UNIVERSITAT DE BARCELONA # ON CARDINAL SEQUENCES OF SCATTERED SPACES by Juan Carlos Martínez Mathematics Subject Classification: 54G12, 06E99 Mathematics Preprint Series No. 234 April 1997 ## ON CARDINAL SEQUENCES OF SCATTERED SPACES ### Juan Carlos Martínez Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain #### Abstract It was proved by Dow and Simon that there are 2^{ω_1} (as many as possible) pairwise non-homeomorphic compact, T_2 , scattered spaces of height ω_1 and width ω . In this paper, we prove that if α is an ordinal with $\omega_1 \leq \alpha < \omega_2$ and $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ is a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$, then there are 2^{ω_1} pairwise non-homeomorphic compact, T_2 , scattered spaces whose cardinal sequence is θ . Keywords: Cantor-Bendixson derivatives; scattered spaces; cardinal sequences. AMS classification: 54G12; 06E99. A topological space X is called *scattered*, if every closed subspace of X has an isolated point. A useful tool in the study of scattered spaces is the Cantor-Bendixson process for topological spaces. If X is a topological space and α is an ordinal, we define the α -derivative of X by induction on α as follows: $X^0 = X$; if $\alpha = \beta + 1$, $X^{\alpha} = \{x \in X : x \text{ is an accumulation point of } X^{\beta}\}$; and if α is limit, $X^{\alpha} = \bigcap \{X^{\beta} : \beta < \alpha\}$. For every ordinal β , we define the β -level of X by $I_{\beta}(X) = X^{\beta} \setminus X^{\beta+1}$. It is well-known that a space X is scattered if and only if there is an ordinal α such that $X^{\alpha} = \emptyset$. Suppose that X is a scattered space. Then we define the height of X by ht(X) = the least ordinal β such that X^{β} is finite, and we define the ²E-mail: martinez@cerber.mat.ub.es ¹The preparation of this paper was supported by DGICYT Grant PB94-0854 cardinal sequence of X by $CS(X) = \langle | I_{\beta}(X) | : \beta < ht(X) \rangle$. All the spaces we consider are Hausdorff. By an LCS-space we mean a locally compact, Hausdorff, scattered space. Note that if X is an LCS-space with cardinal sequence θ and X is not compact, then the one-point compactification of X has also cardinal sequence θ . If $\alpha > 0$ is an ordinal and X is an LCSspace, we say that X is an (ω, α) -space if $CS(X) = \theta$ where θ is the sequence $\langle \kappa_{\beta} : \beta < \alpha \rangle$ with $\kappa_{\beta} = \omega$ for every $\beta < \alpha$. An LCS-space X is called thin-tall, if X is an (ω, ω_1) -space. It was proved by Rajagopalan and, independently, by Juhász and Weiss that there exists a thin-tall space. In [3], it was even proved by Juhász and Weiss that for every ordinal α such that $0 < \alpha < \omega_2$, there exists an (ω, α) -space. However, it is known that the existence of an (ω, ω_2) -space is independent of the axioms of Set Theory (see [1]). On the other hand, it was proved by Dow and Simon in [2] that there are 2^{ω_1} as many as possible) pairwise non-homeomorphic thin-tall spaces. From the proof of this result we can infer by using a standard argument that for every ordinal α such that $\omega_1 \leq \alpha < \omega_2$, there are also 2^{ω_1} pairwise nonhomeomorphic (ω, α) -spaces. The aim of this paper is then to prove that if α is an ordinal with $\omega_1 \leq \alpha < \omega_2$ and $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ is a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$, then there are 2^{ω_1} pairwise non-homeomorphic LCS-spaces whose cardinal sequence is θ . This paper is divided in two sections. In the first one, we consider the case of cardinal sequences of length ω_1 . In the second section, we first prove that for every ordinal $\alpha < \omega_2$ and every cardinal sequence $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ where $\kappa_{\xi} \in \{\omega, \omega_1\}$ for each $\xi < \alpha$, there is an LCS-space with cardinal sequence θ , and then we prove that the construction given in Section 1 can be generalized to any uncountable ordinal $< \omega_2$. We want to remark that results on cardinal sequences for LCS-spaces have a direct translation to the context of superatomic Boolean algebras (i.e. Boolean algebras in which every subalgebra is atomic), since it is known that the notion of a compact, Hausdorff, scattered space is the dual notion of a superatomic Boolean algebra. ## 1 Cardinal sequences of length ω_1 We fix a cardinal sequence $\theta = \langle \kappa_{\xi} : \xi < \omega_1 \rangle$ where $\kappa_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \omega_1$. Then, by using a refinement of the argument carried out in [2, Section 2], we shall construct 2^{ω_1} pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . The underlying set of the 2^{ω_1} spaces we want to construct