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Abstract 
 
We revisit the so-called Gentlest Ascent Dynamics reaction path model for finding 
saddle points of any index in multidimensional potential-energy surfaces. The 
variational nature of the method is analyzed in detail and an algorithm for the 
integration of its equations of motion is proposed based on the optimization-based 
shrinking dimer method. By means of three different two-dimensional model potential-
energy surfaces, we argue that the combination of the proposed method with Newtonian 
(dissipative) dynamics could lead to a practical scheme for the exhaustive exploration of 
potential-energy landscapes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
± Dedicated to the memory of Professor Claudio María Zicovich-Wilson. 
	
  
	
  
	
  
	
  
	
  
	
  



	
   2

I. Introduction 
 
A crucial achievement in the development of models to understand the chemical 
reaction mechanisms was the introduction of the following two concepts, namely, the 
Born-Oppenheimer potential-energy surface (PES) and the reaction path (RP). They 
provide a strategy to describe and analyze a molecular system evolution from reactants 
to products in geometrical terms [1, 2]. In the context of molecular conformational 
rearrangements, minima and saddle points (or transition states) on the PES, and the 
paths joining these points are the most important features. In the present context, 
minima correspond to low energy molecular conformations and saddle points 
correspond to transition states associated with conformational inter-conversions. Saddle 
points provide the lowest energy path across a PES barrier. Therefore, the main goal 
and purpose of a conformational study consists into finding the set of RPs that 
correspond to a network of conformational inter-conversions. 
 
The so-called eigenvector (or mode) following (EF) method has been used since many 
years to explore molecular conformations, see e.g. [3]. This method allows to find 
saddle points in multidimensional PES by starting from a given minimum (either local 
or global). The EF method applied to conformational molecular studies was first 
proposed by Crippen and Scheraga [4], who called the method gentlest ascent.  The 
authors describe an algorithm for passing from a minimum position in a many-
dimensional PES to a neighboring minimum via an intervening saddle point. An 
alternative application of the EF method is due to Nakamura and co-workers [5]. The 
authors use the mode following in combination with the diffusion equation method to 
find the global minimum energy of a small peptide. An alternative algorithm to explore 
PESs that uses the lowest eigenmode of the Hessian matrix is the activation-relaxation 
method (ART) proposed by Barkema and Mousseau [6]. Recent modifications of ART 
have significantly enhanced its convergence properties [7, 8]. These improvements in 
the equations of motion involve the calculation of the minimum eigenvalue and its 
eigenvector. It has been shown that the improved ART converges quadratically to the 
saddle point along the eigenmode of negative curvature while it converges linearly in 
perpendicular directions. More recently it has been proposed the gentlest ascent 
dynamics (GAD) [9-14]. Also based on the eigenmode philosophy, it consists of a set of 
dynamic equations whose solutions converge to saddle points. The stability of these 
equations and their convergence close to stationary points on the PES was already 
analyzed [10]. 
 
In all the methods summarized above, evaluating the minimum eigenmode of the 
corresponding Hessian matrix and taking it as the initial exploring direction is crucial in 
order to converge to an index-1 saddle point. However, the evaluation and 
diagonalization of the Hessian matrix is feasible for small molecular systems, but it 
becomes computationally very expensive for molecules with more than ~100 atoms for 
self-consistent-field type calculations or for molecules with more than a very few 
degress of freedom for highly correlated wavefunction calculations. For this reason, 
many techniques have been proposed to evaluate the minimum eigenmode of the 
Hessian in an optimal and inexpensive way. An example is the shrinking dimer method 
(SD) proposed by Henkelman and Jonsson [15], which allows to find the ascent 
direction that characterizes the final reaction path without constructing the full Hessian 
matrix. The method only makes use of first derivatives of the PES and it is, therefore, 
applicable in situations where second derivatives are computationally inaccessible or 
very expensive. A dimer consists of two points in the configuration space separated by a 
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small (parametric) distance. The orientation of the dimer is determined by minimizing 
the so-called dimer energy [15]. The process of obtaining the minimum eigenmode of 
the Hessian is then approximated by first selecting a suitable plane spanned by the 
rotational force acting on the dimer and subsequently selecting the dimer orientation. 
The dimer is then rotated in this plane to obtain the optimal direction corresponding to 
the minimum energy of the dimer [15]. 
	
  
In this work we revisit the GAD method to find saddle points in multi-dimensional 
PESs and propose an implementation of the method by combining it with an 
optimization-based version of the SD method due to L. Zhang and co-workers [20]. By 
means of three simple two-dimensional model PESs, we show that the combination of 
the GAD-SD method with Newton-like dynamics leads to a novel computational 
scheme for the exploration of PESs. The article is organized as follows. In Section II we 
discuss the variational nature of GAD equations (the mathematical proof is provided in 
Appendix A). In Section III an algorithm is described to integrate the GAD equations of 
motion with the help of the SD method for the case of stationary points of index n = 1 
(the extension of this algorithm to any dimension is reported in Appendix B). By means 
of three examples, in Section IV we will present the GAD-SD algorithm in combination 
with dissipative Newton dynamics as a novel “metadynamics” for PESs. 
 
