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Abstract

We consider a package allocation problem in which a seller owns many indivisible objects and the rest of the

agents, buyers, are interested in packages of these objects. Buyers’ valuations satisfy monotonicity and the

gross substitutes condition (Kelso and Crawford, 1982). The aim of this paper is to analyse the following

mechanism: simultaneously, each buyer requests to the seller a package by announcing how much he would

pay for it; once buyers have played, the seller decides the final assignment of packages and the prices, as long

as this assignment makes no buyer worse off than with his initial request. The subgame perfect equilibrium

outcomes of the mechanism correspond to the Vickrey outcome (Vickrey, 1961) of the market.
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1. Introduction

Package allocation problems are a subclass of resource allocation problems and commonly deal with

situations where a set of buyers wish to acquire several indivisible objects from one seller. See for instance

Bikhchandani and Ostroy (2002), Milgrom (2007) and Day and Milgrom (2008). In this paper, we approach

the package allocation problem assuming that all parties take an active role in the allocation problem. This

could be the case in the dissolution of a private company, where the main shareholder sells part of her/his

stock to other shareholders.

We consider a situation where the seller owns many indivisible objects on sale and each buyer wants to

buy a package of objects and has a non-negative valuation for each package. As usual in package allocation

problems, preferences are assumed to be quasi-linear with respect to money and buyers’ valuations satisfy

monotonicity and the gross substitutes condition.2 An outcome for this allocation problem specifies an
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assignment of the objects to the buyers and the payment each buyer makes for his assigned package of

objects.

We study the strategic interaction of all agents, by means of a simple mechanism we introduce. The

mechanism works as follows: first, each buyer requests (for instance, bidding in a sealed envelope) a package

he would like to buy and how much he would pay for it; second, the seller decides the final allocation of

packages and their prices.

A requirement for allocating objects is efficiency. When buyers request packages of objects simultane-

ously, and the seller is restricted to choose only among requested packages, an overlapping problem may

arise. As a consequence, the outcome of this equilibrium may not be efficient and do not belong to the core.

In order to avoid this problem, in our mechanism, the seller is allowed to allocate non-requested packages as

long as this does not make any buyer worse off than with his initial request. Our main result is that in any

subgame perfect equilibrium (SPE), the final allocation of the objects is efficient and every SPE outcome

coincides with the Vickrey outcome of the market.

Our work is related to Bernheim and Whinston (1986), where a set of completely informed buyers want

to buy packages of heterogeneous objects. In the mechanism they propose, each buyer reports how much he

would pay for each package and the auctioneer chooses an allocation of the packages. If a buyer receives a

package, then he pays his bid. This game has multiple equilibria, some of them non-efficient. To overcome

that, the authors restrict the strategies of the buyers, the so-called truthful strategies, to obtain Nash

equilibria with good properties. In our mechanism all SPE lead to an efficient and core outcome, which is

the Vickrey outcome, at the cost of assuming the seller plays a more active role.

The mechanism we propose is also inspired in the two-phase buying and selling procedure for assignment

games introduced in Pérez-Castrillo and Sotomayor (2002), in the setting of the Shapley and Shubik (1972)

assignment game, to implement the most favorable core allocation for the sellers. Both mechanisms have in

common that there are two sides of the market, one side acts first simultaneously and the second side acts

later sequentially. In their paper sellers act first setting prices for their objects (one object each), and buyers

act later sequentially determining the matching (that assigns at most one object to each buyer). In our

case the main differences are that buyers are willing to buy packages of objects and act in first place (each

buyer demands a package at a price) and there is only one seller that owns all objects and acts secondly to

determine who gets what. As in Perez-Castrillo and Sotomayor (2002), the sector that moves first (in our

case the buyers) has an advantage since the other sector has only the freedom to determine the matching.

We also obtain that the sector that acts first obtains the maximum possible core payoff.

To sum up, the paper is organized as follows. The next section is devoted to an introduction of the

market and the coalitional game associated with it. In Section 3, the mechanism is defined: Theorem 4

proves that any SPE produces an efficient allocation and finally Theorem 6 shows that the payoff of any

SPE is the Vickrey payoff vector. The Appendix contains some technical lemmas needed to establish the
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main results.

2. The market and some preliminaries

Consider a market with m buyers and one seller. The finite set of buyers is denoted by M = {1, 2, ...,m}

and the seller is denoted by 0. She owns a finite set of indivisible objects on sale, denoted by Q. The set of

objects Q includes copies of a dummy object j0, as many as the number of buyers. Each buyer i ∈M has a

valuation for each package of objects,3 wi : 2Q → R such that wi(∅) = 0 and we assume that for each buyer

i and for each dummy object j0, wi(R ∪ {j0}) = wi(R) for all R ⊆ Q \ {j0}. Moreover, each agent has a

preference relation on the set of bundles formed by a package and an amount of money, 2Q × R, that is a

quasi-linear preference with respect to money.

We will assume that the buyers’ valuations wi satisfy monotonicity and the gross substitutes condition.

Monotonicity says that for any buyer, the more objects in a package, the better. In particular, we have that

for each buyer i ∈ M , wi(S) ≥ 0 for all S ⊆ Q. The gross substitutes condition was introduced by Kelso

and Crawford (1982) and has been widely used in Gul and Stacchetti (1999). In fact, we will only use it to

guarantee the submodularity property of our coalitional game.

To sum up, our market is described by (M, {0}, Q,w) where w stands for buyers’ valuations, w = (wi)i∈M ,

which satisfy monotonicity and the gross substitute condition, and all agents have complete information.

Given a subset of buyers ∅ 6= S ⊆ M , an allocation of Q to S consists of a partition of the set of all

objects among agents in S, that is, (Ai)i∈S such that ∅ 6= Ai ⊆ Q is the set of objects allocated to i ∈ S,⋃
i∈S Ai = Q and Ai ∩Ai′ = ∅ if i 6= i′. We denote by A(S) the set of all allocations of Q to S. We say that

an allocation A ∈ A(S) is efficient for S if∑
i∈S

wi(Ai) ≥
∑
i∈S

wi(A
′
i) for all A′ ∈ A(S). (1)

We denote by A∗(S) the set of efficient allocations for S. Notice that A∗(S) is never empty for any non-

empty coalition of buyers S ⊆M .

Given a market (M, {0}, Q,w), let us consider the coalitional game4 associated with (M, {0}, Q,w) as in

Ausubel and Milgrom (2002). This game is denoted by (M ∪ {0}, v) where the set of players is the set of

3For each set S, we will denote by |S| the cardinality of S and by 2S the power set of S. Also, given two sets S and T , we

denote S \ T = {k ∈ S | k 6∈ T}.
4A game in coalitional form with transferable utility is a pair (N, v) formed by a finite set of players N and a characteristic

function v that assigns a real number v(S) to each coalition S ⊆ N , with v(∅) = 0. The core of a game (N, v) is C(v) = {x ∈

RN |
∑

i∈N xi = v(N),
∑

i∈S xi ≥ v(S) for all S ⊆ N}. We say that a game (N, v) satisfies monotonicity if v(T ) ≤ v(S) for

all T ⊆ S ⊆ N .
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agents of the market M ∪ {0} and the worth of each coalition is given as follows. The worth of the empty

coalition and the worth of any coalition formed by only one type of agents is zero because in these cases

there is no trade. When a coalition is formed by a group of buyers ∅ 6= S ⊆ M and the seller, the worth is

given by

v(S ∪ {0}) = max
A∈A(S)

{∑
i∈S

wi(Ai)

}
. (2)

Notice that by its definition the game (M ∪ {0}, v) is monotonic.