will be the set $D = \bigcup \{ \xi \} \times \kappa_{\xi} : \xi < \omega_1 \}$. For every $n < \omega$, we define the $\operatorname{column} C_n$ by $\omega_1 \times \{n\}$. Now suppose that X is an LCS-space of underlying set D such that $I_{\xi}(X) = \{\xi\} \times \kappa_{\xi}$ for any $\xi < \omega_1$. Let S be a stationary subset of ω_1 . Then, for $n < \omega$, we say that S is associated to C_n in X, if for every $x = (\xi, n) \in C_n$ where ξ is a limit ordinal, the following holds: - (1) If $\xi \in S$, then for every neighbourhood U of x there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \mu \leq \xi\} \subseteq U$. - (2) If $\xi \notin S$, there is a neighbourhood U of x such that $U \cap C_n = \{x\}$. Then we say that X is an *admissible* θ -space, if the following conditions hold: (*) (1) For each $n < \omega$, C_n is a closed subset of X. - (2) For each $n < \omega$, there is a stationary subset of ω_1 associated to C_n in X. - (3) For every $x \in X$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup \{C_n : n < \omega\}$. **Lemma 1** If X and Y are admissible θ -spaces and $f: X \longrightarrow Y$ is a homeomorphism, then for every $k < \omega$ there are an $n < \omega$ and a $\xi < \omega_1$ such that $f''(C_k \cap X^{\xi}) = C_n \cap Y^{\xi}$. Proof. It is clear that for every $x \in X$, if $x \in I_{\beta}(X)$ then $f(x) \in I_{\beta}(Y)$. We consider ω_1 with the order topology. Then, if $N \subseteq \omega_1$ we write $N' = \{\xi < \omega_1 : \xi \text{ is an accumulation point of } N\}$. Let S be the stationary subset associated to C_k in X. We have that $f''(C_k) \setminus \bigcup \{C_n : n < \omega\}$ is countable. To check this point, note that otherwise if we put $N = \{\zeta < \omega_1 : (\zeta, \mu) \in f''(C_k) \setminus \bigcup \{C_n : n < \omega\}$ for some $\mu < \omega_1\}$, then there is a $\rho \in S \cap N'$. Now, by using (*)(3), we infer that no point of Y can be the image under f of the point (ρ, k) . On the other hand, if for $k < \omega$ there are $m, n < \omega$ with $m \neq n$ such that $C_m \cap f''(C_k)$ and $C_n \cap f''(C_k)$ are uncountable, then if we put $M = \{\zeta < \omega_1 : (\zeta, m) \in f''(C_k)\}$ and $N = \{\zeta < \omega_1 : (\zeta, n) \in f''(C_k)\}$, we have that there is a $\rho \in S \cap M' \cap N'$. Now, we would infer from (*)(1) that no point of Y can be the image under f of (ρ, k) . \dashv In what follows, if x is a point of an LCS-space X, when we consider a neighbourhood U of x, we shall tacitly assume that if β is the ordinal such that $x \in I_{\beta}(X)$, then $U \cap X^{\beta} = \{x\}$. By a decomposition of an infinite set a, we mean a partition of a in infinite subsets. **Theorem 1** Let S be a stationary subset of ω_1 . Then, there is an admissible θ -space X such that for each $n < \omega$, S is the stationary subset associated to C_n in X. *Proof.* We construct by transfinite induction on $\xi < \omega_1$ a space X_{ξ} satisfying the following conditions: - (1) The underlying set of X_{ξ} is $\bigcup \{X_{\xi}^{(\mu)} : \mu \leq \xi\}$ where $X_{\xi}^{(\mu)} = \{\mu\} \times \omega$ if $\kappa_{\mu} = \omega$ or $\xi \leq \omega$, $X_{\xi}^{(\mu)} = \{\mu\} \times \xi$ if $\kappa_{\mu} = \omega_{1}$ and $\xi > \omega$. - (2) X_{ξ} is an LCS-space such that $I_{\mu}(X_{\xi}) = X_{\xi}^{(\mu)}$ for every $\mu \leq \xi$. - (3) For every $n < \omega$, $C_n \cap X_{\xi}$ is a closed subset of X_{ξ} . - (4) If ξ is limit and $\xi \in S$, then for every $n < \omega$ and every neighbourhood U of (ξ, n) there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \mu \leq \xi\} \subseteq U$. - (5) If ξ is limit and $\xi \notin S$, then for each $n < \omega$ there is a neighbourhood U of (ξ, n) such that $U \cap C_n = \{(\xi, n)\}.$ - (6) For every $x \in X_{\xi}$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup \{C_n : n < \omega\}$. - (7) If $\xi < \eta$ and $x \in X_{\xi}$, then a neighbourhood basis of x in X_{ξ} is also a neighbourhood basis of x in X_{η} . - (8) If $\xi < \eta$, then every compact subset of X_{ξ} is a compact subset of X_{η} . We define X_0 as the ordinal ω with the order topology. Then, assume $\xi > 0$. Without loss of generality, we may assume that $\xi \geq \omega$ and $\kappa_{\xi} = \omega_{1}$. First, we suppose $\xi = \mu + 1$. To construct X_{ξ} we previously define for each $\alpha \leq \mu$ an LCS-space Y_{α} such that $ht(Y_{\alpha}) = \xi$, $I_{\beta}(Y_{\alpha}) = \{\beta\} \times \xi$ if $\beta \leq \alpha$ and $\kappa_{\beta} = \omega_{1}$, and $I_{\beta}(Y_{\alpha}) = I_{\beta}(X_{\mu})$ otherwise. In addition, we shall have that if $\beta < \alpha \leq \mu$ and $x \in Y_{\beta}$, then a neighbourhood basis of x in Y_{β} is also a neighbourhood basis of x in Y_{α} . The construction of Y_{α} is immediate. Then, assume that α is limit. Let Y be the direct union of $Y_{\alpha} = Y_{\alpha} = Y_{\alpha}$. If $Y_{\alpha} = Y_{\alpha} = Y_{\alpha} = Y_{\alpha} = Y_{\alpha} = Y_{\alpha}$. We have to define a neighbourhood basis of the point $Y_{\alpha} = Y_{\alpha} Y_{\alpha}$ - $(+) (1) U_n \setminus \{y_n\} \subseteq \bigcup \{C_k : k < \omega\}.