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Abstract 

Alternating treatments designs (ATDs) are single-case experimental designs entailing the rapid 

alternation of conditions and the specific sequence of conditions is usually determined at 

random. The visual analysis of ATD data entails comparing the data paths formed by connecting 

the measurements from the same condition. Apart from visual analyses, there are at least two 

quantitative analytical options also comparing data paths. On option is a visual structured 

criterion (VSC) regarding the number of comparisons for which one conditions has to be 

superior to the other in order to consider that the difference is not due only to random 

fluctuations. Another option, denoted as ALIV, computes the mean difference between the data 

paths and uses a randomization test to obtain a p value. In the current study, these two options 

are compared, along with a binomial test, in the context of simulated data, representing ATDs 

with a maximum of two consecutive administrations of the same condition and a randomized 

block design. Both VSC and ALIV control Type I error rates, although these are closer to the 

nominal 5% for ALIV. In contrast, the binomial test is excessively liberal. In terms of statistical 

power, ALIV plus a randomization test is superior to VSC. We recommend that applied 

researchers complement visual analysis with the quantification of the mean difference, as per 

ALIV, and with a p value whenever the alternation sequence was determined at random. We 

have extended an already existing website providing the graphical representation and the 

numerical results.  

Key words: single-case designs, alternating treatments design, Type I error, statistical power, 

autocorrelation  
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Introduction 

Alternating treatments designs (ATD) are a type of single-case experimental designs (SCED) 

that allow for rapid changes in the conditions in which the target behavior is measured. 

According to reviews of published SCED studies, ATDs represent approximately 6% to 16% of 

the designs used (Hammond & Gast, 2010; Shadish & Sullivan, 2011; Smith, 2012). Moreover, 

ATDs are similar to the N-of-1 trials used in health research (Carriere, Li, Mitchell, & Senior, 

2015), as they include several alternations from an A (baseline) phase to a B (intervention) phase 

and also in reversed order. The main characteristics of ATDs have been dealt with extensively 

elsewhere (Barlow & Hayes, 1979; Wolery, Gast, & Ledford, 2014). One of the main features 

that we will focus on here is the possibility to determine the sequence of conditions at random. In 

case randomization is used, we could distinguish three kinds of design: (a) ATDs defined as 

completely randomized designs allow any sequence of conditions (e.g., AAABBBBBAA); (b) 

ATDs including randomized blocks, also called sometimes randomized block designs, entail 

choosing at random the first condition in a pair of conditions (e.g., AB-BA-AB-AB-BA); and (c) 

ATDs including restricted randomization (Onghena & Edgington, 1994), in which the sequence 

can contain a maximum of two consecutive administrations of the same condition (e.g., 

AABBABBAAB). For this latter type of ATDs, the restriction mentioned is the most common 

one (Heyvaert & Onghena, 2014; Kratochwill et al., 2013; Wolery et al., 2014). Regarding the 

requirements for ATDs, a minimum of five repetitions of the alternating sequence has been 

suggested (Kratochwill et al., 2010), which entails and is well-aligned with the need for at least 

five measurement occasions per condition (Kratochwill et al., 2010; Wolery et al., 2014). 

Actually, five measurements per conditions is a relatively typical situation according to the data 
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obtained in a previously performed review of published ATD literature (Manolov & Onghena, 

2017): the median of measurements per condition was 5.5, whereas the mean was 6.64. 

In terms of data analysis, visual inspection is suggested as a first choice (Barlow, Nock, & 

Hersen, 2009), but there have also been proposals for using quantifications. Actually, a recent 

review of published ATD research (Manolov & Onghena, 2017) revealed that most studies 

compute the difference between the means of the conditions compared, as well as a measure of 

variability. Additionally, there have been proposals for using an adapted version of Percentage of 

nonoverlapping data (Wolery et al., 2014) or for using piecewise regression (Moeyaert, Ugille, 

Ferron, Beretvas, & Van Den Noortgate, 2014) or local regression with nonparametric smoothers 

(Solmi, Onghena, Salmaso, & Bulté, 2014).  

