UNIVERSITAT DE BARCELONA

ON CARDINAL SEQUENCES OF SCATTERED SPACES

by

Juan Carlos Martínez

Mathematics Subject Classification: 54G12, 06E99

Mathematics Preprint Series No. 234 April 1997

ON CARDINAL SEQUENCES OF SCATTERED SPACES

Juan Carlos Martínez

Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Abstract

It was proved by Dow and Simon that there are 2^{ω_1} (as many as possible) pairwise non-homeomorphic compact, T_2 , scattered spaces of height ω_1 and width ω . In this paper, we prove that if α is an ordinal with $\omega_1 \leq \alpha < \omega_2$ and $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ is a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$, then there are 2^{ω_1} pairwise non-homeomorphic compact, T_2 , scattered spaces whose cardinal sequence is θ .

Keywords: Cantor-Bendixson derivatives; scattered spaces; cardinal sequences.

AMS classification: 54G12; 06E99.

A topological space X is called *scattered*, if every closed subspace of X has an isolated point. A useful tool in the study of scattered spaces is the Cantor-Bendixson process for topological spaces. If X is a topological space and α is an ordinal, we define the α -derivative of X by induction on α as follows: $X^0 = X$; if $\alpha = \beta + 1$, $X^{\alpha} = \{x \in X : x \text{ is an accumulation point of } X^{\beta}\}$; and if α is limit, $X^{\alpha} = \bigcap \{X^{\beta} : \beta < \alpha\}$. For every ordinal β , we define the β -level of X by $I_{\beta}(X) = X^{\beta} \setminus X^{\beta+1}$. It is well-known that a space X is scattered if and only if there is an ordinal α such that $X^{\alpha} = \emptyset$.

Suppose that X is a scattered space. Then we define the height of X by ht(X) = the least ordinal β such that X^{β} is finite, and we define the

²E-mail: martinez@cerber.mat.ub.es

¹The preparation of this paper was supported by DGICYT Grant PB94-0854

cardinal sequence of X by $CS(X) = \langle | I_{\beta}(X) | : \beta < ht(X) \rangle$. All the spaces we consider are Hausdorff. By an LCS-space we mean a locally compact, Hausdorff, scattered space. Note that if X is an LCS-space with cardinal sequence θ and X is not compact, then the one-point compactification of X has also cardinal sequence θ . If $\alpha > 0$ is an ordinal and X is an LCSspace, we say that X is an (ω, α) -space if $CS(X) = \theta$ where θ is the sequence $\langle \kappa_{\beta} : \beta < \alpha \rangle$ with $\kappa_{\beta} = \omega$ for every $\beta < \alpha$. An LCS-space X is called thin-tall, if X is an (ω, ω_1) -space. It was proved by Rajagopalan and, independently, by Juhász and Weiss that there exists a thin-tall space. In [3], it was even proved by Juhász and Weiss that for every ordinal α such that $0 < \alpha < \omega_2$, there exists an (ω, α) -space. However, it is known that the existence of an (ω, ω_2) -space is independent of the axioms of Set Theory (see [1]). On the other hand, it was proved by Dow and Simon in [2] that there are 2^{ω_1} as many as possible) pairwise non-homeomorphic thin-tall spaces. From the proof of this result we can infer by using a standard argument that for every ordinal α such that $\omega_1 \leq \alpha < \omega_2$, there are also 2^{ω_1} pairwise nonhomeomorphic (ω, α) -spaces. The aim of this paper is then to prove that if α is an ordinal with $\omega_1 \leq \alpha < \omega_2$ and $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ is a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$, then there are 2^{ω_1} pairwise non-homeomorphic LCS-spaces whose cardinal sequence is θ .

This paper is divided in two sections. In the first one, we consider the case of cardinal sequences of length ω_1 . In the second section, we first prove that for every ordinal $\alpha < \omega_2$ and every cardinal sequence $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ where $\kappa_{\xi} \in \{\omega, \omega_1\}$ for each $\xi < \alpha$, there is an LCS-space with cardinal sequence θ , and then we prove that the construction given in Section 1 can be generalized to any uncountable ordinal $< \omega_2$.

We want to remark that results on cardinal sequences for LCS-spaces have a direct translation to the context of superatomic Boolean algebras (i.e. Boolean algebras in which every subalgebra is atomic), since it is known that the notion of a compact, Hausdorff, scattered space is the dual notion of a superatomic Boolean algebra.

1 Cardinal sequences of length ω_1

We fix a cardinal sequence $\theta = \langle \kappa_{\xi} : \xi < \omega_1 \rangle$ where $\kappa_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \omega_1$. Then, by using a refinement of the argument carried out in [2,

Section 2], we shall construct 2^{ω_1} pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . The underlying set of the 2^{ω_1} spaces we want to construct will be the set $D = \bigcup \{ \xi \} \times \kappa_{\xi} : \xi < \omega_1 \}$. For every $n < \omega$, we define the $\operatorname{column} C_n$ by $\omega_1 \times \{n\}$. Now suppose that X is an LCS-space of underlying set D such that $I_{\xi}(X) = \{\xi\} \times \kappa_{\xi}$ for any $\xi < \omega_1$. Let S be a stationary subset of ω_1 . Then, for $n < \omega$, we say that S is associated to C_n in X, if for every $x = (\xi, n) \in C_n$ where ξ is a limit ordinal, the following holds:

- (1) If $\xi \in S$, then for every neighbourhood U of x there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \mu \leq \xi\} \subseteq U$.
- (2) If $\xi \notin S$, there is a neighbourhood U of x such that $U \cap C_n = \{x\}$. Then we say that X is an *admissible* θ -space, if the following conditions hold: (*) (1) For each $n < \omega$, C_n is a closed subset of X.
- (2) For each $n < \omega$, there is a stationary subset of ω_1 associated to C_n in X.
- (3) For every $x \in X$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup \{C_n : n < \omega\}$.

