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Abstract

It was proved by Dow and Simón that there are 2UJl (as many as
possible) pairwise non-homeomorphic compact, T2, scattered spaces of
height uj\ and width u>. In this paper, we prove that if a is an ordinal
with uq < a < u¡2 and 9 = (k^ : £ < a) is a sequence of cardinals
such that either ■= ui or ^ = u\ for every £ < a, then there are
2uil pairwise non-homeomorphic compact, T2, scattered spaces whose
cardinal sequence is 9.

Keywords: Cantor-Bendixson derivatives; scattered spaces; cardinal
sequences.

AMS classification: 54G12; 06E99.

A topological space X is called scattered, if every closed subspace of X has
an isolated point. A useful tool in the study of scattered spaces is the Cantor-
Bendixson process for topological spaces. If A is a topological space and a
is an ordinal, we define the a-derivative of X by induction on a as follows:
Xo = A; if a = 0 + 1, Xa = {x € A : x is an accumulation point of X^};
and if a is limit, Xa = f){X^ : (3 < a}. For every ordinal j3, we define the
/3-level of X by Ip(X) = X13 \ X0+1. It is well-known that a space A is
scattered if and only if there is an ordinal-a such that Xa = 0.

Suppose that A is a scattered space. Then we define the height of X
by ht(X) = the least ordinal 0 such that X13 is finite, and we define the
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cardinal sequence of X by CS(X) = (| Ip(X) |: (3 < ht{X)). All the spaces
we consider are Hausdorff. By an LCS-space we mean a locally compact,
Hausdorff, scattered space. Note that if X is an LCS-space with cardinal
sequence 9 and X is not compact, then the one-point compactification of
X has also cardinal sequence 9. If a > 0 is an ordinal and X is an LCS-
space, we say that X is an (cu, a)-space if CS(X) = 9 where 9 is the sequence

{k¡3 : P < a) with Kp = u¡ for every 0 < a. An LCS-space X is called thin-tall,
if X is an (u, ui)-space. It was proved by Rajagopalan and, independently,
by Juhász and Weiss that there exists a thin-tall space. In [3], it was even
proved by Juhász and Weiss that for every ordinal a such that 0 < a < u>2,
there exists an (u, a)-space. However, it is known that the existence of an

(cj,CU2)-space is independent of the axioms of Set Theory (see [1]). On the
other harid, it was proved by Dow and Simón in [2] that there are 2Ul (
as many as possible ) pairwise non-homeomorphic thin-tall spaces. From
the proof of this result we can infer _by using a standard argument that for
every ordinal a such that uq < a < üj2, there are also 2Ul pairwise non-

homeomorphic (u, ct)-spaces. The aim of this paper is then to prove that if
a is an ordinal with uq < a < lü2 and 9 = (k^ : f < a) is a sequence of
cardinals such that either = u or = U\ for every £ < ct, then there are
,2Ul pairwise non-homeomorphic LCS-spaces whose cardinal sequence is 9.

This paper is divided in two sections. In the first one, we consider the
case of cardinal sequences of length uq. In the second section, we first prove
that for every ordinal a < cu2 and every cardinal sequence 9 = (k^ : £ < a)
where G {usuq} for each £ < a, there is an LCS-space with cardinal
sequence 9, and then we prove that the construction given in Section 1 can
be generalized to any uncountable ordinal < u2.

We want to remark that results on cardinal sequences for LCS-spaces
have a direct translation to the context of superatomic Boolean algebras (
i.e. Boolean algebras in which every subalgebra is atomic ), since it is known
that the notion of a compact, Hausdorff, scattered space is the dual notion
of a superatomic Boolean algebra.

1 Cardinal sequences of length ui

We fix a cardinal sequence 9 = {k$ : £ < uq) where G {uquq} for every
£ < uq. jThen, by-psing a refinement of the argument carried out in [2,
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Section 2], we shall construct 2Wl pairwise non-homeomorphic LCS-spaces
with cardinal sequence 0. The underlying set of the 2Wl spaces we want to
construct will be the set D = U{{£} x •' £ < uq}. For every n < lo, we
define the column Cn by u\ x {n}. Now suppose that X is an LCS-space of
underlying set D such that I${X) = {£} x for any £ < uq. Let 5 be a
stationary subset of uq. Then, for n < u, we say that S is associated to Cn
in X, if for every x = (£,n) G Cn where £ is a limit ordinal, the following
holds:

(1) If £ G S, then for every neighbourhood U oí x there is a £ < £ such
that {(/i,n) : C < P £ £} C U-

(2) If £ £ S, there is a neighbourhood U of x such that U C\Cn = {x}.
Then we say that X is an admissible 6-space, if the following conditions hold:
(*) (1) For each n < u, Cn is a closed subset of X.

