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Abstract

We analyze assortative multisided assignment games, following Sherstyuk
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1. Introduction

Economic markets with indivisible goods have been considered using

worthy matching models. In this setting there are different but related

models. In a two-sided matching game or assignment game there are es-

sential coalitions formed from two different types of agents containing one

agent of each type. The bilateral assignment game comes initially from

Shapley (1955), but Shapley and Shubik (1971) is the paper most cited. In

it the authors introduce and analyze a housing market as a bilateral assign-

ment market. We refer now to another seminal paper, Becker (1973). In

it, pursuing a general theory of marriage, Becker introduces a special class

of assignment games, the two-sided assortative ones. In some assignment

problems Becker displays the well-known effect of mating of the likes. Fi-

nally, Crawford and Knoer (1981) develops a model of labor market by using

matching and assignment tools. This last model easily allows to motivate

the relevance to study m-sided matching games, with m ≥ 3. It is easy

to think of situations where m types of different skills’ workers are needed

to achieve valuable essential coalitions. Precisely the main purpose of this

paper is to analyze m-sided assortative games.

In all these previous models the most relevant set solution is the core.

Roughly speaking the core is formed by all those allocations in which no

coalition of agents can improve its reward on its own.

Multisided assignment games were analyzed for the first time in Quint

(1991). After showing a three-sided example with an empty core, Quint

presents a class of games with the property that the core is non-empty,

i.e. balanced. Stuart (1997) proposes another balanced class of multisided

assignment games, not related to Quint’s class (none of them includes the
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other). A proof of the non-emptiness is provided, but no description or

characterization of the core is given in any of the two models.

Sherstyuk (1999) introduces another important class of m-sided match-

ing games. She analyzes for the first time the assortative multisided assign-

ment games. The definition of this class relies on two conditions imposed on

the assignment array: supermodularity and monotonicity. Both conditions

assume that agents in each sector can be ranked by some trait or ability. Su-

permodularity is a complementary property of agents’ ability across types.

Monotonicity means that ability is aligned with the worth generated by the

essential coalitions.

Assortative multisided assignment games form a large class of m-sided

assignment games: a full-dimensional cone. In Sherstyuk’s paper it is proved

the non-emptiness of the core and she describes some extreme core alloca-

tions, m! of them, by using the associated characteristic function.

Finally, to describe papers which study the core of multisided assign-

ment markets, Tejada and Núñez (2012) and Tejada (2013) generalize to

the m-sided case the Böhm-Bawerk horse markets introduced in Shapley

and Shubik (1971), and recently Atay and Núñez (2019) describes a model

with a graph relating the different sectors to obtain the characteristic func-

tion.

In this paper we analyze a simple mechanism to describe the whole core

of any assortative m-sided assignment game. Our method characterizes for

the first time all the extreme core allocations of any assortative m-sided

matching game. The procedure can be applied for the two-sided case as well

as the generic m-sided case. The mechanism depends only on the assignment

array data, with no need to compute the characteristic function of the game.

We also determine the maximum number of extreme core allocations, m ·
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(m!)n−1, where m is the number of sectors and n is the number of agents

in each sector. As a by-product we obtain the number of extreme core

allocations when we deal only with two sectors, 2n. Finally our mechanism is

a generalization of the one established in Mart́ınez-de-Albéniz et al. (2019),

developed only for two-sided assortative games. We want to point out that

proofs in the above paper are completely different. In the present paper

proofs are simplified and the arguments are distinct. Essentially here we

use the natural order structure of the essential coalitions. Moreover our

proofs include the two-sided case as a particular case.

In Eriksson et al. (2000) the two-sided assortative case is also analyzed

and they show that the core is ordered in payoffs inside each sector. This

property remains true for the general m-sided case, as we show.

Although the core of two-sided assignment games has been extensively

studied, the core of m-sided assignment games, m ≥ 3, has not got the

same attention. It is not that the subject was not found interesting, but

NP-hardness of computational aspects (see Garey and Johnson, 1979) and

negative results are the reason behind the scarcity of literature on multisided

assignment games.

