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Abstract

Chemical processes which suffer the application of mechanical force are theoretically
described by effective potential energy surfaces (PES). We worked out [Theor. Chem.
Acc.135, 113 (2016)] that the changes due to the force for the minimums and for the
saddle points can be described by Newton trajectories (NT) of the original PES. If the
force is so high that the saddle point disappears into a shoulder then the mechanochem-
ical action is fulfilled: the pulling force breaks down the reaction barrier. The point
is named barrier breakdown point (BBP). Different families of NTs form corridors on
the original PES which describe qualitative different actions of the force. The border
regions of such corridors are governed by the valley-ridge inflection points (VRI) of the
surface. Here we discuss all this on the basis of the well known Müller-Brown (MB)
surface, and we describe a new kind of NT-corridor.
Keywords: Mechanochemistry, Effective PES, Newton trajectory, Force displaced sta-
tionary points

1 Introduction to Newton Trajectory Theory applied

to Mechanochemistry

Mechanochemistry is an emergent area based on the study of forces that initialize chemical
reactions. A mechanical force applied to a material is not only used for crushing solids but it
can also be used for the initiation of chemical reactions.1–3 From a theoretical point of view,
the potential energy surface (PES) of the molecule changes under the force, which means that
the minimums and the saddle points (SPs), thus the barriers between the minimums and the
SPs, change. It means that also the reaction pathways of the chemical problem change. For
this reason, when a force is applied to a molecular system, the reactivity is either enhanced
or suppressed. The extent of the barrier modification depends on the direction and on the
magnitude of the external force.
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Figure 1: An 1-dimensional Morse potential, V, is the upper curve. The effective surface
under the amount of force, -1, emerges as V1. Note that minimum and SP of V1 are moved.

In Fig.1 the simplest 1-dimensional case is shown: to a potential V (x) is added an external
constant force of amount, -1. We get

V1(x) = V (x)− 1 · x . (1)

The force induces that minimum and SP of the original potential move; here the minimum
moves to the right hand side, but the SP moves to the left hand side. If the amount of the
force, F, is larger, then the line in Fig.1 becomes steeper, and the movement of the stationary
points increases.

What happens on a 2-dimensional PES? Of course, we can apply Eq.(1) to every curve
section for a fixed y value, over the then 1-dimensional curve over an x-axis. Equivalently,
we can apply

VF (x, y) = V (x, y)− F · y (2)

in y-direction, for every fixed value of x. The corresponding 1-dimensional curve over an
y-axis is changed like in Fig.1. In the sum, for a two-dimensional surface, we can combine
the two kinds of external forces to one directional vector, f=(Fx,Fy)

T , and we get the model

Vf (x, y) = V (x, y)− Fx · x− Fy · y = V (x, y)− (Fx, Fy) · (x, y)T . (3)

The last point symbol, ’·’, now means the scalar product of the vectors, f and (x,y), and
the superscript T means the transposition of a vector or a matrix. The amount of the force
in direction f is the norm of the vector,

√
F 2
x + F 2

y . If the potential function V (x, y) is
approximated by a quadratic model then we have the Thronton model4 used to predict the
resulting structure and location of the transition state due to changes on the original system.

In the general case, we collect all coordinates in a coordinate vector, x, and the N -
dimensional force in the vector, f. The resulting modified PES, Vf (x), is obtained for a
constant stretching force, f , via3,5–12

Vf (x) = V (x)− fT · (x− x0) (4)

where x is the vector of the internal coordinates of the molecule, and x0 is any anchor point.
The vector of the mechanical force, f , is determined by two parts: its direction and its length.
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The ’length’ is the norm of the vector: F = ±|f |, and the direction is l = f/F . So, l is a
unit vector. According to Eq.(4) the effective potential results by a subtraction of the scalar
product of a linear potential, the displacement, (x − x0), with the force vector, f, from the
original potential energy, V (x).

There is a slightly other ansatz,13 in comparison to Eq.(4), the force-modified potential
energy surface. It is an extension of a Kauzmann-Eyring model, whith an expression Vf (r)
= V (r) + f0 ||̄r0 - r̄||. Here f0 is the magnitude of the external force, but not the force
vector. The gradient formally is ∇rVf (r) = ∇rV (r)− f0(r0 − r)||r0 − r||−1. However, for r̄
in the external force are used only special molecular attachment points, and the direction of
the force depends on this special coordinate direction, r̄. It is not constant. But some phe-
nomenons there observed are similar to our results. See also a longer comparison elsewhere.14

The Maeda-group15–17 uses an application of another non-linear ansatz of a force vector,
instead of Eq.(4), the Artificial Force Induced Reaction (AFIR) method. However, the
version is used only for numerical reasons to calculate transition states or minimums. It is
described as a method without a physical meaning. Some phenomenons there observed are
similar to our results.