Lemma 1 If X and Y are admissible θ -spaces and $f: X \longrightarrow Y$ is a homeomorphism, then for every $k < \omega$ there are an $n < \omega$ and a $\xi < \omega_1$ such that $f''(C_k \cap X^{\xi}) = C_n \cap Y^{\xi}$.

Proof. It is clear that for every $x \in X$, if $x \in I_{\beta}(X)$ then $f(x) \in I_{\beta}(Y)$. We consider ω_1 with the order topology. Then, if $N \subseteq \omega_1$ we write $N' = \{\xi < \omega_1 : \xi \text{ is an accumulation point of } N\}$. Let S be the stationary subset associated to C_k in X. We have that $f''(C_k) \setminus \bigcup \{C_n : n < \omega\}$ is countable. To check this point, note that otherwise if we put $N = \{\zeta < \omega_1 : (\zeta, \mu) \in f''(C_k) \setminus \bigcup \{C_n : n < \omega\}$ for some $\mu < \omega_1\}$, then there is a $\rho \in S \cap N'$. Now, by using (*)(3), we infer that no point of Y can be the image under f of the point (ρ, k) . On the other hand, if for $k < \omega$ there are $m, n < \omega$ with $m \neq n$ such that $C_m \cap f''(C_k)$ and $C_n \cap f''(C_k)$ are uncountable, then if we put $M = \{\zeta < \omega_1 : (\zeta, m) \in f''(C_k)\}$ and $N = \{\zeta < \omega_1 : (\zeta, n) \in f''(C_k)\}$, we have that there is a $\rho \in S \cap M' \cap N'$. Now, we would infer from (*)(1) that no point of Y can be the image under f of (ρ, k) . \dashv

In what follows, if x is a point of an LCS-space X, when we consider a neighbourhood U of x, we shall tacitly assume that if β is the ordinal such that $x \in I_{\beta}(X)$, then $U \cap X^{\beta} = \{x\}$.

By a decomposition of an infinite set a, we mean a partition of a in infinite subsets.

Theorem 1 Let S be a stationary subset of ω_1 . Then, there is an admissible θ -space X such that for each $n < \omega$, S is the stationary subset associated to C_n in X.

Proof. We construct by transfinite induction on $\xi < \omega_1$ a space X_{ξ} satisfying the following conditions:

- (1) The underlying set of X_{ξ} is $\bigcup \{X_{\xi}^{(\mu)} : \mu \leq \xi\}$ where $X_{\xi}^{(\mu)} = \{\mu\} \times \omega$ if $\kappa_{\mu} = \omega$ or $\xi \leq \omega$, $X_{\xi}^{(\mu)} = \{\mu\} \times \xi$ if $\kappa_{\mu} = \omega_{1}$ and $\xi > \omega$.
 - (2) X_{ξ} is an LCS-space such that $I_{\mu}(X_{\xi}) = X_{\xi}^{(\mu)}$ for every $\mu \leq \xi$.
 - (3) For every $n < \omega$, $C_n \cap X_{\xi}$ is a closed subset of X_{ξ} .
- (4) If ξ is limit and $\xi \in S$, then for every $n < \omega$ and every neighbourhood U of (ξ, n) there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \mu \leq \xi\} \subseteq U$.
- (5) If ξ is limit and $\xi \notin S$, then for each $n < \omega$ there is a neighbourhood U of (ξ, n) such that $U \cap C_n = \{(\xi, n)\}.$
- (6) For every $x \in X_{\xi}$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup \{C_n : n < \omega\}$.
- (7) If $\xi < \eta$ and $x \in X_{\xi}$, then a neighbourhood basis of x in X_{ξ} is also a neighbourhood basis of x in X_{η} .
 - (8) If $\xi < \eta$, then every compact subset of X_{ξ} is a compact subset of X_{η} .

We define X_0 as the ordinal ω with the order topology. Then, assume $\xi > 0$. Without loss of generality, we may assume that $\xi \geq \omega$ and $\kappa_{\xi} = \omega_{1}$. First, we suppose $\xi = \mu + 1$. To construct X_{ξ} we previously define for each $\alpha \leq \mu$ an LCS-space Y_{α} such that $ht(Y_{\alpha}) = \xi$, $I_{\beta}(Y_{\alpha}) = \{\beta\} \times \xi$ if $\beta \leq \alpha$ and $\kappa_{\beta} = \omega_{1}$, and $I_{\beta}(Y_{\alpha}) = I_{\beta}(X_{\mu})$ otherwise. In addition, we shall have that if $\beta < \alpha \leq \mu$ and $x \in Y_{\beta}$, then a neighbourhood basis of x in Y_{β} is also a neighbourhood basis of x in Y_{α} . The construction of Y_{α} is immediate. Then, assume that α is limit. Let Y be the direct union of $Y_{\alpha} = Y_{\alpha} = Y_{\alpha}$. If $Y_{\alpha} = Y_{\alpha} = Y_{\alpha} = Y_{\alpha} = Y_{\alpha} = Y_{\alpha}$. We have to define a neighbourhood basis of the point $Y_{\alpha} = Y_{\alpha} = Y_{\alpha}$

- $(+) (1) U_n \setminus \{y_n\} \subseteq \bigcup \{C_k : k < \omega\}.$
 - (2) For all $m \leq n$, if $y_n \notin C_m$ then $U_n \cap C_m = \emptyset$.
 - $(3) U_n \cap (U_0 \cup \ldots \cup U_{n-1}) = \emptyset.$