 
 
 
II. The Variational Nature of the Gentlest Ascent Dynamics Reaction Path Model 
 
Consider a molecular system consisting of N nuclear degrees of freedom collectively 
denoted by the position vector x and the PES V(x). The gradient vector at a point x is 
g(x) = ∇xV(x) and the Hessian matrix is given by H(x) = ∇x∇x

TV(x), where the 
superscript T means transposition. The equations that describe the GAD method are [9-
14]: 
 
dx
dt
= −[I− 2WWT ]g(x)  (1) 

 
dW
dt

= −[I−WWT ]H(x)W  (2) 

 
where I is the unit matrix of dimension N, and W = [w(1) | … | w(n)], being n ≤ N. The 
matrix W satisfies WTW = In, where In is the unit matrix of dimension n. In Equation 
(1) the matrix [I – 2WWT] is a mirror transformation at the mirror hyperplane defined 
by the set of vectors {w(i)}i=1

n. This matrix reverses the – g(x) vector in the hyperplane. 
Equation (2) defines the evolution of the set of orthonormalized directions, {w(i)}i=1

n. In 
the case that n = N, Equation (1) coincides with the steepest ascent expression, whereas 
for the situation that WTg(x) = 0n, Equation (1) coincides with the steepest descent. The 
curve described by Equations (1) and (2) is attracted at saddle points of index n [10]. 
 
The GAD model is variational in nature [14]. More precisely, the path described by the 
GAD equations to find transition states on a PES is an example of a quickest “nautical” 
path for a given stationary wind or current, i.e., the so-called Zermelo navigation 
variational problem [16-17]. Since the Zermelo navigation problem is an example of 
optimization control theory, GAD satisfies the Poytriagin Maximum Principle [18]. In 
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reference [14] it is proved that Equations (1) and (2) are the canonical equations of the 
Hamiltonian 
 
2H (x, y) = 4(gT (x)WWTg(x))yTy− (1+ gT (x)y)2 = 0  (3) 
 
where y is the conjugate canonical coordinate of x and directly related with the set of 
directions {w(i)}i=1

n. Equation (3) is the Gentlest Ascent Hamiltonian. For this reason we 
re-name it here the Gentlest Ascent Zermelo model. In Appendix A we provide a 
variational proof and a discussion on the minimum character for the case of index n = 1. 
 
 
 
 
III. Integration of the Gentlest Ascent Dynamics Zermelo Equations in 
combination with the Shrinking Dimer method 
 
We propose the optimization-based shrinking dimer (SD) method by using the step-size 
selection of the gradient due to Barzilai and Borwein [19, 20] to solve the systems of 
Equations (1) and (2). Briefly, we apply the SD method with optimized steps for the 
case of n = 1 such that the W matrix is reduced to the vector w(1) = w. The subscripts 
indicate the iteration number. 
	
  
Let xi and xi+1 two points of the PES separated by a distance di = ((xi+1 – xi)T(xi+1 – 
xi))1/2. These two points define the dimer and an inner point of the dimer is given by xc i 
= (1 – pi) xi + pi xi+1 where 0 < pi < 1. The dimer orientation is given by the normalized 
control vector wi, xi+1 – xi = diwi. In this way xi = xc i –  pi diwi and xi+1 = xc i + (1-pi 
)diwi. The gradient at the central point of the dimer is (see Appendix C for the proof) 
 

 (4) 
 
A direct way for solving Equation (2) for n = 1 is to use the approximate (g(xi+1) – g(xi)) 
= H(xc i)wi di + O(di

2) and 
 

 (5) 
 
For the dimer translation we solve Equation (1) for n = 1 using the approximation 
 

 (6) 
 
where g(xc i) is given in Equation (4). In the same philosophy as the shrinking dimer 
method [21], following the dimer rotation and translation steps, we shrink the dimer 
length di and force it to approach zero in order to guarantee the convergence, in other 
words, di --> 0 as i --> ∞. Now we write an algorithm by considering Equations (5) and 
(6) with the above condition on di with the purpose to minimize the functional of 
Equation (A.2). 
 
We collect the vectors xc i and wi into the vector hi, namely, hi

T = (xc i
T, wi

T), and the so-
called residues into the vector ri 

g xci( ) = 1− pi( )g xi( )+ pig xi+1( ).

wi+1 =wi −Δti I−wiwi
T#$ %& g xi+1( )− g xi( )( ) / di.

xc i+1 = xc i −Δti I− 2wiwi
T#$ %&g xc i( ).
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 (7) 
 
With these definitions the set of Equations (5) and (6) can be written in a compact form 
as 
 
Δhi = −Δtiri  (8) 
 
where Δhi = hi+1 – hi. 
While not strictly necessary, it is often convenient to introduce now the quasi-Newton 
property, Δhi-1 = – Δti Δri-1, where Δri-1 = ri – ri-1 and look for Δti that minimizes (Δhi-1 
+ Δti Δri-1)T(Δhi-1 + Δti Δri-1), resulting in 
 

 (9) 
It yields the shrinking condition di+1 = di / (1 + Δt0). Otherwise the dimer distance is 
updated as di = ((xi+1 – xi)T(xi+1 – xi))1/2 . 
Combining Equations (8) and (9) and the shrinking condition di --> 0 as i --> ∞ we can 
already introduce the following algorithm: 
 

1) given the initial conditions hi, ri, di, Δti (h0, r0, d0, Δt0 at t = 0) 
2) apply Eq. (8) (also (9) if convenient)  to update hi, ri, di  
3) the iteration stops when gT(xc i+1) g(xc i+1) ≤ th 

 
where th (abbreviation of threshold) is a parameter defined in Table II. In all our 
simulations we kept the time-step constant. The above numerical algorithm does not 
preserve the unit length of wi. For this reason we use a simple renormalization to ensure, 
wi

Twi = 1, at each iteration step. The extension of this algorithm to any control 
dimension n is reported in Appendix B. 
	