1.1 The invariance of Eq.(4) under coordinate transformation.

Dealing with the invariance of Eq.(4) we take into account that the transformed potential
function, Vf (x), can be considered as the Legendre transformation of V (x),11 where, f =
∇xV (x) and without loss of generality we take x0 = 0. Let first x = r (q) be a regular
transformation of the coordinates x alone into new coordinates q. The following question
emerges: is it possible to find a vector function, s (q,p), such that the transformation

x = r (q) , (5a)

f = s (q,p) , (5b)

transforms Eq.(4) into a new Legendre transformed function Up (q) = U (q)− pTq ?
We require that the Jacobian

det

(
∇qr

T ∇qs
T

∇prT ∇psT

)
= det

(
∇qr

T ∇qs
T

O ∇psT

)
= det

(
∇qr

T
)
det
(
∇psT

)
(6)

is not zero. The answer is affirmative by the following simple argument. The original
potential function V (x) is equal to the potential function U (q) via

V (x) = V (r (q)) = U (q) . (7)

Hence if we introduce
p = ∇qU (q) (8)

then the corresponding transformed function

Up (q) = U (q)− pTq (9)
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is obtained as transformed Legendre function. In order to compute the vector function,
s (q,p) (in Eq.(5b)), we compute

p = ∇qU (q) =
[
∇qr

T
]
∇xV (x) =

[
∇qr

T
]
f , (10)

where Eqs.(5a) and (7) have been used. We assume det
(
∇qr

T
)
6= 0. Therefore one can

solve Eq.(10) for f and one obtains f = s (q,p) even as a linear function in p. One easily
checks that det

(
∇psT

)
6= 0. Finally, if we consider the invariance of the scalar product,

fTx = pTq, under the transformation included in Eqs.(5) satisfying the condition of Eq.(6)
and of Eq.(7), we conclude that Vf (x) = Up (q).

Note that the invariance of Eq.(4) corresponds to the known invariance of Newton tra-
jectories (NTs) under coordinate transformation,18 which becomes clear below because NTs
are connected with Eq.(4).

1.2 The Mechanochemical Model

Eq.(4) is the basis of some mechanochemical methods for the calculation of deformed molec-
ular structures due to a force. It can also be applied to explore how an external electric
fields can catalyze and control a reaction when the field is constant in time and position.19

The dimension of the vectors, f , x, and x0 is N = 3n − 6 internal coordinates being n the
number of atoms. On the effective potential, Vf (x), the stationary points are located at
different points with respect to the unperturbed potential, V(x), where ∇x V (x) = g(x) = 0
holds. The stationary points on the effective potential have to satisfy the analogous condi-
tion, ∇x Vf (x) = 0. Since Vf (x) is the one given in Eq.(4) it follows that its minimums and
SPs should satisfy the vector equation

∇x Vf (x) = g(x)− f = 0 . (11)

One searches a point where the gradient of the original PES, g(x), has to be equal to
the mechanochemical force, f. From a geometrical point of view, Eq.(11) means that the
tangential hyperplane at a point x of the original PES, characterized by the gradient, g(x),
is equal to the hyperplane made by the pulling force, by fT · (x− x0), of Eq.(4).

If it is F = 0 then Eq.(4) reduces to the pure ’thermal limit’ being the case without a
mechanical load.

Let us consider the case that the force f changes its magnitude F in a continuous way but
its direction l is constant. Thus along the curve of solutions of Eq.(11) the gradient points
into the same direction where its length will change. In this case we have a continuous set of
effective PESs, Vf (x), where every Vf (x) has its corresponding stationary points. However,
if F changes then this set of stationary points defines a continuous curve. We can draw
the curve over the original PES, V (x). By this construction, at each point of the curve the
equation, ±F l = g(x), holds, see Eq.(11).

We summarize: at each point of the pathway of the moved stationary points the gradient
has the same direction, l. A curve with this feature is known as Newton trajectory (NT),20–27

or more specifically here as the curve of the force displaced stationary points (FDSPs).28,29
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2 Application of Newton Trajectories

It is known that every NT satisfies the Branin equation19,28,30,31

dx

ds
= ±A(x)g(x) (12)

where s is the parameter that characterizes the curve, and the matrix A(x) is computed as
a product of the determinant of the Hessian matrix, H(x), of the original PES, V (x), with
its inverse, A(x) = Det(H(x))(H(x))−1. The matrix A(x) is named the adjoin matrix of
the Hessian, H(x). Eq.(12) is also a way to generate the FDSPs curve.