Let $\{z_n : n < \omega\}$ be an enumeration of $X_u^{(\mu)}$. Note that for every $n < \omega$ there is a $k_n < \omega$ such that $z_n = y_{k_n}$. Then, we define $W_n = U_{k_n}$. Let $\langle \beta_n : n < \omega \rangle$ be a sequence of ordinals converging to α in a strictly increasing way. Now, for each $n < \omega$ we choose an element $v_n \in I_{\beta_n}(X_\mu) \cap W_n$ and an open compact neighbourhood V_n of v_n with $V_n \subseteq W_n$. Put $v = (\alpha, \mu)$. Then we define a basic neighbourhood of v as a set of the form $\{v\} \cup \bigcup \{V_n : n > k\}$ where $k < \omega$. If α is a successor ordinal, we would proceed in a similar way. Now, put $Z = Y_{\mu}$. The underlying set of X_{ξ} is $Z \cup \{\xi\} \times \xi$. If $x \in Z$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Z. Proceeding as above, we construct for each $n < \omega$ an open compact neighbourhood U_n of some y_n in Z satisfying (+)(1) - (3) in such a way that $\{U_n : n < \omega\}$ is a partition of Z. For each $n < \omega$, put $v_n = (\mu, n)$ and then consider the neighbourhood V_n chosen for v_n . Let $\{t_n:n<\omega\}$ be an enumeration of $\{\xi\} \times \xi$. Let $\{a_n : n < \omega\}$ be a decomposition of ω . For $n < \omega$, we define a basic neighbourhood of t_n in X_{ξ} as a set of the form $\{t_n\} \cup \bigcup \{V_k : k \in a_n \setminus m\}$ where $m < \omega$.

Now suppose that ξ is a limit ordinal. If $\xi \notin S$, we can construct X_{ξ} by means of an argument similar to the one given in the successor case. So, we assume that $\xi \in S$. Let Z be the direct union of $\{X_{\mu} : \mu < \xi\}$. The underlying set of X_{ξ} is $Z \cup (\{\xi\} \times \xi)$. If $x \in Z$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Z. As above, for every $n < \omega$ we choose a neighbourhood U_n of some y_n in Z verifying (+)(1) - (3) in such a way that $\{U_n : n < \omega\}$ is a partition of Z. Put $Y = \{y_n : n < \omega\}$. For every $n < \omega$, put $t_n = (\xi, n)$. Let $\{t'_n : n < \omega\}$ be an enumeration · of the set $\{(\xi,\zeta):\omega\leq\zeta<\xi\}$. Fix $n<\omega$. Our purpose is to define a neighbourhood basis of t_n . By using (+)(2), it is easy to check that for every $\zeta < \xi, Y \cap \{(\mu, n) : \zeta < \mu < \xi\}$ is infinite. Set $Y \cap C_n = \{v_m : m < \omega\}$. For each $m < \omega$, let V_m be the neighbourhood chosen for v_m . We put $W_n = \bigcup \{V_m : m < \omega\}$. Note that there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \zeta\}$ $\mu < \xi \subseteq W_n$. Then, we define a basic neighbourhood of t_n as a set of the form $\{t_n\} \cup \bigcup \{V_m : m > k\}$ where $k < \omega$. Note that $\{W_n : n < \omega\}$ is pairwise disjoint. To define a neighbourhood basis of a point t'_n , we consider a sequence of ordinals $\langle \xi_n : n < \omega \rangle$ converging to ξ in a strictly increasing way and then, for each $k < \omega$, we choose $u_k \in Y \cap C_k \cap Z^{\xi_k}$. Now, for $k < \omega$, consider the neighbourhood V'_k chosen for u_k (as an element of Y). Note that $V'_k \subseteq W_k$ for each $k < \omega$. Let $\{a_n : n < \omega\}$ be a decomposition of ω . Fix $n < \omega$. Then, we define a basic neighbourhood of t'_n as a set of the form $\{t'_n\} \cup \bigcup \{V'_m : m \in a_n \setminus k\}$ where $k < \omega$.

Now we define the desired space X as the direct union of the spaces X_{ξ} for $\xi < \omega_1$. \dashv

Theorem 2 Let $\theta = \langle \kappa_{\alpha} : \alpha < \omega_1 \rangle$ where $\kappa_{\alpha} \in \{\omega, \omega_1\}$ for each $\alpha < \omega_1$. Then, there are 2^{ω_1} pairwise non-homeomorphic LCS-spaces with cardinal sequence θ .

Proof. Let $\langle S_{\xi} : \xi < 2^{\omega_1} \rangle$ be a sequence of stationary subsets of ω_1 such that if $\mu < \xi < 2^{\omega_1}$, $S_{\xi} \setminus S_{\mu}$ is stationary. By using Theorem 1, for every $\xi < 2^{\omega_1}$ there is an admissible θ -space X_{ξ} such that S_{ξ} is associated to each column in X_{ξ} . Now, we infer from Lemma 1 that if $\mu < \xi < 2^{\omega_1}$, then X_{μ} and X_{ξ} are not homeomorphic. \dashv

2 Cardinal sequences of length greater than ω_1

Our aim here is to extend the construction given in Section 1 to any uncountable ordinal $< \omega_2$. First, we need to prove the following result:

Theorem 3 Let α be an ordinal such that $0 < \alpha < \omega_2$. Let $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ be a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$. Then, there is an LCS-space X such that $CS(X) = \theta$.

In the proof of Theorem 3 we will extend the argument given by Juhász and Weiss in [3]. If β is an ordinal and $\tau = \langle \lambda_{\xi} : \xi < \beta \rangle$ is a sequence of cardinals with $\lambda_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \beta$, we denote by K_{τ} the class of all the LCS-spaces X such that $CS(X) = \tau$.