A payoff vector u ∈ RM∪{0} consists of a payoff for each agent of the market. That is, ui is the payoff

associated to buyer i ∈ M and u0 is the seller’s payoff. Following Ausubel and Milgrom (2002), a payoff

vector u∗ ∈ RM∪{0} is the Vickrey payoff vector5 of the market (M, {0}, Q,w) if for each buyer i ∈ M , we

have that

u∗i = v(M ∪ {0})− v((M \ {i}) ∪ {0}), (3)

and for the seller,

u∗0 = v(M ∪ {0})−
∑
i∈M

u∗i .

A drawback of the Vickrey payoff vector is that it may lie outside the core and then it could generate

a low payoff for the seller (Milgrom, 2004). Ausubel and Milgrom (2002) shows that if monotonicity and

the gross substitutes condition are satisfied by each buyer’s valuation function, then the coalitional game

is buyers-submodular.6 Buyers-submodularity means that the marginal contribution of any buyer to any

coalition containing the seller decreases as the coalition grows larger. More precisely, the game (M ∪{0}, v)

is buyers-submodular if for all i ∈M and all T ⊆ S ⊆M \ {i}, it holds that

v(T ∪ {0} ∪ {i})− v(T ∪ {0}) ≥ v(S ∪ {0} ∪ {i})− v(S ∪ {0}). (4)

An equivalent expression to (4) is the following one:

v(S ∪ {0})− v(T ∪ {0}) ≥
∑

i∈S\T

(
v(S ∪ {0})− v((S \ {i}) ∪ {0})

)
, (5)

for all T ⊆ S ⊆M .

It is well known that when the game (M ∪ {0}, v) is buyers-submodular, then the Vickrey payoff vector

belongs to the core (Bikhchandani and Ostroy, 2002; Ausubel and Milgrom, 2002).

The aim of the next section is to provide a mechanism for our market such that the payoff vector in any

subgame perfect equilibrium is the Vickrey payoff vector of the market.

5Notice that the Vickrey payoff vector is unique. The Vickrey payoff vector is the payoff vector associated to the Vickrey

auction or VCG mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973). See e.g. Ausubel and Milgrom (2002) and Milgrom

(2004) for details.
6The reader can also find the proof of this implication in Section 5.5 of Vohra (2011)
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3. A mechanism to implement the Vickrey outcome

In this section, we introduce a two-phase mechanism Γ in a complete information setting to implement

the Vickrey payoff vector of our market with m buyers and one seller. Let us first describe the mechanism

in an informal way. First, each buyer announces a package of objects he wants to acquire and the price he

would pay for it. All these requests are made simultaneously. In the second phase, the final allocation and

the prices are determined: with the information of buyers’ requests, the seller chooses a coalition of buyers

and assigns to each of these buyers a package at a price. The seller is allowed to allocate the requested

package to a buyer at his proposed price or a different package at a price that makes this buyer not worse

off than with his initial request.

In more detail, let (M, {0}, Q,w) be a market such that all valuations satisfy monotonicity and the gross

substitutes condition and all agents have complete information.

The two phases of the mechanism Γ are:

1. Buyers play simultaneously. Each buyer i ∈ M announces a tentative package ∅ 6= Bi ⊆ Q and how

much he would pay for it, (Bi, xi) ∈ 2Q × R+.

We denote by (B, x) the requests of all buyers to the seller, where B = (Bi)i∈M and x = (xi)i∈M .

2. Once the seller receives the requests (B, x) of all buyers, the seller chooses a triple (S,A, p) where:

a) S ⊆ M is a non-empty coalition of buyers; b) A ∈ A(S) is an allocation of Q to S; and c)

p = (pi)i∈S ∈ RS
+ denotes the payment each buyer i ∈ S makes for package Ai, under the constraint7

wi(Ai)− pi ≥ wi(Bi)− xi for each i ∈ S. (6)

Once the seller has played, the mechanism Γ ends. The payoff of each agent is the following. If a buyer

i ∈ M belongs to S, he receives the package Ai, he pays pi and his payoff is wi(Ai)− pi. If a buyer i ∈ M

does not receive a package, that is i ∈ M \ S, he pays nothing and his payoff is zero. The seller’s payoff is∑
i∈S pi.

Once the mechanism Γ ends, its outcome is (A, p) ∈ A(S)×RS
+, that is, the coalition S ⊆M of buyers,

the allocation chosen by the seller and the payment pi each buyer i ∈ S has to make for the package allocated

to him. We say that an outcome (A, p) ∈ A(S)×RS
+ of the mechanism Γ is a Vickrey outcome8 if the payoff

vector associated to (A, p) is the Vickrey payoff vector of the market.

Given a buyers’ strategy profile (B, x), we say that (S,A, p) is a best reply of the seller to (B, x) if it

maximizes the seller’s payoff over all admissible triples (see 6). Since the set of the seller’s feasible replies is

a non-empty compact set, there always exists a best reply.

7Notice that, given (B, x), the seller can at least choose (S,A, p) where S = {i} for some i ∈M , the allocation is A = (Ai)

with Ai = Q and pi = xi.
8It is known that different allocations may produce the Vickrey payoff vector, see e.g. Gul and Stacchetti (1999).

5



The following lemma remarks that when the seller chooses the outcome that maximizes her payoff given

any buyers’ strategy profile, she will price packages as high as possible given constraint (6). As a conse-

quence, in any subgame perfect equilibrium (SPE), inequality in (6) is satisfied as an equality.

Lemma 1. Consider any market (M, {0}, Q,w) and let (B, x) be an arbitrary buyers’ strategy profile in the
mechanism Γ. Then, in any best reply to (B, x), the seller chooses (S,A, p) such that ∅ 6= S ⊆M , A ∈ A(S)
and p ∈ RS

+ satisfying

wi(Ai)− pi = wi(Bi)− xi for all i ∈ S. (7)

Proof. Given (B, x), let (S,A, p) be a best reply of the seller i.e., ∅ 6= S ⊆M , A ∈ A(S) and wi(Ai)−pi ≥
wi(Bi)− xi for each i ∈ S. By way of contradiction, suppose that wi∗(Ai∗)− pi∗ > wi∗(Bi∗)− xi∗ for some
i∗ ∈ S. Consider the triple (S,A, p′) where ∅ 6= S ⊆ M , A ∈ A(S) and p′ ∈ RS

+, that satisfies p′i = pi for
all i ∈ S \ {i∗} and p′i∗ = wi∗(Ai∗)− (wi∗(Bi∗)− xi∗) ≥ 0. Notice that p′i∗ satisfies constraint (6), p′i∗ > pi∗

and
∑

i∈S p
′
i >

∑
i∈S pi, which contradicts that the seller was maximizing her payoff at (S,A, p). �

The next lemma says that, given any market, if the objects are efficiently allocated (1) to a coalition S

of buyers, then each buyer i ∈ S values the package he receives above his marginal contribution to S ∪ {0}

in the game (M ∪ {0}, v), see expression (2).