Eq.(11) can be written in a projector form20,21(
U− l lT

)
g = 0 (13)

where U is the unit matrix. The equation has to hold unattached from the uncomfortable
norm, |g|, and it means nothing else that g and l are parallel. If we differentiate the projector
Eq.(13) with respect to s, we obtain21,24

(
U− l lT

)
H
dx

ds
= 0 . (14)

This is a second expression of the tangent of the FDSPs curve.

If one uses a given fixed direction, l, and if one goes along the corresponding FDSPs
curve then the magnitude of the force, F , starts with zero at a stationary point, and ends
with zero at the final next stationary point. In between there has to be a maximum of |g|.
Here holds the condition3,28,29

Det(H(x)) = 0 (15)

with the Hessian of the original PES, V (x). The latter case is the point where the square
of the gradient norm achieves a turning point, and the effective Vf (x) along the FDSPs
path here achieves a shoulder.3,28,29 The point on the FDSPs curve has been named barrier
breakdown point (BBP).28,29 The barrier of Vf (x) decreases from the original PES barrier
to zero at the BBP. The kind of points is discussed also elsewhere.14

2.1 A general proof of Eq.(15) for BBPs:28

To prepare the idea of the proof of condition Eq.(15) we remark that the BBP is a turning

point of the function |g| along the NT. A g =
(
gTA

)T
= ATg is the tangent direction of the

NT, see Eq.(12), because the matrix A is symmetric. We search the turning point (TP) of
the function |g| along the NT: the directional derivative of |g| along the NT has to be zero.

d

ds

√
gTg =

2√
gTg

gTH
dx

ds
= ± 2√

gTg
gTHAg = ±2

√
gTg det (H) = 0 (16)

where first the concept of directional derivative is used and second the tangent vector, dx/ds,
is replaced by the definition of Branin, Eq.(12). The proof is finished: it is easy because we
have the tool of NTs at hand.
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2.2 The manifold of BBPs

The BBPs define a manifold, or a curve in the two-dimensional case. A way to generate
a curve with condition (15) is a predictor-corrector method with predictor steps along the
tangent, t, by solution of

d

dt
Det(H(x(t))) = [∇x Det(H(x(t)))]T t = 0 . (17)

The expression d/dt = t ∆x is the directional derivative along the tangent vector, t, with
t = dx/dt. The second equality of Eq.(17) is a homogeneous system of N linear equations.
The derivation in formula (17) is uncomfortable for larger values of N . We consider the usual
case that the Hessian matrix has only one zero eigenvalue. The contrary case is seldom and
is here excluded. On the MB surface, only near the point (−1,−0.05) we find a crossing of
two lines with such a case. We can use the Jacobi formula32

d

dt
Det(H(x(t))) = Trace

[
A(x(t))

d

dt
H(x(t))

]
. (18)

As above, the matrix A(x) is the adjoin matrix of the Hessian, H(x). For the both matrices
is valid: they have the same eigenvectors, and for the eigenvalues λi of H and µj of A we
have

λi µi = Det(H), i = 1, ..., N (19)

thus

µi =
N∏
j=1
j 6=i

λj . (20)

If only one λi is zero, then µi 6= 0; but all other µk = 0 for k 6= i. Let be E the matrix
collecting the set of normalized eigenvectors of the A matrix, which are also the eigenvectors
of H. If we use the properties of Trace we can write

Trace
[
EµET dH

dt

]
= Trace

[
µET dH

dt
E
]

= µie
T
i

dH

dt
ei . (21)

µ is the diagonal matrix of the eigenvalues of A. Since µi 6= 0 then must be eT
i
dH
dt

ei = 0.
Now we use the directional derivative along the tangent vector t and we get

eT
i

dH

dt
ei =

N∑
k=1

N∑
l=1

N∑
m=1

eik
∂3V

∂xk∂xl∂xm
eli
dxm
dt

= eT
i 〈F(x)〉it = wT

i t = 0 . (22)

eik is the component k of the vector ei, and 〈F(x)〉i is the matrix of the contraction of the
third derivative tensor with the eigenvector ei. It is used to build the vector wi = 〈F(x)〉iei.
Thus in our normal case of one zero eigenvalue of the Hessian, t is the orthogonal vector to wi.
Comparing the right-hand side part of Eqs. (17) and (22) we see that wi = ∇x Det(H(x(t))).
If we have the wi vector then we can compute the vector t by the projector

t = c
(
U− wiw

T
i

wT
i wi

)
z (23)
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with an arbitrary vector z 6= 0, and a normalization factor c. The matrix U is the unit matrix
of dimension N×N . The calculation is not so expensive as an iteration of the Gauss-Newton
algorithm to find optimal BBPs.33 Eq.(22) tells us that following the direction of the wi-
vector the unique eigenvector ei with null eigenvalue of the Hessian matrix, H (x), loses the
nullity character, but along an orthogonal displacement until first order the nullity character
is preserved. Note that there is an infinite number of directions orthogonal to the wi-vector.
The general equations corresponding to the case of a subset of null eigenvalues of the Hessian
matrix will be shown elsewhere.