$ - (2) For all $m \leq n$, if $y_n \notin C_m$ then $U_n \cap C_m = \emptyset$. - $(3) U_n \cap (U_0 \cup \ldots \cup U_{n-1}) = \emptyset.$ Let $\{z_n : n < \omega\}$ be an enumeration of $X_u^{(\mu)}$. Note that for every $n < \omega$ there is a $k_n < \omega$ such that $z_n = y_{k_n}$. Then, we define $W_n = U_{k_n}$. Let $\langle \beta_n : n < \omega \rangle$ be a sequence of ordinals converging to α in a strictly increasing way. Now, for each $n < \omega$ we choose an element $v_n \in I_{\beta_n}(X_\mu) \cap W_n$ and an open compact neighbourhood V_n of v_n with $V_n \subseteq W_n$. Put $v = (\alpha, \mu)$. Then we define a basic neighbourhood of v as a set of the form $\{v\} \cup \bigcup \{V_n : n > k\}$ where $k < \omega$. If α is a successor ordinal, we would proceed in a similar way. Now, put $Z = Y_{\mu}$. The underlying set of X_{ξ} is $Z \cup \{\xi\} \times \xi$. If $x \in Z$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Z. Proceeding as above, we construct for each $n < \omega$ an open compact neighbourhood U_n of some y_n in Z satisfying (+)(1) - (3) in such a way that $\{U_n : n < \omega\}$ is a partition of Z. For each $n < \omega$, put $v_n = (\mu, n)$ and then consider the neighbourhood V_n chosen for v_n . Let $\{t_n:n<\omega\}$ be an enumeration of $\{\xi\} \times \xi$. Let $\{a_n : n < \omega\}$ be a decomposition of ω . For $n < \omega$, we define a basic neighbourhood of t_n in X_{ξ} as a set of the form $\{t_n\} \cup \bigcup \{V_k : k \in a_n \setminus m\}$ where $m < \omega$. Now suppose that ξ is a limit ordinal. If $\xi \notin S$, we can construct X_{ξ} by means of an argument similar to the one given in the successor case. So, we assume that $\xi \in S$. Let Z be the direct union of $\{X_{\mu} : \mu < \xi\}$. The underlying set of X_{ξ} is $Z \cup (\{\xi\} \times \xi)$. If $x \in Z$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Z. As above, for every $n < \omega$ we choose a neighbourhood U_n of some y_n in Z verifying (+)(1) - (3) in such a way that $\{U_n : n < \omega\}$ is a partition of Z. Put $Y = \{y_n : n < \omega\}$. For every $n < \omega$, put $t_n = (\xi, n)$. Let $\{t'_n : n < \omega\}$ be an enumeration · of the set $\{(\xi,\zeta):\omega\leq\zeta<\xi\}$. Fix $n<\omega$. Our purpose is to define a neighbourhood basis of t_n . By using (+)(2), it is easy to check that for every $\zeta < \xi, Y \cap \{(\mu, n) : \zeta < \mu < \xi\}$ is infinite. Set $Y \cap C_n = \{v_m : m < \omega\}$. For each $m < \omega$, let V_m be the neighbourhood chosen for v_m . We put $W_n = \bigcup \{V_m : m < \omega\}$. Note that there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \zeta\}$ $\mu < \xi \subseteq W_n$. Then, we define a basic neighbourhood of t_n as a set of the form $\{t_n\} \cup \bigcup \{V_m : m > k\}$ where $k < \omega$. Note that $\{W_n : n < \omega\}$ is pairwise disjoint. To define a neighbourhood basis of a point t'_n , we consider a sequence of ordinals $\langle \xi_n : n < \omega \rangle$ converging to ξ in a strictly increasing way and then, for each $k < \omega$, we choose $u_k \in Y \cap C_k \cap Z^{\xi_k}$. Now, for $k < \omega$, consider the neighbourhood V'_k chosen for u_k (as an element of Y). Note that $V'_k \subseteq W_k$ for each $k < \omega$. Let $\{a_n : n < \omega\}$ be a decomposition of ω . Fix $n < \omega$. Then, we define a basic neighbourhood of t'_n as a set of the form $\{t'_n\} \cup \bigcup \{V'_m : m \in a_n \setminus k\}$ where $k < \omega$. Now we define the desired space X as the direct union of the spaces X_{ξ} for $\xi < \omega_1$. \dashv **Theorem 2** Let $\theta = \langle \kappa_{\alpha} : \alpha < \omega_1 \rangle$ where $\kappa_{\alpha} \in \{\omega, \omega_1\}$ for each $\alpha < \omega_1$. Then, there are 2^{ω_1} pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . *Proof.