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Abstract 

We investigate the extent and evolution of the links between energy markets 

using a broad data set consisting of a total of 17 series of prices for commodities 

such as electricity, natural gas, coal, oil and carbon. The results shed light on a 

number of relevant issues such as the volatility spillover effect in energy markets 

(within and across sectors) and the identification of those markets that are 

exporters (importers) of volatility to (from) other markets, as well as evidence of 

the time-varying nature of these effects. The main conclusions are: (i) the most 

integrated European electricity markets appear to be those of Germany, France 

and the Netherlands; (ii) the Dutch Title Transfer Facility might be on the way to 

becoming the benchmark price for natural gas in Europe, and (iii) natural gas 

may be replacing crude oil as the global benchmark price for energy 

commodities.  

JEL Code: G14, C10, C32, L97 

Keywords: Spillover effect, market integration, international 

benchmark, forecast error variance decomposition.   

 

(*) Riskcenter- IREA and Department of Econometrics, Universitat de Barcelona, 

Email: hchulia@ub.edu.  
(**)  Corresponding author: Department of Financial Economics, Universitat de 

València. Avda. Los Naranjos s/n Faculty of Economy 46022 Valencia. Email: 

m.dolores.furio@uv.es. 
(***)  Department of Economics, Universidad del Valle and Riskcenter- IREA and 

Department of Econometrics, Universitat de Barcelona. Email: 

jorge.uribe@correounivalle.edu.co. 



2 
 

1. INTRODUCTION 

Electricity is considered to be a strategic asset because of its extensive use by 

virtually all sectors in modern economies. Apart from renewable generation 

sources, which are progressively more and more present in the supply mix of 

electricity markets across the world, the most important fuels used to generate 

power are natural gas, oil and coal. These three are generally competitors in the 

production of electricity, while all four commodities are substitutes for each 

other in consumption, which may lead to their prices being somewhat linked. 

Additionally, since 2005, power generators and energy intensive industries from 

signatory countries to the Kyoto Protocol receive European Union Emission 

Allowances (EUA) that can be traded. They must report annually on their 

greenhouse gas emissions and surrender the corresponding number of EUA. 

Installations cannot exceed their maximum number of emission allowances. In 

December 2015, 145 countries adopted the Paris Agreement, which entered into 

force shortly thereafter, on November 2016. The Paris Agreement has 

reconfirmed the role of emissions trading schemes as an instrument for achieving 

global climate change goals. According to the United States Environmental 

Protection Agency (EPA), allowances are fully marketable commodities, since 

once allocated they may be bought, sold, traded or banked for use in future 

years.1 Therefore, it makes sense to extend the study to the interactions between 

                                                           
1 From the EPA website: https://www.epa.gov/airmarkets/clean-air-markets-allowance-markets (last 

accessed: 2017, June).  

https://www.epa.gov/airmarkets/clean-air-markets-allowance-markets
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energy and carbon markets, by analyzing potential volatility transmission 

between them.  

The main purpose of our paper is to assess the extent and evolution of the links 

between energy markets. Specifically, we are interested in answering the 

following questions: (1) What is the total volatility spillover effect in energy 

markets? (2) What is the evolving nature of volatility spillovers? (3) Which 

markets are exporters (importers) of volatility to (from) other markets? (4) Are 

volatility spillovers higher within or across energy sectors? (5) Is there evidence 

of increasing European energy markets’ integration over time? 

King and Wadhwani (1990) present volatility spillovers as a consequence of 

rational agents trying to infer relevant information from price changes across 

different markets. In the same line, Strohsal and Weber (2015) state that 

volatility spillovers across assets may indicate the spread of valuable information 

among fundamentally linked markets. The information content of price 

movements is not observable, but it might be deducted from observed price 

changes in one of the assets if they are interpreted as informative enough by 

traders of the other related assets. In fact, volatility would be zero in absence of 

relevant news, but price adjustments in an asset provoked by the arrival of new 

information will increase its volatility. Thus, the volatility spillover effect refers 

to the impact that events in one market may have on the volatility of other 

markets, being the information flow connected to volatility whenever observed 
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price changes are used to infer valuable information from price changes in the 

related market.2 This research issue is closely related to price discovery, since 

knowing the direction in which information flows between markets, one can 

anticipate price movements in relatively less liquid assets that incorporate 

information less rapidly than others to which they are shown to be linked. It can 

also be considered the existence of volatility spillovers as an evidence of whether 

markets within and across regions are integrated, as stated in Bekaert et al. 

(2005). An integrated electricity market for the whole European Union is a long-

term goal of the European authorities. Some voices claim there is significant 

progress being made in the integration of European energy markets, which is 

actually hard to assess. The more integrated markets are, the higher the volatility 

transmission between them. This work is not limited solely to electricity markets 

but extends the analysis to other energy prices such as natural gas, CO2 emission 

allowances, crude oil and coal to evaluate the current state of integration between 

European energy markets, as well as to investigate their relationships with other 

non-European markets  

The linkages across and within energy markets have been widely studied in the 

literature. Most of the studies focus on analyzing market integration and price 

relationships and some other papers look at volatility spillovers.3 Within the first 

                                                           
2 Return spillover measures have also been calculated and the results are similar to those for 
volatility.  
3 A review of econometric methods used in the literature on the relationship between oil and stock 

market returns and volatility can be found in Degiannakis et al. (2018).  
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group, Granger causality, cointegration analysis and the Vector Error Correction 