2. Preliminaries on the multisided assignment markets

A multisided assignment market (N1, N2, . . . , Nm;A) is formed by m

non-empty pairwise disjoint finite sets of agents,2 Nk =
{

1k, 2k, . . . , nkk
}

for k ∈ M = {1, . . . ,m} and a non-negative m-dimensional array A =

(aE)E∈Πmk=1N
k . Each entry aE represents some measure of the joint produc-

2To simplify notation, when no confusion arises, we will drop the superscript to describe

the agents in Nk, i.e. Nk = {1, 2, . . . , nk} . Its cardinality is |Nk| = nk.
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tivity of agents in E = (i1, i2, . . . , im) ∈ Πm
k=1N

k, one of each set when they

are matched together. We assume that we need exactly one agent of each

type to realize the value of a transaction. Clearly we can think of array A

as a function f defined on the set Πm
k=1N

k, that is aE = f(E). Each set

Nk is called a sector and corresponds to a different type of agents, having

different skills. Any m-tuple of agents E = (i1, . . . , im) ∈ Πm
k=1N

k is called

an essential coalition and we use E either as the m-tuple or as the set of el-

ements formed by its components. In the case of two sectors, m = 2, matrix

A is known as the assignment matrix (Shapley and Shubik, 1971). When

the number of agents is the same in each sector |N1| = |N2| = . . . = |Nm|

the assignment market is said to be square.

A matching µ among N1, . . . , Nm is a set of essential coalitions such that

any agent belongs at most to one coalition in µ, and |µ| = mink∈M |Nk|. An

agent who does not belong to any of the essential coalitions of µ is unmatched

by µ. The set of all matchings is denoted byM
(
N1, . . . , Nm

)
. A matching

µ is optimal if it maximizes
∑

E∈µ aE over the set M
(
N1, . . . , Nm

)
. The

set of all optimal matchings is denoted by M∗A
(
N1, . . . , Nm

)
.

Shapley and Shubik (1971) associates any bilateral assignment market

with a cooperative game3, the assignment game. In the multisided assign-

ment game of Quint (1991), the set of players is N =
⋃m
k=1N

k and the

characteristic function wA is defined for any S ⊆ N such that S ∩Nk 6= ∅

3In a cooperative game (N, v), the set of players is given by N = {1, . . . , n} and v is a

function that assigns a real number v(S) for any coalition S ⊆ N with v(∅) = 0. Its core

is defined as C(v) := {x ∈ Rn |
∑
i∈N xi = v(N) and for all S ⊆ N,

∑
i∈S xi ≥ v(S)}. A

game is named balanced if its core is non-empty.
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for all k ∈M, by

wA (S) = max
µ∈M(S∩N1,...,S∩Nm)

∑
E∈µ

aE , and 0 otherwise.

Notice that any essential coalition evaluates its worth by exactly the cor-

responding entry, and any other coalition determines its worth by essential

coalition combinations its members can form.

The agents of a multisided assignment market may divide among them-

selves their worth, wA(N), in any way they like. Thus an allocation is a

non-negative vector x = (x1, x2, . . . , xm) ∈ Πm
k=1R

nk
+ . Vector xk ∈ Rnk+ is

interpreted as the payoffs to agents in Nk, i.e. xki is the payoff associated to

player i of sector k. For any essential coalition E = (i1, . . . , im) ∈ Πm
k=1N

k

we write x(E) =
∑m

k=1 x
k
ik
.

The core of the multisided assignment game C (wA) is described for any

fixed optimal matching µ ∈ M∗A
(
N1, . . . , Nm

)
as those allocations x ∈

Πm
k=1R

nk
+ satisfying

x(E) = aE for all E ∈ µ,

x(E) ≥ aE for all E /∈ µ,

and unassigned agents by µ receive a zero payoff in any core allocation.

In the two-sided case, Shapley and Shubik (1971) proves that the core

of any assignment game is always non-empty, but in the multisided case,

m ≥ 3, it is known (Kaneko and Wooders, 1982, or Quint, 1991) that the

core may be empty.

Becker (1973) introduces two-sided assortative assignment markets. For

multisided assignment markets, we assume that the elements of each sector

are ordered by some trait and then Nk for k ∈M is an ordered set with the

natural order. Therefore Πm
k=1N

k is a lattice and for any pair of essential
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coalitions E,E′ ∈ Πm
k=1N

k we can define E∨E′ as the maximum component-

wise and E ∧ E′ as the minimum component-wise.

A multisided assignment market (N1, N2, . . . , Nm;A) is an assortative

market if it satisfies:

a) supermodularity:4

aE + aE′ ≤ aE∨E′ + aE∧E′ for all E,E′ ∈ Πm
k=1N

k. (1)

b) monotonicity (non-decreasing rows, columns, etc.):

aE ≤ aE′ for all E ≤ E′, E,E′ ∈ Πm
k=1N

k. (2)

Whenever these two conditions are met, array A is called assortative.

From the supermodularity condition, in a multisided assortative assign-

ment market at least one optimal matching µ ∈M∗A
(
N1, . . . , Nm

)
is mono-

tone,5 i.e.

for any E,E′ ∈ µ, either E ≤ E′ or E′ ≤ E.