* Let $\langle S_{\xi} : \xi < 2^{\omega_1} \rangle$ be a sequence of stationary subsets of ω_1 such that if $\mu < \xi < 2^{\omega_1}$, $S_{\xi} \setminus S_{\mu}$ is stationary. By using Theorem 1, for every $\xi < 2^{\omega_1}$ there is an admissible θ -space X_{ξ} such that S_{ξ} is associated to each column in X_{ξ} . Now, we infer from Lemma 1 that if $\mu < \xi < 2^{\omega_1}$, then X_{μ} and X_{ξ} are not homeomorphic. \dashv # 2 Cardinal sequences of length greater than ω_1 Our aim here is to extend the construction given in Section 1 to any uncountable ordinal $< \omega_2$. First, we need to prove the following result: **Theorem 3** Let α be an ordinal such that $0 < \alpha < \omega_2$. Let $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ be a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$. Then, there is an LCS-space X such that $CS(X) = \theta$. In the proof of Theorem 3 we will extend the argument given by Juhász and Weiss in [3]. If β is an ordinal and $\tau = \langle \lambda_{\xi} : \xi < \beta \rangle$ is a sequence of cardinals with $\lambda_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \beta$, we denote by K_{τ} the class of all the LCS-spaces X such that $CS(X) = \tau$. Suppose that $\tau_1 = \langle \lambda_{\xi} : \xi \leq \alpha_1 \rangle$, $\tau_2 = \langle \lambda'_{\xi} : \xi \leq \alpha_2 \rangle$ are sequences of cardinals such that $\lambda_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \alpha_1$, $\lambda_{\alpha_1} = \omega$, $\lambda_0' = \omega$ and $\lambda'_{\xi} \in \{\omega, \omega_1\}$ for every ξ such that $0 < \xi \leq \alpha_2$. Assume that $X \in K_{\tau_1}$ is a σ -compact space such that $I_{\alpha_1+1}(X) = \emptyset$ and $Y \in K_{\tau_2}$ is a space such that $X \cap Y = \emptyset$. Then we define the LCS-space $X \otimes Y$ as follows. The underlying set of $X \otimes Y$ is $X \cup (Y \setminus I_0(Y))$. Let us consider an enumeration $\{u_n : n < \omega\}$ of $I_{\alpha_1}(X)$ and an enumeration $\{v_n : n < \omega\}$ of $I_0(Y)$. Since X is a paracompact space, for every $n < \omega$ we can choose a compact open neighbourhood U_n of u_n in such a way that $\{U_n : n < \omega\}$ is a discrete family. Then, if $x \in X$ we define a basic neighbourhood of x as a neighbourhood of x in X, and if $x \in Y \setminus I_0(Y)$ we define a basic neighbourhood of x as a set of the form $(V \setminus I_0(Y)) \cup \{U_n : v_n \in V\}$, where V is a basic neighbourhood of x in Y. Consider $\tau = \langle \kappa_{\xi} : \xi \leq \alpha_1 + \alpha_2 \rangle$ where $\kappa_{\xi} = \lambda_{\xi}$ for $\xi \leq \alpha_1$ and $\kappa_{\xi} = \lambda_{\mu}'$ if $\xi = \alpha_1 + \mu$ where $0 < \mu \leq \alpha_2$. Then, it can be proved that $X \otimes Y \in K_{\tau}$. Note that if in addition Y is σ -compact, then $X \otimes Y$ is also σ -compact. Let β be an ordinal such that $cf(\beta) \leq \omega$. Let $\tau = \langle \lambda_{\xi} : \xi < \beta \rangle$ be a sequence of cardinals such that $\lambda_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \beta$. Suppose that $X \in K_{\tau}$ is a σ -compact space with $I_{\beta}(X) = \emptyset$ and $T = \{t_{\xi} : \xi < \omega_1\}$ is a set of different elements which do not occur in X. Then we define a space H(X,T) of underlying set $X \cup T$ such that H(X,T) is an LCS-space with $ht(H(X,T)) = \beta + 1, I_{\xi}(H(X,T)) = I_{\xi}(X) \text{ for } \xi < \beta, I_{\beta}(H(X,T)) = T \text{ and }$ $I_{\beta+1}(H(X,T)) = \emptyset$. First we assume that $\beta = \gamma + 1$ is a successor ordinal. Then, if $x \in X$ we define a basic neighbourhood of x as a neighbourhood of x in X. Since X is σ -compact, we infer that $I_{\gamma}(X)$ is a countable set. Let $\{y_n:n<\omega\}$ be an enumeration of $I_{\gamma}(X)$. For every $n<\omega$ we consider a compact open neighbourhood U_n of y_n in such a way that $\{U_n : n < \omega\}$ is a discrete family. Let $\{a_{\xi}: \xi < \omega_1\}$ be an almost disjoint family of ω . Then, for every $\xi < \omega_1$, a basic neighbourhood of t_{ξ} is a set of the form $\{t_{\xi}\} \cup \bigcup \{U_m : m \in a_{\xi}, m > k\}$ where $k < \omega$. Analogously, if $cf(\beta) = \omega$ we consider a sequence of ordinals $\langle \beta_n : n < \omega \rangle$ converging to β in a strictly increasing way, and then for each $n < \omega$ we choose a point $z_n \in I_{\beta_n}(X)$ and a compact open neighbourhood U_n of z_n in such a way that $\{U_n : n < \omega\}$ is a discrete family. As above we consider an almost disjoint family $\{a_{\xi}: \xi < \omega_1\}$ of ω , and then we define as a basic neighbourhood of t_{ξ} a set of the form $\{t_{\xi}\} \cup \bigcup \{U_m : m \in a_{\xi}, m > k\}$ where $k < \omega$. Proceeding in a similar way, we can define a space H(X,T) if T is an infinite countable set of elements not occurring in X. Note that in this case H(X,T) is σ -compact. Proof of Theorem 3. We show that for every ordinal $\alpha < \omega_2$ and every sequence of cardinals $\theta = \langle \kappa_{\xi} : \xi \leq \alpha \rangle$ where $\kappa_{\xi} \in \{\omega, \omega_1\}$ for each $\xi \leq \alpha$, we can construct a space $X \in K_{\theta}$ with $I_{\xi}(X) = \{\xi\} \times \kappa_{\xi}$ for every $\xi \leq \alpha$ and $I_{\alpha+1}(X)=\emptyset$. We construct the space X by transfinite induction on α . Without loss of generality we may assume that $\kappa_{\alpha}=\omega_{1}$. The case $\alpha=0$ is immediate. Then suppose $\alpha=\beta+1$. Let $\theta_{\beta}=\langle \kappa_{\xi}:\xi\leq\beta\rangle$. By the induction hypothesis, $K_{\theta_{\beta}}\neq\emptyset$. Let $\theta'_{\beta}=\langle \kappa_{\xi}:\xi<\beta\rangle$. Since $K_{\theta_{\beta}}\neq\emptyset$, it follows that there is a compact space $Z_{0}\in K_{\theta'_{\beta}}$. Let Z_{1} be the topological sum of a family of ω disjoint copies of Z_{0} . Then we define $Z=H(Z_{1},\{\alpha\}\times\omega_{1})$. Now let us consider a $Y\in K_{\theta_{\beta}}$ such that $Y\cap Z=\emptyset$. Let X be the topological sum of Y and Z. Then, it follows that $X\in K_{\theta}$. Next assume that α is a limit ordinal such that $cf(\alpha) = \omega$. Let $\langle \alpha_n : n < \omega \rangle$ be a sequence of ordinals converging to α in a strictly increasing way. For each $n < \omega$, we put $\theta_n = \langle \kappa_{\xi} : \xi \leq \alpha_n \rangle$. By the induction hypothesis, for each $n < \omega$ there is a compact space $Y_n \in K_{\theta_n}$. We may assume that the Y_n are pairwise disjoint. Let Y be the topological sum of the Y_n for $n < \omega$. Then we define $X = H(Y, \{\alpha\} \times \omega_1)$. We have $X \in K_{\theta}$. Now assume that α is a limit ordinal such that $cf(\alpha) = \omega_1$. Let $\langle \gamma_\mu : \mu < \omega_1 \rangle$ be a closed sequence of ordinals converging to α in a strictly increasing way such that $cf(\gamma_\mu) \leq \omega$ for each $\mu < \omega_1$. Let $\langle \alpha_\xi : \xi < \nu \rangle$ be the order-preserving enumeration of the γ_μ such that $\kappa_{\gamma_\mu} = \omega_1$. Without loss of generality we may suppose that $\nu = \omega_1$. In order to find a space $X \in K_\theta$, we construct by transfinite induction on $\xi \in [\omega, \omega_1)$ an "approximation" X_ξ such that the following conditions hold: - (1) The underlying set of X_{ξ} is $\bigcup \{X_{\xi}^{(\beta)} : \beta \leq \alpha_{\xi}\} \cup X_{\xi}^{(\alpha)}$ where $X_{\xi}^{(\beta)} = \{\beta\} \times \kappa_{\beta}$ if $\beta \notin \{\alpha_{\mu} : \mu \leq \xi\} \cup \{\alpha\}$ and $X_{\xi}^{(\beta)} = \{\beta\} \times \xi$ if $\beta \in \{\alpha_{\mu} : \mu \leq \xi\} \cup \{\alpha\}$. - (2) X_{ξ} is a σ -compact LCS-space such that $X_{\xi}^{(\beta)} = I_{\beta}(X_{\xi})$ for each $\beta \leq \alpha_{\xi}$ and $X_{\xi}^{(\alpha)} = I_{\alpha_{\xi}+1}(X_{\xi})$. - (3) $X_{\xi} \setminus X_{\xi}^{(\alpha)}$ with the relative topology of X_{ξ} is a σ -compact LCS-space. - (4) If $\omega \leq \mu < \xi$ and $x \in X_{\mu}^{(\beta)}$ for some $\beta \leq \alpha_{\mu}$, then a neighbourhood basis of x in X_{μ} is also a neighbourhood basis of x in X_{ξ} . - (5) If $\omega \leq \mu < \xi$ and $C \subseteq X_{\mu} \setminus X_{\mu}^{(\alpha)}$ is a compact subset of X_{μ} , then C is a compact subset of X_{ξ} . Moreover if $\omega \leq \xi < \omega_1$, we will define for each $x \in X_{\xi}^{(\alpha)}$ a canonical neighbourhood $W_x^{(\xi)}$ of x in X_{ξ} in such a way that the following two conditions hold: (1) If $\omega \leq \mu < \xi < \omega_1$ and $x \in X_{\mu}^{(\alpha)}$, then $W_x^{(\mu)} \subseteq W_x^{(\xi)}$. (2) If $\omega \leq \mu < \xi < \omega_1$ and $x, y \in X_{\mu}^{(\alpha)}$ with $x \neq y$, then $W_x^{(\mu)} \cap W_y^{(\mu)} = W_x^{(\xi)} \cap W_y^{(\xi)}$. For each $x \in X_{\xi}^{(\alpha)}$, we will define a clopen neighbourhood basis of x in X_{ξ} from the canonical neighbourhood $W_x^{(\xi)}$. Furthermore, we shall have that $W_x^{(\xi)}$ is a compact neighbourhood of x. In order to construct X_{ω} , we define by induction on $n < \omega$ a σ -compact LCS-space Y_n with $ht(Y_n) = \alpha_n + 1$, $I_{\alpha_n+1}(Y_n) = \emptyset$ and such that if m < n < 1 ω , Y_m is an open subspace of Y_n and for any $\zeta \leq \alpha_m$, $I_{\zeta}(Y_m) = I_{\zeta}(Y_n)$. We assume $\alpha_0 > 0$. Let $\tau_0 = \langle \kappa_\beta : \beta < \alpha_0 \rangle$. By the induction hypothesis, there is a compact space $Z_0 \in K_{\tau_0}$. Then we define Y_0 as the topological sum of ω disjoint copies of Z_0 . Next assume n=m+1. Let $\delta=o.t.(\alpha_n\setminus\alpha_m)$. Let $\tau = \langle \lambda_{\zeta} : \zeta < \delta \rangle$ where $\lambda_0 = \omega$ and $\lambda_{\zeta} = \kappa_{\alpha_m + \zeta}$ if $0 < \zeta < \delta$. Again by the induction hypothesis, there is a compact space $Z_0 \in K_{\tau}$. Let Z_1 be the topological sum of ω disjoint copies of Z_0 . Then we define $Y_n = Y_m \otimes Z_1$. Let Y' be the direct union of the spaces Y_n for $n < \omega$. Without loss of generality we may suppose that α_{ω} is the limit of $\{\alpha_n : n < \omega\}$. Then we put $Y = H(Y', \{\alpha_{\omega}\} \times \omega)$. We define the underlying set of X_{ω} as $Y \cup (\{\alpha\} \times \omega)$. If $x \in Y$, a basic neighbourhood of x in X_{ω} is a neighbourhood of x in Y. For each $n < \omega$, we put $y_n = (\alpha_{\omega}, n)$ and $x_n = (\alpha, n)$. For each $n < \omega$ we can choose a compact open neighbourhood U_n of y_n in Y in such a way that $\{U_n:n<\omega\}$ is a discrete family. Let $\{a_n:n<\omega\}$ be a decomposition of ω . Then we define for each $n < \omega$, the canonical neighbourhood of x_n in X_{ω} by $W_{x_n}^{(\omega)} = \{x_n\} \cup \bigcup \{U_k : k \in a_n\}$. Now, for every $n < \omega$, we define a basic neighbourhood of x_n in X_{ω} as a set of the form $W_{x_n}^{(\omega)} \setminus C$ where $C \subseteq W_{x_n}^{(\omega)} \setminus \{x_n\}$ is a compact open subset of Y. Now we assume $\xi = \mu + 1$ with $\omega \leq \mu < \omega_1$. In order to construct X_{ξ} we define for each $\zeta \leq \mu$ a σ -compact LCS-space Y_{ζ} such that $ht(Y_{\zeta}) = \alpha_{\mu} + 2$, $I_{\beta}(Y_{\zeta}) = \{\beta\} \times \xi$ if $\beta \in \{\alpha_{\rho} : \rho \leq \zeta\}$, $I_{\beta}(Y_{\zeta}) = I_{\beta}(X_{\mu})$ otherwise. First we fix an enumeration $\{x_n : n < \omega\}$ of $\{\alpha\} \times \mu$. In order to define Y_0 , we assume that α_0 is a successor ordinal, say $\alpha_0 = \beta_0 + 1$. If α_0 is a limit ordinal, we would use a similar argument by using the fact that $cf(\alpha_0) = \omega$. For every $x \in X_{\mu}$, we define a basic neighbourhood of x in Y_0 as a neighbourhood of x in X_{μ} . Now we consider a discrete family $\{V_n : n < \omega\}$ of compact open neighbourhoods of the points x_n in X_{μ} . For each $n < \omega$ we consider a $z_n \in V_n \cap I_{\beta_0}(X_{\mu})$ and a compact open neighbourhood U_n of z_n with $U_n \subseteq V_n$. We put $y = (\alpha_0, \mu)$. Then we define a basic neighbourhood of y as a set of the form $\{y\} \cup \bigcup \{U_k : k > m\}$ where $m < \omega$. Proceeding in a similar way, we can construct $Y_{\zeta+1}$ from Y_{ζ} , and Y_{ζ} from the union of the Y_{η} for $\eta < \zeta$ if ζ is limit. Now we put $Y = Y_{\mu}$. Again since Y is a paracompact space, we can choose a discrete collection $\{V_n:n<\omega\}$ of compact open neighbourhoods of the points x_n in Y. For each $n < \omega$, we consider V_n with the relative topology of Y. Then, for every $n < \omega$ we define a σ -compact LCS-space Z_n such that $ht(Z_n) = \alpha_{\xi} + 1$, $I_{\beta}(Z_n) = I_{\beta}(V_n)$ for each $\beta \leq \alpha_{\mu}$ and in such a way that the Z_n are pairwise disjoint. Let $\delta = o.t.(\alpha_{\xi} \setminus \alpha_{\mu})$. Let $\tau = \langle \lambda_{\rho} : \rho < \delta \rangle$ where $\lambda_0 = \omega$ and $\lambda_{\rho} = \kappa_{\alpha_{\mu} + \rho}$ if $0 < \rho < \delta$. Let $\{a_n : n < \omega\}$ be a decomposition of $\{\alpha_{\xi}\} \times \xi$. Let us fix a natural number n. We put $a_n = \{y_m : m < \omega\}$. For each $m < \omega$, we consider a compact space $Z_{y_m} \in K_\tau$ such that $I_{\delta}(Z_{y_m}) = \{y_m\}$. We suppose that the Z_{y_m} are pairwise disjoint. Then we define Z'_n as the topological sum of the family $\{Z_{y_m}: m < \omega\}$, and we put $Z_n = (V_n \setminus \{x_n\}) \otimes Z'_n$. Now we define Z as the topological sum of the family $\{Z_n : n < \omega\}$. We then define X_{ξ} as follows. The underlying set of X_{ξ} is $Y \cup Z \cup \{(\alpha, \mu)\}$. If $x \in Y \setminus \{\alpha\} \times \xi$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Y. Analogously, if $x \in \mathbb{Z}_n$ for some $n < \omega$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Z_n . For every $n < \omega$, we define the canonical neighbourhood of x_n in X_{ξ} as the set $W_{x_n}^{(\xi)} = W_{x_n}^{(\mu)} \cup Z_n$. Then we define a basic neighbourhood of x_n in X_{ξ} as a set of the form $W_{x_n}^{(\xi)} \setminus C$, where C is a compact open subset of $W_{x_n}^{(\xi)} \setminus \{x_n\}$. We put $y = (\alpha, \mu)$. For each $n < \omega$, we consider a point $z_n \in I_{\alpha_{\xi}}(Z_n)$ and a compact open neighbourhood U_n of z_n in the space Z_n . Then we define the canonical neighbourhood of y in X_{ξ} as the set $W_y^{(\xi)} = \{y\} \cup \bigcup \{U_m : m < \omega\}.$ So, we define a basic neighbourhood of y in X_{ξ} as a set of the form $W_{u}^{(\xi)} \setminus C$, where $C \subseteq W_{\boldsymbol{y}}^{(\xi)}$ is a compact open subset of Z. Now suppose that ξ is a limit ordinal. Without loss of generality we may assume that α_{ξ} is the limit of $\{\alpha_{\mu} : \mu < \xi\}$. First we define the σ -compact LCS-space Y of underlying set $\bigcup \{X_{\mu} : \omega \leq \mu < \xi\}$ as follows. If $x \in X_{\mu} \setminus (\{\alpha\} \times \mu)$ for some $\mu < \xi$, a basic neighbourhood of x is a basic neighbourhood of x in X_{μ} . If $x \in \{\alpha\} \times \xi$, we define the canonical neighbourhood of x in Y by $W_x^* = \bigcup \{W_x^{(\mu)} : \omega \leq \mu < \xi\}$, and then we define a basic neighbourhood of x in Y as a set of the form $W_x^* \setminus