e1

e2

t

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4

0.9

1.0

1.1

1.2

1.3
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Figure 2: MB surface by Eq.(25). In red color is shown a tangent vector to the line of the
green solution curve to Det(H(x(t))) = 0. e1 and e2 are the eigenvectors of the Hessian at
the curve point of interest. e1 belongs to the zero eigenvalue.

In Fig.2 we show a tangent to a green line with Det(H(x(t))) = 0 in the main valley on
the MB surface. It is calculated by Eq.(23). Shown are also the two eigenvectors. e1 is the
eigenvector to the zero eigenvalue.

The first Det(H) = 0-manifold that each NT crosses gives the BBP of this NT. If we
compare all NTs of a set which connect the same minimum and SP, then the NT which
gives the lowest value of Fmax is named the optimal NT and the point of intersection with
the Det(H) = 0-manifold optimal BBP.28,29 The gradient of the original PES at a BBP
gives the direction of the force and its magnitude to enforce the reaction task. The optimal
BBP defines the lowest maximal force in magnitude and in a corresponding direction to be
applied, in comparison to the FDSPs curves of other directions. The optimal BBP satisfies
the vector equation28,29

H(x)g(x) = 0 . (24)

where g(x) 6= 0. Thus at the optimal BBP the gradient is an eigenvector of the Hessian
matrix with null eigenvalue. Such a point is on a gradient extremal (GE),34–40 and that is
the proof of Eq.(24): the GE coincides at least in a point with the Det(H) = 0-manifold.
In this special BBP, the Det(H) = 0-manifold, the GE and the optimal regular NT meet.
The optimal BBP is a stationary point on the function |g| through the actual equipotential
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curve crossed by the optimal NT. (Note: the GE and the NT are one-dimensional curves
in all cases, here in a two-dimensional PESs is the condition Det(H) = 0 a line, but it is a
manifold in higher dimensions.)

Corollary If during the integration of a curve wholly located in the manifoldDet(H(x)) = 0
the condition, eT

i g(x)/|g(x)| = 1, is satisfied then this point is an optimal BBP. In the con-
trary case, if eT

i g(x) = 0, then the point is a VRI point. In the last case, the analysis of the
diagonalized matrix 〈F(x)〉i gives the topography of the VRI point.

From a mathematical point of view the BBP concept is strongly related to the Catas-
trophe Theory.41–44 For this theory, a BBP represents a catastrophe of the changing PES
function, V (x), being unfolded by a force affected through the additional perturbation term,
fT · (x− x0), of Eq.(4). Usually an SP of index one and a minimum coalesce to a shoulder,
and for still higher forces the two former stationary points totally disappear. This is the
meaning of the word Catastrophe: a qualitative change of the effective PES.

The application part of this paper is organized as follows: The next section 3 gives
a review on NTs and BBPs on the Müller-Brown (MB) surface.45 Section 4 develops the
corridors on the MB surface with NTs of a qualitative equal behavior, whereas in Section 5
our goal is to explain the change of different effective surfaces in the diverse corridors. Note
that similar treatments for other test surfaces are given elsewhere,19,28,29 however here a new
effect emerges due to the strong nonlinearity of the MB surface, and the fact that an SP of
index two is missed. The last section 6 presents a list of conclusions of this study.

3 Singular NT, and optimal BBP on the MB surface

A well-known test function in Theoretical Chemistry is the MB function.45 Over a two-
dimension plane it is with

A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6),

c = (−10,−10,−6.5, 0.7), x0 = (1, 0,−0.5,−1), y0 = (0, 0.5, 1.5, 1)

V (x, y) =
4∑

i=1

A(i)Exp[a(i)(x− x0(i))2 + b(i)(x− x0(i))(y− y0(i)) + c(i)(y− y0(i))2] . (25)

The contours of the function are shown in Fig. 3. The global minimum is inside a long,
narrow, but flat valley being located near the point (-0.5, 1.5). It may be the reactant, R, of
a chemical problem. Further there exists an intermediate minimum, I, near(0, 0.45) and a
product minimum, P , near (0.65, 0).