  
 
 
 
IV. Combining the GAD-SD method with dissipative Newton dynamics: towards a 
novel approach for exploring PESs 
 
In this section we provide examples of the previous algorithm to integrate the GAD-SD 
equations of motion in combination with dissipative classical dynamics. Our goal is to 
show that such a combined method could lead to a novel technique to explore 
multidimensional PESs. The idea is simple, we already know that the solution of the 
GAD-SD equations of motion represent the fastest (variational) way to reach a saddle 
point starting from a given position in the multiconfiguration space. Hence, if we are 
able to concatenate this technique with a dynamics that brings us from a saddle point to 
a minimum then we could already envision a numerical technique for the exploration of 
PESs.  
	
  

ri =
I− 2wiwi

T"# $%g xci( )
I−wiwi

T"# $% g xi+1( )− g xi( )( ) / di
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To start with, we look at the behavior of the GAD-SD method, Equations (8)-(9), in 
combination with a dissipative Newton equation of the type, 
 

 (10) 
 
where γ > 0 is a friction coefficient (see Table II). To give physical meaning to the 
friction force in the context of energy dissipation, i.e., the friction removes energy from 
the system until the trajectory reaches the minimum of the PES. In the trajectory 
framework, adding momentum-dependent friction to the equations of motion is a 
straightforward modification. Notice that the force of friction is often taken for 
processes in condensed phase [38] as linear in velocity of a particle. 
	
  
We carry out calculations on three different PESs, viz., a model PES for the study of the 
double-proton transfer in porphine [35, 36], the so-called Wolfe-Quapp PES [22, 23], 
and the Rastrigin surface [37]. The mathematical expressions for these two PESs can be 
found in Table I. Both the porphine and the Wolfe-Quapp PESs contain quartic and 
quadratic terms in x and y and the coupling between the two coordinates is bilinear. The 
Rastrigin PES is nonlinear by trigonometric terms and its coupling is quadratic. 
	
  
The general algorithm works as follows. The dynamics always starts with the GAD-SD 
equations of motion (8)-(9), and the initial conditions for a given trajectory are chosen 
randomly (both for the initial position and the control vector). As soon as the GAD-SD 
trajectory reaches a saddle point (which we identify by defining the threshold condition 
|g(x)|2 < th. See Table II), the algorithm switches from GAD-SD to dissipative 
Newtonian dynamics. After a small random boost (Δx) on the position of the trajectory, 
the equations of motion (8)-(9) are substituted by Eq. (10), and the trajectory starts to 
fall into a neighboring (local or global) minimum. As soon as a minimum is reached 
(which we identify by checking the two conditions det (∇x∇x

TV(x)) > 0 and |g(x)|2 < 
th), the algorithm switches back from Newtonian to GAD-SD dynamics. A random 
boost is applied again on the trajectory and after an initial random control vector is 
chosen, the algorithm continues until all minima and saddle points have been sampled.  
	
  
In Figs. (1) and (2) we show four randomly initialized trajectories for the porphine and 
the Wolfe-Quapp PESs respectively (the reader can find the numerical parameters used 
for each PES in Table II). Irrespectively of the initial random position and control 
vectors (the h0 = (x0, w0)T selected for each trajectory and PES can be found in Table 
III), the trajectories depicted in Figs. (1) and (2) all repeatedly pass over a transition 
state and fall down into a neighboring minimum until the entire PES has been explored. 
Regarding the parameterization of the algorithm, notice that the value of γ is chosen by 
trial with the goal of balancing the propagation time (more time is required if γ is small) 
and numerical stability (shorter time-steps are required if γ is large). Furthermore, the 
choice of the threshold parameter th strongly depends on the topography of the 
underlying PES, i.e., it is the steepness of the maxima that defines its value. Hence, for 
such a preliminary algorithm, PESs combining both steep and flat maxima would suffer 
from an ill-defined threshold parameter.  
	
  
Notice that the GAD-SD method, as described above, does not require the computation 
of the Hessian matrix at any time, and only the conditions for reaching a minimum 
require the evaluation of second order derivatives. This would be especially welcome in 

d 2x
dt2

= −g(x)−γ dx
dt
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the context of highly correlated wavefunctions calculations (beyond self-consistent-field 
methods) where second order derivatives are much more expensive than first order 
derivatives. In these cases, optimization and path following will benefit from a gradient 
only algorithm. Anyhow we can say that the combination of the GAD-SD method with 
dissipative Newtonian dynamics seems to be a good starting point to develop a new 
type of “metadynamics” approach [24-26].  
	