Finally, two more recent proposals focus on the same kind of comparison that is usually 

carried out in visual analysis, namely, the degree to which the data path1 for one condition is 

different from (and superior to) the data path of the other condition (Ledford, Lane, & Severini, 

2018). The visual structured criterion (VSC; Lanovaz, Cardinal, & Francis, 2017) assesses 

whether the number of comparisons for which one condition is superior can be considered to 

represent more than random fluctuations. In that sense, the comparison performed in VSC is 

ordinal and the empirically-derived cut-off points presented by Lanovaz et al. (2017) could be 

understood as critical values for identifying statistically significant results. Therefore, the VSC 

assesses the presence of an effect. In contrast, the comparison involving actual and linearly 

interpolated values abbreviated as ALIV (Manolov & Onghena, 2017) assesses the magnitude of 

                                                           
1 The data path is defined as the line that connects the measurements from the same condition. Therefore, the 
data path includes both actually obtained values (i.e., the points being connected) and the line that connects the 
point thereby interpolating the values for the condition that could have been obtained for a measurement 
occasion in which the other condition was administered. See Figure 1 introduced later in the text.  
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effect, by focusing on the average amount of distance between the data paths. Unlike the 

common difference in means, ALIV uses actually obtained values and interpolated value 

(located on the data path), providing a difference for each measurement occasion and afterwards 

computing the average of these differences. Alternatively, ALIV could be understood as a mean 

difference in which greater weight is assigned to the values from one condition, which are 

surrounded by more values from the other condition (see Manolov & Onghena, 2017, for more 

details). 

For ALIV, the statistical significance of the average difference can be obtained using a 

randomization test. The valid application of such a test requires that the sequence of conditions is 

actually determined at random, prior to gathering the data and that the randomization scheme 

used in the design is the same as the one used for obtaining the reference (randomization 

distribution). This latter condition entails that if an ATD with restricted randomization, with a 

maximum of two consecutive administrations of the same condition, is used to gather the data, 

the randomization performed for obtaining the statistical significance should also be the one 

corresponding to such an ATD and not, for instance, the randomization for an ATD with 

randomized blocks (see Onghena & Edgington, 1994, 2005, for more details).      

Regarding the existing evidence on the performance of ALIV and VSC, the former has not 

been formally tested yet, whereas the latter was tested in the context of an ATD with systematic 

alternation of conditions (i.e., ABABABABAB). The main findings of the study on VSC are the 

control of Type I error rates when there are at least five measurements per condition and an 

adequate power (i.e., 0.80) for an effect size expressed as a standardized mean difference of 2, 

even when there are only three measurements per condition.  
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The main aims of the present research are (a) to extend the amount of evidence available on 

the VSC with ATDs with restricted randomization (hereinafter, ATD-RR) and ATDs with 

randomized blocks (ATD-RB); and (b) to obtain initial evidence on the performance of ALIV 

used together with a randomization test (hereinafter ALIV+RT) for the same kinds of design. 

The comparison in the performance is done in terms of Type I error rates (i.e., relative frequency 

of false alarms: indicating a statistically significant difference when no intervention effect 

actually exists) and in terms of statistical power (i.e., rate of detection of actually existing effects 

as statistically significant).  

 

Method 

Rationale for the Simulation 

Given that the aim is to explore Type I error rates and statistical power, using simulated data was 

the obvious choice, given that it allows knowing (i.e., specifying) whether there is actually an 

intervention effect or not. Simulation was also used in the initial study on VSC (Lanovaz et al., 

2017) and has extensively been used for studying the performance of randomization tests with 

other test statistics (i.e., mean difference instead of ALIV) across several SCEDs: ABAB 

(Ferron, Foster-Johnson, & Kromrey, 2003), multiple baseline (Ferron & Ware, 1995), and ATD 

(Levin, Ferron, & Kratochwill, 2012).  