When the assortative assignment market is square, |N1| = |N2| = . . . =

|Nm| = n there is only one monotone matching which is placed in the main

diagonal. If we denote the following essential coalitions: Ei = (i, i, . . . , i),

for i = 1, 2, . . . , n, this monotone matching is µ = {E1, E2, . . . , En} . This

is, by the previous observation, optimal in the square supermodular case,

maybe not unique.

4Notice that this condition implies that array entries form a supermodular function in

the lattice N1 ×N2 × . . .×Nm with the usual order (see Topkis, 1998).
5Notice that if there are two essential coalitions E,E′ of µ that are not comparable ,

we can use supermodularity to obtain a new optimal matching with E ∨ E′ and E ∧ E′.

Sherstyuk (1999) calls such a matching consecutive.
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From now on, we concentrate in the square case, since any non-square

assortative array could be analyzed by adding null rows of entries at the

beginning of the array, to make it square. In this way we preserve super-

modularity and the monotonicity conditions.

We give some new features of any square multisided assortative assign-

ment market. To this end, the central strip in a square multisided assignment

market are those essential coalitions

E = (i1, i2, . . . , im) such that max
k∈M

ik − min
k∈M

ik ≤ 1.

or equivalently those essential coalitions such that

Ei−1 ≤ E ≤ Ei for i = 2, . . . , n. (3)

Theorem 2.1. For any square multisided assortative assignment market

(N1, N2, . . . , Nm;A) we have:

(a) The main diagonal of the assignment array A is an optimal matching

(maybe not unique).

(b) An allocation x ∈ Πm
k=1R

nk
+ belongs to the core C(wA) if and only if 6

x(E) = aE for all E = E1, E2, . . . , En, (4)

x(E) ≥ aE for all E ∈ Πm
k=1N

k such that

Ei−1 < E < Ei for i = 2, . . . , n. (5)

(c) At any core allocation x ∈ C(wA) we have for all k ∈M

0 ≤ xk1 ≤ xk2 ≤ . . . ≤ xkn.

6We denote E < E′ for E ≤ E′ and E 6= E′.
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Proof. Item (a) follows by our previous comments. To prove (b) notice that

the only if part is obvious from the definition of the core. Now assume that

x ∈ Πm
k=1R

nk
+ satisfies (4) and (5). We prove that x(E) ≥ aE for all essential

coalitions E = (i1, i2, . . . , im) by induction on r = maxk∈M ik −mink∈M ik.

Assume the induction hypothesis: If E is such that maxk∈M ik−mink∈M ik ≤

r then x(E) ≥ aE . Notice that for r = 1 the inequalities are just (4) and (5).

Let E = (i1, i2, . . . , im) such that maxk∈M ik −mink∈M ik = r ≥ 2. Denote

j = 1 + mink∈M ik. Then, by supermodularity, aE + aEj
≤ aE∧Ej

+ aE∨Ej
.

Clearly E ∧ Ej belongs to the central strip, E ∨ Ej satisfies the induction

hypothesis, and x(Ej) = aEj
. Therefore, aE ≤ x(E ∧ Ej) + x(E ∨ Ej) −

x(Ej) = x(E). To see (c), assume for instance x ∈ C(wA). Then for i =

1, . . . , n − 1 we have x(Ei) = aEi
, and take the essential coalition E′ given

by (i+1, i, . . . , i). Then we have
∑m

k=1 x
k
i = aEi

, and x1
i+1 +

∑m
k=2 x

k
i ≥ aE′ .

Thus, 0 ≤ aE′ − aEi
≤ x1

i+1 − x1
i .

Notice that item (b) means that only the central strip of array A is

necessary to determine the core conditions. Item (c) means that in any

square assortative market, payoffs in the core are such that for any sector,

agents are ranked in the same way.

Remark 2.1. Looking at the proof of Theorem 2.1, notice that the proof of

items (a) and (b) only uses the supermodularity condition (1) of the assign-

ment array.

Item (c) is implied by the monotonicity condition (2) and the fact that

we have an optimal matching in the main diagonal. It could be interesting to

know which conditions on the array A characterize the results of the above

theorem.

A different proof of item (b) in the supermodular two-sided case can be
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found in Mart́ınez-de-Albéniz and Rafels (2014). The fact that payoffs to

agents in the core are ordered is known for two-sided assortative matrices

(see Eriksson et al., 2000).

3. Extreme core allocations

Now we give a simple procedure to obtain all the extreme core points. To

this end, for notational convenience we introduce, for any square assortative

multisided assignment market, an auxiliary agent 0 for any sector. We

denote E0 = (0, 0, . . . , 0) with aE0 = 0 and also for any E such that E0 <

E < E1 we denote aE = 0.