Lemma 2. Consider any market (M, {0}, Q,w) and the related game (M ∪ {0}, v), see expression (2). For
any set of buyers ∅ 6= S ⊆M and any A = (Ai)i∈S ∈ A∗(S), we have that

wi(Ai) ≥ v(S ∪ {0})− v((S \ {i}) ∪ {0}) for all i ∈ S. (8)

Proof. Take any set of buyers ∅ 6= S ⊆ M , any A = (Ai)i∈S ∈ A∗(S) and any i1 ∈ S. If S = {i1}, then
Ai1 = Q and the result follows immediately. Otherwise, if |S| > 1, choose i2 ∈ S \ {i1} and define the
following allocation A′ ∈ A(S \ {i1}) where A′i2 = Ai2 ∪ Ai1 and A′i = Ai for each i ∈ S \ {i1, i2}. Notice
that, wi2(Ai2 ∪ Ai1) ≥ wi2(Ai2) because of the monotonicity assumption on buyers’ valuations. Then, we
have

wi1(Ai1) =
∑
i∈S

wi(Ai)−
∑

i∈S\{i1}

wi(Ai) ≥
∑
i∈S

wi(Ai)−
∑

i∈S\{i1}

wi(A
′
i)

≥ v(S ∪ {0})− v((S \ {i1}) ∪ {0}).

�

Now, we start the analysis of the mechanism Γ. Notice first that this mechanism, as it is also the case

in Bernheim and Whinston (1986), may have multiple Nash equilibria, some of them non-efficient.

Example 1. Consider a market with two buyers 1 and 2, and a seller that owns two objects A and B. The

buyers’ valuations are:

A B AB

1

2

4 5 7

3 5 8
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Assume the buyers’ strategy (the same for both buyers) is to demand {A,B} at the price of 6: (B1, x1) =

(B2, x2) = ({A,B}, 6). Assume also that the seller’s strategy is to select S = {1}, A1 = {A,B} and

p1 = x1 = 6, as long as (B1, x1) = ({A,B}, 6), and otherwise the seller chooses S = {2}, with A2 = {A,B}

and p2 = w2({A,B})− w2(B2) + x2.

Notice that buyer 1 gets 0 payoff in any deviation from (B1, x1) = ({A,B}, 6). Also, buyer 2 cannot

obtain any improvement as long as buyer 1 and the seller follow the above strategies. Finally, let us analyze

if the seller has any incentives for deviation when the two buyers play (B1, x1) = (B2, x2) = ({A,B}, 6).

If the seller selects S = {1} and allocates {A,B} to buyer 1, then the price must be p1 ≤ 6. Similarly, if

the seller selects S = {2} and allocates {A,B} to buyer 2, then the price must be p2 ≤ 6. Finally, if the

seller selects S = {1, 2} there are two possible allocations. Either {A} is allocated to 1 at p1 ≤ 3 and {B}

is allocated to 2 at price p2 ≤ 3, or {B} is allocated to 1 at price p1 ≤ 4 and {A} is allocated to 2 at price

p2 ≤ 1. In any case, the seller’s payoff is at most 6.

Clearly this Nash equilibrium is inefficient and it is not subgame perfect.

As a consequence, we will focus on the SPE of this mechanism in pure strategies. Notice first that, if the

market contains only one buyer, the payoff vector in any SPE is precisely the Vickrey payoff vector of the

market. Indeed, if M = {i}, the Vickrey payoff of buyer i is u∗i = v({i} ∪ {0})− v({0}) = wi(Q) while the

seller’s payoff is u∗0 = 0. By the rules of the mechanism Γ, the seller has to allocate Q to buyer i at some

non-negative price pi such that wi(Q)− pi ≥ wi(Bi)− xi, where (Bi, xi) ∈ 2Q × R+ is the strategy played

by buyer i. Taking this into account, buyer i will play, in any SPE, (Bi, xi) such that wi(Bi) = wi(Q) and

xi = 0.

We will assume from now on that the number of buyers in the market is at least two, i.e., |M | ≥ 2. First

we will show that any SPE of Γ is efficient, that is to say, its final outcome (S,A, p) attains the worth of

the grand coalition,
∑

i∈S wi(Ai) = v(M ∪ {0}). This fact will be used later on in the proof of the main

theorem.

The following technical lemma, which is proved in the Appendix, will be needed.

Lemma 3. Consider any market (M, {0}, Q,w) and let (B, x) be the buyers’ strategy profile in any SPE of
the mechanism Γ. For any non-empty coalition of buyers S ⊆M and any J ⊆M \ S we have either:

1. there exists an efficient allocation A = (Ai)i∈S∪J ∈ A∗(S ∪ J) such that wi(Ai) ≥ wi(Bi)− xi for all
i ∈ S, or

2. there exist a subcoalition of buyers T  S, with T 6= ∅ whenever J = ∅, and an efficient allocation
A = (Ai)i∈T∪J ∈ A∗(T ∪ J) such that

(a) wi(Ai) ≥ wi(Bi)− xi for all i ∈ T and

(b)
∑

i∈S\T

(
wi(Bi)− xi

)
> v(S ∪ J ∪ {0})− v(T ∪ J ∪ {0}).

Theorem 4. For any market (M, {0}, Q,w), any subgame perfect equilibrium of mechanism Γ is efficient.
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Proof. We first need to prove the following claim.
Claim:

If (B, x) is the buyers’ strategy profile in an arbitrary subgame perfect equilibrium of Γ, then in any best

reply to (B, x) the seller chooses (S,A, p), ∅ 6= S ⊆M , A ∈ A(S) and p ∈ RQ
+, such that∑

i∈S
wi(Ai) = v(S ∪ {0}) (9)

To prove the claim, consider any SPE of Γ with buyers’ strategies (B, x). Let (S,A, p), where ∅ 6= S ⊆ M ,
A = (Ai)i∈S ∈ A(S) and p ∈ RS

+ satisfies (6), be a best reply of the seller to the buyers’ strategy profile
(B, x). Notice that by the definition of the game (M ∪ {0}, v), see (2), we have

∑
i∈S wi(Ai) ≤ v(S ∪ {0}).

Assume on the contrary that ∑
i∈S

wi(Ai) < v(S ∪ {0}). (10)

Case 1. There is an allocation A′ = (A′i)i∈S ∈ A∗(S) such that wi(A
′
i) ≥ wi(Bi)− xi, for all i ∈ S.

We then define p′i = wi(A
′
i)− (wi(Bi)− xi) for each i ∈ S. We have∑

i∈S
p′i =

∑
i∈S

(
wi(A

′
i)− (wi(Bi)− xi)

)
= v(S ∪ {0})−

∑
i∈S

(
wi(Bi)− xi

)
>
∑
i∈S

(
wi(Ai)− (wi(Bi)− xi)

)
=
∑
i∈S

pi,

where the last equality follows from Lemma 1. This contradicts the fact that (S,A, p) maximizes the seller’s
payoff given (B, x).