Suppose that $\tau_1 = \langle \lambda_{\xi} : \xi \leq \alpha_1 \rangle$, $\tau_2 = \langle \lambda'_{\xi} : \xi \leq \alpha_2 \rangle$ are sequences of cardinals such that $\lambda_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \alpha_1$, $\lambda_{\alpha_1} = \omega$, $\lambda_0' = \omega$ and $\lambda'_{\xi} \in \{\omega, \omega_1\}$ for every ξ such that $0 < \xi \leq \alpha_2$. Assume that $X \in K_{\tau_1}$ is a σ -compact space such that $I_{\alpha_1+1}(X) = \emptyset$ and $Y \in K_{\tau_2}$ is a space such

that $X \cap Y = \emptyset$. Then we define the LCS-space $X \otimes Y$ as follows. The underlying set of $X \otimes Y$ is $X \cup (Y \setminus I_0(Y))$. Let us consider an enumeration $\{u_n : n < \omega\}$ of $I_{\alpha_1}(X)$ and an enumeration $\{v_n : n < \omega\}$ of $I_0(Y)$. Since X is a paracompact space, for every $n < \omega$ we can choose a compact open neighbourhood U_n of u_n in such a way that $\{U_n : n < \omega\}$ is a discrete family. Then, if $x \in X$ we define a basic neighbourhood of x as a neighbourhood of x in X, and if $x \in Y \setminus I_0(Y)$ we define a basic neighbourhood of x as a set of the form $(V \setminus I_0(Y)) \cup \{U_n : v_n \in V\}$, where V is a basic neighbourhood of x in Y. Consider $\tau = \langle \kappa_{\xi} : \xi \leq \alpha_1 + \alpha_2 \rangle$ where $\kappa_{\xi} = \lambda_{\xi}$ for $\xi \leq \alpha_1$ and $\kappa_{\xi} = \lambda_{\mu}'$ if $\xi = \alpha_1 + \mu$ where $0 < \mu \leq \alpha_2$. Then, it can be proved that $X \otimes Y \in K_{\tau}$. Note that if in addition Y is σ -compact, then $X \otimes Y$ is also σ -compact.

Let β be an ordinal such that $cf(\beta) \leq \omega$. Let $\tau = \langle \lambda_{\xi} : \xi < \beta \rangle$ be a sequence of cardinals such that $\lambda_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \beta$. Suppose that $X \in K_{\tau}$ is a σ -compact space with $I_{\beta}(X) = \emptyset$ and $T = \{t_{\xi} : \xi < \omega_1\}$ is a set of different elements which do not occur in X. Then we define a space H(X,T) of underlying set $X \cup T$ such that H(X,T) is an LCS-space with $ht(H(X,T)) = \beta + 1, I_{\xi}(H(X,T)) = I_{\xi}(X) \text{ for } \xi < \beta, I_{\beta}(H(X,T)) = T \text{ and }$ $I_{\beta+1}(H(X,T)) = \emptyset$. First we assume that $\beta = \gamma + 1$ is a successor ordinal. Then, if $x \in X$ we define a basic neighbourhood of x as a neighbourhood of x in X. Since X is σ -compact, we infer that $I_{\gamma}(X)$ is a countable set. Let $\{y_n:n<\omega\}$ be an enumeration of $I_{\gamma}(X)$. For every $n<\omega$ we consider a compact open neighbourhood U_n of y_n in such a way that $\{U_n : n < \omega\}$ is a discrete family. Let $\{a_{\xi}: \xi < \omega_1\}$ be an almost disjoint family of ω . Then, for every $\xi < \omega_1$, a basic neighbourhood of t_{ξ} is a set of the form $\{t_{\xi}\} \cup \bigcup \{U_m : m \in a_{\xi}, m > k\}$ where $k < \omega$. Analogously, if $cf(\beta) = \omega$ we consider a sequence of ordinals $\langle \beta_n : n < \omega \rangle$ converging to β in a strictly increasing way, and then for each $n < \omega$ we choose a point $z_n \in I_{\beta_n}(X)$ and a compact open neighbourhood U_n of z_n in such a way that $\{U_n : n < \omega\}$ is a discrete family. As above we consider an almost disjoint family $\{a_{\xi}: \xi < \omega_1\}$ of ω , and then we define as a basic neighbourhood of t_{ξ} a set of the form $\{t_{\xi}\} \cup \bigcup \{U_m : m \in a_{\xi}, m > k\}$ where $k < \omega$. Proceeding in a similar way, we can define a space H(X,T) if T is an infinite countable set of elements not occurring in X. Note that in this case H(X,T) is σ -compact.

Proof of Theorem 3. We show that for every ordinal $\alpha < \omega_2$ and every sequence of cardinals $\theta = \langle \kappa_{\xi} : \xi \leq \alpha \rangle$ where $\kappa_{\xi} \in \{\omega, \omega_1\}$ for each $\xi \leq \alpha$, we can construct a space $X \in K_{\theta}$ with $I_{\xi}(X) = \{\xi\} \times \kappa_{\xi}$ for every $\xi \leq \alpha$

and $I_{\alpha+1}(X)=\emptyset$. We construct the space X by transfinite induction on α . Without loss of generality we may assume that $\kappa_{\alpha}=\omega_{1}$. The case $\alpha=0$ is immediate. Then suppose $\alpha=\beta+1$. Let $\theta_{\beta}=\langle \kappa_{\xi}:\xi\leq\beta\rangle$. By the induction hypothesis, $K_{\theta_{\beta}}\neq\emptyset$. Let $\theta'_{\beta}=\langle \kappa_{\xi}:\xi<\beta\rangle$. Since $K_{\theta_{\beta}}\neq\emptyset$, it follows that there is a compact space $Z_{0}\in K_{\theta'_{\beta}}$. Let Z_{1} be the topological sum of a family of ω disjoint copies of Z_{0} . Then we define $Z=H(Z_{1},\{\alpha\}\times\omega_{1})$. Now let us consider a $Y\in K_{\theta_{\beta}}$ such that $Y\cap Z=\emptyset$. Let X be the topological sum of Y and Z. Then, it follows that $X\in K_{\theta}$.

Next assume that α is a limit ordinal such that $cf(\alpha) = \omega$. Let $\langle \alpha_n : n < \omega \rangle$ be a sequence of ordinals converging to α in a strictly increasing way. For each $n < \omega$, we put $\theta_n = \langle \kappa_{\xi} : \xi \leq \alpha_n \rangle$. By the induction hypothesis, for each $n < \omega$ there is a compact space $Y_n \in K_{\theta_n}$. We may assume that the Y_n are pairwise disjoint. Let Y be the topological sum of the Y_n for $n < \omega$. Then we define $X = H(Y, \{\alpha\} \times \omega_1)$. We have $X \in K_{\theta}$.