C$ where $C \subseteq W_x^* \setminus \{x\}$ is a compact open subset of X_{μ} for some $\mu < \xi$. Now we define the space X_{ξ} as follows. The underlying set of X_{ξ} is $Y \cup (\{\alpha_{\xi}\} \times \xi)$. As above, if $x \in X_{\mu} \setminus (\{\alpha\} \times \mu)$ for some $\mu < \xi$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in X_{μ} . Let $\{x_n:n<\omega\}$ be an enumeration of $\{\alpha\}\times \xi$. We choose a discrete collection $\{V_n:n<\omega\}$ of compact open neighbourhoods of the points x_n in Y. Let us consider a decomposition $\{a_n:n<\omega\}$ of $\{\alpha_{\xi}\}\times \xi$. Let $\langle\beta_m:m<\omega\rangle$ be a sequence of ordinals converging to α_{ξ} in a strictly increasing way. We fix a natural number n. We consider V_n with the relative topology of Y. For each $m<\omega$, we consider a $z_m\in I_{\beta_m}(V_n)$ and a compact open neighbourhood U_m of z_m in V_n such that $\{U_m:m<\omega\}$ is a discrete family in $V_n\setminus\{x_n\}$. We set $a_n=\{y_k:k<\omega\}$. We fix a decomposition $\{b_k:k<\omega\}$ of ω . Then we define a basic neighbourhood of a point y_k in X_{ξ} as a set of the form $\{y_k\}\cup \bigcup \{U_m:m\in b_k,m>l\}$ where $l<\omega$. Now we define the canonical neighbourhood of a point x_n in X_{ξ} by $W_{x_n}^{(\xi)}=W_{x_n}^*\cup a_n$. Then, a basic neighbourhood of x_n in X_{ξ} is a set of the form $W_{x_n}^{(\xi)}\setminus C$ where C is a compact open subset of $W_{x_n}^{(\xi)}\setminus\{x_n\}$. Finally we define the space X as follows. The underlying set of X is $\bigcup\{X_{\xi}:\omega\leq\xi<\omega_1\}$. If $x\in X_{\xi}\setminus\{\alpha\}\times\omega_1$ for some $\xi<\omega_1$, a basic neighbourhood of x in X is a basic neighbourhood of x in X_{ξ} . If $x\in\{\alpha\}\times\omega_1$, we put $W_x=\bigcup\{W_x^{(\xi)}:\omega\leq\xi<\omega_1\}$. Then we define a basic neighbourhood of x in X as a set of the form $W_x\setminus C$ where $C\subseteq W_x\setminus\{x\}$ is a compact open subset of X_{ξ} for some $\xi<\omega_1$. It can be verified that $X\in K_{\theta}$. \dashv Theorem 3 is in a sense best possible, since under CH we have that if $\theta = \langle \kappa_{\xi} : \xi < \eta \rangle$ is such that $\kappa_{\alpha} = \omega$ and $\kappa_{\beta} = \omega_2$ for some $\alpha < \beta < \eta$, then there is no LCS-space X such that $CS(X) = \theta$. To check this point, assume on the contrary that there is an LCS-space X with $CS(X) = \theta$. For every $x \in X^{\alpha}$ consider a clopen neighbourhood U_x of x. Now, we put $a_x = U_x \cap I_{\alpha}(X)$. Since we are assuming that if γ is the ordinal such that $x \in I_{\gamma}(X)$ then $U_x \cap X^{\gamma} = \{x\}$, we have that $x \neq y$ implies $a_x \neq a_y$. Hence, we can identify every point of X^{α} with a subset of $I_{\alpha}(X)$. Also, it was proved by Baumgartner in [1] that if it is consistent that there exists an inaccessible cardinal, then it is consistent with $2^{\omega} = \omega_2$ that there is no LCS-space with cardinal sequence $\theta = \langle \kappa_{\xi} : \xi \leq \omega_1 \rangle$ where $\kappa_{\xi} = \omega_1$ for each $\xi < \omega_1$ and $\kappa_{\omega_1} = \omega_2$. On the other hand, Juhász has pointed out that in a collaboration with Weiss, they have proved that if $\theta = \langle \kappa_{\xi} : \xi < \omega_1 \rangle$ is a sequence of cardinals such that $\kappa_{\xi} \leq 2^{\omega}$ for each $\xi < \omega_1$, then there is an LCS-space X such that $CS(X) = \theta$. Next, combining the arguments given in the proofs of Theorem 1 and Theorem 3 we can show the following result, whose proof is left to the reader. As above, we write $C_n = \omega_1 \times \{n\}$ for $n < \omega$. **Lemma 2** Suppose that $\theta = \langle \kappa_{\xi} : \xi \leq \omega_1 \rangle$ is a sequence of cardinals such that $\kappa_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \omega_1$ and $\kappa_{\omega_1} = \omega_1$. Then, there is an LCS-space X with $I_{\xi}(X) = \{\xi\} \times \kappa_{\xi}$ for $\xi \leq \omega_1$ and $I_{\omega_1+1}(X) = \emptyset$ such that the following two conditions are satisfied: - (1) For every $x \in X \setminus I_{\omega_1}(X)$ and every $n < \omega$ there is a neighbourhood U of x such that $(U \setminus \{x\}) \cap C_n = \emptyset$. - (2) For every $x \in X$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup \{C_n : n < \omega\}$. Now, we can prove the main result. **Theorem 4** Let α be an ordinal such that $\omega_1 \leq \alpha < \omega_2$. Let $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ be a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$. Then, there are 2^{ω_1} pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . *Proof.