(2) For each n < u, there is a stationary subset of u>i associated to Cn in
X.

(3) For every x G X there is a neighbourhood U of x such that U\ {x} C
U{Cn : n < u}.
Lemma 1 If X and Y are admissible 9-spaces and f : X —» Y is a homeo-
morphism, then for every k < u¡ there are an n < u> and a £ < un such that
/"(c*nx«) = cnny«.

Proof. It is clear that for every x G X, if x G Ip(X) then f(x) G Ip{Y).
We consider u>i with the order topology. Then, if N C u\ we write N' =

{^ < o;i : ^ is an accumulation point of N}. Let S be the stationary subset
associated to C* in X. We have that /"(C*) \ \j{Cn : n < w} is countable.
To check this point, note that otherwise if we put N = {£ < uq : (£, ¿u) G
f"{Ck) \ U{Cn : n < u} for some pL < uq}, then there is a p G S D N'. Now,
by using (*)(3), we infer that no point of Y can be the image under / of
the point (p, k). On the other hand, if for k < u there are m,n < lo with
m n such that Cm fl f"(Ck) and Cn D f"(Ck) are uncountable, then if we
put M = {C < ui : (C,m) G f"{Ck)} and N = {C < wi : (C,n) G f"(Ck)j,
we have that there is a p G S fl M' fl N'.' Now, we would infer from (*)(1)
that no point of Y can be the image under / of (p, k). H

In what follows, if x is a point of an LCS-space X, when we consider a

neighbourhood U of x, we shall tacitly assume that if (3 is the ordinal such
that x G Ip(X), then U fl X® = {x}.
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By a decomposition of an infinite set o, we mean a partition of a in
infinite subsets.

Theorem 1 Let S be a stationary subset ofui. Then, there is an admissible
9-space X such that for each n < lo, S is the stationary subset associated to
Cn in X.

Proof. We construct by transfinite induction on £ < ui a space X? satis-
fying the following conditions:

(1) The underlying set of X$ is : p < £} where X= {p} x cu if
= lo or £ < lo, X^ = {/1} x £ if = u)\ and £ > lo.
(2) X¿ is an LCS-space such that I^(X^) = X^ for every ¿í < £.
(3) For every n < lo, Cn n X$ is a closed subset of X$.
(4) If £ is limit and £ <G S, then for every n < lo and every neighbourhood

U of (£, n) there is a £ < £ such that {(p, n) : ( < p < £} C U:
(5) If £ is limit and £ ^ 5, then for each n < lo there is a neighbourhood

U of (£, n) such that U nCn = {(£, n)}.
(6) For every there is a neighbourhood U of x such that U\ {a;} C

U{Cn '■ n <U)}.
(7) If £ < r¡ and x G X$, then a neighbourhood basis of x in 2Q is also a

neighbourhood basis of x in Xv.
(8) If £ < 77, then every compact subset of X^ is a compact subset of Xv.
We define X0 as the ordinal lo with the order topology. Then, assume

£ > 0. Without loss of generality, we may assume that £ > lo and = lo\.
First, we suppose £ = p, + 1. To construct X$ we previously define for each
a < p an LCS-space Ya such that ht(Ya) = £, Ip(Ya) = {£?} x £ if (3 < a and
Kff = uoi, and Ip(Ya) — otherwise. In addition, we shall have that

, if (3 < a < fi and x 6 Yp, then a neighbourhood basis of x in Yp is also a
neighbourhood basis of x in Ya. The construction of Y0 is immediate. Then,
assume that a is limit. Let Y be the direct unión of {Yp \ (3 < a}. If kq = lo,
we put Ya = Y. Then, suppose Ka — u\. We have to define a neighbourhood
basis of the point (a, y). Let {xn : n < u>} be an enumeration of Y. For
each n < lo, we construct an open compact neighbourhood Un of some yn
in Y as follows. We take Uo as an open compact neighbourhood of x0 such
that Uo \ {x0} C U{Cn : n < lo}. If n > 0, let yn be the first element in the
enumeration {xn : n < u} such that yn £ Uq U ... U [/„_!. Then we choose
Un as an open compact neighbourhood of yn such that:
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(+) (l)í/n\{j/,}CU{C,:fc<u;}.
(2) For all m < n, if yn Cm then Un Pi Cm = 0.
(3) £/nn(C/oU...UC/n_1) = 0.