Case 2. For every allocation A′ = (A′i)i∈S ∈ A∗(S), there is some buyer i ∈ S such that wi(A
′
i) <

wi(Bi)− xi.
By applying Lemma 3, taking J = ∅, there exist ∅ 6= T ⊆ S and an allocation Ā = (Āi)i∈T ∈ A∗(T )

such that wi(Āi) ≥ wi(Bi)−xi for all i ∈ T . Moreover, by the assumption of Case 2, we have T 6= S. Then,
Lemma 3 also guarantees ∑

i∈S\T

(
wi(Bi)− xi

)
> v(S ∪ {0})− v(T ∪ {0}). (11)

Define p̄i = wi(Āi)− (wi(Bi)−xi) for all i ∈ T . Notice that (T,A, p) satisfies the requirement in expression
(6) given (B, x). Thus, since (S,A, p) maximizes the seller’s payoff given (B, x), we obtain∑

i∈S

(
wi(Ai)− (wi(Bi)− xi)

)
=
∑
i∈S

pi ≥
∑
i∈T

p̄i =
∑
i∈T

(
wi(Āi)− (wi(Bi)− xi)

)
= v(T ∪ {0})−

∑
i∈T

(
wi(Bi)− xi

)
, (12)

where the first equality follows from Lemma 1. Since T  S, then we have9

v(S ∪ {0})− v(T ∪ {0}) >
∑
i∈S

wi(Ai)− v(T ∪ {0}) ≥
∑

i∈S\T

(
wi(Bi)− xi

)
,

9For any two sets T and S, we say that T  S if [T ⊆ S and T 6= S].
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where the strict inequality comes from (10) and the second inequality from (12). This fact contradicts (11).
Hence

∑
i∈S wi(Ai) = v(S ∪ {0}) and the proof of the claim is completed.

Now we complete the proof of the theorem. Consider any SPE of Γ with buyers’ strategies (B, x). Let
(S,A, p), where ∅ 6= S ⊆ M , A = (Ai)i∈S ∈ A(S) and p ∈ RS

+ satisfies (6), be a best reply of the seller to
the buyers’ strategy profile (B, x). We will show that v(S ∪ {0}) = v(M ∪ {0}).

If S = M , we are done. Otherwise, by monotonicity of the game v, we have that v(S∪{0}) ≤ v(M∪{0}).
Assume on the contrary that v(S ∪ {0}) < v(M ∪ {0}).

Let I = {I ⊆M \ S | v(S ∪ {0}) < v(S ∪ I ∪ {0})}. Notice that the set I is non-empty since M \ S ∈ I.
Let I1 be a minimal coalition in I with respect to the inclusion relation, notice that I1 6= ∅. Fix any buyer
i1 ∈ I1. We have

v(S ∪ {i1} ∪ {0})− v(S ∪ {0}) ≥ v(S ∪ I1 ∪ {0})− v(S ∪ (I1 \ {i1}) ∪ {0}) > 0, (13)

where the first inequality comes from buyers-submodularity (4) and the strict inequality from the minimality
of I1 and the monotonicity of the game (M ∪ {0}, v). Now, we consider two cases.

Case 1 : There exists A′ ∈ A∗(S ∪ {i1}) such that wi(A
′
i) ≥ wi(Bi)− xi for all i ∈ S.

Define p′i = wi(A
′
i)− (wi(Bi)−xi) for each i ∈ S. Since by assumption, (S,A, p) is a best reply to (B, x),

by Lemma 1 we have that ∑
i∈S

pi =
∑
i∈S

wi(Ai)−
∑
i∈S

(
wi(Bi)− xi

)
.

Now, since we have already proved
∑

i∈S wi(Ai) = v(S ∪ {0}), we have∑
i∈S

pi = v(S ∪ {0})−
∑
i∈S

(
wi(Bi)− xi

)
< v(S ∪ {i1} ∪ {0})−

∑
i∈S

(
wi(Bi)− xi

)
=

∑
i∈S∪{i1}

wi(A
′
i)−

∑
i∈S

(
wi(Bi)− xi

)
=
∑
i∈S

p′i + wi1(A′i1), (14)

where the strict inequality follows from expression (13).
Moreover, notice that wi1(A′i1) ≥ v(S ∪ {i1} ∪ {0}) − v(S ∪ {0}) > 0 where the first inequality follows

from Lemma 2 and the second one from (13).
Let ε > 0 be such that

0 < ε < wi1(A′i1) and
∑
i∈S

pi <
∑
i∈S

p′i + wi1(A′i1)− ε. (15)

We will prove that buyer i1 ∈M \ S has incentives to unilaterally deviate from (Bi1 , xi1) to (A′i1 , x
′
i1

) with
x′i1 = wi1(A′i1)− ε. This will contradict that (B, x) forms part of a SPE of Γ and will complete the proof of
v(S ∪ {0}) = v(M ∪ {0}) for Case 1.

To this end, let (S̃, Ã, p̃) be the best reply of the seller when buyer i1 unilaterally deviates to (A′i1 , x
′
i1

).

We show that i1 ∈ S̃. By way of contradiction, assume that i1 /∈ S̃. By Lemma 1, we know that p̃i =
wi(Ãi)− (wi(Bi)− xi) for all i ∈ S̃. Recall that (S,A, p) is a best reply of the seller to the original buyers’
strategies (B, x). Then, since we are assuming that i1 /∈ S̃, we have∑

i∈S
pi ≥

∑
i∈S̃

p̃i. (16)

Consider now (S ∪ {i1}, A′, p′) where, under the assumption of Case 1, A′ = (A′i)i∈S∪{i1} ∈ A∗(S ∪ {i1})
satisfies wi(A

′
i) ≥ wi(Bi) − xi for all i ∈ S, and p′ = (p′i)i∈S∪{i1} ∈ RS∪{i1} is defined by p′i = wi(A

′
i) −

(wi(Bi)− xi) for each i ∈ S and p′i1 = x′i1 = wi1(A′i1)− ε. Making use of expressions (15) and (16), we have∑
i∈S∪{i1}

p′i =
∑
i∈S

p′i + x′i1 =
∑
i∈S

p′i +

(
wi1(A′i1)− ε

)
>
∑
i∈S

pi ≥
∑
i∈S̃

p̃i,
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which contradicts that the triple (S̃, Ã, p̃) is a best reply of the seller when only buyer i1 deviates to (A′i1 , x
′
i1

).

Hence, this implies that buyer i1 ∈ S̃.
Recall that (S̃, Ã, p̃) is the reply of the seller when only buyer i1 deviates from (Bi1 , xi1) to (A′i1 , x

′
i1

).

We know that i1 ∈ S̃. Hence the payoff of buyer i1 is wi1(Ãi1) − p̃i1 . By Lemma 1, we know that
wi1(Ãi1) − p̃i1 = wi1(A′i1) − x′i1 = ε > 0. Since i1 ∈ M \ S, the last strict inequality shows that buyer i1
has incentives to unilaterally deviate as it was claimed, which contradicts that (B, x) forms part of a SPE.
Therefore, v(S ∪ {0}) = v(M ∪ {0}) under the assumption of Case 1.

Case 2 : For all A′ ∈ A∗(S ∪ {i1}), there is some i ∈ S such that wi(A
′
i) < wi(Bi)− xi.

