points z, in X,,. For each n < w we
consider a z, € V;, N I5,(X,) and a compact open neighbourhood U, of z,
with U, C V,,. We put y = (ag, ). Then we define a basic neighbourhood




of y as a set of the form {y} UU{Us : & > m} where m < w. Proceeding in a
similar way, we can construct Y, from Y, and Y, from the union of the Y
for n < ¢ if ¢ is limit. Now we put ¥ =Y. Again since Y is a paracompact
space, we can choose a discrete collection {V;, : n < w} of compact open
neighbourhoods of the points z, in Y. For each n < w, we consider V,, with
the relative topology of Y. Then, for every n < w we define a o-compact
LCS-space Z, such that ht(Z,) = a¢ + 1,15(Z,) = Ig(V},) for each § < o,
and in such a way that the Z, are pairwise disjoint. Let § = 0.t.(a¢\a,). Let
7= (A, p < 6) where \g =w and A\, = k4,4, if 0 < p < 8. Let {a, : n < w}
be a decomposition of {ag} x & Let us fix a natural number n. We put
an = {ym : m <w}. For each m < w, we consider a compact space Z,,, € K
such that Is(Z,,.) = {ym}. We suppose that the Z,  are pairwise disjoint.
Then we define Z! as the topological sum of the family {Z,,. : m < w}, and
we put Z, = (V, \ {z.}) ® Z),. Now we define Z as the topological sum of
the family {Z, : n < w}. We then define X, as follows. The underlying set
of Xeis YUZU {(o,u)}. If 2z € Y\ {a} x &, a basic neighbourhood of
in X is a basic neighbourhood of z in Y. Analogously, if z € Z, for some
n < w, a basic neighbourhood of z in X is a basic neighbourhood of = in Z,.
For every n < w, we define the canonical neighbourhood of z, in X, as the
set W = W[ U Z,. Then we define a basic neighbourhood of z, in X; as
a set of the form W& \ C, where C is a compact open subset of W&\ {z,}.
We put y = (o, u). For each n < w, we consider a point 2, € I,,(Z,) and a
compact open neighbourhood U, of z, in the space Z,. Then we define the
canonical neighbourhood of y in X as the set W& = {y} UU{Um : m < w}.
So, we define a basic neighbourhood of y in X¢ as a set of the form Wéf) \C,
where C C W is a compact open subset of Z.

Now suppose that £ is a limit ordinal. Without loss of generality we
. may assume that o, is the limit of {o, : u < €}. First we define the o-
compact LCS-space Y of underlying set U{X, : w < p < &} as follows.
If z € X, \ ({a} x pn) for some p < €, a basic neighbourhood of z is a
basic neighbourhood of z in X,. If z € {a} x £, we define the canonical
neighbourhood of z in Y by W = {W{ : w < u < ¢}, and then we
define a basic neighbourhood of z in Y as a set of the form W} \ C where
C C W} \ {z} is a compact open subset of X, for some p < £&. Now we
define the space X as follows. The underlying set of X¢ is Y U ({ae} X &).
As above, if z € X, \ ({a} x 1) for some . < £, a basic neighbourhood of z in
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X¢ is a basic neighbourhood of z in X,. Let {z, : n < w} be an enumeration
of {a} x £&. We choose a discrete collection {V,, : n < w} of compact open
neighbourhoods of the points z, in Y. Let us consider a decomposition
{an, + n < w} of {ag} x & Let (B : m < w) be a sequence of ordinals
converging to a in a strictly increasing way. We fix a natural number n. We
consider V,, with the relative topology of Y. For each m < w, we consider a
zm € Ig,. (V) and a compact open neighbourhood U, of z,, in V, such that
{Un :m < w} is a discrete family in V,\ {z,}. Weset a, = {yx : k <w}. We
fix a decomposition {b; : k < w} of w. Then we define a basic neighbourhood
of a point yx in X, as a set of the form {yx} UU{U, : m € by, m > [} where
! < w. Now we define the canonical neighbourhood of a point z, in X, by
W(f) = W* U a,. Then, a basic neighbourhood of z, in X¢ is a set of the
form wie \C’ where C is a compact open subset of W)\ {z,}.