(VEC) model proposed by Engle and Granger (1987) have been extensively 

used. Within the second group, multivariate Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models are the most commonly 

employed econometric techniques. One drawback of these models is that the 

number of parameters often increases rapidly with the dimensions of the model, 

which limits their scope of application. Recently, some papers have applied the 

methodology proposed by Diebold and Yilmaz (2009, 2012 and 2014) to explore 

spillovers in commodity markets. This approach is based on forecast error 

variance decompositions in a vector autoregressive framework and does not 

suffer from the curse of dimensionality of multivariate GARCH models. For 

example, Chevallier and Ielpo (2013), explore volatility spillovers within 

commodities, between standard assets and commodities and between 

commodities and commodity currencies, in the U.S.. Zhang and Wang (2014) 

analyze spillovers between China and world oil markets. Baruník et al. (2015) 

analyze volatility spillovers across petroleum-based commodities, differentiating 

between spillovers due to negative and positive returns. Batten et al. (2015) 

analyze spillovers among the four main precious metals - gold, silver, platinum 

and palladium.  Kang et al. (2017) examine spillover effects among six 

commodity futures markets – gold, silver, West Texas Intermediate crude oil, 

corn, wheat, and rice –. Finally, Diebold et al. (2018) measure commodities 

volatility connectedness using the framework of Demirer et al. (2018), which 
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build on Diebold and Yilmaz (2014). They include in the analysis four energy 

commodities, two precious metals, four industrial metals, two livestock 

commodities, four grains, and three so-called “softs” (coffee, cotton, sugar). 

In this paper, we also adopt the methodology proposed by Diebold and Yilmaz 

(2009 and 2012) to uncover the links between energy markets. This approach 

allows us to dynamically capture the extent of linkages as well as their direction. 

We use 17 series in our analysis, belonging to the electricity, natural gas, CO2, 

oil and coal sectors. Our main findings can be summarized as follows. Firstly, 

we find that own-sector volatility spillovers account for the highest share of 

forecast error variance. Furthermore, pairwise directional spillovers are higher 

within, than across, sectors and the highest pairwise spillovers are observed 

between crude oil series. Secondly, within sectors, the German electricity market 

is, in overall terms, the main transmitter of volatility spillovers. Over time, the 

German Netconnect Germany and the Dutch Title Transfer Facility arise as the 

two reference price series affecting the rest of the natural gas series. There is a 

change shown in the role of the crude oil series in the later years of the sample, 

with Brent having become a net receiver of volatility spillovers from West Texas 

Intermediate, since 2013. Regarding the coal series, the U.S. Central 

Appalachian and the European API2 index mutually impact upon one another 

without the former prevailing over the latter. Interestingly, the linkages between 

natural gas volatility and the rest of the commodity volatilities are shown to be 

the greatest. In particular, Title Transfer Facility may be on the way to becoming 
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the benchmark price for natural gas in Europe, overtaking National Balance 

Point. Last but not least, according to our results, natural gas may be replacing 

crude oil as a global benchmark for energy commodities. Thirdly, regarding the 

level of integration between European electricity markets, the most integrated 

markets appear to be those of Germany, France and the Netherlands, distantly 

followed by Italy, Spain and the Nordic block. Interestingly, spillovers are 

shown to be time-varying and seem to increase with economic growth as well as 

during periods of turmoil. 

The remainder of the paper is organized as follows. The next section summarizes 

the literature. Section 3 describes our data. Section 4 lays out the methodology 

we use to analyze volatility spillovers in European energy markets. Section 5 

discusses the empirical results and finally, Section 6 concludes. 

 

2. LITERATURE REVIEW 

Interest in energy markets’ dynamic relationships has been growing over recent 

years. The early research on the linkages across energy sectors used 

cointegration methods. For example, Emery and Liu (2002) analyze the 

relationship between electricity and natural gas futures prices in the New York 

Mercantile Exchange, California–Oregon Border and Palo Verde and find that 

electricity and natural gas futures prices are cointegrated. Interestingly, Asche et 

al. (2006) report that, in the UK, integration between the wholesale prices of 
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crude oil, natural gas and electricity took place only during that period when the 

natural gas market had been deregulated but was not yet physically linked to the 

continental European natural gas market through the interconnector. In a related 

study, Mohammadi (2009) examines the long-run relations and short-run 

dynamics among electricity retail prices and fossil fuels (coal, natural gas and 

crude oil) in the U.S. market. He finds evidence of significant long-run relations 

only between electricity and coal prices and some evidence of unidirectional 

short-run causality from coal and natural gas prices to electricity prices.  

Return and volatility spillovers have mainly been analyzed by means of Vector 

Autoregressive (VAR) and multivariate GARCH models. Ewing et al. (2002) 

examine the transmission of volatility between the oil and natural gas markets 

using two widely watched indexes, traded on AMEX, that represent the behavior 

of the stock prices of major companies in the oil and natural gas markets. Their 

findings indicate that there are significant volatility transmissions between both 

sectors and that these effects are asymmetric. Efimova and Serletis (2014) 

explore the interdependence of wholesale oil, natural gas, and electricity market 

prices and volatilities in the U.S.. The authors show that price spillovers are 

rather unidirectional, suggesting the existence of a hierarchy of influence, with 

oil above the gas and electricity markets. Serletis and Xu (2016) search for 

spillovers and interactions among oil, natural gas and coal in the U.S.. Their 

results show significant interactions among the three fuel returns, including 

spillovers from sudden return changes in one fuel to the return volatility of 
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another fuel. Balcılar et al. (2016) examine the risk spillovers between energy 

futures prices and Europe-based carbon futures contracts and find significant 

volatility and time-varying risk transmission from energy markets to the carbon 

market. Finally, Reboredo (2014) examines the dynamics of volatility 

transmission between the EUA and oil markets using a range-based volatility 

measure. His findings suggest there are no significant volatility spillovers 

between these markets.  