 

Data Generation Model 
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The data generation model used was an adaptation of the commonly used model, proposed by 

Huitema and McKean (2000): 𝑦𝑡 = 𝛽0 + 𝛽1𝑇 + 𝛽2𝐷 + 𝛽3𝐷(𝑇 − (𝑛𝐴 + 1)) + 𝜀𝑡, where 𝛽0 is the 

intercept at the moment prior to the first measurement occasion, 𝛽1 is the parameter for the 

general linear trend, 𝛽2is the parameter for an average difference in level, 𝛽3 is the parameter for 

the difference in slope, 𝑇 is the time variable and taking integer values from 1 to the number of 

measurement occasions, 𝐷 is a dummy variable representing the change in level and taking the 

value of 0 for the A condition and 1 for the B condition. The adaptation consisted in droping the 

terms for the change in slope and, thus, the model was reduced to 𝑦𝑡 = 𝛽0 + 𝛽1𝑇 + 𝛽2𝐷 + 𝜀𝑡. 

The error term 𝜀𝑡 was specified to follow a commonly used (e.g., Ferron, Moeyaert, Van Den 

Noortgate, & Beretvas, 2014; Levin, Lall, & Kratochwill, 2011) first-order autoregressive 

process: 𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝑢𝑡, where 𝜌1 is the autocorrelation parameter and the 𝑢𝑡 term is the 

random disturbance. 

All the simulations were performed using the R software (https://cran.r-project.org). For 

obtaining all possible randomizations in a systematic way for ATD-RB and for alternating 

treatment designs with the same number of measurement occasions for each condition and a 

restriction of a maximum of two consecutive measurement occasions per condition the SCDA 

plug-in for R was used (Bulté & Onghena, 2013). For obtaining all  possible randomizations in a 

systematic way for alternating treatment designs with an unequal number of measurement 

occasions for each condition and a restriction of a maximum of two consecutive measurement 

occasions per condition the SCRT 1.1 stand-alone software (Onghena & Van Damme, 1994) was 

used, as available in the CD accompanying the book by Edgington and Onghena (2007).   

 

https://cran.r-project.org/
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Simulation Parameters 

In determining the simulation parameters, our intention was to match the conditions studied by 

Lanovaz et al. (2017) as the present research is an extension of their study. Nevertheless, there 

are some differences. First, as stated in the Introduction, we focused on ATD-RR and ATD-RB 

rather than on systematic alternation. Second, regarding the number of conditions being 

compared, Lanovaz et al. (2017) included scenarios with 2, 3, and 4 conditions, with no major 

effect on the results. Therefore, in the current study, we only compared two conditions. Third, in 

terms of series length, Lanovaz et al. (2017) included 6 to 24 measurements (𝑛 = 6,8, … ,24), 

with both conditions being equally represented (𝑛𝐴 = 𝑛𝐵). In the current study, the minimum 

number of measurements included in the present simulation study is 5, given that this is also the 

minimum required for achieving five repetitions of the alternating sequence, as required by the 

WhatWorks Clearinghouse Standards (Kratochwill et al., 2013). In that sense, the series lengths 

included were between 10 and 24 for ATD-RB and between 10 and 22 for ATD-RR, given that 

for the latter it was not possible to obtain the systematic listing of all possible randomizations for 

𝑛𝐴 = 𝑛𝐵 = 12 in several hours.  

Regarding the simulation parameters that were established in the same way as in Lanovaz et 

al. (2010), the average baseline level was set to 10 (i.e., 𝛽0 = 10), there was no general trend 

simulated in the data (i.e., 𝛽1 = 0), and the intervention effect simulated was a change in level 

(𝛽2 ≠ 0), not a change in slope (𝛽3 = 0). Specifically, regarding the effect size β2 simulated, the 

values used were 1, 2 and 3. These effect sizes are similar to the ones used in a recent simulation 

on randomization tests (Levin, Ferron, & Gafurov, 2017). Moreover, the effect size values cover 

a considerable range, because according to Harrington and Velicer (2015) an effect size of 1 
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would represent a small effect, whereas 2 (i.e., between 1 and 2.5) would be a medium effect and 

3 (i.e., above 2.5) would be a large effect. The autocorrelation parameters (𝜌1) were set to range 

from −0.3 to 0.6 in steps of 0.1, also coinciding with the ones studied by Levin et al. (2012). 