By applying Lemma 3, taking (B, x), (S,A, p) and J = {i1}, with i1 ∈ M \ S, there exist a coalition
T  S and Ā ∈ A∗(T ∪ {i1}) such that wi(Āi) ≥ wi(Bi)− xi for all i ∈ T and∑

i∈S\T

(
wi(Bi)− xi

)
> v(S ∪ {i1} ∪ {0})− v(T ∪ {i1} ∪ {0})

≥ v(S ∪ {0})− v(T ∪ {i1} ∪ {0}), (17)

where the last inequality comes from the monotonicity of v. Define p̄i = wi(Āi) − (wi(Bi) − xi) for each
i ∈ T . Taking (17) into account, we get∑

i∈S
pi =

∑
i∈S

wi(Ai)−
∑
i∈S

(
wi(Bi)− xi

)
= v(S ∪ {0})−

∑
i∈S

(
wi(Bi)− xi

)
< v(T ∪ {i1} ∪ {0})−

∑
i∈T

(
wi(Bi)− xi

)
=
∑
i∈T

p̄i + wi1(Āi1),

where the first equality follows from Lemma 1. Therefore, buyer i1 has incentives to deviate (the argument
is analogous to the one in Case 1 in this proof), which contradicts that (B, x) forms part of a SPE. This
completes the proof and hence v(S ∪ {0}) = v(M ∪ {0}). �

The next theorem is the main result of this paper: the payoff in any subgame perfect equilibrium of Γ is

the Vickrey payoff vector. As a consequence of the assumption on the buyers’ valuations, it turns out that

the Vickrey payoff vector belongs to the core of the associated coalitional game. Hence, once the agents

have played any SPE of the game Γ, no coalition of agents can improve their current payoff by trading only

among themselves.

Another lemma will be used. Its proof is consigned to the Appendix.

Lemma 5. Consider any SPE of Γ. Let (B, x) be the buyers’ strategy profile in this SPE and let (S,A, p)
be the reply of the seller to (B, x) in this SPE. For each buyer t ∈ S, there is a triple (St, At, pt) with

∅ 6= St ⊆M \ {t}, At ∈ A(St), pt = (pti)i∈St ∈ RSt

+ such that:

1. wi(A
t
i)− pti = wi(Bi)− xi for all i ∈ St.

2.
∑

i∈St pti =
∑

i∈S pi.

3.
∑

i∈St wi(A
t
i) = v(St ∪ {0}) = v(M ∪ {0}).

4. v(((S ∪ St) \ {t}) ∪ {0}) = v((M \ {t}) ∪ {0}).

5. wi(Bi)− xi = 0 for all i ∈ St \ S.

Theorem 6. The payoff of any SPE of Γ is the Vickrey payoff vector of the market (M, {0}, Q,w).

Proof. Fix any SPE of Γ. Let (B, x) be the buyers’ strategy profile in this SPE and denote by (S,A, p)
the seller’s reply to (B, x). Fix any i1 ∈ S. Let (Si1 , Ai1 , pi1) be as in the statement of Lemma 5 taking
t = i1. Define a coalition of buyers D ⊆M by D = S ∪ Si1 .

10



Firstly, we claim that

for any Ã ∈ A∗(D \ {i1}), we have wi(Ãi) ≥ wi(Bi)− xi for all i ∈ D \ {i1}. (18)

To prove that, assume on the contrary there exists Â ∈ A∗(D \ {i1}) and some i2 ∈ D \ {i1} such that

wi2(Bi2)− xi2 > wi2(Âi2). Notice that

wi2(Bi2)− xi2 > wi2(Âi2) ≥ v((D \ {i1}) ∪ {0})− v((D \ {i1, i2}) ∪ {0})
≥ v(D ∪ {0})− v((D \ {i2}) ∪ {0}) ≥ 0, (19)

where the second inequality comes from Lemma 2 and the third one follows from buyers-submodularity of
v.

Now we consider two cases and show that each of them leads to a contradiction.
Case 1: For some A′ ∈ A∗(D \ {i2}) it holds wi(A

′
i) ≥ wi(Bi)− xi for all i ∈ D \ {i2}.

Define p′i = wi(A
′
i)− (wi(Bi)− xi) for all i ∈ D \ {i2}. Therefore∑

i∈S
pi =

∑
i∈S

wi(Ai)−
∑
i∈S

(
wi(Bi)− xi

)
= v(S ∪ {0})−

∑
i∈S

(
wi(Bi)− xi

)
= v(D ∪ {0})−

∑
i∈D

(
wi(Bi)− xi

)
< v((D \ {i2}) ∪ {0})−

∑
i∈D\{i2}

(
wi(Bi)− xi

)
=

∑
i∈D\{i2}

p′i, (20)

where the first equality comes from Lemma 1, the second equality from the claim (9) in Theorem 4, the
third equality follows from Theorem 4, the monotonicity of v and wi(Bi) − xi = 0 for all i ∈ Si1 \ S (see
part 5 of Lemma 5) and the inequality from (19). This fact, (20), contradicts that (S,A, p) maximizes the
seller’s payoff at (B, x).

Case 2: For all A′ ∈ A∗(D \ {i2}), there is a buyer i ∈ D \ {i2} such that wi(A
′
i) < wi(Bi)− xi.

By applying Lemma 3, taking S = D \ {i2} and J = ∅, there exist ∅ 6= T  D \ {i2} and Ā ∈ A∗(T )
such that wi(Āi) ≥ wi(Bi)− xi for all i ∈ T and∑

i∈(D\{i2})\T

(
wi(Bi)− xi

)
> v((D \ {i2}) ∪ {0})− v(T ∪ {0}).

Making use of (19) notice that∑
i∈D\T

(
wi(Bi)− xi

)
> v((D \ {i2}) ∪ {0})− v(T ∪ {0})

+ v(D ∪ {0})− v((D \ {i2}) ∪ {0}) = v(D ∪ {0})− v(T ∪ {0}). (21)

Define p̄i = wi(Āi)− (wi(Bi)− xi) for each i ∈ T . We have

v(D ∪ {0})−
∑
i∈D

(
wi(Bi)− xi

)
= v(S ∪ {0})−

∑
i∈S

(
wi(Bi)− xi

)
=
∑
i∈S

wi(Ai)−
∑
i∈S

(
wi(Bi)− xi

)
=
∑
i∈S

pi

≥
∑
i∈T

p̄i = v(T ∪ {0})−
∑
i∈T

(
wi(Bi)− xi

)
,
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where the first equality follows from Theorem 4, monotonicity of v and wi(Bi)−xi = 0 for all i ∈ Si1 \S (see
part 5 in Lemma 5), the second equality comes from the claim (9) in Theorem 4, the third equality comes
from Lemma 1 and the first inequality follows from the fact that (S,A, p) maximizes the seller’s payoff given
(B, x). Then,

v(D ∪ {0})− v(T ∪ {0}) ≥
∑

i∈D\T

(
wi(Bi)− xi

)
.

This fact contradicts (21).
Hence, we have proved the claim (18): for every i1 ∈ S and any allocation Ã ∈ A∗(D \ {i1}), we have

wi(Ãi) ≥ wi(Bi)− xi for all i ∈ D \ {i1}.
Now, we prove that the payoff vector of any SPE is the Vickrey payoff vector of the market. Fix any

i1 ∈ S and take D = S ∪Si1 , where Si1 is as in the statement of Lemma 5. Fix any Ã ∈ A∗(D \{i1}). Now,

define a price vector p̃ = (p̃i)i∈D\{i1} ∈ R
D\{i1}
+ such that p̃i = wi(Ãi) − (wi(Bi) − xi) for all i ∈ D \ {i1}.