  
The efficiency and numerical stability of the method for larger (multidimensional) 
systems [27, 28] will be reported elsewhere. Nonetheless, we here want to give some 
clues on the viability of this extension to larger systems by testing the method on the so-
called Rastrigin function [37]. The Rastrigin function contains only up to quadratic 
terms in x and y, but the coupling between the two is quadratic. Furthermore, the 
Rastrigin function is a non-convex function used as a performance test problem for 
optimization algorithms. It is a typical example of non-linear multi-modal function. 
Finding the minima and saddle points of this function is a fairly difficult problem due to 
its large search space and its large number of local minima. Therefore, in order to 
improve the efficiency of our algorithm in the presence of multiple reaction paths, we 
reinitialize our trajectory every time it finds an already known minimum or saddle 
point. In this way we avoid exploring paths that have been already scrutinized. In Fig. 
(3) we show that, after a very few trajectory resets, the entire surface has been sampled. 
Notice that while in our algorithm the different trajectories are evolved in series, one 
could also envision an equivalent algorithm where a swarm of trajectories are launched 
all at once in parallel. Such a strategy could be even more appropriate for real systems 
with a larger number of degrees of freedom.  
 
 
Table 1. Mathematical expressions for the three PESs used in this work. The three 
parameters of the porphine PES are: Uo = 0.01783, G = 0.063, A = 1.251. The 
parameters for the Wolfe-Quapp PES are: A = -2, B = -4, C = 0.3, and D = 0.1. Finally, 
the two parameters of the Rastrigin surface are A = 2, and N = 0.1. 
 
  V(x,y) 
Porphine Uo / A4 [(x2 – A2)2 + (y2 – A2)2 – 

4G·A2xy] + 2G(2 + G)Uo 
Wolfe-Quapp x4 + y4 + Ax2 + By2 + xy + Cx + Dy 
Rastrigin A·N + x2 – A cos(2πx) + y2 – A cos(2πy) 

+ (xy)2 

 
 
 
 
Table 2. Description of the five parameters required in the present simulations for the 
three different PESs. 
 
 Porphine Wolfe-Quapp Rastrigin 

th 1·10-6 3·10-3 5·10-1 
γ 2 4 5 
Δx 4·10-2 8·10-3 4·10-2 

Δt=Δt0 3·10-2 1·10-3 2·10-2 

d0 1·10-3 1·10-3 1·10-3 
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Table 3. Randomly chosen initial positions and control vectors for the trajectories 
depicted in Figs. (1) – (3). 
 

 Porphine Wolfe-Quapp Rastrigin 
 x0 = (-0.7,0.9) x0 = (0.1,0.3) x0 = (0.4,-1.3) 

Traj. 1 w0 = (-1.0,0.9) w0 = (0.6,-0.9) w0 = (0.2,0.5) 
 x0 = (0.7,0.0) x0 = (1.4,-1.3)  

Traj. 2 w0 = (0.2,-0.6) w0 = (-0.6,-0.7)  
 x0 = (-0.5,0.6) x0 = (-0.4,-1.0)  

Traj. 3 w0 = (-0.8,0.5) w0 = (0.6,-0.1)  
 x0 = (-0.1,0.2) x0 = (0.0,0.3)  

Traj. 4 w0 = (-0.1,0.5) w0 = (0.1,0.2)  
 
 
 
 
 

 
 
 
 
Figure 1. Four randomly initialized trajectories for the combined model GAD-SD-
Newtonian dynamics on the model porphine. Starting from four different positions and 
control vectors (see Table III), the GAD-SD trajectories rapidly climb to a saddle point 
and, after switching to classical dissipative dynamics, they fall into a neighboring valley 
of the PES. This process is repeated as many times as required to sample the entire PES. 
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Figure 2. The same as in Fig. 1 but for the Wolfe-Quapp PES. Starting from four 
different random positions and control vectors (see Table III), all GAD-SD trajectories 
combined with classical dissipative dynamics are successfully exploring the PES. 
 
 
 

 
 
 
Figure 3. Due to the large number of possible reaction paths co-existing on the 
Rastrigin PES, the GAD-SD-Newtonian trajectory is restarted as soon as an already 
known saddle point or minimum is reached. In this way a given path along the PES is 
sampled only once and the efficiency of the algorithm is considerably improved.   
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VII. Conclusions 
 
We have presented an algorithm to integrate the GAD equations of motion for finding 
saddle-points of index n based on an optimization-based SD method. More specifically, 
the Barzilai and Borwein gradient method [19] is applied, and according to the results of 
Zhang el al. [20], this makes the resulting GAD-SD equations of motion stable. By 
combining the GAD-SD method with classical dynamics with friction, we report a 
promising algorithm to exhaustively exploring reaction paths in multi-dimensional 
PESs. The combined method has been first tested on three simple two-dimensional 
model PES. Independently on the initial position and control vector of the trajectories, 
all where able to find all saddle points and minima in a trivial manner. 
 
Our results are not conclusive regarding the scalability of the method for a large number 
of degrees of freedom. However, we gave some clues on the viability of the method for 
real systems. By choosing the Rastrigin surface, we stressed our approach in a PES 
where multiple minima and saddle points (and hence multiple reaction paths) coexist, 
which is closer to a real molecule scenario. By reinitializing the trajectories one can 
avoid the repeated exploration of already known regions of the surface. The algorithm 
can be equivalently seen as launching a swarm of trajectories in parallel. 
 