Regarding the random disturbance ut term, we specified it to follow a normal distribution with a 

mean of zero and a standard deviation equal to 1. The simulation study on randomizations tests 

by Michiels, Heyvaert, and Onghena (2017) showed that the differences  between independent 

normal error and an independent uniform error.   

In summary, for ATD-RR there were 19 combinations of series lengths (𝑛) and number of 

measurements per condition (𝑛𝐴 and 𝑛𝐵), 10 different values of the autocorrelation parameter 𝜌1, 

3 different effect size values (considering that we halted the simulations for 𝛽2 = 3 when a 

ceiling effect was observed already for 𝑛𝐴 = 𝑛𝐵 = 6) , for  a total of 19 × 10 × 3 = 570 

experimental conditions2. For ATD-RB, the difference was in that there were only 8 series 

lengths, for all of which 𝑛𝐴 = 𝑛𝐵, leading to a total of 8 × 10 × 3 = 240 experimental 

conditions. As a comparison, in the simulation by Levin et al. (2012) on similar designs 300 

conditions were studied, whereas Levin et al. (2017) studied 54 conditions when investigation 

randomization tests for multiple baseline designs. 1,000 iterations per experimental condition 

were carried out, which is similar to previous simulation studies on randomization tests (e.g., 

Ferron & Ware, 1995) and other analytical techniques for SCED data (e.g., Arnau & Bono, 2004; 

Beretvas & Chung, 2008). This number of iterations was set in order to make the investigation 

feasible, because the use of R as statistical platform and our willingness to obtain exact p values 

                                                           
2 For ATD-RR, we also generated data for unequally represented conditions, specifically, when one condition had 
one measurement more than the other condition – the results for odd number of measurement occasions are not 
shown here. For ATD-RB, such situations do not make sense, as there are always pairs of conditions, within which 
the order is chosen at random.   
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through intensive computation (i.e., a randomization test) makes the simulation of a single 

experimental condition rather slow (e.g., taking more than an hour when 𝑛 = 14 measurements).  

 

Data Analysis 

Three ways of comparing the conditions in the ATDs were used, on the basis of the fact that both 

entail excluding the first and last measurements for which only one data path is present. This 

idea is more easily represented by a couple of examples (constructed using 

https://manolov.shinyapps.io/ATDesign/). The upper panel of Figure 1 shows two data paths 

with five measurement occasions per condition, whereas the lower panel shows two data paths: 

one condition takes place on seven measurements occasions and the other on nine. The 

comparisons performed in VSC and ALIV are the ones marked with arrows, illustrating how 

according to the number of consecutive administrations of the same condition, the number of 

data points not included in the comparison varies.  

 

 

 

  

https://manolov.shinyapps.io/ATDesign/
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Figure 1. Comparison of data paths, illustrating the exclusion of first and last measurements. 

Upper panel: data by Yakubova and Bouck (2014), aim to increase the target behavior. Lower 

panel: data by Eilers and Hayes (2015), aim to decrease the target behavior.  
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ALIV computes the difference between the two data paths for each measurement occasion. 

Afterwards, the average of these differences is computed. In order to obtain the statistical 

significance of the outcome, ALIV is computed for all possible sequences that could have been 

obtained at random. These ALIV values form the reference (randomization) distribution. The 

actual outcome is located in the randomization distribution and the p value is the proportion of 

ALIV values that are as large as or larger than the outcome. That is, a one-tailed test is 

performed under the assumption that the researcher should know the direction of the difference 

before carrying out the experiment (Levin et al., 2017). 

VSC focuses on the same measurement occasions as ALIV. It counts the number of 

occasions for which the condition B is superior (here greater) than the condition A. Afterwards, 

this number is compared to a cut-off value presented by Lanovaz et al. (2017): if it is greater than 

the cut-off value, it is concluded that there is evidence of the superiority of condition B. Lanovaz 

et al. (2017) present cut-off values for VSC only for data series with equally represented 

conditions, leading to even-number lengths (10, 12, 14, etc.), which is why we focus on the same 

situations in the current text3.  