We have

v(M ∪ {0})−
∑
i∈S

(
wi(Bi)− xi

)
=
∑
i∈S

wi(Ai)−
∑
i∈S

(
wi(Bi)− xi

)
=
∑
i∈S

pi

≥
∑

i∈D\{i1}

p̃i = v((D \ {i1}) ∪ {0})−
∑

i∈D\{i1}

(
wi(Bi)− xi

)

= v((M \ {i1}) ∪ {0})−
∑

i∈D\{i1}

(
wi(Bi)− xi

)
,

where the first equality follows from Theorem 4, the second equality from Lemma 1, the inequality since
(S,A, p) maximizes the seller’s payoff given (B, x) and the last equality from part 4 in Lemma 5. Then,

v(M ∪ {0})− v((M \ {i1}) ∪ {0}) ≥
∑
i∈S

(
wi(Bi)− xi

)
−

∑
i∈D\{i1}

(
wi(Bi)− xi

)
.

Since D = S ∪ Si1 and wi(Bi)− xi = 0 for all i ∈ Si1 \ S (see part 5 of Lemma 5), we obtain

v(M ∪ {0})− v((M \ {i1}) ∪ {0}) ≥ wi1(Bi1)− xi1 . (22)

As a consequence, since i1 was an arbitrary buyer in S, we have that for every buyer i ∈ S,

Mv
i ≥ wi(Bi)− xi. (23)

We see now that, in fact, wi(Bi)− xi = Mv
i for all i ∈ S.

Fix any buyer i1 ∈ S. Let (Si1 , Ai1 , pi1) be as in the statement of Lemma 5 taking t = i1. Then

v(M ∪ {0})−
∑
i∈S

(
wi(Bi)− xi

)
=
∑
i∈S

wi(Ai)−
∑
i∈S

(
wi(Bi)− xi

)
=
∑
i∈S

pi

=
∑
i∈Si1

pi1i =
∑
i∈Si1

wi(A
i1
i )−

∑
i∈Si1

(
wi(Bi)− xi

)
= v(Si1 ∪ {0})−

∑
i∈Si1

(
wi(Bi)− xi

)
,

where the first equality follows from Theorem 4, the second equality follows from Lemma 1, the third equality
follows from part 2 of Lemma 5 and the two last equalities follow from parts 1 and 3 of Lemma 5. Since, by
part 5 of the same lemma, we know that wi(Bi)− xi = 0 for all i ∈ Si1 \ S, we have obtained

v(M ∪ {0})− v(Si1 ∪ {0}) =
∑

i∈S\Si1

(
wi(Bi)− xi

)
. (24)
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On the other hand, by buyers-submodularity (5), we know that

v(M ∪ {0})− v(Si1 ∪ {0}) ≥
∑

i∈M\Si1

Mv
i ≥

∑
i∈S\Si1

Mv
i , (25)

where the last inequality follows since Mv
i ≥ 0 for each i ∈M . Making use of expressions (24) and (25), we

obtain ∑
i∈S\Si1

(
wi(Bi)− xi

)
≥

∑
i∈S\Si1

Mv
i . (26)

If inequality (22) were strict, Mv
i1
> wi1(Bi1)−xi1 , since i1 ∈ S \Si1 , and taking into account (23), we would

contradict (26). Therefore, we conclude that wi1(Bi1)− xi1 = Mv
i1

. As i1 was an arbitrary buyer belonging
to S, we obtain that wi(Bi) − xi = Mv

i for all i ∈ S. This shows that in any SPE of the mechanism Γ, if
a buyer i obtains a package of objects, i.e., i ∈ S, he requests (Bi, xi) such that wi(Bi) − xi = Mv

i . By
Lemma 1, we obtain that the payoff for each buyer i ∈ S under any SPE is his marginal contribution Mv

i .
Moreover, the payoff for each buyer i ∈ M \ S is zero which is exactly his marginal contribution Mv

i (see
Theorem 4). Since the reply of the seller in any SPE produces an efficient allocation for the market, we
conclude that the payoff vector given in any SPE is the Vickrey payoff vector of the market. This completes
the proof. �

We have just proved that the payoff associated with any SPE of the mechanism Γ is the Vickrey payoff

vector. The reader may ask whether indeed SPE exist for that game. It is not difficult to see that for any

efficient allocation, A ∈ A∗(S) with
∑

i∈S wi(Ai) = wA(M ∪ {0}), there is a SPE where each buyer i ∈ S

plays (Ai, xi) such that wi(Ai)− xi = Mv
i and the seller selects a best reply to the buyers’ demands.

Even when there is only one efficient allocation of the packages, there may be multiple SPE in our

game. On one side this multiplicity comes from the fact that different strategies may give a buyer the same

outcome. If (B1, x1) is a SPE strategy of buyer 1 and there is another package ∅ 6= R1 ⊆ Q and y1 ≥ 0

such that w1(B1)− x1 = w1(R1)− y1, then if buyer 1 replaces strategy (B1, x1) with (R1, y1), all the other

agents keeping their strategies, we have another SPE of the game.

4. Concluding remarks

Buyers-submodularity is an essential assumption to obtain our results. When there are complementar-

ities, the SPE of our mechanism may change. Take for instance the following market taken from Milgrom

(2007).

Example 2. Consider a market with three buyers, 1, 2 and 3, and one seller with two objects A and B.

A B AB

1

2

3

0 0 12

10 10 10

10 10 10
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If we apply the same mechanism Γ to this market situation, notice first that the strategies we have

mentioned to be a SPE in the buyers-submodular case, are not a Nash equilibrium in this case. Since

an optimal matching is to allocate A to buyer 2 and B to buyer 3, and the marginal contributions of the

three buyers are 0, 8 and 8 respectively, let us assume that buyers take strategies (B1, x1) = ({A}, 0),

(B2, x2) = ({A}, 2) and B3 = ({B}, 2). And assume the strategy of the seller is to select a coalition of

buyers and maximize the seller’s reward allocating the objects to buyers in that coalition while preserving

the net profit they demand.

Now, buyer 1 has incentives to deviate to (B′1, x
′
1) = ({A,B}, 12 − ε), with 0 < ε < 8, since she knows

that she will be selected by the seller and will obtain a positive payoff.

The above argument also shows that the Vickrey outcome will not be reached by any SPE of the game.

Notice that the Vickrey outcome (0,8,8; 4) does not belong to the core of the coalitional game, since the

coalition formed by buyer 1 and the seller should get at least 12.

But our game applied to this market still has some SPE. Assume (B1, x1) = ({A,B}, 12), (B2, x2) =

({A}, 6) and (B3, x3) = ({B}, 6). Assume that when the buyers play like that the seller selects S = {2, 3},

and in any other contingency the seller chooses any best reply (any coalition that allows him to maximize

his reward while preserving the buyers’ demanded net profit). This constitutes a SPE and the payoff vector

is (0, 4, 4; 12). This vector belongs to the core but is not buyers-optimal (in fact this coalitional game has

no buyers-optimal core allocation).

Future research could analyze the mechanism Γ in the presence of complementarities and also when there

is more than one seller in the market.

5. Appendix

The following lemmas are used in the main results of this paper.