The valley-ridge inflection points (VRI) of the surface define a special sort of NTs, the
singular NTs. A regular NT directly leads from a minimum to an SP of index one (index
theorem47). A singular NT bifurcates at the respective VRI point. It can connect two
minimums, or the two bifurcating branches can connect two neighboring SPs of index one,
or the two bifurcating branches can connect a minimum with an SP of index two. The last
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Figure 3: Singular NTs through the four VRIs of the MB surface. The VRI points are
marked by black bullets.

case is missing on the MB surface. The singular NTs form the borders of families of regular
NTs in between. Such families are named chemical corridors for a pulling.19,28,29

In Fig. 3 we show the singular NTs which cross the VRI of the MB surface.47 The panels
(a) to (d) show the singular NTs through the VRI points 1 to 4. Note that the singular NTs
through VRI1 and through VRI4 connect all stationary points of the MB surface. However,
different branches of the singular NTs through VRI2 and through VRI3 only connect a sub-
set of the stationary points of the MB surface. The NTs are disconnected if one takes into
account all stationary points. All singular NTs form closed loops of some of their branches,
and the singular NT through VRI2 forms a single, disconnected loop through SP1 and the
intermediate minimum. The reason is that here an SP of index 2 does not exists. We will
see the consequences of such a disconnection in the next Section 4.

Between different singular NTs, which play the role of borders, we get families of regular
NTs. These form the chemical corridors for a pulling, see later Section 4. The importance
of the optimal BBP in the theory of Mechanochemistry resides in the fact that it gives the
optimal direction and magnitude of the pulling force inside a given corridor. An algorithm
to find this type of points is recently discussed elsewhere.33

The manifold of points12,28,44 where Det(H(x, y)) = 0 is characterized by the green lines
in Fig.4. The optimal BBPs between the stationary points are the fat, red points in Fig.4.
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Figure 4: Surface of the MB function with GEs (gray), Det(H(x, y)) = 0-lines (green), and
convexity borders46 (dashes). Four optimal BBPs are red points.

They are near or at the ’minimum energy path’. Note that not all such crossings with a
GE are chosen. Only the crossings near the stationary points, and in reaction valleys are
’optimal’. Other such crossings are calculated elsewhere.33 The dashed lines are the convexity
border of the surface; they separate convex or concave level lines or equipotential curves.46

4 Chemical force corridors on the MB surface

The main direct chemical corridor for an enhanced pulling from minimum R to SP1 is shown
in Fig. 5, compare reference.19 After SP1 it further follows the full reaction valley from
reactant, R, to intermediate, I, and product, P . The borders of the corridor are the singular
NTs through the VRI points 1 and 4. So we name it corridor (1,4). The borders are drawn
in blue and orange color. An optimal BBP is a red point (see Fig.4). VRIs are black points.
Note that the ’optimal’ BBP1 in the main valley of the global minimum is outside of this
corridor to SP1. The reason is that the valley of the SP1 ’crosses’ the main valley. The SP-
valley is a side valley. (See a deeper discussion of this ’optimal’ BBP below.) Three regular
NTs of the corridor are shown by gray curves. They are representants of the corridor.47 They
connect all stationary points along the reaction valley. Such a corridor is named type one.19

The regular NTs go in between the two colored border lines of the corridor. Note that they
sometimes have turning points (TP) which are higher in energy than the neighboring SPs.
At TPs the energy along an NT has a maximum. Remember that the corridor describes
curves of FDSPs, but it does not directly describe pathways of chemical reactions.

Another direct corridor leads from minimum R to SP2 through the mountains over SP1.
It is shown in Fig. 6. The corridor is very small. It avoids the crossing of SP1 and the
intermediate minimum, I. In our classification of corridors19 such a case is still missing. The
borders of the corridor are the singular NTs through the VRI points 1 and 2. We name it
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Figure 5: The main direct corridor from minimum R to SP1 is also the reaction valley from
R to P . The borders of the corridor are the singular NTs through the VRI points 1 and
4. They are drawn in blue and orange color. An optimal BBP is a red point. VRIs are
black bullets. Three regular NTs of the corridor are shown by gray curves. They connect all
stationary points along the reaction valley.

corridor (1,2). The borders are drawn in orange and blue color. Note that again the ’optimal’
BBP1 is outside of this corridor. A regular NT of the corridor is shown by a gray curve.
Here all the NTs of the corridor have TPs which are higher in energy than the neighboring
SPs. We find a further specialty: yet, the full corridor crosses the SP2 not along the SP
valley, but orthogonally to the valley direction, along the ridges of the SP.