* Let $\tau = \langle \kappa_{\xi} : \xi < \omega_1 \rangle$. Consider $\langle X_{\xi} : \xi < 2^{\omega_1} \rangle$ a sequence of pairwise non-homeomorphic admissible τ -spaces constructed as in Theorem 2. Let X'_{ξ} be the one-point compactification of X_{ξ} . Then, let Y_{ξ} be the topological sum of ω disjoint copies of X'_{ξ} . Let $\beta = o.t.(\alpha \setminus \omega_1)$. Now let $\tau' = \langle \kappa'_{\xi} : \xi < \beta \rangle$ where $\kappa'_{0} = \omega$, $\kappa'_{\xi} = \kappa_{\omega_{1}+\xi}$ if $0 < \xi < \beta$. By Theorem 3, there is an LCS-space Y such that $CS(Y) = \tau'$. For $\xi < 2^{\omega_1}$, we may assume that the underlying sets of Y and Y_{ξ} are disjoint. Then, we define $Z_{\xi} = Y_{\xi} \otimes Y$ for every $\xi < 2^{\omega_1}$. Note that if $\kappa_{\omega_1} = \omega$, we infer from the proof of Lemma 1 that the spaces Z_{ξ} are pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . So, assume that $\kappa_{\omega_1} = \omega_1$. Let $\tau^* = \langle \kappa_{\xi} : \xi \leq \omega_1 \rangle$. Let Z be an LCS-space of cardinal sequence τ^* which verifies the conditions of Lemma 2. We may assume that for every $\xi < 2^{\omega_1}$, the underlying sets of Z and Z_{ξ} are disjoint. Then, we define Z'_{ξ} as the topological sum of Z and Z_{ξ} . By using the argument given in Lemma 1, it is now easy to check that the spaces Z'_{ξ} are pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . \dashv ## References - [1] J.E.Baumgartner and S.Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Logic 33 (1987) 109-129. - [2] A.Dow and P.Simon, Thin-tall Boolean algebras and their automorphism groups, Algebra Universalis 29 (1992) 211-226. - [3] I.Juhász and W.Weiss, On thin-tall scattered spaces, Colloq. Math. 40 (1978) 63-68. ## Relació dels últims Preprints publicats: - 215 An extension of Itô's formula for anticipating processes. Elisa Alòs and David Nualart. AMS Subject Classification: 60H05, 60H07. September 1996. - 216 On the contributions of Helena Rasiowa to Mathematical Logic. Josep Maria Font. AMS 1991 Subject Classification: 03-03,01A60, 03G. October 1996. - 217 A maximal inequality for the Skorohod integral. Elisa Alòs and David Nualart. AMS Subject Classification: 60H05, 60H07. October 1996. - 218 A strong completeness theorem for the Gentzen systems associated with finite algebras. Angel J. Gil, Jordi Rebagliato and Ventura Verdú. Mathematics Subject Classification: 03B50, 03F03, 03B22. November 1996. - 219 Fundamentos de demostración automática de teoremas. Juan Carlos Martínez. Mathematics Subject Classification: 03B05, 03B10, 68T15, 68N17. November 1996. - 220 Higher Bott Chern forms and Beilinson's regulator. José Ignacio Burgos and Steve Wang. AMS Subject Classification: Primary: 19E20. Secondary: 14G40. November 1996. - 221 On the Cohen-Macaulayness of diagonal subalgebras of the Rees algebra. Olga Lavila. AMS Subject Classification: 13A30, 13A02, 13D45, 13C14. November 1996. - 222 Estimation of densities and applications. María Emilia Caballero, Begoña Fernández and David Nualart. AMS Subject Classification: 60H07, 60H15. December 1996. - 223 Convergence within nonisotropic regions of harmonic functions in Bⁿ. Carme Cascante and Joaquin Ortega. AMS Subject Classification: 32A40, 42B20. December 1996. - 224 Stochastic evolution equations with random generators. Jorge A. León and David Nualart. AMS Subject Classification: 60H15, 60H07. December 1996. - 225 Hilbert polynomials over Artinian local rings. Cristina Blancafort and Scott Nollet. 1991 Mathematics Subject Classification: 13D40, 14C05. December 1996. - 226 Stochastic Volterra equations in the plane: smoothness of the law. C. Rovira and M. Sanz-Solé. AMS Subject Classification: 60H07, 60H10, 60H20. January 1997. - 227 On the Cohen-Macaulay property of the fiber cone of ideals with reduction number at most one. Teresa Cortadellas and Santiago Zarzuela. AMS Subject Classification: Primary: 13A30 Secondary: 13C14, 13C15. January 1997. - 228 Construction of $2^m S_n$ -fields containing a C_{2^m} -field. Teresa Crespo. AMS Subject Classification: 11R32, 11S20, 11Y40. January 1997. - 229 Analytical invariants of conformal transformations. A dynamical system approach. V.G. Gelfreich. AMS Subject Classification: 58F23, 58F35. February 1997. - 230 Locally finite quasivarieties of MV-algebras. Joan Gispert and Antoni Torrens. Mathematics Subject Classification: 03B50, 03G99, 06D99, 08C15. February 1997. - 231 Development of the density: A Wiener-Chaos approach. David Márquez-Carreras and M. Sanz-Solé. AMS Subject Classification: 60H07, 60H10, 60H15. February 1997. - 232 Product logic and the deduction theorem. Romà J. Adillon and Ventura Verdú. Mathematics Subject Classification: 03B50, 03B22, 03G99. March 1997. - 233 Large deviations for stochastic Volterra equations in the plane. Carles Rovira and M. Sanz-Solé. AMS Subject Classification: 60F10, 60H20, 60H15. April 1997.