Now assume that α is a limit ordinal such that $cf(\alpha) = \omega_1$. Let $\langle \gamma_\mu : \mu < \omega_1 \rangle$ be a closed sequence of ordinals converging to α in a strictly increasing way such that $cf(\gamma_\mu) \leq \omega$ for each $\mu < \omega_1$. Let $\langle \alpha_\xi : \xi < \nu \rangle$ be the order-preserving enumeration of the γ_μ such that $\kappa_{\gamma_\mu} = \omega_1$. Without loss of generality we may suppose that $\nu = \omega_1$. In order to find a space $X \in K_\theta$, we construct by transfinite induction on $\xi \in [\omega, \omega_1)$ an "approximation" X_ξ such that the following conditions hold:

- (1) The underlying set of X_{ξ} is $\bigcup \{X_{\xi}^{(\beta)} : \beta \leq \alpha_{\xi}\} \cup X_{\xi}^{(\alpha)}$ where $X_{\xi}^{(\beta)} = \{\beta\} \times \kappa_{\beta}$ if $\beta \notin \{\alpha_{\mu} : \mu \leq \xi\} \cup \{\alpha\}$ and $X_{\xi}^{(\beta)} = \{\beta\} \times \xi$ if $\beta \in \{\alpha_{\mu} : \mu \leq \xi\} \cup \{\alpha\}$.
- (2) X_{ξ} is a σ -compact LCS-space such that $X_{\xi}^{(\beta)} = I_{\beta}(X_{\xi})$ for each $\beta \leq \alpha_{\xi}$ and $X_{\xi}^{(\alpha)} = I_{\alpha_{\xi}+1}(X_{\xi})$.
 - (3) $X_{\xi} \setminus X_{\xi}^{(\alpha)}$ with the relative topology of X_{ξ} is a σ -compact LCS-space.
- (4) If $\omega \leq \mu < \xi$ and $x \in X_{\mu}^{(\beta)}$ for some $\beta \leq \alpha_{\mu}$, then a neighbourhood basis of x in X_{μ} is also a neighbourhood basis of x in X_{ξ} .
- (5) If $\omega \leq \mu < \xi$ and $C \subseteq X_{\mu} \setminus X_{\mu}^{(\alpha)}$ is a compact subset of X_{μ} , then C is a compact subset of X_{ξ} .

Moreover if $\omega \leq \xi < \omega_1$, we will define for each $x \in X_{\xi}^{(\alpha)}$ a canonical neighbourhood $W_x^{(\xi)}$ of x in X_{ξ} in such a way that the following two conditions hold:

(1) If $\omega \leq \mu < \xi < \omega_1$ and $x \in X_{\mu}^{(\alpha)}$, then $W_x^{(\mu)} \subseteq W_x^{(\xi)}$.

(2) If $\omega \leq \mu < \xi < \omega_1$ and $x, y \in X_{\mu}^{(\alpha)}$ with $x \neq y$, then $W_x^{(\mu)} \cap W_y^{(\mu)} = W_x^{(\xi)} \cap W_y^{(\xi)}$.

For each $x \in X_{\xi}^{(\alpha)}$, we will define a clopen neighbourhood basis of x in X_{ξ} from the canonical neighbourhood $W_x^{(\xi)}$. Furthermore, we shall have that $W_x^{(\xi)}$ is a compact neighbourhood of x.

In order to construct X_{ω} , we define by induction on $n < \omega$ a σ -compact LCS-space Y_n with $ht(Y_n) = \alpha_n + 1$, $I_{\alpha_n+1}(Y_n) = \emptyset$ and such that if m < n < 1 ω , Y_m is an open subspace of Y_n and for any $\zeta \leq \alpha_m$, $I_{\zeta}(Y_m) = I_{\zeta}(Y_n)$. We assume $\alpha_0 > 0$. Let $\tau_0 = \langle \kappa_\beta : \beta < \alpha_0 \rangle$. By the induction hypothesis, there is a compact space $Z_0 \in K_{\tau_0}$. Then we define Y_0 as the topological sum of ω disjoint copies of Z_0 . Next assume n=m+1. Let $\delta=o.t.(\alpha_n\setminus\alpha_m)$. Let $\tau = \langle \lambda_{\zeta} : \zeta < \delta \rangle$ where $\lambda_0 = \omega$ and $\lambda_{\zeta} = \kappa_{\alpha_m + \zeta}$ if $0 < \zeta < \delta$. Again by the induction hypothesis, there is a compact space $Z_0 \in K_{\tau}$. Let Z_1 be the topological sum of ω disjoint copies of Z_0 . Then we define $Y_n = Y_m \otimes Z_1$. Let Y' be the direct union of the spaces Y_n for $n < \omega$. Without loss of generality we may suppose that α_{ω} is the limit of $\{\alpha_n : n < \omega\}$. Then we put $Y = H(Y', \{\alpha_{\omega}\} \times \omega)$. We define the underlying set of X_{ω} as $Y \cup (\{\alpha\} \times \omega)$. If $x \in Y$, a basic neighbourhood of x in X_{ω} is a neighbourhood of x in Y. For each $n < \omega$, we put $y_n = (\alpha_{\omega}, n)$ and $x_n = (\alpha, n)$. For each $n < \omega$ we can choose a compact open neighbourhood U_n of y_n in Y in such a way that $\{U_n:n<\omega\}$ is a discrete family. Let $\{a_n:n<\omega\}$ be a decomposition of ω . Then we define for each $n < \omega$, the canonical neighbourhood of x_n in X_{ω} by $W_{x_n}^{(\omega)} = \{x_n\} \cup \bigcup \{U_k : k \in a_n\}$. Now, for every $n < \omega$, we define a basic neighbourhood of x_n in X_{ω} as a set of the form $W_{x_n}^{(\omega)} \setminus C$ where $C \subseteq W_{x_n}^{(\omega)} \setminus \{x_n\}$ is a compact open subset of Y.