Let {zn : n < tu} be an enumeration of Xj^. Note that for every n < tu
there is a kn < tu such that zn = y*.n. Then, we define Wn = f4n• Let
{ftn : n < tu) be a sequence of ordinals converging to a in a strictly increasing
way. Now, for each n < tu we choose an element vn G Ipn (X^) fl Wn and an
open compact neighbourhood Vn of vn with Vn C Wn. Put v = (a, ¡i). Then
we define a basic neighbourhood of v as a set of the form {u}U(J{Ki : n > fc}
where k < lo. If a is a suceessor ordinal, we would proceed in a similar way.
Now, put Z = Yn- The underlying set of X^ is Z U {£} x £. If x G Z, a basic
neighbourhood of x in X? is a basic neighbourhood of x in Z. Proceeding
as above, we construct for each n < u an open compact neighbourhood Un
of some yn in Z satisfying (+)(1) — (3) in such a way that {Un : n < u}
is a partition of Z. For each n < u, put vn = (//, n) and then consider the
neighbourhood Vn chosen for vn. Let {tn : n < u} be an enumeration of
{£} x Let {an : n < w} be a decomposition of u. For n < u, we define a
basic neighbourhood of tn in X$ as a set of the form {tn} UU{Lfc : k G an\m}
where m<u.

Now suppose that £ is a limit ordinal. If £ ^ S, we can construct 2Q
by means of an argument similar to the one given in the suceessor case. So,
we assume that £ G S. Let Z be the direct unión of {XM : y < £}. The
underlying set of 2Q is Z U ({£} x £). If x G Z, a basic neighbourhood of
x in X,c is a basic neighbourhood of x in Z. As above, for every n < u; we
choose a neighbourhood Un of some yn in Z verifying (+)(1) — (3) in such
a way that {Un : n < u} is a partition of Z. Put Y = {yn : n < u}.
For every n < u¡, put tn = (£,n). Let {t'n : n < tu} be an enumeration
of the set {(£,£) : u < C < C}- Fix n < u>. Our purpose is to define a

neighbourhood basis of tn. By using (+)(2), it is easy to check that for every
( < F fl {(fí,n) : £ < A* < £} is infinite. Set Y fl Cn = {vm : m < tu}.
For each m < tu, let Vm be the neighbourhood chosen for vm. We put
Wn = U{Kn : m < tu}. Note that there is a £ < £ such that {(/¿, n) : £ <
¡u, < £} C Wn. Then, we define a basic neighbourhood of tn as a set of the
form {tn} U U{Kn : m > k} where k < tu. Note that {Wn : n < tu} is
pairwise disjoint. To define a neighbourhood basis of a point t'n, we consider
a sequence of ordinals (£n : n < tu) converging to £ in a strictly increasing
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way and then, for each k < u, we choose uk G Y Pl Ck D Zífc. Now, for k < u,
consider the neighbourhood Vk chosen for uk ( as an element of Y). Note
that Vk C Wk for each k < u. Let {an : n < u} be a decomposition of u>.
Fix n < uj. Then, we define a basic neighbourhood of t'n as a set of the form
{t'n} U U{Kíi ■ m e an\k} where k < u.

Now we define the desired space X as the direct unión of the spaces
for £ < u\. H

Theorem 2 Let 9 = {na : a < u\) where Ka G {u>,ui} for each a <
Then, there are 2Wl pairwise non-homeomorphic LCS-spaces with cardinal
sequence 9.

Proof. Let : £ < 2Ul) be a sequence of stationary subsets of u>\ such
that if ¡x < £ < \ is stationary. By using Theorem 1, for every
£ < 2‘Jl there is an admissible #-space X¿ such that S$ is associated to each
column in X$. Now, we infer from Lemma 1 that if p, < £ < 2Wl, then XM
and X$ are not homeomorphic. H

2 Cardinal sequences of length greater
than U\

Our aim here is to extend the construction given in Section 1 to any un-
countable ordinal < First, we need to prove the following result:

Theorem 3 Let a be an ordinal such that 0 < a < u2. Let 6 = (k^ : £ < a)
be a sequence of cardinals such that either = u or — ui\ for every £ < a.