The third means of comparison was based on the count obtained in VSC and the binomial 

distribution. The probability of achieving as many successes or more in the number of 

comparisons performed is obtained via the binomial distribution (the number of comparisons is 

                                                           
3 In the only supplementary material were all results are presented in tables (https://osf.io/yr8tg/), 

we also included results for ATD-RR and odd-number series lengths (11, 13, 15, etc.), for conditions 
unequally represented conditions. When deciding the cut-off values for VSC, we preferred a 
conservative approach, using for each odd-number length n (11, 13, etc.) the cut-off value established 
for 𝑛 + 1 measurements (i.e., 12, 14, and so forth, respectively). However, given that such approach 
might be at odds with the intention to increase statistical power, the results are not commented here.  

https://osf.io/yr8tg/
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the number of trials and the probability of success at random is 0.5). If this binomial probability 

is equal to or lower than .05, it is concluded that there is evidence of the superiority of condition 

B. The inclusion of the binomial test was in order to check whether a simple solution to 

obtaining p values, not requiring the use of VSC or ALIV, would prove to be appropriate. 

Type I error rates were estimated as the proportion of p values (for ALIV and for the 

binomial model) or the proportion of results above cut-off values (for VSC) out of all 1,000 

iterations of conditions with absence of effect (𝛽2 = 0). For an adequate control of Type I error 

rates, our intention was to use Serlin’s (2000) criterion for robustness, 𝛼 ± 25%𝛼, requiring 

Type I error rates between 0.0375 and 0.0625, which is a in between Bradley’s (1978) stringent 

and liberal criteria. Nevertheless, according to Robey and Barcikowski with 1,000 iterations, 

Bradley’s (1978) liberal criterion has to be followed, 𝛼 ± 50%𝛼, requiring proportions between 

0.025 and 0.075. Statistical power is estimated as the same proportion but computed for 

conditions with effect simulated (𝛽2 ≠ 0). Power is judged to be appropriate if it is at least 0.80, 

following Cohen (1992). 

Results 

Type I Error Rates 

Effect of the number of measurements for independent data. For both ATD-RR and 

ATD-RB the Type I error rates are controlled by VSC and ALIV+RT, regardless of the number 

of measurements. (see the left panels of Figure 2). Actually, Type I error rates were controlled 

for all conditions tested (i.e., when 𝑛 ≥ 10). In contrast, the Type I error rates for the binomial 

test were systematically greater than the upper limit of the liberal criterion, 0.075: the false alarm 

rates were excessively high. Moreover, for the binomial test, there is an apparent increase of 
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Type I error rates with the number of measurements. Thus, it could be stated that the binomial 

test applied to the number of comparisons for which the data path of one condition is superior to 

the data path of the other condition is inappropriate even for independent data.  

Effect of autocorrelation. The presence of autocorrelation does not seem to be related with 

systematic changes in the Type I error for either of the three tests (see the right panels of Figure 

2 for an example). Thus the results commented for independent data are also applicable here. 

The graphical illustrations provided focus on the shortest series length, but given that the effect 

of the number of measurements is only slight, these illustrations provide an appropriate summary 

of the results. All values obtained can be consulted from https://osf.io/yr8tg/. 

  

https://osf.io/yr8tg/
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Figure 2. A selection of results for Type I error rates for alternating treatments designs with restricted randomization (ATD-RR) and 

with randomized blocks (ATD-RB). Legend: black dotted line: ALIV plus randomization test; dark grey dashed line: binomial test; 

grey solid line: visual structured criterion (VSC) 
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Statistical Power 

Effect of the number of measurements for independent data. As expected, statistical 

power increases with the number of measurements (see Figure 3). When 𝛽2 = 1, power never 

reaches 0.8 for either of the tests and designs. When 𝛽2 = 2, a power of 0.8 is reached for all 

three tests for ATD-RB already for 𝑛 = 12. Also for 𝛽2 = 2 and 𝑛 = 12, the ALIV+RT and the 

binomial test reach power higher than 0.8. When 𝛽2 = 3, all three tests reach a power of 0.8 for 

ATD-RB already for 𝑛 = 10. For ATD-RR, ALIV+RT and the binomial test reach this power 

for 𝑛 = 10 and VSC for 𝑛 = 12.  