In the context of the relationships within energy sectors, the early papers also 

used cointegration techniques.4 For example, Siliverstovs et al. (2005) suggest 

that until the beginning of 2004 transatlantic gas markets were not integrated. 

Using intraday data, Schultz and Swieringa (2013) analyze price discovery in the 

gas markets of the UK, Belgium and the Netherlands and demonstrate that UK 

natural gas futures make the greatest contribution to price equilibrium in the 

longer term. Bunn and Gianfreda (2010) find integration in both spot and 

forward power markets of France, Germany, Great Britain, the Netherlands and 

Spain, although, surprisingly, rather less in forward than in spot markets. Finally, 

De Menezes and Houllier (2016) adopt a time-varying fractional cointegration 

analysis and find increased convergence in all month-ahead markets, however, 

overall electricity spot prices are not increasingly converging. 

                                                           
4 Some of the papers below also employ other techniques such as causality tests or principal 

component analysis.  
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Regarding volatility spillovers within energy sectors, Le Pen and Sévi (2010) 

find evidence of return and volatility spillovers between the German, Dutch and 

British forward electricity markets. Kao and Wan (2009) study market 

interactions in the U.S. and UK natural gas spot and forward markets and find 

asymmetric volatility spillovers in three of the four markets.  Jin et al. (2012) 

analyze the volatility transmission effects among three crude oil markets and 

observe that Dubai and Brent crude are highly responsive to market shocks, 

while WTI crude is the least responsive of the three benchmarks.  

Finally, fitting Markov Regime Switching models to six European electricity 

markets, Lindström and Regland (2012) conclude that integration was only 

partial in the period 2005-2010. In a similar vein, using Granger-causal 

networks, Castagneto-Gissey et al. (2014) explore time-varying interactions 

among 13 European electricity markets between 2007 and 2012, and find that a 

peak in connectivity concurred with the implementation of the Third Energy 

Package, but conclude that electricity market integration remains to be achieved. 

3. DATA 

We use daily data covering the period from November 2008 to June 2016 (1990 

observations).5 The data set was obtained from the Thomson Reuters database. 

As mentioned earlier, this work presents an extensive analysis covering 

                                                           
5 The starting point of the data set coincides with the first available data for the electricity series of 

the Netherlands and the Nordic market. 
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electricity, natural gas, emission allowances, oil and coal forward markets, at an 

international level. Specifically, we use six electricity price series associated 

with the following market areas: Germany (GER), France (FR), the Netherlands 

(NETH), Italy (ITA), the Nordic countries (NORD) and Spain (SPA); six natural 

gas price series, in particular, National Balance Point (NBP) located in the UK, 

the Belgian Zeebrugge (ZEE) trading point in Belgium, the Dutch Title Transfer 

Facility (TTF), the German Netconnect Germany (NCG) and German 

GASPOOL (GASP), and the Henry Hub (HH) in the U.S.; the European 

Emission Allowances (EUA); two crude oil price series: West Texas 

Intermediate  (WTI) and North Sea BFOE6 (Brent) and finally, two coal price 

series: the API2 index for coal imported into northwest Europe and Central 

Appalachian (CAPP) for the eastern U.S.. For the analysis in this study, all the 

price series quoted in a currency other than euros have been converted into euros 

using the corresponding currency conversion from the Thomson Reuters 

database. Furthermore, natural gas prices are converted into euros per megawatt 

hour (MWh). Following APX group, a conversion factor of 29.3071 kilowatt 

hours (kWh) per therm is used to transform therms into MWh. Figures 1a-1e 

show the evolution of the 17 series, grouped by sector. Generally, the figures 

suggest strong comovements within sectors but there are also divergent patterns 

in particular markets.  

                                                           
6 The BFOE basket includes Brent, Forties, Oseberg and Ekofisk. 
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Table 1 presents descriptive statistics for the corresponding return series, 

computed as the log-difference in daily prices.7 The mean of each return series is 

negative. Note that coal return series are the least volatile, as indicated by the 

standard deviation. Among natural gas series, Henry Hub return series is the 

most volatile, while NordPool return series is the most volatile of those on 

electricity. The return series generally exhibit positive skewness, except for the 

cases of EUA and coal, indicating that there exists an asymmetric tail extending 

towards more positive values. According to the kurtosis values, most of the 

distributions are clearly leptokurtic, namely, more peaked than the normal 

distribution, with just two exceptions: NordPool electricity and Henry Hub 

natural gas returns. Thereby, the measures for skewness and kurtosis suggest a 

rejection of the normality hypothesis and the Jarque–Bera statistic confirms this 

result. Neither the returns follow a t-Student distribution with different degrees 

of freedom (2,10,20), according to the Kolmogorov-Smirnov test results reported 

in Table 2A. As a next step we construct the daily volatility series. We compute 

the daily variance as the natural log of squared returns.  