Let us emphasize that the GAD-SD method does not require the computation of the 
Hessian matrix at any time, and only the conditions for reaching a minimum require the 
evaluation of second order derivatives. This would be especially welcome in the context 
of highly correlated wavefunctions calculations (beyond self-consistent-field methods) 
where second order derivatives are computationally very expensive. In these cases, 
optimization and path following will benefit from a gradient only algorithm. Further 
studies regarding the extension of the method for larger systems or its efficiency in 
comparison to well-established methods for the exploration of multidimensional PESs 
will be reported soon elsewhere. 
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Appendix A: Proof of the Variational Character of Gentlest Ascent-Zermelo 
Model for index n = 1. 
 
The GAD-Zermelo problem can be formulated as a Mayer-Bolza problem of the 
Calculus of Variations related with the solution of a problem of Optimal Control Theory 
[14, 18]. We present the proof for the case of index n = 1, thus the W matrix is reduced 
to a vector, w(1) = w, the generalization is straightforward. This problem can be 
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formulated as follows: determine the vector function x(t) of dimension N, satisfying the 
equation 
 

 (A.1) 
 
where, g(x), is the gradient vector of the function V(x), I is the identity matrix, and the 
initial condition  x0 = x(t0), and determine the control vector function, w(t), of 
dimension N, restricted to the normalization relation, wTw = 1, in such a way that the 
functional 
 
J x(t,w(t))[ ] = t − t0 	
   (A.2) 
 
assumes an extremal value with the boundary condition 
 

 (A.3) 
 
being satisfied at t = tf. 
 
If we take t0 fixed then we can write 
 

 (A.4) 
 
where the last equality is satisfied if the last integral is evaluated through the extremal 
curve, Equation (A.1). According to the above equalities we have the relation, F(x,dx / 
dτ) = dt / dτ, through the extremal curve. From this result and in order to determine the 
optimal curve we must establish F(x,dx / dτ) as the basic functional of a variational 
problem. The functional F(x,dx / dτ) is assumed to be homogenous of degree one with 
respect to the argument dx / dτ. However, the tangent of the curve given in Equation 
(A.1) satisfy the equation 
 

 (A.5) 
 
and from the last two equalities we write 
 

 (A.6) 
 
Now we rewrite Equation (A.6) 
 
z+ g x( )( )

T
z+ g x( )( )− 2wTg x( )( )

2
= 0  (A.7) 

 
where z = (1/F(x,dx / dτ)) dx / dτ. The Equation (A.7) defines a hypersurface in the 
space of z which depends on the parameters x and w and which is the indicatrix of the 
present variational problem at the point (x, w). This geometrical interpretation of the 

dx / dt = − I− 2wwT"# $%g(x)

∇xV x t f( )( ) = g x t f( )( ) = 0

t − t0 = dt
t0

t
∫ =

dt
dτ

dτ
τ 0

τ

∫ = ∇xJ( )T dx
dτ
$

%
&

'

(
)dτ

τ 0

τ

∫ = F x,dx / dτ( )dτ
τ 0

τ

∫

dx
dt
=
dx
dτ

dτ
dt

=
dx
dτ

1
F x,dx / dτ( )

= − I− 2wwT"# $%g x( )

1
F x,dx / dτ( )

dx
dτ

+ g x( ) = 2wTg x( )( )w.
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Calculus of Variations is very convenient. It allows the function F(x,dx / dτ) or a 
Hamiltonian function of the present problem to be found. In particular, due to the form 
of Equation (A.7) it allows us to calculate the function F(x,dx / dτ) as a positive root if 
such a root exits. However, we can obtain a Hamiltonian function H from the indicatrix 
by calculating the relation between the variables (x, w, y), being y = ∇dx/dτ F(x, z), 
which arises first by multiplication the Equation (A.7), by F2(x,dx / dτ), and second by 
differentiation with respect to dx / dτ and finally substituting in the resulting expression 
Equation (A.6) obtaining 
 

 (A.8) 
 
In this way we have eliminated the z vector. In order to simplify Equation (A.8) we now 
set the eigenvalue equation, 
 
I+ ygT x( )( )y = 1+ yTg x( )( )y =ωy  (A.9) 

 
then multiplying by ω Equation (A.8) we have the following equation 
 

 (A.10) 
 
If we multiply Equation (A.10) from the left by gT(x) and if we take the value of ω, 
given in Equation (A.9), then we obtain that yTg(x) = 1 and ω = 2. Moreover, it follows 
from Equation (A.10) that 
 
2H x, y( ) = 2wTg x( )( )

2
yTy−ω 2 = 2wTg x( )( )

2
yTy− 1+ yTg x( )( )

2
= 0  (A.11) 

 
which is the Hamiltonian function being a quadratic function of the y vector. This 
surface, H(x,y) = 0, in the present case is also called figuratrix. The indicatrix and 
figuratrix are reciprocal polars with respect to a sphere of radius equal one. This 
construction is due to the inapplicability of Legendre transformation to obtain the 
Hamiltonian. The homogeneous character of degree one of the functional F(x,dx / dτ) 
with respect to the tangent avoids its applicability [17]. We can derive the canonical 
equations for the extremal curves 
 

 (A.12) 
 
and 
 

	
  
 (A.13) 
 
where we have used Equation (A.11) and that ω = (1 + yTg(x)) from Equation (A.9). 
Since by assumption dt / dτ = F(x,dx / dτ) > 0, λ must be always have the same sign as 
ω. We obtain the extremals of the variational problem by adding to the Equation (A.12) 
the second canonical equation: 

I+ ygT x( )( )w = 2wTg x( )( )y.