Because the former corridor of Fig. 5 also crosses the SP2, we find here the strange case
of a crossing of two direct corridors from global minimum, R, to the assumed product, P .
We note again that in our classification of corridors19 such a case is missing. In contrast to
model example 4.3 in ref.19 with three minimums and three SPs, and a maximum by an SP
of index two in between, we miss here such an SP of index two between the two corridors.
Here, they touch vice versa at the VRI1 and along the singular NT through VRI1.

Fig. 7 shows another type of circular corridors,19 named corridors of type 2. In panel (a)
is shown the corridor (2,3) between the border points VRI2 and VRI3. A representing NT
of the corridor is drawn in bold gray. A force in such a direction can move together SP1 and
I, and SP2 and P , see the next Section 5 for the corresponding effective surfaces. In Fig. 7b
is shown the half-corridor between the border points VRI3 and VRI4. It is named corridor
(3,4). It is likewise separated from the global minimum region around R. The other half
corridor goes along the R-valley. Here R moves forward or backward in its valley.

Further conceivable corridors, for example between the VRI points 1 and 3, or between
the VRI points 2 and 4, are combinations of the former corridors. The first (1,3) is the
combination of the corridors in Fig. 6 and Fig. 7 a, the second (2,4) is the combination of
Fig. 7, panels (a) and (b).
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Figure 6: The direct corridor from minimum R to SP2 and then to P . The borders of the
corridor are the singular NTs through the VRI points 1 and 2. They are drawn in orange
and blue color. A regular NT of the corridor is shown by a gray curve.

5 Changes of effective surfaces under a force along the

corridors on the MB surface

5.1 Main direct corridor

In Fig. 8 one of the representative NTs along the minimum energy pathway from R to P is
shown. It is in the direct corridor of type 1,19 compare with Fig. 5. This NT crosses all further
stationary points of the MB surface. In Fig. 8a we apply the force f=-55 (0.4864, -0.8738)T .
The effective surface is shown where a first ’catastrophe’ happens: the intermediate mini-
mum, I, and the SP2 have moved together, and here they coalesce to a shoulder, Sh. The
intermediate is now over. In the interval around this force, f , we would enforce a specific
reaction from structures I to P . The former minimums, R and P , are only less changed.
They keep their ’chemical meaning’.

At higher amounts of the force into the same direction, at F=-285 in MB units, the next
panel (b) of Fig. 8 is drawn. Here the former global minimum, R, disappears in a shoulder
with the former SP1. At this high amount of the force, the reaction from R to P is finished,
at least.

The inverse direction of the force l=(0.4864, -0.8738) is shown in Fig. 8c with an amount of
F=124.87 MB units. Under this force the Peff remains in a flat, moved minimum, however,
the intermediate minimum and the former SP1 have coalesced. The point of their meeting is
the shoulder, Sh, of the panel (c), exactly on the (green) BBP line. The intermediate again
is over here.

Not shown is the next small increase of the amount F to 128 MB units. The effective
surface under this force is similar to Fig. 8c, but now also the SPeff and the Peff of the last
panel (c) coalesce and the back reaction P to R is fully enforced.
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Figure 7: Two separated circular quarter-corridors in panel (a) between SP1 and minimum
P , and a separated half-corridor in panel (b) for a reaction between I and P . (The other
half-corridor is the main valley of R.) The borders of the corridor are the singular NTs
through the respective VRI points. They are drawn in orange and blue color. The not
included other singular NTs are shown by thin curves. A representing regular NT of the
respective corridor is shown by a bold gray curve.

5.2 The second ’small’ direct corridor

The word ’small’ in the headline concerns here the small region of possible directions for a
force, in this corridor, see Fig.4. We will detect that the current effective surfaces can have
broad reaction valleys. In Fig. 9 we treat the forward reaction for negative values of the
force, F= -89, -135, and -185 in MB units. Fig. 9 a shows the emergence of a new shoulder
at the ’Southern mountains’, near point (-1.1, 0.1). It is a shoulder on the former ridge.
The former global MEP of the MB surface can still be seen. In Fig. 9b the former global
minimum has disappeared into a shoulder in a downward valley near point (-1, 1), and the
shoulder of panel (a) has now developed into a new maximum in the center of the Figure,
however, two further stationary points have emerged in the Figure below: a new SP and a
new minimum. The new minimum below replaces the former global minimum of the MB
surface. It may represent a quite new chemical structure of a corresponding molecule under
the given force which does not exist without a load. Two different reaction pathways exist
from Peff to the new minimum: one new way directly over the new SP, but also the old
pathway from Peff over the old SP2,eff the old Ieff , and the old SP1,eff . From SP1,eff the
new reaction path may circumvent the new maximum at the center. Note that Peff is still
the deeper minimum on this effective surface in Fig. 9 b.