  

                                                           
7 The results in Table 1A show that based on the Augmented Dickey and Fuller (1979) (ADF) test, 

the null hypothesis of a unit root cannot be rejected except for SPA and HHub series. The results 

based on the Phillips and Perron (1988) (PP) test show that the null hypothesis of a unit root cannot 
be rejected except for FRA, NETH, SPA, HHub and CAPP. Finally, the results based on the 

Kwiatkowski et al. (1992) (KPSS) test show that the null hypothesis of a stationary series is rejected 

in all cases. When the ADF, PP and KPSS tests are applied to the first difference of individual time 
series, the conclusion is that all the differenced series are stationary. Given these results, we treat all 

series as integrated of order one (I(1)) and decide to work with the corresponding return series, 

computed as the log-difference in daily prices. 
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Figure 1. Daily price series by sector 
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Figure 1b. Daily natural gas price series
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Figure 1c. EUA price series
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Figure 1d. Crude oil price series
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Figure 1e. Coal price series

 

 

Table 1. Descriptive statistics for returns (%) 
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SPA -0.13 2.36 -14.45 14.87 0.18 7.98 5307.35*** 

NBP -0.08 2.58 -13.70 14.85 0.17 5.94 2939.69*** 

ZEE -0.05 2.43 -12.60 13.51 0.30 5.26 2334.53*** 
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GASP -0.05 2.48 -14.69 14.79 -0.26 9.38 7339.38*** 

HHub -0.07 3.01 -11.91 13.93 0.32 1.66 264.541*** 

EUA -0.06 2.95 -12.87 13.41 -0.24 2.79 668.01*** 

Brent -0.01 2.16 -10.61 13.35 0.06 4.05 1363.80*** 

WTI -0.02 2.36 -13.98 13.99 0.07 4.64 1790.41*** 

API2 -0.01 1.34 -10.12 10.84 -0.21 10.66 9460.44*** 

CAPP -0.03 1.38 -11.89 8.32 -0.69 9.05 6961.02*** 

Note: This table shows the descriptive statistics for returns. The number of 

observations is 1990. Std. Dev, Min, Max and JB refer to the standard deviation, 

minimum, maximum and the Jarque-Bera normality test statistic, respectively. 
***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 

 

 

 

4. METHODOLOGY 

The analysis is based on the spillover index approach introduced by Diebold and 

Yilmaz (2009 and 2012), which builds on the seminal work on VAR models by 

Sims (1980) and the notion of variance decomposition. The starting point for the 

analysis is the following VAR(p): 




 

p

1i

t1iit yy                                                           (1) 

where )y,...,y,y(y t,Nt,2t,1t   is a vector of endogenous variables, i  is an 

NxN matrix of parameters to be estimated, and t  is a vector of independently 

and identically distributed disturbances with zero mean, and   covariance 

matrix. If the VAR model is covariance stationary, we can derive the moving 

average representation of model (1), which is given by: 
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






0i

itit Ay                                                                 (2)                

where 
pip2i21i1i A...AAA    , 0A  is the NxN identity matrix 

and 0Ai   for i<0. A transformation of coefficients in the moving average 

representations can be used to identify variance decompositions. Variance 

decomposition allows us to decompose the h-step ahead forecast error variance 

into own variance shares, the fraction of the forecast error variance in 

forecasting iy  due to shocks to iy , for i=1, 2, …, N, and cross variance shares, 

or spillovers, the fraction of the forecast error variance in forecasting  due to 

shocks to 
jy  for j=1, 2, …, N and ij  . 

Diebold and Yilmaz (2009) proposed using Cholesky decomposition to 

decompose the variance. However, Cholesky decomposition is sensitive to 

ordering. Diebold and Yilmaz (2012) resolve this ordering problem by exploiting 

the generalized VAR framework of Koop, Pesaran and Potter (1996) and Pesaran 

and Shin (1998), in which variance decomposition is invariant to the ordering of 

the variables. Variable j’s contribution to i’s H-step ahead generalized forecast 

error variance decomposition is given by:  

)eAAe(

)eAe(
)H(
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hh
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
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


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                                                  (3) 
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where   is the estimated variance matrix of the error vector  , 
jj  is the 

(estimated) standard deviation of the error term for the variable j, and ie  is a 

selection vector with one as the i-th element and zeros otherwise. The summation 

of the own and cross-variable variance contributions shares does not sum to one, 

thus we normalize each entry of the variance decomposition matrix as: 

 


N

1j ij

ij
ij

)H(

)H(
)H(

~




                                                    (4) 

where 1)H(
~N

1j ij  
  and NH

N

ji ij  1,
)(

~
 . 

The normalize variance decomposition allows us to compute the following 

volatility spillover measures: 

(1) The total volatility spillover index, which measures the contribution of 

spillovers of volatility shocks across all markets to the total forecast 

error variance:  










N

1j,i ij

N

ji,1j,i ij

)H(
~

)H(
~

)H(S





x 100                                                  (5) 

(2) The directional spillovers received by market i from all other markets j: 








 

N

1j,i ij

N

ji,1j ij

i

)H(
~

)H(
~

)H(S




x 100                                                 (6) 

(3) The directional spillovers transmitted by market i to all other markets j : 
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


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
 

N

1j,i ji

N

ji,1j ji

i

)H(
~

)H(
~

)H(S





x 100                                               (7) 

(4) The net spillover, namely the difference between the gross shocks 

transmitted to and those received from all other markets, which 

identifies whether a market is a receiver/transmitter of shocks from/to 

the rest of the examined markets. The net spillover index from market i 

to all other markets j is obtained by subtracting equation (6) from 

equation (7): 

)H(S)H(S)H(NS iii                                                   (8) 

(5) The net pairwise spillover between markets i and j, which shows which 

market is a receiver/transmitter of shocks between two markets: 

N

)H(
~

)H(
~

)H(NS
ijji

ij

 
 x 100                                            (9) 

Overall, the approach by Diebold and Yilmaz (2009 and 2012) provides 

measures of the intensity of linkages across markets and allows the 

decomposition of spillover effects. 