A path p is a sequence of essential coalitions connecting the initial one E0

with the last one En passing through all essential coalitions E0, E1, . . . En

where Ei = (i, i, . . . , i) for i = 0, 1, . . . , n. Moreover, between Ei−1 and

Ei, i = 1, . . . , n, the essential coalitions are such that from one essential

coalition to the next one we change the agent of only one sector, moving

from agent i− 1 to agent i. Then path p is

p =
(
E0, . . . , E1, . . . , Ei−1, E

1
i , E

2
i , . . . , E

m−1
i , Ei, . . . , En

)
,

where Ei−1 < E1
i < E2

i < . . . < Em−1
i < Ei, for i = 1, 2, . . . , n. As a

consequence, these paths are included in the central strip, see (3). Given a

path p, notice that each block Ei−1 < E1
i < E2

i < . . . < Em−1
i < Ei, for

i = 1, 2, . . . , n can also be described by a particular permutation θi ∈ Θ(M)

indicating the order of the sectors that are sequentially increased. The set

of all paths is denoted by Pmn .

For each path p ∈ Pmn we associate an allocation vector, which we name

the p-vector, xp ∈ Πm
k=1R

nk
+ by solving the linear equations given by all the
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places of the selected path

xp(E) = aE for E belonging to p, (6)

where we use (xp)k0 = 0, for k = 1, . . . ,m, that is any auxiliary agent 0 gets

a null payoff.

For each path p the above linear system has a unique non-negative solu-

tion. We prove uniqueness and non-negativeness by induction over n. Firstly

notice that if n = 1 there are m! different paths between E0 and E1, but

vector xp is aE1ek for some k ∈ M where ek is the canonical vector. As-

sume that the solution is unique and non-negative up to Ei−1, and without

loss of generality assume that the next essential coalition E1
i of path p is

(i, i− 1, . . . , i− 1). Then by (6) we have

m∑
k=1

xki−1 = aEi−1
, and

x1
i +

m∑
k=2

xki−1 = aE1
i
,

where we have dropped the superscript p for the path. Then, using the

monotonicity (2) and the induction hypothesis we obtain

x1
i = x1

i−1 + (aE1
i
− aEi−1

) ≥ x1
i−1 ≥ 0.

Therefore for each path p ∈ Pmn we have a unique and non-negative p-vector.

Now let us write Ext(C(wA)) the set of all extreme core points.7 We

prove next that any extreme core point is linked to a path, that is, there

is a correspondence between paths and extreme core points. This is our

7If X ⊆ Rn is a convex set, an element of this convex set x ∈ X is an extreme point if

x = 1
2
y + 1

2
z for some y, z ∈ X, then x = y = z.
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following theorem. In order to show our main result, let us first introduce

some notation and prove two technical lemmas.

Lemma 3.1. Let (N1, N2, . . . , Nm;A) be a square multisided assortative

assignment market. For any extreme core point x ∈ C(wA) we have xk
∗

1 =

aE1 for some k∗ ∈M and xk1 = 0 for all k ∈M \ {k∗}.

Proof. Suppose, on the contrary, that there are two sectors, k′, k′′ ∈M such

that xk
′

1 > 0 and xk
′′

1 > 0 and define ε = min{xk′1 , xk
′′

1 } > 0. Now define

y, z ∈ Πm
k=1R

nk
+ as follows, for t = 1, . . . , n,

ykt =


xkt , for k ∈M \ {k′, k′′},

xk
′
t + ε, for k = k′,

xk
′′
t − ε, for k = k′′,

zkt =


xkt , for k ∈M \ {k′, k′′},

xk
′
t − ε, for k = k′,

xk
′′
t + ε, for k = k′′.

Clearly by Theorem 2.1(c) and the definition of ε these are non-negative

vectors, and since y(E) = x(E) and z(E) = x(E) for all essential coalitions

E, we have y, z ∈ C(wA). As a consequence x = 1
2y + 1

2z with y 6= x

and z 6= x, getting a contradiction with the fact that x is an extreme core

point.

Now we introduce for any i ∈ {1, 2, . . . , n} the submarket given by all

the first i agents from any sector, and the corresponding restricted array.

Formally, that is (N1
i , N

2
i , . . . , N

m
i ;Ai) where Nk

i = {1, . . . , i} for all k ∈M

and Ai is given by Ai = (aE)E∈Πmk=1N
k
i
. Each of these markets is assortative

and an optimal matching is given by the main diagonal when the original

market is assortative and square.

Next we relate the extreme core points of these markets with our original

square multisided assortative assignment market. To this end, for each x ∈
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C(wA) we denote by x̄i the restriction of vector x to the coordinates of

Πm
k=1N

k
i , i.e.

x̄i = (x1
1, . . . , x

1
i , x

2
1, . . . , x

2
i , . . . , x

m
1 , . . . , x

m
i ) ∈ Πm

k=1R
Nk
i

+ . (7)

Clearly x̄i ∈ C(wAi) for all i ∈ {1, 2, . . . , n} if x ∈ C(wA).