Fmally we define the space X as follows. The underlymg set of X is
U{Xe tw <€ <w} Iz e X\ {a} xw for some { < w;, a basic
neighbourhood of z in X is a basic neighbourhood of z in X¢. If z € {a} xwy,
we put W, = U{W® : w < € <w;}. Then we define a basic neighbourhood
of z in X as a set of the form W, \ C where C C W, \ {z} is a compact open
subset of X for some £ < w;. It can be verified that X € Ky.

Theorem 3 is in a sense best possible, since under CH we have that if
§ = (ke - & < 1) is such that k, = w and k3 = ws for some a < B < 7,
then there is no LCS-space X such that CS(X) = 6. To check this point,
assume on the contrary that there is an LCS-space X with CS(X) = 6.
For every x € X* consider a clopen neighbourhood U, of z. Now, we put
ar = Uy N1,(X). Since we are assuming that if v is the ordinal such that
¢ € I,(X) then U, N X7 = {z}, we have that = # y implies a, # a,. Hence,
we can identify every point of X with a subset of I,(X). Also, it was proved
- by Baumgartner in [1] that if it is consistent that there exists an inaccessible
cardinal, then it is consistent with 2¥ = wy that there is no LCS-space with
cardinal sequence # = (k¢ : £ < wy) where k¢ = wy for each § < w; and
Ku, = wa. On the other hand, Juhész has po'mted out that in a collaboration
with Weiss, they have proved that if 8 = (k¢ : £ < wy) is a sequence of
cardinals such that ng < 2¢ for each € < wy, then there is an LCS-space X
such that CS(X) =

Next, combining the arguments given in the proofs of Theorem 1 and
Theorem 3 we can show the following result, whose proof is left to the reader.
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As above, we write C,, = w; x {n} for n <w.

Lemma 2 Suppose that § = (ke £ < wy) is a sequence of cardinals such
that ke € {w,w1} for every & < wy and k,, = w,. Then, there is an LCS-
space X with I¢(X) = {£} x ke for € < wy and I, +1(X) = 0 such that the
Jollowing two conditions are satisfied:

(1) For every x € X \ 1,,(X) and every n < w there is a neighbourhood
U of x such that (U\ {z})NC, =0.

(2) For every x € X there is a neighbourhood U of x such that U\ {z} C
U{Cn :n < w}.

Now, we can prove the main result.

Theorem 4 Let o be an ordinal such thatw; < o < ws.-Let 0 = (ke : € < @)
be a sequence of cardinals such that either k¢ = w or ke = w; for every £ < o.
Then, there are 2“' pairwise non-homeomorphic LCS-spaces with cardinal
sequence .

Proof. Let 7 = (ke : € < wy). Consider (X : £ < 2“') a sequence of
pairwise non-homeomorphic ‘admissible T-spaces constructed as in Theorem
2. Let X; be the one-point compactification of X¢. Then, let Y; be the
topological sum of w disjoint copies of X;. Let 8 = o.t.(a \ w1). Now let
T = (k1 £ < G) where Ky = w, Kg = K+ if 0 < & < B. By Theorem
3, there is an LCS-space Y such that CS(Y) = 7/. For £ < 2“1, we may
assume that the underlying sets of ¥ and Y, are disjoint. Then, we define
Ze = Y ®Y for every £ < 2**. Note that if x,, = w, we infer from the proof
of Lemma 1 that the spaces Z; are pairwise non-homeomorphic LCS-spaces
, with cardinal sequence 6. So, assume that k., = w;. Let 7* = (k¢ : € < wy).
Let Z be an LCS-space of cardinal sequence 7* which verifies the conditions
of Lemma 2. We may assume that for every £ < 2!, the underlying sets
of Z and Z; are disjoint. Then, we define Z; as the topological sum of Z
and Z;. By using the argument given in Lemma 1, it is now easy to check
that the spaces Z; are pairwise non-homeomorphic LCS-spaces with cardinal
sequence 6.
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