In general, power is highest for the binomial test (which does not control for Type I error 

rates), whereas it is lowest for VSC. For VSC, power is clearly lower for ATD-RR than for 

ATD-RB.  
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Figure 3. A selection of results for statistical power as a function of the number of measurements; for alternating treatments designs 

with restricted randomization (ATD-RR) and with randomized blocks (ATD-RB). Legend: black dotted line: ALIV plus 

randomization test; dark grey dashed line: binomial test; grey solid line: visual structured criterion (VSC) 
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Effect of autocorrelation. Positive autocorrelation is associated with higher statistical power 

(see Figures 4 and 5). Considering that positive autocorrelation does not lead to higher Type I 

error rates, such conditions cannot be labelled as jeopardizing the performance of VSC and 

ALIV+RT. In contrast, data with negative autocorrelation are unfavorable for these techniques. 

However, the average corrected autocorrelation reported for ATDs by Shadish and Sullivan 

(2011) is approximately zero (−0.01).  
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Figure 4. A selection of results, for n=10, for statistical power as a function of the degree of autocorrelation; for alternating treatments 

designs with restricted randomization (ATD-RR) and with randomized blocks (ATD-RB). Legend: black dotted line: ALIV plus 

randomization test; dark grey dashed line: binomial test; grey solid line: visual structured criterion (VSC). 
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Figure 5. A selection of results, for n=20, for statistical power as a function of the degree of autocorrelation; for alternating treatments 

designs with restricted randomization (ATD-RR) and with randomized blocks (ATD-RB). Legend: black dotted line: ALIV plus 

randomization test; dark grey dashed line: binomial test; grey solid line: visual structured criterion (VSC). 
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Discussion 

The present study provides initial simulation evidence on the performance of ALIV (Manolov & 

Onghena, 2017) plus a randomization test and it provides further evidence on the performance of 

VSC (Lanovaz et al., 2017) for ATD-RR and ATD-RB. Additionally, the study also extends the 

evidence available on the performance of randomization tests with ATDs: (a) Levin et al. (2012) 

studied systematically alternating designs (e.g., ABABABABABAB) with 12 and 24 

measurement occasions; (b) Michiels et al. (2017) studied the conditional power (Keller, 2012) 

for ATD-RR and ATD-RB with 12 to 40 measurement occasions; and both (a) and (b) used the 

mean difference (not ALIV) as a test statistic. In what follows, we compare the current results 

with these previous findings. 

Lanovaz et al. (2017), focusing on systematic ATD found that VSC controlled the Type I 

error rate for 𝑛 ≥ 10. Additionally, Type I error rates decreased with autocorrelation (i.e., there 

was a negative relation). Our findings for VSC applied to ATD-RR and ATD-RB, both with 

random alternation of conditions, are consistent, in terms of Type I error rates being controlled. 

Autocorrelation does not seem to have a clear positive or negative relation with false alarm rates. 

Statistical power reached 0.80 for 𝛽2 = 2, but not for 𝛽2 = 1; regardless of the number of 

measurements. Power increased with autocorrelation. Our findings concur with the positive 

relation between power and autocorrelation, but for VSC a power of 0.80 for 𝛽2 = 2 is only 

reached when there are 12 measurements in an ATD-RB and 16 measurements in an ATD-RR. 

Thus, the current results concur with previous findings for systematic ATDs that the main 

strength of VSC is ensuring that false alarm rates are controlled, whereas power may be 

insufficient in certain conditions.  
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Levin et al. (2012) found that Type I error rate was controlled for the systematic ATD when 

the autocorrelation was positive autocorrelation, whereas for ATD-RB it was always controlled. 