Spillover measures constructed upon forecasted variance decomposition statistics 

as the one proposed by Diebold and Yilmaz (2012) have been subject to criticism 

for example by Fengler and Gisler (2015). The reason is that traditional VAR 

representations assume marginal univariate volatilities in the data generating 
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process and lack covariances. This in principle could be solved for example by 

estimating Multivariate GARCH models using LASSO techniques or other 

strategies for shrinkage and selection, in order to avoid the curse of 

dimensionality of MGARCH models. Nevertheless, if we estimated a MGARCH 

process instead of our VAR model fitted on volatilities, we would face either of 

two problems, which indeed would make this alternative unfeasible. On the one 

hand, if we decided to fit a MGARCH model to our series and then to break 

down the variance of the forecasted errors into their main components, we would 

face an important theoretical problem. Namely, after the LASSO reduction of the 

parameter space we would likely end up (given our huge parameter space) with a 

non-positive definitive variance-covariance matrix. In other words, our models 

of the marginal volatilities would not satisfy the basic non-negative constraints 

that are expected from univariate GARCH processes. On the other hand, if we 

did not rely on FEVD, but instead we used the MGARCH coefficients to 

perform our spillover analysis, LASSO would force many of the MGARCH 

parameters to be zero, making it impossible to analyse the interaction between 

several pairs of markets in our sample, and possibly it would exclude from the 

analysis many markets (for example those of power with small interactions with 

the rest of the system). We acknowledge that our strategy may be potentially 

underestimating the magnitude of the spillovers by lacking the covariance 

structure in the estimation process, which deserves to be studied in further 

research. 
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5. RESULTS 

The spillover measures mentioned in the above section are calculated using a 

VAR(5) model, based on the Akaike Information Criterion (AIC), and a forecast 

horizon of ten steps.8  

5.1. Full sample analysis 

Table 2 reports the full sample cross market volatility spillovers. The diagonal 

elements represent the own-market spillovers while the off-diagonal elements 

measure the pairwise volatility directional spillovers. As can be observed, own-

sector volatility spillovers account for the highest share of forecast error 

variance, as the diagonal elements receive higher values compared to the off-

diagonal elements, and fluctuate between 92.1% for Nordpool electricity 

(NORD) and 45.3% for Title Transfer Facility natural gas (TTF). Nordpool 

electricity (NORD), Henry Hub natural gas (HH) and European Union Emission 

Allowances (EUA) are the most disconnected from the others, as shown by the 

high percentage of self-generated forecast error variance coming from each and 

the low contribution from/to others. These results are logical because, on the one 

hand, the Nordic markets, as opposed to the rest of electricity and natural gas 

markets considered in the electricity market and the Henry Hub natural gas 

trading point are non-European energy present study. For the electricity and 

                                                           
8 This forecast horizon is commonly used in previous literature (see Diebold and Yilmaz (2009 and 

2012)). 
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natural gas sectors, Figures 1a and 1b provide similar intuition. On the other 

hand, the link between EUA volatility and the rest of the commodities studied is 

not expected to be as strong as that between electricity and fossil oil volatilities. 

Regarding pairwise directional spillovers (the off-diagonal elements) in general, 

these are higher within than across sectors. Interestingly, the highest observed 

pairwise spillovers (around 25%) are observed between crude oil series. 

Consistent with previous literature, this result supports the hypothesis that the 

two global crude oil markets are integrated (Bachmeier and Griffin, 2006; 

Bentzen, 2007 and Jin et al., 2012). 

Due to the integration of global financial markets and the increasing trend in the 

use of commodities as investment assets, both eased by advanced technology, 

crude oil prices have captured the attention of many academics and practitioners. 

In a globalized context, they are considered to be key to explaining the levels of 

some related and other a priori seemingly unrelated assets, and even the levels of 

a number of macroeconomic variables. Therefore, crude oil prices have become 

a relevant variable to watch. The methodology employed in this work allows us 

to explore the relationships between each of these international reference price 

series for crude oil and the rest of the commodities involved in this study, in 

order to find out which one can be considered the benchmark, distinguishing by 

sector and even by market. Thus, according to the results displayed in Table 2, 

Brent would be the benchmark price for European electricity (3.3% volatility 

spillovers from Brent versus 2.4% from WTI), natural gas (2.7% versus 2%), coal 
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(2.4% versus 1.9%) and, to a lesser extent, emission allowances (0.6% versus 

0.4%). In contrast, WTI would be the benchmark crude oil price for the U.S. 

Henry Hub natural gas prices (2.5% volatility spillovers from WTI versus 0.9% 

from Brent) and U.S. CAPP coal prices (3% versus 1.2%). These results are 

consistent with the fact that Brent refers to the crude oil extracted from the North 

Sea off the coast of the UK whereas WTI crude oil is extracted from the interior 

of the United States, mainly in Texas. 

From the ‘‘contribution to others’’ row and the “contribution from others” 

column, it is observed that gross directional volatility spillovers are quite 

different. Four markets belonging to the gas sector (National Balance Point 

(NBP), Zeebrugge (ZEE), Title Transfer Facility (TTF) and Netconnec Germany 

(NCG)) are the biggest contributors and receivers of volatility spillovers, 

meaning that the linkages between natural gas volatilities and the rest of the 

commodity volatilities are the greatest. In particular, without leaving Table 2, we 

can observe the following: (i) NBP mainly contributes to TTF (14.4%) and ZEE 

(13.2%) natural gas volatility, the Netherlands (NETH) electricity volatility 

(3.8%) and API2 coal volatility (2%); (ii) ZEE mainly contributes to NBP 

(12.7%) and TTF (11.6%) natural gas volatility, NETH electricity volatility 

(3.4%) and API2 coal volatility (1.6%);  (iii) TTF mainly contributes to NCG 

(16.7%) and NBP (15.0%) natural gas volatilities, NETH electricity volatility 

(4.4%) and API2 coal volatility (2.5%), and (iv) NCG mainly contributes to TTF 
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(15.9%) and NBP (10.7%) natural gas volatility, NETH electricity volatility 

(4.0%) and API2 coal volatility (2.4%). 