Now we assume $\xi = \mu + 1$ with $\omega \leq \mu < \omega_1$. In order to construct X_{ξ} we define for each $\zeta \leq \mu$ a σ -compact LCS-space Y_{ζ} such that $ht(Y_{\zeta}) = \alpha_{\mu} + 2$, $I_{\beta}(Y_{\zeta}) = \{\beta\} \times \xi$ if $\beta \in \{\alpha_{\rho} : \rho \leq \zeta\}$, $I_{\beta}(Y_{\zeta}) = I_{\beta}(X_{\mu})$ otherwise. First we fix an enumeration $\{x_n : n < \omega\}$ of $\{\alpha\} \times \mu$. In order to define Y_0 , we assume that α_0 is a successor ordinal, say $\alpha_0 = \beta_0 + 1$. If α_0 is a limit ordinal, we would use a similar argument by using the fact that $cf(\alpha_0) = \omega$. For every $x \in X_{\mu}$, we define a basic neighbourhood of x in Y_0 as a neighbourhood of x in X_{μ} . Now we consider a discrete family $\{V_n : n < \omega\}$ of compact open neighbourhoods of the points x_n in X_{μ} . For each $n < \omega$ we consider a $z_n \in V_n \cap I_{\beta_0}(X_{\mu})$ and a compact open neighbourhood U_n of z_n with $U_n \subseteq V_n$. We put $y = (\alpha_0, \mu)$. Then we define a basic neighbourhood

of y as a set of the form $\{y\} \cup \bigcup \{U_k : k > m\}$ where $m < \omega$. Proceeding in a similar way, we can construct $Y_{\zeta+1}$ from Y_{ζ} , and Y_{ζ} from the union of the Y_{η} for $\eta < \zeta$ if ζ is limit. Now we put $Y = Y_{\mu}$. Again since Y is a paracompact space, we can choose a discrete collection $\{V_n:n<\omega\}$ of compact open neighbourhoods of the points x_n in Y. For each $n < \omega$, we consider V_n with the relative topology of Y. Then, for every $n < \omega$ we define a σ -compact LCS-space Z_n such that $ht(Z_n) = \alpha_{\xi} + 1$, $I_{\beta}(Z_n) = I_{\beta}(V_n)$ for each $\beta \leq \alpha_{\mu}$ and in such a way that the Z_n are pairwise disjoint. Let $\delta = o.t.(\alpha_{\xi} \setminus \alpha_{\mu})$. Let $\tau = \langle \lambda_{\rho} : \rho < \delta \rangle$ where $\lambda_0 = \omega$ and $\lambda_{\rho} = \kappa_{\alpha_{\mu} + \rho}$ if $0 < \rho < \delta$. Let $\{a_n : n < \omega\}$ be a decomposition of $\{\alpha_{\xi}\} \times \xi$. Let us fix a natural number n. We put $a_n = \{y_m : m < \omega\}$. For each $m < \omega$, we consider a compact space $Z_{y_m} \in K_\tau$ such that $I_{\delta}(Z_{y_m}) = \{y_m\}$. We suppose that the Z_{y_m} are pairwise disjoint. Then we define Z'_n as the topological sum of the family $\{Z_{y_m}: m < \omega\}$, and we put $Z_n = (V_n \setminus \{x_n\}) \otimes Z'_n$. Now we define Z as the topological sum of the family $\{Z_n : n < \omega\}$. We then define X_{ξ} as follows. The underlying set of X_{ξ} is $Y \cup Z \cup \{(\alpha, \mu)\}$. If $x \in Y \setminus \{\alpha\} \times \xi$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Y. Analogously, if $x \in \mathbb{Z}_n$ for some $n < \omega$, a basic neighbourhood of x in X_{ξ} is a basic neighbourhood of x in Z_n . For every $n < \omega$, we define the canonical neighbourhood of x_n in X_{ξ} as the set $W_{x_n}^{(\xi)} = W_{x_n}^{(\mu)} \cup Z_n$. Then we define a basic neighbourhood of x_n in X_{ξ} as a set of the form $W_{x_n}^{(\xi)} \setminus C$, where C is a compact open subset of $W_{x_n}^{(\xi)} \setminus \{x_n\}$. We put $y = (\alpha, \mu)$. For each $n < \omega$, we consider a point $z_n \in I_{\alpha_{\xi}}(Z_n)$ and a compact open neighbourhood U_n of z_n in the space Z_n . Then we define the canonical neighbourhood of y in X_{ξ} as the set $W_y^{(\xi)} = \{y\} \cup \bigcup \{U_m : m < \omega\}.$ So, we define a basic neighbourhood of y in X_{ξ} as a set of the form $W_{u}^{(\xi)} \setminus C$, where $C \subseteq W_{\boldsymbol{y}}^{(\xi)}$ is a compact open subset of Z.