In Fig. 9c the force is still more exited, and the former set of stationary points, SP2,eff ,
Ieff , and SP1,eff flatten out to two shoulders. The two minimums have now changed their
order; the new minimum is now deeper.

Around F = −225 in MB units, at least, the former reactant, Peff , and the new SPnew

coalesce and only the new minimum remains: this force makes a unite result. R has disap-
peared, however, also P is now missing. (This case is not shown in the Figure.)

The inverse direction of the force shows a totally different behavior of the effective sur-
faces, shown in Fig. 10. In panel (a) we show the movement of the former SP1 ’uphill’ on
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Figure 8: Effective surfaces under different amounts of force in direction of the given NT
along the main corridor from minimum R to SP1 to I, and to SP2 and to P , at least. The
effective SPs and the effective minimums of the changed surfaces under the forces are all on
the given NT which follows the selected direction l=(0.486, -0.874)T . Shown are the cases of
F= -55, -285, and 124.9 in MB units. The forward reaction, panels (a,b), leaves R, the back
reaction leaves P in panel (c). The symbol ’Sh’ means shoulder. Note that the green lines
Det(H) = 0 are always equal on all effective surfaces. We repeat them for orientation.

the former ridge of the MB surface in direction to the VRI4. Of course, the SP moves on the
NT which describes the direction of the force vector. The energy level of Peff is increased,
in comparison to the former intermediate, I, and the barrier in between is decreased.

In Fig. 10b the former SP1,eff and the former Ieff have moved together and form a
shoulder. There remains a small barrier to the Peff . Note that Reff has moved to the
’North-East’ direction, on the NT, together with its deep global valley.

A further increase of the amount of force to F = 432 in MB units, at least, will flatten out
the effective SP2,eff , and only the Reff remains. The former product valley has disappeared.

5.3 Further Circular corridors

We study the corridors between the VRI points 2 and 3, as well as between the VRI points
3 and 4. The corridors are shown in Fig.7. We take a regular NT from the corridors and
develop a force in the corresponding direction. In both cases we face a situation where the
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Figure 9: Effective surfaces under different amounts of force in direction of the NT along the
second direct corridor from minimum R to SP2, and to P , at least, compare with Fig. 6. The
effective SPs and the effective minimums of the changed surfaces under the forces are all on
the one NT (thick gray) which follows the selected direction l=(-0.4296, -0.903)T . Shown are
the three cases of F = −89, F = −135, and F = −185 in MB units. In all three panels one
leaves R, by a forward reaction. The symbol ’Sh’ means shoulder. Note that the green lines
Det(H) = 0 are always the same, on all effective surfaces.

left branch of the NT does not cross any further stationary point of the MB surface: it is
isolated. It cannot describe a reaction corridor from R to another minimum.

In Fig.11 we use the direction l = (−0.619, −0.786) of an NT in the corridor (2,3). The
magnitude of the force is F = 309 MB units in panel (a); but F = −135 MB units in panel
(b) for the inverse direction of the given force.

In Fig.11a the effective reactant, Reff , moves with its bowl into ’North-East’-direction.
The former SP1 and the intermediate minimum have coalesced at a shoulder, Sh, and the
former product and its SP2 have already moved close together.

For a quite stronger force, F = 545 MB units, also the effective minimum, Peff and the
former SP2 coalesce. Then only the moved reactant overlifes under the force, thus the back
reaction is totally enforced. (This case is not shown.)

Fig.11 shoes the other direction of the same force. Here the effective reactant moves in
its valley into the other direction. At the given force of F = −135 MB units it flattens out
and disappears into a shoulder. A new minimum has emerged. The old SP1 and the old
intermediate have coalesced to a shoulder. Only a flat minimum of Peff still exists.
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Figure 10: Effective surfaces under different amounts of force in the inverse direction of an
NT along the second direct corridor from minimum P to R, at least. The effective SPs
and the effective minimums of the changed surfaces under the forces are all on the one NT2

which follows the selected direction l=(-0.4296, -0.903)T . Shown are the cases of F = 96,
and F = 288.5 in MB units. In both panels one leaves P , by a backward reaction,

In both cases, the movement of the effective stationary points is ’constrained’ to the
two circular quarter branches of the NT of the force. One SP and one minimum move
either on the ’left’ arc, or on the ’right’ arc of the corresponding circular branch, up to their
coalescence.

It is not surprising that a new minimum can emerge. As it is possible that minimums
or saddles can disappear under the force, the converse process is also possible. If the MB
surface would be the model of a real molecular reaction, then under this force a new structure
would appear which would not be possible without a load.