ωw = 2wTg x( )( )y.

dx
dτ

= λ∇yH x, y( ) = λHy x, y( ) = λ 2wTg x( )( )
2
y−ωg x( )#

$%
&
'(

F x,dx / dτ( ) = yT dx / dτ( ) = λ 2wTg x( )( )
2
yTy−ωyTg x( )"

#$
%
&'= λ ω 2 −ω ω −1( )( ) = λω
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 (A.14) 
 
where H is the Hessian of V(x). For a solution, we have to use initial values (x0, y0) for 
which the Hamiltonian H(x,y) = 0 holds in Equation (A.11). For may purposes it is 
more advantageous to introduce t as a parameter, whereby we set dt / dτ = F(x,dx / dτ) 
= λω = 1. Moreover, if we replace the y vector by its values from Equation (A.10), then 
the canonical equations become specially simplified. Namely, instead of Equation 
(A.12), we obtain 
	
  

 (A.15) 
 
and instead of Equation (A.14) 
 

 (A.16) 
	
  
We obtain from this equation by multiplying from the left by [I – wwT] and using the 
idempotent property of this projector 
 

 (A.17) 
 
This last equation forms with Equation (A.15) a system permitting all extremals of the 
GAD variational problem to be found. If we have calculated x and w vectors as 
functions of t, then we can determine the y vector from the Equation (A.10) and that ω 
= (1 + yTg(x)) = 2. 
Nevertheless, it is useful to note that ω can also be obtained by a quadrature, that is, 
from the equation 
 
1
ω
dω
dt

= 2 wTHw−
wTHg x( )
wTg x( )

"

#
$$

%

&
''  (A.18) 

 
which arises by multiplying from the left by wwT Equation (A.16) and using Equations 
(A.15) and (A.17) and that wT(dw / dt) = 0 due to normalization of the w vector. 
Moreover, by differentiation of ω = (1 + yTg(x)) and employing Equations (A.9), (A.13) 
and (A.14) we verify that 
 

 (A.19) 
 
Equating the Equations (A.18) and (A.19) we obtain that ω-1 (dω / dt) = 0 implying that 
ω = constant, being this constant equal two along the GAD extremals. The right hand 

dy
dτ

= −λ∇xH x, y( ) = −λHx x, y( ) = −λ 2 2wTg x( )( ) yTy( )Hw−ωHy#
$

%
&

dx
dt
= − I− 2wwT"# $%g(x)

dω
dt
w+ω dw

dt
=ω

d
dt
wTg(x)( )
wTg(x)

w−ωHw.

dw
dt

= − I−wwT"# $%Hw.

1
ω
dω
dt

=wTHw−
wTHg x( )
wTg x( )

.
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side of Equations (A.18) and (A.19) is equal zero and coincides with the expression 
d(yTg(x)) / dt which is also zero since yTg(x) = 1 through the GAD extremal.  
 
In order to decide whether a given line element is positive or negative regular, it is best 
to calculate the E-function itself 
 

 (A.20) 
 
If in this, according to ω = (1 + yTg(x)) and Equation (A.10), we set yTg(x) = ω – 1, and 
 

2w 'T g x( )( )
2
yTy ' =ω 'ω

w 'T g x( )
wTg x( )

wTw '  (A.21) 

 
then we obtain the formula 
 

E = λ 'ω 'ω 1−
w 'T g x( )
wTg x( )

wTw '
"

#
$$

%

&
''= λ 'ω 'ωw '

T Ew '  (A.22) 

 
where 
 

 (A.23) 
 
since w’Tw’ = 1. The sign of det (E) determines the sign of the E-function. The line 
elements are therefore all strong, they are positive or negative regular according the 
value of det (E) since λ’ω’ > 0 and ω = 2. The only line elements which form an 
exception are the anomalous line elements for which wTg(x) = 0. These line elements lie 
on the limit curves for the stationary field of extremals. The E matrix of Equation 
(A.23) can be rewritten as 
 

E = I− w | gn[ ]
0 1/ 2cosβ( )

1/ 2cosβ( ) 0

"

#

$
$

%

&

'
'
w | gn[ ]T

(

)
*

+*

,

-
*

.*
 (A.24) 

 
where gn is the normalized gradient vector, g(x), and cos β = wTgn. The spectral 
decomposition of this E matrix is 
 

E = cosβ −1
2cosβ

v1v1
T +

cosβ +1
2cosβ

v2v2
T + vivi

T

i=3

N

∑ , vi
Tv j = δij for   i, j =1,…,N  (A.25) 

 
where δij is Kronecker’s delta (δij = 1 for i = j and 0 otherwise) and 
 

E = F x,dx '/ dt( )− ∇dx/dtF x,dx / dt( )( )
T
dx '/ dt( )

= λ ' ω '− yT 2w 'T g x( )( )
2
y '−ω 'g x( )( )( ).