Our findings for the randomization test using ALIV as test statistic show that the false alarm rate 

is always controlled for both the ATD-RR and the ATD-RB. According to Levin et al. (2012), 

the statistical power for 𝛽2 = 2 and 𝑛 = 12, statistical power reached 0.8 for ATD-RB for 

practically all degrees of autocorrelation tested and it was above 0.8 for the systematic ATD. Our 

findings for 𝛽2 = 2 and 𝑛 = 12 using ALIV as test statistic are practically identical to those 

reported by Levin and colleagues (2012). Therefore, the correspondence between the current 

findings and previous evidence is high and the conclusions about the performance of the 

randomization test can be generalized beyond systematic ATDs and beyond the mean difference 

as a test statistic.  

Michiels et al. (2017) found that the conditional power for ATD-RR is higher than for ATD-

RB and our findings are consistent for ALIV as a test statistic. Moreover, despite some notable 

differences between the two studies (i.e., test statistic, conditional vs. unconditional power 

studied, two-sided vs. one-sided alternative hypothesis), both suggest that a medium-sized effect 

(according to the benchmarks proposed by Harrington & Velicer, 2015) such as 2 standard 

deviations can be detected as statistically significant with sufficient power for ATD-RR with as 

few as 12 measurement occasions, whereas small effects such as 1 standard deviation require 

more than 30 measurement occasions. 

 

Implications for Applied Researchers  
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The current evidence suggests that VSC with the cut-off values derived for systematic alternation 

(i.e., ABABABABAB) does not produce excessive false alarm rates even for ATD-RR and 

ATD-RB. In terms of statistical power, we found that it was higher for ATD-RB than for ATD-

RR. We speculate that this finding might be related to the type of ATD for which the VSC were 

developed (systematic) and the sequences that can be obtained in ATD-RB and ATD-RR. For a 

systematic ATD, there is necessarily only one administration of the A or B conditions in the 

beginning and in the end of the sequence (i.e., for n=10, ABABABABAB or BABABABABA). 

For an ATD-RB, this is also the case; for instance, for n=10, a sequence such as 

ABABBABAAB can be obtained, but the sequence AABABABABB cannot be obtained (but it 

is possible under ATD-RR). Both the systematic sequence ABABABABAB and the randomized 

block sequence ABABBABAAB (which is also acceptable in an ATD-RR) entail eight 

comparisons, whereas the ATD-RR sequence AABABABABB would entail only six 

comparisons. Therefore, for the same number of measurement occasions, for some random 

sequences but not for all of them, the number of comparisons can be different. This could explain 

the differences in power, given that when fewer comparisons are performed, the VSC requires a 

greater percentage of superiority of one condition over the other in order to detect the presence of 

an intervention effect. Therefore, applied researchers are encouraged to use VSC for either 

systematic ATDs or ATD-RB.    

Overall, the Type I error rates for ALIV plus a randomization test are closer to the nominal 

value of .05 and this test also presents greater statistical power than the VSC. In order to be able 

to use the inferential information, we recommend using randomization in the design, ALIV as a 

descriptive measure of the difference between data paths and a randomization test for estimating 

the statistical significance of this difference.  
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Regarding the usefulness of ALIV as a descriptive measure (i.e., an effect size in raw or 

unstandardized terms), it is not subjected to presence of randomization in the design. Given that 

a comparison between data paths is performed, ALIV is appropriate for ATDs, but not for 

multiple-baseline designs or ABAB designs. In relation to adapted ATDs in which nonreversible 

behaviors are studied, ALIV can be applied to part of the information obtained (e.g., the 

percentage of steps executed correctly under two conditions compared), but it would not be 

useful to quantify other critical aspects, such as the rapidity of learning, the extent of 

maintenance and generalization, or the breath of learning (Wolery et al., 2014). Thus, we 

encourage researchers to consider all pieces of evidence and we also echo recent calls for greater 

prominence of social validity assessment (Snodgrass, Chung, Meadan, & Halle, 2018). 