Now suppose that ξ is a limit ordinal. Without loss of generality we may assume that α_{ξ} is the limit of $\{\alpha_{\mu} : \mu < \xi\}$. First we define the σ -compact LCS-space Y of underlying set $\bigcup \{X_{\mu} : \omega \leq \mu < \xi\}$ as follows. If $x \in X_{\mu} \setminus (\{\alpha\} \times \mu)$ for some $\mu < \xi$, a basic neighbourhood of x is a basic neighbourhood of x in X_{μ} . If $x \in \{\alpha\} \times \xi$, we define the canonical neighbourhood of x in Y by $W_x^* = \bigcup \{W_x^{(\mu)} : \omega \leq \mu < \xi\}$, and then we define a basic neighbourhood of x in Y as a set of the form $W_x^* \setminus C$ where $C \subseteq W_x^* \setminus \{x\}$ is a compact open subset of X_{μ} for some $\mu < \xi$. Now we define the space X_{ξ} as follows. The underlying set of X_{ξ} is $Y \cup (\{\alpha_{\xi}\} \times \xi)$. As above, if $x \in X_{\mu} \setminus (\{\alpha\} \times \mu)$ for some $\mu < \xi$, a basic neighbourhood of x in

 X_{ξ} is a basic neighbourhood of x in X_{μ} . Let $\{x_n:n<\omega\}$ be an enumeration of $\{\alpha\}\times \xi$. We choose a discrete collection $\{V_n:n<\omega\}$ of compact open neighbourhoods of the points x_n in Y. Let us consider a decomposition $\{a_n:n<\omega\}$ of $\{\alpha_{\xi}\}\times \xi$. Let $\langle\beta_m:m<\omega\rangle$ be a sequence of ordinals converging to α_{ξ} in a strictly increasing way. We fix a natural number n. We consider V_n with the relative topology of Y. For each $m<\omega$, we consider a $z_m\in I_{\beta_m}(V_n)$ and a compact open neighbourhood U_m of z_m in V_n such that $\{U_m:m<\omega\}$ is a discrete family in $V_n\setminus\{x_n\}$. We set $a_n=\{y_k:k<\omega\}$. We fix a decomposition $\{b_k:k<\omega\}$ of ω . Then we define a basic neighbourhood of a point y_k in X_{ξ} as a set of the form $\{y_k\}\cup \bigcup \{U_m:m\in b_k,m>l\}$ where $l<\omega$. Now we define the canonical neighbourhood of a point x_n in X_{ξ} by $W_{x_n}^{(\xi)}=W_{x_n}^*\cup a_n$. Then, a basic neighbourhood of x_n in X_{ξ} is a set of the form $W_{x_n}^{(\xi)}\setminus C$ where C is a compact open subset of $W_{x_n}^{(\xi)}\setminus\{x_n\}$.

Finally we define the space X as follows. The underlying set of X is $\bigcup\{X_{\xi}:\omega\leq\xi<\omega_1\}$. If $x\in X_{\xi}\setminus\{\alpha\}\times\omega_1$ for some $\xi<\omega_1$, a basic neighbourhood of x in X is a basic neighbourhood of x in X_{ξ} . If $x\in\{\alpha\}\times\omega_1$, we put $W_x=\bigcup\{W_x^{(\xi)}:\omega\leq\xi<\omega_1\}$. Then we define a basic neighbourhood of x in X as a set of the form $W_x\setminus C$ where $C\subseteq W_x\setminus\{x\}$ is a compact open subset of X_{ξ} for some $\xi<\omega_1$. It can be verified that $X\in K_{\theta}$. \dashv

Theorem 3 is in a sense best possible, since under CH we have that if $\theta = \langle \kappa_{\xi} : \xi < \eta \rangle$ is such that $\kappa_{\alpha} = \omega$ and $\kappa_{\beta} = \omega_2$ for some $\alpha < \beta < \eta$, then there is no LCS-space X such that $CS(X) = \theta$. To check this point, assume on the contrary that there is an LCS-space X with $CS(X) = \theta$. For every $x \in X^{\alpha}$ consider a clopen neighbourhood U_x of x. Now, we put $a_x = U_x \cap I_{\alpha}(X)$. Since we are assuming that if γ is the ordinal such that $x \in I_{\gamma}(X)$ then $U_x \cap X^{\gamma} = \{x\}$, we have that $x \neq y$ implies $a_x \neq a_y$. Hence, we can identify every point of X^{α} with a subset of $I_{\alpha}(X)$. Also, it was proved by Baumgartner in [1] that if it is consistent that there exists an inaccessible cardinal, then it is consistent with $2^{\omega} = \omega_2$ that there is no LCS-space with cardinal sequence $\theta = \langle \kappa_{\xi} : \xi \leq \omega_1 \rangle$ where $\kappa_{\xi} = \omega_1$ for each $\xi < \omega_1$ and $\kappa_{\omega_1} = \omega_2$. On the other hand, Juhász has pointed out that in a collaboration with Weiss, they have proved that if $\theta = \langle \kappa_{\xi} : \xi < \omega_1 \rangle$ is a sequence of cardinals such that $\kappa_{\xi} \leq 2^{\omega}$ for each $\xi < \omega_1$, then there is an LCS-space X such that $CS(X) = \theta$.

Next, combining the arguments given in the proofs of Theorem 1 and Theorem 3 we can show the following result, whose proof is left to the reader. As above, we write $C_n = \omega_1 \times \{n\}$ for $n < \omega$.

Lemma 2 Suppose that $\theta = \langle \kappa_{\xi} : \xi \leq \omega_1 \rangle$ is a sequence of cardinals such that $\kappa_{\xi} \in \{\omega, \omega_1\}$ for every $\xi < \omega_1$ and $\kappa_{\omega_1} = \omega_1$. Then, there is an LCS-space X with $I_{\xi}(X) = \{\xi\} \times \kappa_{\xi}$ for $\xi \leq \omega_1$ and $I_{\omega_1+1}(X) = \emptyset$ such that the following two conditions are satisfied:

- (1) For every $x \in X \setminus I_{\omega_1}(X)$ and every $n < \omega$ there is a neighbourhood U of x such that $(U \setminus \{x\}) \cap C_n = \emptyset$.
- (2) For every $x \in X$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup \{C_n : n < \omega\}$.

Now, we can prove the main result.

Theorem 4 Let α be an ordinal such that $\omega_1 \leq \alpha < \omega_2$. Let $\theta = \langle \kappa_{\xi} : \xi < \alpha \rangle$ be a sequence of cardinals such that either $\kappa_{\xi} = \omega$ or $\kappa_{\xi} = \omega_1$ for every $\xi < \alpha$. Then, there are 2^{ω_1} pairwise non-homeomorphic LCS-spaces with cardinal sequence θ .