E = I− 1
2wTg x( )( )

g x( )wT +wgT x( )( )
"

#
$
$

%

&
'
'



	
   1

 (A.26) 
 
From Equation (A.25) we obtain that det (E) = – 1/4 tg2 β ≤ 0. The final expression of 
the E-function is 
 

E = λ 'ω 'ω 1+ cosβ −1
2cosβ

−1
"

#
$

%

&
' v1

Tw '( )
2
+
cosβ +1
2cosβ

−1
"

#
$

%

&
' v2

Tw '( )
2(

)
*

+

,
-  (A.27) 

 
where we have used Equations (A.22) and (A.25) and that 
 

 (A.28) 
 
In the case that gn = w, then cos β = 1, v1 = gn and v2 = 0. In these conditions Equation 
(A.27) reduces to 
 
E = λ 'ω 'ω 1− cos2 β '"# $%  (A.29) 
 
where cos β’ = w’Tgn. Notice that now E ≥ 0. The reason why det (E) ≤ 0 except when 
w = gn can be found analyzing the structure of the indicatrix given in Equation (A.7), 
rearranged in the following way 
 

 (A.30) 
 
where the left-hand side part depends of z and x while the right-hand side part depends 
of x and the w-vector. The indicatrix is the “wave front” of all extremal curves 
emerging from x. If in this fixed point we vary the vector w, then we obtain a new 
direction of progress but also the length of the “radius” vector of the indicatrix, (z + 
g(x)), has varied where z is a vector centered in the point 0 and ending in the indicatrix 
and related with the tangent vector, dx / dt. We recall that dx / dt = z since F(x,dx / dτ) 
= dt / dτ = 1 through the extremal curve. The square of the length of this “radius” vector 
is 4 gTg cos2 β and its values are in between zero and 4 gTg, both included. However we 
can found at the same point x a new vector w’ such that cos2 β  < cos2 β’. For this new 
vector w’ the “radius” vector of the indicatrix is much greater that with the vector w. 
This fact implies that the evolution of the point located at x will go much further in the 
same Δt due to the relation between z and the tangent vector. For this w’ we have w’T E 
w’ < 0. The maximum “radius” vector of the indicatrix, 4 gTg, is attained when w = gn 
and for this reason w’T E w’ ≥ 0 for any w’ vector. In this case the curve evolves as 
steepest-ascent. Finally, when cos2 β  = 0 the “radius” vector is equal to the zero vector 
and does not depend on the w-vector. This is the anomalous element of the curve 
evolving as steepest-descent. As noted above, this anomalous element do not minimize 
or maximize the functional, it is a limit curve for the stationary field of extremals. 
 
 
 
 

v1 =
1
2

2
1+ cosβ

gn +w( ); v2 =
1
2

2
1− cosβ

gn −w( ).

vi
Tw '( )

2

i=3

N

∑ =1− v1
Tw '( )

2
− v2

Tw '( )
2
.

z+ g x( )( )
T
z+ g x( )( ) = 2wTg x( )( )

2
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Appendix B: Extension of the shrinking dimer approach to the general GAD 
Zermelo model for any index n. 
 
The extension of the algorithm to the general GAD Zermelo model for any n is 
straightforward. In this case the tangent vector has the form 
 

 (B.1) 
 
where the matrix W is 
 

  (B.2) 
 
being n ≤ N the dimension of the subset of control vectors and N the dimension of the 
problem. In addition it is WTW = In, the unit matrix of dimension n. The control matrix 
W evolves according to the equation 
 

  (B.3) 
 
Equations (B.1) and (B.3) are the Equations (1) and (2) emphasizing that n > 1. It is the 
case when more than one directional vector is involved. To solve Equations (B.1) and 
(B.3) using the dimer method at the ith iteration, first we define the two sets of points 
 

  (B.4) 
 
Note that µ is an index, not an exponent. In this way we have n dimers centered in the 
point xc i, and the orientation of each dimer is given by the normalized control vector 
wi

(µ), xi+1
(µ) – xi

(µ) = di
(µ)

 wi
(µ). As in the simple case, the approximated gradient at the 

inner point of each dimer is, g(xc i) = (1 – pi
(µ)) g(xi

 (µ)) + pi
(µ) g(xi+1

(µ)). We define the 
set of vectors 
 

  (B.5) 
 
With these definitions we solve Equation (B.3) 
 

  (B.6) 
 
where Wi is the W matrix at the ith iteration. For the n-dimer translation we solve 
Equation (B.1) using the approximation 
 

dx
dt
= − I− 2WWT"# $%g x( )

W = w(1) … w(n)!
"#

$
%&

d
dt
W = − I−WWT"# $%HW.

xi
µ( ) = xc i − 1− pi

µ( )( )di µ( )wi
µ( )

          µ =1,…,n

xi+1
µ( ) = xc i + pi

µ( )di
µ( )wi

µ( ) .

ki
µ( ) = g xi+1

µ( )( )− g xiµ( )( )( ) / di
µ( )                  µ =1,…,n.

wi+1
µ( ) =wi

µ( ) −Δti I−WiWi
T#$ %&ki

µ( )                        µ =1,…,n
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 (B.7) 
 