Then, there is an LCS-space X such that CS(X) = 9.

In the proof of Theorem 3 we will extend the argument given by Juhász
and Weiss in [3]. If ¡3 is an ordinal and r = (A? : £ < /?) is a sequence of
cardinals with A¿ G {uquq} for every £ < (3, we denote by Kr the class of all
the LCS-spaces X such that CS(X) = r.

Suppose that Ti = (A? : £ < ai), r2 = (A£ : £ < a2) are sequences of
cardinals such that A^ G {uAuq} for every £ < a1( AQl = u, Xq = u and
A£ G {unaq} for every £ such that 0 < £ < a2. Assume that X G KTl is
a a-compact space such that Iai+i(X) — 0 and Y G KT2 is a space such
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that X C\Y = 0. Then we define the LCS-space X ® Y as follows. The
underlying set of X ® Y is X U (y \ I0(Y)). Let us consider an enumeration
{un : n < tu} of Iai(X) and an enumeration {vn : n < tu} of Io(Y). Since
X is a paracompact space, for every n < tu we can choose a compact open

neighbourhood Un of un in such a way that {Un : n < tu} is a discrete family.
Then, if x E X we define a basic neighbourhood of x as a neighbourhood of
x in X, and if x £ Y \ Io(Y) we define a basic neighbourhood of x as a set of
the form (V\/o(K))UU{C4i : vn £ V}, where V is a basic neighbourhood of x
in Y. Consider r = : £ < a i + a2) where = A^ for £ < ai and k5 = A^
if £ = ai + y where 0 < y < a2. Then, it can be proved that X ® Y £ Kr.
Note that if in addition Y is cr-compact, then X ® Y is also cr-compact.

Let ¡3 be an ordinal such that cf{0) < cu. Let r = (A^ : £ < (3) be a
sequence of cardinals such that A? 6 {cu,tui} for every £ < (3. Suppose that
X € Kt is a cr-compact space with Ip(X) = 0 and T = {t$ : £ < oq} is a
set of difierent elements which do not occur in X. Then we define a space

H(X, T) of underlying set X U T such that H(X, T) is an LCS-space with
ht(H(X,T)) = 0+1, I¿H(X,T)) = I¿X) for £ < 0 , I0{H{X,T)) = T and
b+ i(H(X,T)) = 0. First we assume that 0 = 7 + 1 is a successor ordinal.
Then, if x £ X we define a basic neighbourhood of x as a neighbourhood of
x in X. Since X is cr-compact, we infer that Iy(X) is a countable set. Let
{yn \ n < u} bean enumeration of Iy(X). . For every n < tu we consider
a compact open neighbourhood Un of yn in such a way that {Un : n < tu}
is a discrete family. Let {a^ : f < tuj} be an almost disjoint family of tu.
Then, for every £ < tu!, a basic neighbourhood of is a set of the form
{^} U U{^m : m € a^m > k} where k < tu. Analogously, if cf{0) = tu we
consider a sequence of ordinals (0n : n < tu) converging to 0 in a strictly
increasing way, and then for each n < tu we choose a point zn € Ipn {X) and
a compact open neighbourhood Un of zn in such a way that {Un : n < tu} is a
discrete family. As above we consider an almost disjoint family {a^ : £ < tui}
of tu, and then we define as a basic neighbourhood of a set of the form
{í^} U [3{Um : m € a^,m > k} where k < tu. Proceeding in a similar way, we
can define a space H(X, T) if T is an infinite countable set of elements not
occurring in X. Note that in this case H(X, T) is cr-compact.

Proof of Theorem 3. We show that for every ordinal a < tu2 and every
sequence of cardinals 0 = {k^ : £ < a) where G {tu,tui} for each £ < a,
we can construct a space X G Kq with I^(X) = {£} x for every £ < a
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and Ia+i(X) — 0. We construct the space X by transfinite induction on a.
Without loss of generality we may assume that Ka = uq. The case a = 0 is
imrnediate. Then suppose a = ¡3+1. Let 9$ = (k$ : £ < (3). By the induction
hypothesis, Kgg ^ 0. Let 9'^ = (k$ : £ < (3). Since Kgg ^ 0, it follows that
there is a compact space Zq £ Kg<. Let Z\ be the topological sum of a family
of ui disjoint copies of Zq. Then we define Z = H(Zi, {a} x c<q). Now let us
consider a Y € Kgg such that Y D Z = 0. Let X be the topological sum of
Y and Z. Then, it follows that X £ Kg.