In our next lemma we prove that whenever we take an extreme core point

of an assortative multisided game we also obtain an extreme core point for

all submarkets previously defined.

Lemma 3.2. Let (N1, N2, . . . , Nm;A) be a square multisided assortative

assignment market, and x ∈ C(wA) be an extreme core point. Then, x̄i ∈

C(wAi) is an extreme core point for i = 1, . . . , n− 1.

Proof. Suppose on the contrary that i∗ ∈ {1, . . . , n − 1} is the first index

such that x̄i
∗

is not an extreme point of C(wAi∗ ). By Lemma 3.1, i∗ > 1.

Since we are assuming x̄i
∗ ∈ C(wAi∗ ) but not an extreme core point,

there are two points y∗, z∗ ∈ C(wAi∗ ) such that

x̄i
∗

=
1

2
y∗ +

1

2
z∗ with y∗ 6= x̄i

∗
and z∗ 6= x̄i

∗
. (8)

Notice that for all i < i∗ we have yki = zki = xki for all k ∈ M, because the

corresponding restriction x̄i
∗−1 gives an extreme core point.

Now define the following vectors y, z ∈ Πm
k=1Rnk as follows: for all k ∈M,

yki =

xki , for i = 1, . . . , i∗ − 1,

xki + εk, for i = i∗, . . . , n,
zki =

xki , for i = 1, . . . , i∗ − 1,

xki − εk, for i = i∗, . . . , n.

where εk = (y∗)ki∗ − xki∗ for all k ∈ M. Notice that because of (8), at least

one εk must be different from zero, and we have (z∗)ki∗ − xki∗ = −εk for all

k ∈M. Moreover∑
k∈M

εk =
∑
k∈M

(y∗)ki∗ − xki∗ = y∗(Ei∗)− x(Ei∗) = aEi∗ − aEi∗ = 0. (9)
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We claim y, z ∈ C(wA) and x = 1
2y + 1

2z with y 6= x and z 6= x.

Firstly we show y ≥ 0 and z ≥ 0. Clearly yki ≥ 0 and zki ≥ 0 for

i = 1, . . . , i∗ − 1, and all k ∈ M. Moreover, for all k ∈ M we have ykn ≥

ykn−1 ≥ . . . ≥ yki∗ and zkn ≥ zkn−1 ≥ . . . ≥ zki∗ , and to conclude notice that

yki∗ = xki∗ + εk = (y∗)ki∗ ≥ 0 and also zki∗ ≥ 0.

Secondly, y(Ei) = aEi
, z(Ei) = aEi

for i = 1, . . . , n, by their definitions.

Finally, we show that y(E) ≥ aE and z(E) ≥ aE for all essential coali-

tions E in the central strip. For all essential coalitions in the central strip

such that Ei∗ ≤ E, by (9) y(E) = x(E) +
∑

k∈M εk = x(E) ≥ aE and

analogously z(E) ≥ aE . By its definition y(E) = z(E) = x(E) ≥ aE for all

essential coalitions E, in the central strip such that E ≤ Ei∗−1. For the case

Ei∗−1 < E < Ei∗ , we claim that y(E) = y∗(E) and z(E) = z∗(E), since we

have that yki∗ = (y∗)ki∗ and zki∗ = (z∗)ki∗ for all k ∈M.

By Theorem 2.1(b) we have y, z ∈ C(wA) and x = 1
2y + 1

2z with y 6= x

and z 6= x, contradicting x is an extreme core point.

These two lemmas allow to establish our main theorem.

Theorem 3.1. Let (N1, N2, . . . , Nm;A) be a square multisided assortative

assignment market. In it, p-vectors coincide with extreme core points, i.e.

Ext(C(wA)) = {xp}p∈Pmn .

Proof. We prove first that for all path p ∈ Pmn we have xp ∈ C(wA). To this

end we prove xp(E) ≥ aE for all Ei−1 < E < Ei for all i = 1, . . . , n. By

Theorem 2.1(b) this is enough to justify xp ∈ C(wA).

Without loss of generality we assume that the essential coalitions of path

p between Ei−1 and Ei, i = 1, . . . n, are given by

Ei−1, (i, i− 1, . . . , i− 1), (i, i, i− 1, . . . , i− 1), . . . , Ei
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that is, they follow the natural order of sectors, first moves the first sector,

second the second sector and so forth. We denote by Eti = (i, . . . , i,

t
^
i , i −

1, i− 1, . . . , i− 1), 1 ≤ t ≤ m− 1, the essential coalition in the previous path

such that t is the position of the last i agent, i = 1, . . . , n. As a matter of

notation, E0
i = Ei−1 and Emi = Ei.