 Table 2. Full sample volatility spillovers  

  Germ. France Nether. Italy Nordic Spain NBP ZEE TTF NCG GASP. Henry H. EUA Brent WTI API2 CAPP 

Contribution 

from others 

Germany 61.7 12.1 8.9 2.9 1.0 1.1 2.6 1.4 1.9 1.6 0.5 0.3 1.0 0.8 0.6 1.1 0.5 38.3 

France 12.0 66.6 7.7 2.2 0.8 1.5 1.7 0.9 2.1 1.3 0.6 0.3 0.8 0.5 0.3 0.3 0.4 33.4 

Netherlands 9.3 8.5 57.8 2.6 0.5 1.1 3.8 3.4 4.4 4.0 1.1 0.6 0.8 0.4 0.5 0.3 0.9 42.2 

Italy 4.5 3.9 3.7 74.5 0.3 2.0 2.6 1.3 1.6 1.8 0.3 0.4 0.4 1.2 0.7 0.5 0.3 25.5 

Nordic 1.1 0.8 0.4 0.4 92.1 0.2 0.6 0.4 0.4 0.3 1.5 0.2 0.3 0.3 0.1 0.8 0.1 7.9 

Spain 1.7 2.6 1.1 1.8 0.3 86.3 1.0 0.6 1.1 0.6 0.6 0.1 0.7 0.1 0.2 0.4 0.6 13.7 

NBP 2.1 1.4 2.6 1.6 0.3 0.4 47.2 12.7 15.0 10.7 1.7 0.3 0.5 0.8 0.5 0.9 1.3 52.8 

ZEE 1.0 0.8 2.3 1.0 0.3 0.3 13.2 52.0 13.0 10.6 2.0 0.3 0.4 0.5 0.3 0.7 1.1 48.0 

TTF 1.0 1.8 2.1 1.3 0.2 0.3 14.4 11.6 45.3 15.9 2.7 0.3 0.7 0.5 0.4 0.6 0.9 54.7 

NCG 1.0 1.1 2.6 1.0 0.1 0.4 11.1 9.9 16.7 50.6 2.0 0.3 0.5 0.8 0.4 0.9 0.6 49.4 

GASPOOL 0.4 0.6 1.2 0.5 1.3 0.5 3.5 2.8 4.9 4.0 78.3 0.1 0.4 0.1 0.4 0.6 0.2 21.7 

Henry Hub 0.3 0.3 0.3 0.5 0.2 0.4 0.4 0.3 0.7 0.5 0.3 87.6 0.5 0.9 2.5 0.7 3.7 12.4 

EUA 0.9 0.8 0.6 0.3 1.2 1.1 0.9 0.9 1.5 0.9 0.7 0.5 87.5 0.6 0.4 0.8 0.4 12.5 

Brent 0.5 0.4 0.3 1.2 0.5 0.1 1.1 0.5 0.5 0.9 0.2 1.1 0.4 63.9 25.9 1.4 1.1 36.1 

WTI 0.4 0.1 0.1 0.6 0.1 0.3 0.5 0.3 0.4 0.6 0.5 2.1 0.3 24.1 66.3 1.1 2.3 33.7 

API2 1.7 0.7 0.5 0.6 0.6 0.6 2.0 1.6 2.5 2.4 1.2 0.6 0.9 2.4 1.9 74.4 5.3 25.6 

CAPP 0.1 0.4 0.2 0.1 0.2 0.1 0.4 0.9 1.0 0.9 0.3 3.6 0.3 1.2 3.0 4.1 83.1 16.9 

Contribution to 

others  38.0 36.1 34.6 18.7 8.0 10.3 59.9 49.5 68.0 56.8 16.4 11.2 9.1 35.4 38.1 15.2 19.6 

 

Total 

spillover = 

30.9 

Net contribution 

(to-from)  
-0.3 2.7 -7.6 -6.8 0.1 -3.4 7.1 1.5 13.3 7.4 -5.3 -1.2 -3.4 -0.7 4.4 -10.4 2.7 

Note: Columns show the market that produces the shock and rows the market that receives the shock. The diagonal elements represent the own-market spillovers while 

the off-diagonal elements measure the pairwise volatility directional spillovers.  The model was estimated using the generalized variance decomposition on a daily 

frequency and 10-day step ahead forecast. The lag length was set at 5, following the AIC criterion. Volatility series were calculated as the natural log of squared returns. 

The total spillover equals the grand off-diagonal column sum, relative to the grand column sum including diagonals.



The “Net contribution” row, which indicates whether a market is a net receiver 

or transmitter of volatility spillovers, shows that TTF is the main net transmitter, 

followed by NCG and NBP (all natural gas markets). However, most of the 

spillovers of these net contributors are in fact given to other markets belonging 

to the same sector. Thus, TTF is shown to be the main transmitter of volatility 

spillovers to the rest of European natural gas hubs involved in the study with the 

only exception of Zeebrugge (which receives slightly more volatility spillovers 

from NBP than from TTF) being the corresponding index values of 15, 16.7, 4.9 

and 13, respectively for NBP, NCG GASPOOL and Zeebrugge. Additionally, 

TTF is the main transmitter to Henry Hub (0.7), too. These results confirm the 

idea that TTF is well on the way to becoming the benchmark price for natural 

gas in Europe, after having overtaken the long-established NBP market in 

trading volume. The volumes traded on the Dutch TTF surpassed those on the 

UK NBP already in 2014 and since then continued to gradually gain share in 

Europe. At the end of the third quarter of 2016, TTF is clearly ahead of the UK 

hub (EU, 2015; EU 2016a; EU 2016b).   