Proof. Let $\tau = \langle \kappa_{\xi} : \xi < \omega_1 \rangle$. Consider $\langle X_{\xi} : \xi < 2^{\omega_1} \rangle$ a sequence of pairwise non-homeomorphic admissible τ -spaces constructed as in Theorem 2. Let X'_{ξ} be the one-point compactification of X_{ξ} . Then, let Y_{ξ} be the topological sum of ω disjoint copies of X'_{ξ} . Let $\beta = o.t.(\alpha \setminus \omega_1)$. Now let $\tau' = \langle \kappa'_{\xi} : \xi < \beta \rangle$ where $\kappa'_{0} = \omega$, $\kappa'_{\xi} = \kappa_{\omega_{1}+\xi}$ if $0 < \xi < \beta$. By Theorem 3, there is an LCS-space Y such that $CS(Y) = \tau'$. For $\xi < 2^{\omega_1}$, we may assume that the underlying sets of Y and Y_{ξ} are disjoint. Then, we define $Z_{\xi} = Y_{\xi} \otimes Y$ for every $\xi < 2^{\omega_1}$. Note that if $\kappa_{\omega_1} = \omega$, we infer from the proof of Lemma 1 that the spaces Z_{ξ} are pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . So, assume that $\kappa_{\omega_1} = \omega_1$. Let $\tau^* = \langle \kappa_{\xi} : \xi \leq \omega_1 \rangle$. Let Z be an LCS-space of cardinal sequence τ^* which verifies the conditions of Lemma 2. We may assume that for every $\xi < 2^{\omega_1}$, the underlying sets of Z and Z_{ξ} are disjoint. Then, we define Z'_{ξ} as the topological sum of Z and Z_{ξ} . By using the argument given in Lemma 1, it is now easy to check that the spaces Z'_{ξ} are pairwise non-homeomorphic LCS-spaces with cardinal sequence θ . \dashv

References

- [1] J.E.Baumgartner and S.Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Logic 33 (1987) 109-129.
- [2] A.Dow and P.Simon, Thin-tall Boolean algebras and their automorphism groups, Algebra Universalis 29 (1992) 211-226.
- [3] I.Juhász and W.Weiss, On thin-tall scattered spaces, Colloq. Math. 40 (1978) 63-68.

Relació dels últims Preprints publicats:

- 215 An extension of Itô's formula for anticipating processes. Elisa Alòs and David Nualart. AMS Subject Classification: 60H05, 60H07. September 1996.
- 216 On the contributions of Helena Rasiowa to Mathematical Logic. Josep Maria Font. AMS 1991 Subject Classification: 03-03,01A60, 03G. October 1996.
- 217 A maximal inequality for the Skorohod integral. Elisa Alòs and David Nualart. AMS Subject Classification: 60H05, 60H07. October 1996.
- 218 A strong completeness theorem for the Gentzen systems associated with finite algebras. Angel J.
 Gil, Jordi Rebagliato and Ventura Verdú. Mathematics Subject Classification: 03B50, 03F03,
 03B22. November 1996.
- 219 Fundamentos de demostración automática de teoremas. Juan Carlos Martínez. Mathematics Subject Classification: 03B05, 03B10, 68T15, 68N17. November 1996.
- 220 Higher Bott Chern forms and Beilinson's regulator. José Ignacio Burgos and Steve Wang. AMS Subject Classification: Primary: 19E20. Secondary: 14G40. November 1996.
- 221 On the Cohen-Macaulayness of diagonal subalgebras of the Rees algebra. Olga Lavila. AMS Subject Classification: 13A30, 13A02, 13D45, 13C14. November 1996.
- 222 Estimation of densities and applications. María Emilia Caballero, Begoña Fernández and David Nualart. AMS Subject Classification: 60H07, 60H15. December 1996.
- 223 Convergence within nonisotropic regions of harmonic functions in Bⁿ. Carme Cascante and Joaquin Ortega. AMS Subject Classification: 32A40, 42B20. December 1996.
- 224 Stochastic evolution equations with random generators. Jorge A. León and David Nualart. AMS Subject Classification: 60H15, 60H07. December 1996.
- 225 Hilbert polynomials over Artinian local rings. Cristina Blancafort and Scott Nollet. 1991
 Mathematics Subject Classification: 13D40, 14C05. December 1996.
- 226 Stochastic Volterra equations in the plane: smoothness of the law. C. Rovira and M. Sanz-Solé. AMS Subject Classification: 60H07, 60H10, 60H20. January 1997.
- 227 On the Cohen-Macaulay property of the fiber cone of ideals with reduction number at most one. Teresa Cortadellas and Santiago Zarzuela. AMS Subject Classification: Primary: 13A30 Secondary: 13C14, 13C15. January 1997.
- 228 Construction of $2^m S_n$ -fields containing a C_{2^m} -field. Teresa Crespo. AMS Subject Classification: 11R32, 11S20, 11Y40. January 1997.
- 229 Analytical invariants of conformal transformations. A dynamical system approach. V.G. Gelfreich. AMS Subject Classification: 58F23, 58F35. February 1997.
- 230 Locally finite quasivarieties of MV-algebras. Joan Gispert and Antoni Torrens. Mathematics Subject Classification: 03B50, 03G99, 06D99, 08C15. February 1997.
- 231 Development of the density: A Wiener-Chaos approach. David Márquez-Carreras and M. Sanz-Solé. AMS Subject Classification: 60H07, 60H10, 60H15. February 1997.
- 232 Product logic and the deduction theorem. Romà J. Adillon and Ventura Verdú. Mathematics Subject Classification: 03B50, 03B22, 03G99. March 1997.
- 233 Large deviations for stochastic Volterra equations in the plane. Carles Rovira and M. Sanz-Solé. AMS Subject Classification: 60F10, 60H20, 60H15. April 1997.