Given any essential coalition E = (i1, i2, . . . , im) with Ei−1 < E <

Ei, i = 1, . . . , n, we define r(E) = #{k | ik = i}, the number of i agents in

the essential coalition E. Now, we prove xp(E) ≥ aE with Ei−1 < E < Ei

by induction on the number r(E). Clearly 1 ≤ r(E) ≤ m − 1. If r(E) = 1

let l be the position of the only i. If l = 1 there is nothing to prove, and

if l > 1 notice that E ∧ El−1
i = Ei−1 and E ∨ El−1

i = Eli. Therefore, by

supermodularity and the way essential coalitions of path p have been chosen,

aE + aEl−1
i
≤ aEi−1

+ aEli
, and then aE + xp(El−1

i ) ≤ xp(Ei−1) + xp(Eli).

Now clearly xp(E) ≥ aE . Assume our induction hypothesis is true up to

r−1 and let E be such that r(E) = r. There are then r positions with agent

i and let l be the last of these positions. Then aE + aEl−1
i
≤ aE∧El−1

i
+ aEli

,

by supermodularity. We can apply the induction hypothesis to E ∧ El−1
i

since it has r(E ∧ El−1
i ) = r − 1 positions with an i. Now aE + x(El−1

i ) ≤

aE∧El−1
i

+ aEli
≤ x(E ∧ El−1

i ) + x(Eli), and therefore aE ≤ x(E) to finish

with this part of the proof.

Moreover, vector xp for p ∈ Pmn is an extreme core point. To see it,

just notice that if it were the midpoint of two other core points, these core

points must satisfy with equality all the entries of path p. By uniqueness

of the solution, they coincide with xp. We have established that each path

gives an extreme core point.

Now we prove that any extreme core point is associated to some path.

15



Let x ∈ C(wA) be an extreme core point. Then by Lemma 3.2, x̄i is also an

extreme core point of C(wAi) for all i ∈ {1, . . . , n}, see (7) for notations.

Suppose on the contrary that x is not a p-vector for any path p ∈ Pmn ,

and let i∗ ∈ {1, . . . , n} be the first index such that x̄i
∗

is not a p-vector for

any p ∈ Pmi∗ . Notice that |N1
i∗ | = |N2

i∗ | = . . . = |Nm
i∗ | = i∗.

Clearly, by Lemma 3.1, i∗ > 1 since any path between E0 and E1 gives

aE1 to some agent and zero to the others. Vector x̄i
∗−1 is a p-vector for

some path pi∗−1 ∈ Pmi∗−1 and consider the set of paths in Pmi∗ that coincide

with pi∗−1 for all essential coalitions in the central strip E ≤ Ei∗−1. Denote

this set by Bi∗ .

Consider now the set given by convex hull of the p-vectors corresponding

to paths in Bi∗ , that is Conv{xp}p∈Bi∗ . This is a non-empty, compact and

convex set and clearly vector x̄i
∗

cannot be a convex combination of these

core points {xp}p∈Bi∗ . Then we can apply the separating hyperplane theorem

(see Boyd and Vandenberghe, 2004) to this point and set. Therefore there

exists vector

r = (r1
1, r

1
2, . . . , r

1
i∗ , r

2
1, r

2
2, . . . , r

2
i∗ , . . . , r

m
1 , r

m
2 , . . . , r

m
i∗ ) ∈ Πm

k=1Rn
k
i∗

such that

r · x̄i∗ < r · xp for all p ∈ Bi∗ . (10)

Let θ ∈ Θ(M) be an ordering of sectors M such that r
θ(1)
i∗ ≥ rθ(2)

i∗ ≥ . . . ≥

r
θ(m)
i∗ , and define the following sequence of sets: S0 = ∅, S1 = {θ(1)}, S2 =

{θ(1), θ(2)}, . . . , Sm = M.

For each S ⊆M we associate the corresponding essential coalition

ES = (i1, i2, . . . , im) with ik = i∗ if k ∈ S and ik = i∗ − 1 if k /∈ S.
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Notice that ES0 = Ei∗−1 = (i∗ − 1, i∗ − 1, . . . , i∗ − 1) and ESm = Ei∗ =

(i∗, i∗, . . . , i∗) and take a path p̄ ∈ Bi∗ such that ES1 , ES2 , . . . , ESm−1 are the

essential coalitions of the path p̄ between Ei∗−1 and Ei∗ . Then the p-vector

associated to the above path p̄ ∈ Bi∗ satisfies

xp̄(ESk) = aESk for k = 0, 1, . . . ,m. (11)

The previous system (11) gives

(xp̄)
θ(k)
i∗ = (xp̄)

θ(k)
i∗−1 + aESk − aESk−1 for k = 1, 2, . . . ,m.