On the other hand, the API2 coal price index appears to be the main net receiver 

of volatility spillovers – mostly from the other coal series considered in this 

study, namely the U.S. CAPP, and, at a certain distance, from the TTF and NCG 

natural gas prices series. Following API2 as the main volatility spillover net 

receiver, we find electricity prices from the Netherlands (NETH) and Italy 

(ITA), which are mainly affected by electricity prices from Germany (GER) and 
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France (FR). It makes sense that these markets become the main net receivers of 

volatility spillovers given the typically regional nature of coal and electricity 

markets, as opposed to natural gas or crude oil markets which are much more 

globalized. 

According to the spillover effect results between the European electricity 

markets, the highest level of integration is shown to be among Germany, France 

and the Netherlands, followed distantly by Italy, Spain and, lastly, the Nordic 

market. These results can be explained by the fact that in 2008 the power spot 

markets for Germany9, France and Switzerland merged, establishing a company 

(PEX SPOT SE) under European law, based in Paris, France, with a branch in 

Leipzig, Germany.   

Finally, the total volatility spillover, appearing in the lower right corner of Table 

2, indicates that on average, across our entire sample, 30.9 percent of volatility 

forecast error in all markets comes from spillovers; which gives an idea of the 

global integration level. 

 

  

5.2. Rolling sample analysis 

 

The static analysis provides a good characterization of the spillovers over the 

full sample period. However, it is not helpful for understanding how spillovers 

                                                           
9 Germany and Austria formed one price zone. 
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change over time. In order to assess the time-varying nature of both total and 

directional spillovers, we estimate the VAR using a 200-day rolling window and 

10 days as the predictive horizon for the underlying variance decomposition.10  

Figure 2 displays the time-varying total spillover index. The plot reveals a large 

variability in the index and quite a high level of volatility spillovers across 

energy markets, fluctuating mostly between 49% and 61%.11  We observe some 

important jumps in volatility spillovers. To start with, volatility spillovers 

decrease from around 54% to 49% during the second half of 2009 and early 

2010, coinciding with the reduction of electricity demand due to the global 

economic crisis. The crisis impact started during the last quarter of 2008 and 

increased in 2009, with a 4.2% drop in the EU27 GDP, which led to a 4.7% 

drop in European electricity consumption: the first reduction since 1982 

(Lewiner, 2010). During economic growth periods, the demand for power 

generally increases, propelling electricity and fuel prices up together. In 

contrast, in a context of low economic growth, the links between types of fuel 

                                                           
10 One alternative to using rolling windows for generating dynamics in our system, would have been 
to  directly introduce the dynamics on the parameters of the system, for example within a Bayesian 

framework that considers a certain dynamic for the slope coefficients of the VAR representation. 

This would require, however, the selection of an a-priori distribution to shrinkage the parameter 
space of the Time-Varying VAR in the estimation process, due to the curse of dimensionality that 

would arise given our relatively large system (17 series). 
11 Notice that nothing prevents that the cross-spillover index remains below the total spillover 
statistic during the full period analyzed. The total spillover statistic comes from a VAR model fitted 

on the full sample, while the total spillover index consists of variance decomposition statistics 

extracted from VAR models fitted on subsamples. Naturally, the set of VAR models fitted on the 
subsamples fit the data better than the total sample VAR. For this reason the variance share of every 

series explained by others is larger in the dynamic exercise than in the static one. In the static case 

most of the explanation comes from the own variance share, and this means that the VAR model fits 
to a lesser extent compared to the subsample VARs. There is not contradiction in this finding.  
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weaken with power demand reduction. Aloui et al. (2014) provide evidence of 

an asymmetric dependence structure between crude oil and natural gas markets 

as they tend to comove during bullish periods but not during bearish periods. 

From 2010, when the worst of the global economic crisis appears to be over, 

spillovers increase towards almost 58% and stabilize in the 53-58% band until 

early 2014. The spillover index increases again during 2014 and early 2015, 

after which it declines sharply to around 50%. At the end of the sample, 

volatility spillovers are again around 55%. The notable increase of spillovers 

during 2014 and early 2015 coincides with the oil price drop, plummeting by 

about a third in June 2014 as U.S. shale oil and gas production increased and 

demand for oil from Europe and China decreased. Given that the commodities 

involved in this study are close substitutes for each other, it makes sense that in 

moments of turmoil, big shocks in one market affect other markets. 
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Figure 2. Rolling Total Volatility Spillover Index

 

Note: Daily total cross-spillover index. Window length equals 200 days. 

 

We then analyze the net spillovers, defined as the difference between the 

directional spillovers of one series transmitted to and received from all the other 

series, over time (see Equation (8)). Figure 3 shows that many series frequently 

switch between a net transmitting and a net receiving role. Confirming previous 

results, Italian electricity, Spanish electricity, EUA, Brent and both coal series 

(API2 and CAPP) are net receivers whereas French electricity, TTF natural gas 
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and NCG natural gas are net transmitters, on average. It is noteworthy that 

GASPOOL clearly changes its role from a net transmitter to a net receiver in 

2014. The reason behind this is the difference in terms of liquidity, which 

encourages traders to choose to hedge their physical German positions at the 

Dutch hub. Liquidity attracts liquidity and it seems to have stagnated at the 

German GASPOOL since 2014, growing at a much lower rate than the rest of 

the gas trading hubs.  

Figures 1A-1C in Appendix display net spillovers within sectors. Focusing on 

the power market, the German electricity market is, in overall terms, the one 

which seems to have most influence on the other European electricity markets, 

with the exception of the Nordic market. The markets with a mutual influence 

across the sample are shown to be Germany, the Netherlands and France, in line 

with their previously highlighted highest level of integration (Figure 1A). 