Next assume that a is a limit ordinal such that cf(a) = uj. Let {an : n <
u) be a sequence of ordinals converging to a in a strictly increasing way. For
each n < uq we put 9n = (k^ : £ < an). By the induction hypothesis, for
each n < lo there is a compact space Yn £ Kgn. We may assume that the
Yn are pairwise disjoint. Let Y be the topological sum of the Yn for n < u.
Then we define X = H(Y, {a} x uq). We have X £ Kg.

Now assume that a is a limit ordinal such that cf(a) = uq. Let (qM : /r <
uq) be a closed sequence of ordinals converging to a in a strictly increasing
way such that cf(qM) < co for each fj. < uq. Let (a^ : £ < v) be the
order-preserving enumeration of the such that /c7m = uq. Without loss of
generality we may suppose that v = uq. In order to find a space X £ Kg,
we construct by transfinite induction on £ £ [uquq) an “approximation” X$
such that the following conditions hold:

(1) The underlying set of X^ is U{X^ : (3 < c*^} U where =
{(3} x Kfi if (3 {a0 : [i < £} U {a} and Xf] = {/?} x £ if (3 £ {aM : /¿ <
£.}U{q}.

•(2) X£ is a cr-compact LCS-space such that = I¡3{X¿) for each (3 <
and X¡a) = /a?+1(^).

(3) X£ \ xj?'* with the relative topology of X¿ is a cr-compact LCS-space.
(4) If cj < ¡i < £ and x £ for some /? < then a neighbourhood

basis of x in is also a neighbourhood basis of x in X$.
(5) If u < \x < £ and C C X0 \ X^ is a compact subset of X^ then C

is a compact subset of X$.
Moreover if u < £ < uq, we will define for each x £ a canonical

neighbourhood WÍf1 of x in X^ in such a way that the following two conditions
hold:

(1) If u; < < £ < uq and x £ Xj?\ then W^ C
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(2) If cu < p, < £ < cui and i,¡/£ X^ with x ?¿y, then fl W^ =
w!p n wp..i y

For each x G X^a\ we will define a clopen neighbourhood basis of x in X?
from the canonical neighbourhood W^. Furthermore, we shall have that

is a compact neighbourhood of x.
In order to construct Xwe define by induction on n < cu a a-compact

LCS-space Yn with ht(Yn) = an + 1, Ian+i(Yn) = 0 and such that if m < n <
cu, Ym is an open subspace of Yn and for any Q < am, I^(Ym) = I$(Yn). We
assume ao > 0- Let r0 = (np : fi < ao). By the induction hypothesis, there
is a compact space Z0 € KTo. Then we define To as the topological sum of cu
disjoint copies of Z0. Next assume n = m + 1. Let 8 = o.t.(an \ am). Let
r = (A^ : £ < 8) where A0 = cu and A¡^ = Kam+c if 0 < C < ó. Again by
the induction hypothesis, there is a compact space Z0 G KT. Let Z\ be the
topological sum of cu disjoint copies of Z0. Then we define Yn = Ym ® Z\.
Let Y' be the direct unión of the spaces Yn for n < cu. Without loss of
generality we may suppose that aw is the limit of {an : n < cu}. Then we put
Y = H(Y', {aw} x cu). We define the underlying set of Xu as Y U ({a} x cu).
If x G Y, a basic neighbourhood of x in Xw is a neighbourhood of x in Y.
For each n < cu, we put yn = (au,n) and xn = (a,n). For each n < cu we
can choose a compact open neighbourhood Un of yn in Y in such a way that
{Un : n < cu} is a discrete family. Let {an : n < cu} be a decomposition of
cu. Then we define for each n < cu, the canonical neighbourhood of xn in
Xw by = {£„} UU{¿4 : k G an}. Now, for every n < cu, we define
a basic neighbourhood of xn in X^ as a set of the form \ C where
C C Wg> \ {Xn} is a compact open subset of Y.