For a force of F = −262 MB units also the effective product minimum flattens out, and
the back reaction to the new minimum is fully enforced. (This case is not shown.)

A reaction leaving the R valley is not possible for this corridor; it only contains forbidden
directions. The corresponding forces, forward or backward, enforce the back reaction from
P to R.

The next corridor concerns the family of NTs between the VRI points 3 and 4. The
corridor is shown in Fig.7b. A reaction leaving R is again not possible, it is a forbidden
direction. In Fig. 12 the special NT through the ’optimal’ BBP1 point is shown. It belongs
to the force l=(-0.809,-0.687). It is a representant of the current corridor. The NT is
disconnected into two different branches. The left branch of the NT through R is isolated.
It cannot describe an enforced reaction corridor from R to another minimum. No force of this
direction can enforce that a reaction leaves the R bowl. This is not possible, it is a forbidden
direction. Now we discuss the effective surfaces under the force along the ’optimal’ NT.

In Figs. 13 a and 13 b we show the action of the force l=(-0.809,-0.687) which defines the
NTopt through R, on the MB surface. The different amounts F=-80, and F=-155 in MB
units are used. The product, P , the SP2 and SP1, and the intermediate, I, move together and
coalesce at different amounts of the force. First in Fig. 13a the SP1 and the intermediate,
I, coalesce. A shoulder, Sh, is located on the second branch of the NTopt. Thus here I

16



(a)
Reff

Peff

SPeff

Sh

-1.5-1.0-0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

x

y

(b)

Sh

Peff

MINnew

SPeff

Sh

-1.5 -1.0 -0.5 0.0 0.5

0.0

0.5

1.0

1.5

x

y

Figure 11: The effective surfaces under different amounts of force in direction of an NT in
corridor (2,3) along the circular corridors of Fig.7 (a). Shown are the cases of F = 309
(a) and F = −135 in MB units (b). The effective SPs and the effective minimums of the
changed surfaces under the force are all on the one NT which follows the selected direction.

disappears.
Later, for the nearly double amount of the force, in Fig. 13b, the former product, P , and

the SP2 coalesce. Here the second ’catastrophe’ emerges. Finally, the back reaction is only
possible from P to R. It is the one-way-case of the possible directions.

The reaction comes from the former product, P , downwards to the former reactant.
However, this former reactant, Reff , has also disappeared. At BBP1 it is now an intermediate
shoulder, Sh, which further points downwards to a new global minimum near point (-1.9, 0.3),
named newReff in panel (b). If the MB surface describes a real chemical problem, then here
a new structure emerges of the molecular system in question which does not exist without
the outer force, f .

The meaning of the point BBP1 is yet clear: it is the point where the structure of the
former global minimum, R, disappears, while a new minimum emerges at another place on
the NTopt, and a corresponding new SP can also emerge in between, in a small interval of
the amount of the force.

Inversion of the chosen direction with F=44, and F=675 in MB units does not change
the global reaction situation: we treat this in panels (c), and (d) of Fig. 13. First the
intermediate, I, and the SP2 disappear in panel (c). Only Peff remains below in the right
corner. And in panel (d) the situation shortly before the coalescence of SP2 and the former
product P is shown, under an exorbitant large amount of the force in MB units. Again it
remains the only one reaction from P to R. The location of Reff has now strongly moved
to ’North-East’ as well.

6 Conclusion

If we assume that the MB surface characterizes a reaction system then interesting conclusions
can be found.

(i) There exist different corridors for possible movements of the stationary points (FDSPs)
under a force: two direct corridors, one from R over I to P , or a neighboring corridor
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Figure 12: The ’optimal’ NT along the main valley through the minimum R. The ’optimal’
BBP1 is on this NT. However, this left branch of the NT does not cross any further stationary
point of the MB surface: it is isolated. It cannot describe a force which drives the reaction
from R to another minimum, I or P . A reaction leaving R seems to be impossible, it is a
forbidden direction. Optimal BBPs are red points.

from R through the ’mountains’ to P , and two separated corridors where circular NTs
dictate the behavior.

(ii) On a separated branch of NTs along the main valley, near the BBP1, a new minimum
emerges under strong forces which does not exist without a force. Note that BBP1 is
not in the ’main’-corridors to P . On the other hand, separated circular branches of
the leading NT indicate ’one-way’-properties of the enforced reaction. For example,
no reaction R → P is possible, however, the back reaction is enforced for both force
directions, forward or backward.

(iii) In comparison to our former classification of chemical corridors19 here exist two direct
corridors from reactant, R, to product P , which cross at SP2.
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