By construction of path p̄ we have that

(xp̄)ki = (x̄i
∗
)ki = xki for 1 ≤ i ≤ i∗ − 1 and all k ∈M. (12)
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Now,

r · xp̄ =
m∑
k=1

i∗−1∑
i=1

rki · (xp̄)ki +
m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗

=
m∑
k=1

i∗−1∑
i=1

rki · xki +
m∑
k=1

r
θ(k)
i∗ ·

(
(xp̄)

θ(k)
i∗−1 + aESk − aESk−1

)
=

m∑
k=1

i∗−1∑
i=1

rki · xki +

m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1

+
m−1∑
k=1

(
r
θ(k)
i∗ − rθ(k+1)

i∗

)
· aESk − r

θ(1)
i∗ · aES0 + r

θ(m)
i∗ · aESm

≤
m∑
k=1

i∗−1∑
i=1

rki · xki +

m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1

+
m−1∑
k=1

(
r
θ(k)
i∗ − rθ(k+1)

i∗

)
· x(ESk)− rθ(1)

i∗ · x(ES0) + r
θ(m)
i∗ · x(ESm)

=
m∑
k=1

i∗−1∑
i=1

rki · xki +
m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1 +
m∑
k=1

r
θ(k)
i∗ ·

(
x(ESk)− x(ESk−1)

)
=

m∑
k=1

i∗−1∑
i=1

rki · xki +

m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1 +

m∑
k=1

r
θ(k)
i∗ · xθ(k)

i∗ −
m∑
k=1

r
θ(k)
i∗ · xθ(k)

i∗−1

= r · x̄i∗ +

m∑
k=1

r
θ(k)
i∗ ·

(
(xp̄)

θ(k)
i∗−1 − x

θ(k)
i∗−1

)
= r · x̄i∗ ,

where the inequality comes from x ∈ C(wA) and the fact that r
θ(k)
i∗ −

r
θ(k+1)
i∗ ≥ 0 for k = 1, . . . ,m− 1, and the last equality by (12).

We have reached a contradiction with (10). Consequently any extreme

core point is a p-vector.

Once we have established the main result of the paper, we move to some

related questions. We have just proved that paths from E0 to En char-

acterize the extreme core allocations of any square assortative multisided
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assignment market. We discuss now which is the maximum number of ex-

treme core allocations.

Remark 3.1. For an arbitrary square assortative multisided game with m

sectors and n agents in each sector, the maximum number of extreme core

allocations is

m · (m!)n−1. (13)

To justify the above Remark, notice that, as any path is composed of n

subpaths, one for each subpart from Ei−1 to Ei, for i = 1, . . . , n, we easily

obtain that the total number of paths from E0 to En is given by (m!)n.

Since we are interested in counting how many extreme core allocations, we

have to take into account that at the beginning of any path, that is, from

E0 to E1, only m different allocations are possible. At this part m! paths

collapse at most into m different vectors, precisely those vectors where the

worth aE1 is allocated to a particular agent and give a zero payoff to the rest

of agents, see Lemma 3.1. By all these arguments, formula (13) is justified.

For the special case in which array A satisfies8

aE + aE′ = aE∨E′ + aE∧E′ for any essential coalitions E,E′, (14)

the formula (13) reduces to m if aE1 > 0 or to 1 if aE1 = 0.

As a numerical illustration, take the following 2 × 2 × 2 array A, with

Nk =
{

1k, 2k
}

for k = 1, 2, 3, which is a valuation array,

A =

 10 11

12 13

  14 15

16 17

 .

8These are supermodular and submodular arrays, and they are called valuation arrays.
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In it the rows correspond to agents in the first sector, columns to agents

in the second sector and matrices to agents in the third sector. Then, for

example, a(1,2,2) = 15. Its extreme core allocations are

x1 = (10, 12; 0, 1; 0, 4),

x2 = (0, 2; 10, 11; 0, 4),

x3 = (0, 2; 0, 1; 10, 14).

They can be computed by applying the p-vectors mechanism. For instance,

vector x1 is obtained by path

p = (E0, (0, 0, 1), (0, 1, 1), E1, (1, 2, 1), (1, 2, 2), E2).

Notice that to apply the mechanism we have to check the monotonicity

condition (2), not implied by the fact that the array is a valuation.

Moreover any square valuation array A, monotonic or not, is fully-

optimal in the sense that all its matchings are optimal, i.e. M∗A
(
N1, . . . , Nm

)
=

M
(
N1, . . . , Nm

)
. Any pair of non-comparable essential coalitions E,E′ in

any matching can be changed by E∨E′ and E∧E′ without losing efficiency.