Regarding the inferential use of ALIV, the possibility to obtain a p value via a randomization 

test applied to the ALIV outcome is not intended be a substitute for visual analysis. Moreover, 

statistical significance should not be understood in terms of inference from an individual to a 

population, but rather in relation to the null hypothesis of no differential effect of the intervention 

(Edgington, 1967). We rather recommend that visual inspection be used together with 

considering the descriptive value of ALIV and the p value. In that sense, we concur with 

previous recommendations for the joint use of visual and statistical analysis (e.g., Franklin, 

Gorman, Beasley, & Allison, 1996; Harrington & Velicer, 2015). If all pieces of evidence 

coincide that there is a difference between the conditions, an inference of a causal effect of the 

intervention on the target behavior would be justified in presence of a random determination of 

the alternating sequence (Kratochwill & Levin, 2010).  

The application of ALIV and the randomization test has been made feasible thanks to the 

development of a web-based application. Specifically, we have extended the already existing 
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web application for ATD data analysis https://manolov.shinyapps.io/ATDesign/. In the newly 

created tab, the statistical significance of ALIV can be obtained for ATD-RR and ATD-RB 

having 3 or more measurement occasions per condition, although such data short series may be 

deemed insufficient (Kratochwill et al., 2010; Wolery et al., 2014).  Additionally, it should be 

noted that the validity of the p values obtained is subjected to randomization actually being used 

in the determination of the alternation sequence.  

The p values obtained are the result of listing systematically all possible randomizations for 

ATD-RR with up to 11 measurements per condition and for ATD-RB with up to 12 

measurements per condition (i.e., the same cases studied in the present simulation). For longer 

series, the p values are based on 1,000 randomly selected sequences, which are used for 

constructing the randomization distribution. In that sense, for these longer series, the p value 

obtained is not an exact p value, but a p value approximated by Monte Carlo sampling. Using 

1,000 random samples for estimating the p value is well-aligned with previous research (Hayes, 

1996; Levin et al., 2012; Michiels et al., 2017). 

 

Implications for Methodologists  

We consider that it is important that methodologists offer tools that could be potentially 

attractive to applied researchers, apart from being methodologically sounds. In that sense, ATDs 

offer a unique opportunity, given that randomization has been shown to be common in these 

designs (Manolov & Onghena, 2017). Moreover, proposals such as VSC and ALIV are closely 

related to the graphical representation of the data, which is the basis of visual analysis, because 

both compare the data paths for the different conditions. Finally, apart from suggesting feasible 

https://manolov.shinyapps.io/ATDesign/


30 

Running head: SIMULATION STUDY ON ATD 

 

design options (randomization in determining the condition for each measurement occasion) and 

an empirically-tested quantification based on the data features object of visual analysis, another 

relevant ingredient of a potentially attractive analytical procedure is a user-friendly free software. 

However, it is yet to be verified whether these expected advantages of an analytical proposal 

such as ALIV plus a randomization test are perceived as such by applied researchers. 

 

Limitations and Future Research 

The current paper only focuses on analytical procedures that compare data paths (i.e., 

combinations of actual and interpolated values). Other analytical options included comparing 

only actually obtained measurements (e.g., Wolery et al., 2014) or comparing intercepts and 

slopes, that is, only the estimates of the parameters of the models underlying the actual data 

(Aerts, 2015).  

In terms of the evidence provided here, the simulation conditions included data with no trends 

and they can be expanded by including trends in the data paths. For instance, further 

comparisons can be performed for crossing data paths (i.e., an upward trend in one condition, 

starting from a lower initial level, and a downward trend in the other condition, starting from a 

higher initial level) and for data paths that are increasing separated with each successive 

measurement occasion (i.e., an upward trend in one condition, starting from a higher initial level, 

and a downward trend in the other condition, starting from a lower initial level). 

Moreover, the evidence provided in the current text is solely based on simulated data. 

Despite the fact that this is the most common way of assessing Type I error rates and statistical 
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power, obtaining information regarding the former aspect is also possible using real data and 

extended baselines (Lanovaz et al., 2017; Lanovaz, Huxley, & Dufour, 2017).  

A different line of research can focus on studying the degree to which applied researchers are 

open to incorporating p values in their assessment of the difference between conditions in an 

ATD. They are likely to be fond of descriptive measures such as ALIV, considering the results of 

the review (Manolov & Onghena, 2017) showing that most of the ATD published studies 

incorporate a calculation of a mean difference.   
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