Lemma 3. Consider any market (M, {0}, Q,w) and let (B, x) be the buyers’ strategy profile in any SPE of
the mechanism Γ. For any non-empty coalition of buyers S ⊆M and any J ⊆M \ S we have either:

1. there exists an efficient allocation A = (Ai)i∈S∪J ∈ A∗(S ∪ J) such that wi(Ai) ≥ wi(Bi)− xi for all
i ∈ S, or

2. there exist a subcoalition of buyers T  S, with T 6= ∅ whenever J = ∅, and an efficient allocation
A = (Ai)i∈T∪J ∈ A∗(T ∪ J) such that

(a) wi(Ai) ≥ wi(Bi)− xi for all i ∈ T and

(b)
∑

i∈S\T

(
wi(Bi)− xi

)
> v(S ∪ J ∪ {0})− v(T ∪ J ∪ {0}).

Proof. We first prove the result whenever coalition S is a singleton, S = {i1} for some i1 ∈ M . In this
case, if J = ∅ we can take A = (Ai1) ∈ A∗({i1}) with Ai1 = Q and then, by the monotonicity of buyers’
valuations, we have wi1(Ai1) = wi1(Q) ≥ wi1(Bi1)− xi1 , which means that item 1 is satisfied. If S = {i1},
J 6= ∅ and there exists A ∈ A∗({i1} ∪ J) such that wi1(Ai1) ≥ wi1(Bi1)− xi1 we also are done. Otherwise,
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S = {i1}, J 6= ∅ and for any A ∈ A∗({i1} ∪ J) it holds wi1(Bi1)− xi1 > wi1(Ai1). In that case, take T = ∅
and notice that statement 2 (a) holds trivially. Moreover, for all A ∈ A∗({i1} ∪ J) we have

wi1(Bi1)− xi1 > wi1(Ai1) ≥ v({i1} ∪ J ∪ {0})− v(J ∪ {0}) = v(S ∪ J ∪ {0})− v(T ∪ J ∪ {0}), (27)

where the second inequality follows from Lemma 2.
Now, we proceed to prove the lemma for any coalition S ⊆ M with |S| ≥ 2. If there exists an efficient

allocation A1 = (A1
i )i∈S∪J ∈ A∗(S∪J) such that wi(A

1
i ) ≥ wi(Bi)−xi for all i ∈ S, we are done. Otherwise,

define T1 = S and fix A1 = (A1
i )i∈T1∪J ∈ A∗(T1 ∪ J). We know that there is some buyer i1 ∈ T1 such that

wi1(A1
i1) < wi1(Bi1)− xi1 . (28)

Denote now T2 = T1 \ {i1}. We may assume that T2 6= ∅, since otherwise T1 = S = {i1} and we are done.
Moreover, by inequality (28) and Lemma 2, we have

wi1(Bi1)− xi1 > wi1(A1
i1) ≥ v(S ∪ J ∪ {0})− v((S \ {i1}) ∪ J ∪ {0})

= v(S ∪ J ∪ {0})− v(T2 ∪ J ∪ {0}). (29)

Now, if there is an allocation A2 = (A2
i )i∈T2∪J ∈ A∗(T2 ∪ J) such that wi(A

2
i ) ≥ wi(Bi) − xi for all

i ∈ T2, we are done taking T = T2. Otherwise, fix A2 = (A2
i )i∈T2∪J ∈ A∗(T2 ∪ J). We know that there is

some i2 ∈ T2 such that

wi2(A2
i2) < wi2(Bi2)− xi2 . (30)

Denote now T3 = T2 \ {i2} and notice that if T3 6= ∅, by inequality (30) and Lemma 2 , we have

wi2(Bi2)− xi2 > wi2(A2
i2) ≥ v(T2 ∪ J ∪ {0})− v((T2 \ {i2}) ∪ J ∪ {0}) (31)

= v(T2 ∪ J ∪ {0})− v(T3 ∪ J ∪ {0}). (32)

By adding (29) and (31), we get∑
i∈S\T3

(
wi(Bi)− xi

)
> v(S ∪ J ∪ {0})− v(T3 ∪ J ∪ {0}).

By proceeding recursively, we construct a sequence of sets {T1, ..., Tk+1} such that T1 = S, Tl\Tl+1 = {il}
for l = 1, ..., k, Al ∈ A∗(Tl ∪ J) for l = 1, ..., k + 1, wil(A

l
il

) < wil(Bil)− xil for l = 1, ..., k and

∑
i∈S\Tl+1

(
wi(Bi)− xi

)
> v(S ∪ J ∪ {0})− v(Tl+1 ∪ J ∪ {0}) for l = 1, ..., k. (33)

Now if Tk+1 6= ∅ and there is an efficient allocation Ak+1 ∈ A∗(Tk+1∪J) such that wi(A
k+1
i ) ≥ wi(Bi)−xi

for all i ∈ Tk+1, we are done taking T = Tk+1. Otherwise, we continue the procedure one more step. Notice
that, since S is a finite set, we will eventually reach Tr with |Tr| = 1. In that case, as shown at the beginning
of the proof, we either conclude taking T = Tr = {ir} when J = ∅ and also when J 6= ∅ but there exists
A ∈ A∗({ir} ∪ J) such that wir (Air ) ≥ wir (Bir )− xir , or taking T = ∅ otherwise. �

The next lemma shows that in any SPE, and for any buyer who receives a package, there is an alternative

action that gives the seller the same payoff.

Lemma 5. Consider any SPE of Γ. Let (B, x) be the buyers’ strategy profile in this SPE and let (S,A, p)
be the reply of the seller to (B, x) in this SPE. For each buyer t ∈ S, there is a triple (St, At, pt) with

∅ 6= St ⊆M \ {t}, At ∈ A(St), pt = (pti)i∈St ∈ RSt

+ such that:
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1. wi(A
t
i)− pti = wi(Bi)− xi for all i ∈ St.

2.
∑

i∈St pti =
∑

i∈S pi.

3.
∑

i∈St wi(A
t
i) = v(St ∪ {0}) = v(M ∪ {0}).

4. v(((S ∪ St) \ {t}) ∪ {0}) = v((M \ {t}) ∪ {0}).

5. wi(Bi)− xi = 0 for all i ∈ St \ S.

Proof. First, we prove statements 1 and 2 together: for each buyer t ∈ S, there is a triple (St, At, pt), with

∅ 6= St ⊆ M \ {t}, At ∈ A(St), pt = (pti)i∈St ∈ RSt

+ , that satisfies wi(A
t
i) − pti = wi(Bi) − xi for all i ∈ St

and
∑

i∈St pti =
∑

i∈S pi. To this end, we consider three cases: 1) pt = 0 and S \ {t} 6= ∅; 2) pt = 0 and
S \ {t} = ∅ and 3) pt > 0.