The converse is not true,9 as the next example shows. The 2× 2× 2 array

A,

A =

 3 6

6 6

  6 6

6 9


is a fully-optimal multisided assignment matrix, but not a valuation, since

12 = a(1,1,2) + a(2,1,1) > a(1,1,1) + a(2,1,2) = 3 + 6 = 9.

Moreover, it has an empty core, since being a fully-optimal matrix, any

core allocation must satisfy with equality all the array’ entries, but, as the

reader can check, they form a non-compatible linear system of equations.

9For two-sided square assignment matrices, valuation and fully-optimal are equivalent.
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Another important feature of a valuation array is that its entries can

always be arranged monotonically by a suitable permutation of the agents.

Therefore they can be seen as assortative markets. A way to see which

permutation is suitable is the following. Take any core element and from it

derive a permutation of agents in each sector such that arranges the compo-

nents in a non-decreasing way. Notice that this core element satisfies with

equality all entries in the array. In this way we obtain an assortative array,

that is, where the monotonicity property also holds. As a consequence we

can apply our results to any square valuation array. This fact simplifies the

assertions made in Sherstyuk (1999) since there is no need to distinguish

valuation markets from assortative ones.

It is easy to generate examples in which the maximum number of extreme

core points given in (13) is attained.

Example 3.1. Consider the following 2× 2× 2 array A,

A =

 1 2

2 4

  3 7

5 10

 .

Notice that all inequalities of the supermodular property concerning non-

comparable essential coalitions are strict. There are 3 · (3!)1 = 18 different
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extreme core allocations, that correspond to different paths.

x1 = (1, 2; 0, 2; 0, 6), x2 = (0, 1; 1, 3; 0, 6),

x3 = (0,1;0,2;1,7), x4 = (1, 2; 0, 5; 0, 3),

x5 = (0,1;1,6;0,3), x6 = (0, 1; 0, 5; 1, 4),

x7 = (1, 3; 0, 1; 0, 6), x8 = (0, 2; 1, 2; 0, 6),

x9 = (0,2;0,1;1,7), x10 = (1,4;0,1;0,5),

x11 = (0, 3; 1, 2; 0, 5), x12 = (0, 3; 0, 1; 1, 6),

x13 = (1, 3; 0, 5; 0, 2), x14 = (0,2;1,6;0,2),

x15 = (0, 2; 0, 5; 1, 3), x16 = (1,4;0,4;0,2),

x17 = (0, 3; 1, 5; 0, 2), x18 = (0, 3; 0, 4; 1, 3).

The six vectors in boldface correspond to the m! = 3! = 6 vectors given in

Sherstyuk (1999). They are those in which all agents from a sector get their

maximum payoff simultaneously, as was pointed out by Sherstyuk.

We already know that properties valid for bilateral assignment games

do not transfer to multisided assignment games. Now, and since we have

a description of all the extreme core allocations for assortative multisided

assignment games, it is relevant to discuss the extension of some properties.

Firstly, Núñez and Solymosi (2017) characterize for any bilateral assign-

ment game the extreme core allocations as the σ-lemaral vectors.10 This

property does not hold for general multisided assignment games as the reader

may check in the following example.

10Lemaral vectors for a game (N, v) are defined as follows: for any permutation σ of

the agents, the components of the σ-lemaral vector r̄σ,v ∈ RN are given recursively by

r̄σ,vσi = min
{
v∗(Q ∪ {σi})− r̄σ,v(Q) : Q ⊆ Pσσi

}
, with v∗(S) = v(N)− v(N \ S) and Pσσi

the set of predecessors of player σi in the permutation σ.

22



Example 3.2. Consider the following 2× 2× 2 array A,

A =

 4 6

3 5

  5 3

2 6

 .

Now consider the permutation σ = (21, 11, 13, 12, 22, 23) of all agents, where

agent 2 of the first sector enters first and agent 1 of the first sector enters

second, and so forth. We have indicated an optimal matching in boldface.

The lemaral associated to permutation σ pays to agent 2 of the first sector

its marginal contribution to the grand coalition wA(N)−wA(N \ {21}) = 4,

and so forth. The σ-lemaral is r̄σ,wA = (4, 4; 0, 1; 0, 0), which is not efficient,

and then it does not belong to the core.

Notice that the array in Example 3.2 is not assortative. It is an open

question if lemaral vectors and extreme core allocations will coincide for

square assortative arrays.

Lastly, Hamers et al. (2002) introduces the CoMa-Property and proves

that it is satisfied by bilateral assignment games. Essentially it means that

any extreme core allocation is a marginal worth vector.11 This property does

not hold for multisided assignment games. Indeed, as the reader may check,

vector x2 = (0, 1; 1, 3; 0, 6) of our previous Example 3.1 is not a marginal

worth vector.
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