Proceeding as in the previous case, we collect the vectors, xc i and {wi

(µ)}µ = 1
n, into the 

vector hi
ext, namely, hi

ext T = (xc i
T, wi

(1)T, …, wi
(n)T), and the residues into the vector ri

ext 

 

 . (B.8) 
 
Finally with these definitions, the set of Equations (B.1) and (B.3) can be written in a 
compact form 
 

 (B.9) 
 
where Δhi

ext = hi+1
ext – hi

ext. The application of the quasi-Newton property, Δhi-1
ext = – 

Δti Δri-1
ext where Δri-1 = ri

ext – ri-1
ext, follows on a parallel way. We note that in the 

present case the normalization of the set of vectors {wi
(µ)}µ = 1

n at each iteration can be 
done by either the Gram-Schmidt [29] or Löwdin [30] procedures. We are using the 
Löwdin procedure. 
 
A refinement of the above algorithm consists in to replace the term (g(xi+1) – g(xi)) / di 
appearing in Equation (5) or the set of vectors, {ki

(µ)}µ = 1
n, in Equation (B.6) by Hiwi or 

by the set of vectors, {Hiwi
(µ)}µ = 1

n, respectively. The Hi represents the Hessian matrix 
updated at the ith iteration. The GAD Zermelo path walks through the PES visiting 
regions where the Hessian matrix may or may not be positive definite. For this reason it 
is used the update formula of Murtagh-Sargent-Powell [31, 32] 
 

  (B.10) 
 
where, ji-1 = g(xc i) – g(xc i-1) – Hi-1 Δxc i-1 = g(xc i) – g(xc i-1) – Hi-1 (xc i – xc i-1) and Mi-1 = 
ai-1 I + (1 – ai-1) (Δxc i-1

TΔxc i-1) / (ji-1
TΔxc i-1)2 ji-1 ji-1

T being 1 ≥ ai-1 ≥ 0. A version of this 
update Hessian formula was also reported for large dimensional systems [33]. It is well 
known that update formulae like Equation (B.10) are numerical stable even when the 
dimension of the system is large [29, 34]. 
 
 
 
 
Appendix C: Proof of the validity of Equation 4. 
 

xc i+1 = xc i −Δti I− 2WiWi
T#$ %&g xci( )

ri
ext =

I− 2WiWi
T"# $%g xci( )

I−WiWi
T"# $%ki

1( )

!

I−WiWi
T"# $%ki

n( )

&

'

(
(
(
(
(
(

)

*

+
+
+
+
+
+

Δhi
ext = −Δtiri

ext

Hi =Hi−1 +
ji−iΔxci−1

T Mi−1 +Mi−1Δxci−1ji−1
T

Δxci−1
T Mi−1Δxci−1

− ji−1
T Δxci−1( )

Mi−1Δxci−1Δxci−1
T Mi−1

Δxci−1
T Mi−1Δxci−1( )

2
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A PES, V(x), is considered a continuous function in x, at least three times differentiable 
with respect to x and its derivatives should be continuous. In other words, a smooth 
function of many variables can be approximated by a Taylor series around any point. 
The basic idea is that in the smooth functions it is true that the Hessian matrix, H(x), 
maps differences in position into differences in gradient, g(x’) – g(x) = H(x) (x’ – x) + 
O(||x’ – x||2), where || · || means norm of a vector in Euclidean metric and O(||x’ – x||2) 
means that as x’ approximates to x then ||g(x’) – g(x) – H(x) (x’ – x)|| ≤ c ||x’ – x||2 
where c is a positive constant. The O(·) notation describes the limiting behavior of a 
function when the variable tends toward a particular value. Now we take x’ = xi+1, x = xi 
and we represent the differences between these two points as xi+1 – xi = wi di, where wi 
is a normalized vector. In this way we can write, g(xi+1) – g(xi) = H(xi) wi di + O(di

2), 
consequently any point in between xi+1 and xi satisfies this equality in particular xci = (1 
– pi) xi + pi xi+1 where 0 ≤ pi ≤ 1.  With these notations and definitions at hand we proof 
Equation (4). First, we rearrange Equation (4) as follows, 
 
g(xci) – g(xi) = pi(g(xi+1) – g(xi)) = pi (H(xi) wi di + O(di

2)) = pi H(xi) wi di + O(di
2).

 (C.1) 
 
Second, from the definition of the point xci, we can write, xci – xi = pi (xi+1 – xi) = pi wi 
di. Now, 
 
g(xci) – g(xi) = H(xi) (xci – xi) + O(||xci – xi||2) = pi H(xi) wi di + O(pi

2di
2). (C.2) 

 
We note that ||xci – xi||2 = pi

2di
2 ≤ ||xi+1 – xi||2 = di

2, since 0 ≤ pi ≤ 1 with equality if pi = 1. 
Defined in this way, the xci is an interior point of the ball centered in xi with radius di. 
Since pi

2di
2 ≤ di

2 then the limiting behavior O(di
2) is less restricted than O(pi

2di
2). 

Comparing Equations (C.1) and (C.2) we see that they are identical differing only in the 
limiting behavior O(di

2). This concludes the proofs of the general validity of Equation 
(4) for any point of the PES within the quadratic order of the expansion with respect to a 
selected point. 
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