Case 1: pt = 0 and S \ {t} 6= ∅. Take k ∈ S \ {t}, A′ = (A′i)i∈S\{t} ∈ A(S \ {t}) with A′i = Ai for each

i ∈ S \ {t, k} and A′k = Ak ∪At and p′ = (p′i)i∈S\{t} ∈ R
S\{t}
+ with p′i = pi for each i ∈ S \ {t}. Notice that

(S \ {t}, A′, p′) satisfies wi(A
′
i) − p′i ≥ wi(Bi) − xi for all i ∈ S \ {t} and

∑
i∈S\{t} p

′
i =

∑
i∈S pi. Hence,

(S \{t}, A′, p′) is also a best reply of the seller to (B, x) and from Lemma 1 we get wi(A
′
i)−p′i = wi(Bi)−xi

for all i ∈ S \ {t}, which proves statements 1 and 2 for this case.
Case 2: pt = 0 and S \ {t} = ∅. Take any i′ ∈ M \ {t} (recall that |M | ≥ 2) and consider St = {i′},

At = (At
i′) ∈ A({i′}) with At

i′ = Q and pt = (pti′) with pti′ = 0. Notice that (St, At, pt) also satisfies
wi′(A

t
i′)−pti′ ≥ wi′(Bi′)−xi′ and

∑
i∈St pti = pti′ = 0 = pt =

∑
i∈S pi. Again, this implies that (St, At, pt) is

a best reply of the seller to (B, x) and hence by Lemma 1 we get that wi′(A
t
i′)− pi′ = wi′(Bi′)− xi′ , which

proves statments 1 and 2 for this case.

Case 3: pt > 0. We define the two following sets:

C = {(St, At, pt)|∅ 6= St ⊆M \ {t}, At ∈ A(St), pt ∈ RSt

+ such that wi(A
t
i)− pti ≥ wi(Bi)− xi for all i ∈ St}

C = {(St, At, pt) ∈ C | wi(A
t
i)− pti = wi(Bi)− xi for all i ∈ St}

Notice that C ⊆ C, and the set C is non-empty, e.g. consider St = {i} for some i ∈ M \ {t}, At
i = Q and

pti = wi(Q)− (wi(Bi)− xi). Moreover, the set C is a finite set.
Assume that, on the contrary to the statement we want to prove, for all (St, At, pt) ∈ C, it holds∑

i∈St

pti 6=
∑
i∈S

pi. (34)

Since (S,A, p) is the reply of the seller to (B, x), we have that
∑

i∈St pti ≤
∑

i∈S pi for all (St, At, pt) ∈ C.
Hence, for all (St, At, pt) ∈ C, (34) turns out to be∑

i∈St

pti <
∑
i∈S

pi. (35)

Since the set C is finite, there is ε > 0 such that∑
i∈St

pti <
∑
i∈S

pi − ε for all (St, At, pt) ∈ C. (36)

We see now that buyer t ∈ S has incentives to unilaterally deviate. Assume buyer t deviates from (Bt, xt)
to (At, pt−α) with 0 < α < ε such that pt−α ≥ 0 (recall that pt > 0 by assumption of this Case 3).. Now,
let (S̃, Ã, p̃) be the reply of the seller to this deviation. We show now that t ∈ S̃. By way of contradiction,
assume that t /∈ S̃. Indeed, since t /∈ S̃ and by Lemma 1, we know that the reply (S̃, Ã, p̃) to this unilateral
deviation belongs to C. Consider (S,A, p) where p

i
= pi for all i ∈ S \ {t} and p

t
= pt − α. Hence∑

i∈S̃

p̃i <
∑
i∈S

pi − ε <
∑
i∈S

pi − α =
∑
i∈S

p
i
, (37)
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where the first inequality comes from (36) applied to (S̃, Ã, p̃) ∈ C and the second one since α < ε. But
then, (37) contradicts that (S̃, Ã, p̃) is a best reply of the seller and then, this shows that t ∈ S̃.

Fix now any best reply (S̃, Ã, p̃) of the seller when only buyer t ∈ S deviates from (Bt, xt) to (At, pt−α).
We know that buyer t belongs to S̃. Hence, the payoff of buyer t is wt(Ãt) − p̃t. By Lemma 1, we know
that wt(Ãt)− p̃t = wt(At)− (pt − α) > wt(At)− pt. This shows that buyer t has incentives to deviate from
(Bt, xt) to (At, pt − α) as claimed, which is a contradiction with the fact that the agents were following a
SPE. As a consequence, for each buyer t ∈ S, there is a triple (St, At, pt) ∈ C with

∑
i∈St pti =

∑
i∈S pi.

We know that (S,A, p) is the reply of the seller to (B, x). Since (St, At, pt) is a possible reply of the seller
to (B, x) and

∑
i∈St pti =

∑
i∈S pi, then (St, At, pt) is also a best reply of the seller to (B, x). Hence, as a

consequence of Lemma 1, we have that wi(A
t
i)−pti = wi(Bi)−xi for all i ∈ St. This finishes the proof of the

existence, for each t ∈ S, of a triple (St, At, pt), with ∅ 6= St ⊆M \{t}, At ∈ A(St) and pt = (pti)i∈St ∈ RSt

+ ,
that satisfies statements 1 and 2.

To prove statement 3, simply apply Theorem 4 to (St, At, pt), which we have just seen is also a best
reply of the seller to (B, x).

Moreover, to prove statement 4, monotonicity of v gives

v(St ∪ {0}) ≤ v(((S ∪ St) \ {t}) ∪ {0}) ≤ v((M \ {t}) ∪ {0}) ≤ v(M ∪ {0})

and, together with v(St ∪ {0}) = v(M ∪ {0}), this implies v(((S ∪ St) \ {t}) ∪ {0}) = v((M \ {t}) ∪ {0})
which proves statement 4.

We finally prove part 5 of this lemma. Notice first that if for some i′ ∈ St \S, wi′(Bi′)−xi′ < 0, then the
seller can give a dummy object to buyer i′ at a specific positive price, that is, the triple (S∪{i′}, A′, p′) where
A′i = Ai for all i ∈ S, A′i′ consists of a dummy object j0, p′i = pi for all i ∈ S and p′i′ = xi′ −wi′(Bi′) > 0 is
a feasible reply of the seller to (B, x), and since

∑
i∈S∪{i′} p

′
i >

∑
i∈S pi, this contradicts that (S,A, p) is a

best reply to (B, x).
On the other hand, if for some i′ ∈ St \S, wi′(Bi′)−xi′ > 0, buyer i′ could deviate to (Bi′ , xi′ + ε), with

wi′(Bi′) − (xi′ + ε) > 0. Then, (St, At, pt) where pti = pti for all i ∈ St \ {i′} and pti′ = pti′ + ε is a feasible
reply of the seller to this deviation and ∑

i∈S
pi =

∑
i∈St

pti <
∑
i∈St

pti, (38)

where the equality follows from statement 2 in this lemma. Take (S̃, Ã, p̃) a best reply of the seller to the
above buyer i′ deviation to (Bi′ , xi′ + ε). If i′ ∈ S̃, then wi′(Ãi′) − p̃i′ = wi′(Bi′) − (xi′ + ε) > 0 makes i′

better off (since i′ 6∈ S) and this fact contradicts that (B, x) forms part of a SPE of Γ. Otherwise, if i′ 6∈ S̃,
then (S̃, Ã, p̃) is also a feasible reply of the seller to (B, x) and moreover∑

i∈S
pi =

∑
i∈St

pti <
∑
i∈St

pti ≤
∑
i∈S̃

p̃i, (39)

where the first equality follows from statement 2, the strict inequality from (38) and the last inequality since
(S̃, Ã, p̃) is a best reply when buyer i′ unilaterally deviates to (Bi′ , xi′ + ε). Finally, (39) contradicts that
(S,A, p) is a best reply to (B, x) and this completes the proof of statement 5. �
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