Now we assume £ = y + 1 with cu < y, < u\. In order to construct
X$ we definé for each C < y a cr-compact LCS-space Y^ such that ht(Y¿) —

+ 2, Ip{Y¿) = {/3} x $ if ¡3 G {ap : p < OJpiYc) = k(Xn) otherwise.
First we fix an enumeration {xn : n < cu} of {c*} x p. In order to define
Yo, we assume that a0 is a successor ordinal, say a0 = fj0 + l. If ao is
a limit ordinal, we would use a similar argument by using the fact that
cf(ao) = cu. For every x G X^, we define a'basic neighbourhood of x in Y0 as
a neighbourhood of x in Xp. Now we consider a discrete family {Vn : n < cu}
of compact open neighbourhoods of the points xn in X^. For each n < cu we
consider a zn G Vn fl Ip0(X¡j,) and a compact open neighbourhood Un of zn
with Un C Vn. We put y = (ao,p). Then we define a basic neighbourhood
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of y as a set of the form {y} U(J{£4 : k > m} where m < cu. Proceeding in a
similar way, we can construct Yí+i from Yq, and Yq from the unión of the Y,
for 77 < C if C is limit. Now we put Y = Yp. Again since Y is a paracompact
space, we can choose a discrete collection {Vn : n < u} of compact open
neighbourhoods of the points xn in Y. For each n < cu, we consider Vn with
the relative topology of Y. Then, for every n < cu we define a cr-compact
LCS-space Zn such that ht{Zn) — + 1 ,Ip(Zn) = I¡3{Vn) for each ¡3 < ap
and in such a way that the Zn are pairwise disjoint. Let 6 = o.t.(a^\ap). Let
t = (Xp : p < 6) where A0 = cu and \p = Ka^+P if 0 < p < <5. Let {an : n < cu}
be a decomposition of {c^} x £. Let us fix a natural number n. We put
an = {ym '• m < u;}. For each m < cu, we consider a compact space ZVm € KT
such that h{Zym) = {?/m}. We suppose that the ZVm are pairwise disjoint.
Then we define Z'n as the topological sum of the family {Zym : m < cu}, and
we put Zn = (Vn \ {xn}) ® Z'n. Now we define Z as the topological sum of
the family [Zn : n < cu}. We then define as follows. The underlying set
of X$ is Y U Z U {(a,¿1)}. If x G Y \ {ct} x £, a basic neighbourhood of x
in X$ is a basic neighbourhood of x in Y. Analogously, if x £ Zn for some
n < cu, a basic neighbourhood of x in X$ is a basic neighbourhood of x in Zn.
For every n < cu, we define the canonical neighbourhood of xn in X$ as the
set U Zn. Then we define a basic neighbourhood of xn in X$ as
a set of the form \ C, where C is a compact open subset of \ {xn}.
We put y = (a, y). For each n < cu, we consider a point zn £ Iaí(Zn) and a
compact open neighbourhood Un of zn in the space Zn. Then we define the
canonical neighbourhood of y in as the set W!p = {y} U U{Um '• m < cu}.
So, we define a basic neighbourhood of y in X^ as a set of the form \ C,
where C C W!jp is a compact open subset of Z.

Now suppose that £ is a limit ordinal. Without loss of generality we
may assume that a$ is the limit of {ap : y < £}. First we define the cr-
compact LCS-space Y of underlying set (J{XM : u> < y <£} as follows.
If x £ Xp \ ({a} x y) for some y < £, a basic neighbourhood of 2: is a
basic neighbourhood of x in Xp. If x £ {a} x £, we define the canonical
neighbourhood of x in Y by W* = \J{W^ : u < H < £}, and then we
define a basic neighbourhood of x in Y as a set of the form W* \ C where
C C W* \ {x} is a compact open subset of Xp for some y < £. Now we
define the space X$ as follows. The underlying set of X^ is Y U ({a^} x £).
As above, if x £ ({ct} x y) for some y < £, a basic neighbourhood of x in
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X£ is a basic neighbourhood of x in Xy. Let {xn : n < cu} be an enumeration
of {a} x £. We choose a discrete collection {Vn : n < cu} of compact open
neighbourhoods of the points xn in Y. Let us consider a decomposition
{an : n < u>} of {a¿} x £. Let ((3m : m < cu) be a sequence of ordinals
converging to in a strictly increasing way. We fix a natural number n. We
consider Vn with the relative topology of Y. For each m < cu, we consider a

zm G Ipm(Vn) and a compact open neighbourhood Um of zm in Vn such that
{Um :.m < cu} is a discrete family in f4\{xn}. We set an = {yk : k < cu}. We
fix a decomposition {fq : k < cu} of cu. Then we define a basic neighbourhood
of a point yk in X$ as a set of the form {yk} U \J{Um : m G bk, m > /} where
¿ < cu. Now we define the canonical neighbourhood of a point xn in X$ by

— W*n U an. Then, a basic neighbourhood of xn in is a set of the
form \ C where C is a compact open subset of \ {xn}.

Finally we define the space X as follows. The underlying set of X is
U{X€ : u> < ^ < u>x). If x G X$ \ {a} x u>i for some £ < uq, a basic
neighbourhood of x in X is a basic neighbourhood of x in X$. If x G {a} xuq,
we put Wx = ■' tu < ^ < cji}. Then we define a basic neighbourhood
of x in X as a set of the form Wx \ C where C C Wx \ {x} is a compact open
subset of Xg for some ^ It can be verified that X G Kq. H

Theorem 3 is in a sense best possible, since under CH we have that if
9 = («£ : ^ < 77) is such that na = tu and Kp = tu2 for some a < (3 < 77,
then there is no LCS-space X such that CS(X) = 9. To check this point,
assume on the contrary that there is an LCS-space X with CS(X) = 9.
For every x G Xa consider a clopen neighbourhood Ux of x. Now, we put
ax = Ux íl Ia(X). Since we are assuming that if 7 is the ordinal such that
x G /7(X) then Ux fl X1 = {x}, we have that x ^y implies ax ^ ay. Henee,
we can identify every point of Xa with a subset of Ia(X). Also, it was proved
by Baumgartner in [1] that if it is consistent that there exists an inaccessible
cardinal, then it is consistent with 2“ = tu2 that there is no LCS-space with
cardinal sequence 9 = (k^ : £ < cui) where = uq for each £ < u\ and
«Li = cu2. On the other hand, Juhász has pointed out that in a collaboration
with Weiss, they have proved that if 9 = (k$ : £ < tuj) is a sequence of
cardinals such that /í^ < 2U for each £ < u\, then there is an LCS-space X
such that CS(X) = 9.

Next, combining the arguments given in the proofs of Theorem 1 and
Theorem 3 we can show the following result, whose proof is left to the reader.
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As above, we write Cn = ui x {n} for n < u.

Lemma 2 Suppose that 9 = (k$ :■ £ < u\) is a sequence of cardtnals such
that k¡: G {u,ui} for every f < u\ and kUi = uq. Then, there is an LCS-
space X with I$(X) = {£} x for f < oq and IUI1+Í(X) = 0 such that the
following two conditions are satisfied:

(1) For every x G X\I^{X) and every n < u there is a neighbourhood
U of x such that (U \ {x}) D Cn = 0.

(2) For every x G X there is a neighbourhood U of x such that U \ {x} C
U{Cn ■ n <u}.

Now, we can prove the main result.

Theorem 4 Let a be an ordinal such that uq < a < uq. ' Let 9 = f < a)
be a sequence of cardinals such that either = u> or = cq for every f < a.

Then, there are 2UJl pairwise non-homeomorphic LCS-spaces with cardinal
sequence 9.

Proof Let r = (k$ : £ < cq). Consider {X$.: £ < 2Ul) a sequence of
pairwise non-homeomorphic admissible r-spaces constructed as in Theorem
2. Let X^ be the one-point compactification of XThen, let Y^ be the
topological sum of u> disjoint copies of XLet 0 = o.t.(a \ tq). Now let
t' = (/c£ : f < 0) where k'0 = cq k^ — kUi+$ if 0 < £ < 0. By Theorem
3, there is an LCS-space Y such that CS(Y) = r1. For f < 2Wl, we may
assume that the underlying sets of Y and Y,c are disjoint. Then, we define
Z^ = Y^Y for every £ < 2Ul. Note that if kÜJi — cq we infer from the proof
of Lemma 1 that the spaces Z^ are pairwise non-homeomorphic LCS-spaces
with cardinal sequence 9. So, assume that = cq. Let r* = : £ < cq).
Let Z be an LCS-space of cardinal sequence r* which verifies the conditions
of Lemma 2. We may assume that for every £ < 2Wl, the underlying sets
of Z and Z$ are disjoint. Then, we define Z'^ as the topological sum of Z
and Z$. By using the argument given in Lemma 1, it is now easy to check
that the spaces Z^ are pairwise non-homeomorphic LCS-spaces with cardinal
sequence 9. H
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