So-called risk management natural gas hubs, which are those providing the 

opportunity to trade all along the forward curve, are more likely to become 

benchmark hubs, having an influence on the others. From Figure 1B, only the 

Dutch TTF and the UK NBP have clearly become net transmitters of spillovers 

within the gas sector, particularly since 2014. It is precisely these hubs that trade 

quarters, seasons and years forward contracts in any quantity, beyond the 

month-ahead forward contract, which is the most commonly negotiated.  
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Within the oil sector, Figure 1C shows a greater number of volatility spillovers 

from WTI to Brent than vice-versa, mainly occurring since 2013. Regarding the 

coal sector, as shown in the same Figure 1C, the European API2 and the U.S. 

CAPP have a mutual impact on each other, alternating the role of net volatility 

spillover transmitter, over time.  

Finally, Figure 4 shows how the dynamic behavior, in net terms, evolves over 

time for each sector, i.e. tending towards transmitting (positive values) or 

receiving (negative values) volatility spillovers. There are four important 

observations one can make. Firstly, we see that positive net spillovers from coal 

are a rare occurrence. In fact, the coal sector is a net importer of volatility from 

other sectors for most of the sample period. Secondly, EUA switches between 

being a net receiver and a net transmitter, but, in general, it adopts a net 

receiving role. Thirdly, far larger net spillovers are transmitted by the gas sector 

than by the other sectors, followed by the power sector. Interestingly, the oil 

sector becomes primarily a net receiver from the gas sector and a net exporter to 

the EUA and coal sectors. Lastly, note the predominant role of natural gas 

markets in transmitting volatility spillovers to the others. The natural gas 

market, above all in the form of liquid natural gas, has grown considerably in 

recent years, which may explain how natural gas is becoming a global energy 

commodity, capable of affecting the price behavior of the rest of the power 

commodities. 



 

Figure 3. Net volatility spillovers from the market i to the total  

Note: Daily net dynamic spillovers from each market to the total. The time axis is presented in years. A 

positive number means that the market is a net transmitter of shocks in this period, while a negative number 

means it is a net receiver.



 Figure 4. Net volatility spillovers between sectors  

 

Note: Daily net dynamic spillovers between energy sectors. The time axis is presented in years. A positive number means that the market is a net transmitter of 

shocks in this period, while a negative number means it is a net receiver.   
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6. CONCLUSIONS 

 This study carries out an extensive analysis of the links between energy 

markets. In particular, it examines the extent and evolution of spillover effects 

between some major price references of electricity, natural gas, crude oil, coal 

and emission allowances, both across and within sectors. A total of 17 forward 

price series are used in the analysis, covering electricity (from Germany, the 

Netherlands, France, Italy, Spain and the Nordic market), natural gas (NBP 

from the UK, ZEE from Belgium, TTF from the Netherlands, NCG and 

GASPOOL from Germany and Henry Hub from the U.S.), crude oil (WTI 

from the U.S. and Brent from Europe), coal (API2 index from Europe and 

CAPP from the U.S.) and emission allowances (EUA from Europe), for the 

period from November 2008 to June 2016. The methodology employed allows 

us to embrace a joint comparison of all the above-mentioned series together 

with a pairwise analysis. A number of relevant results derived from this study 

are summarized as follows. 

Firstly, own-sector volatility spillovers account for the highest share of 

forecast error variance. Among all the commodity series, Nordic electricity, 

Henry Hub natural gas and EUA are the most disconnected from the others. 

Pairwise directional spillovers are higher within than across sectors and the 

highest observed pairwise spillovers are observed between crude oil series. 
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Secondly, under the assumption that crude oil prices have been traditionally 

considered the benchmark price for the rest of the commodities, Brent is 

shown to be the crude oil benchmark for European electricity, natural gas, coal 

and emission allowances, whereas WTI is so for U.S. natural gas and coal. 

Furthermore, when comparing sectors, the linkages between natural gas 

volatility and the other commodity volatilities are shown to be the greatest. 

Given the typically regional nature of coal and electricity markets, some 

electricity and coal series are shown to be the main receivers of volatility 

spillovers, as opposed to some crude oil and natural gas series which, as a 

result of belonging to much more globalized markets, become the main net 

transmitters. Interestingly, TTF might be on the way to becoming the 

benchmark price for natural gas in Europe, after having overtaken NBP in 

trading volume.  

In addition, the results achieved indicate that spillovers are time-varying and 

seem to increase with economic growth as well as during periods of turmoil. 

Within sectors, the German electricity market is, in overall terms, the main 

volatility spillovers transmitter. Over time, NCG and TTF arise as the two 

reference price series, affecting the rest of the natural gas series. It is clear that 

GASPOOL changes its role, after 2014, from net volatility spillovers 

transmitter to net volatility spillovers receiver, in favor of TTF and NCG. 

There is also a role change shown in the crude oil series during the later years 

of the sample. In particular, Brent becomes a net receiver of volatility 
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spillovers from WTI after 2013. Regarding the coal series, CAPP and API2 

have a mutual impact upon one another without the former prevailing over the 

latter. Another relevant conclusion is that natural gas seems to be overtaking 

crude oil as a global benchmark for energy commodities. 

Political implications are derived in terms of the level of integration between 

energy markets in the UE. Thus, the most integrated markets appear to be 

Germany, France and the Netherlands, followed distantly by Italy, Spain and 

the Nordic market. Greater efforts, in terms of harmonizing rules, increasing 

interconnections and designing new coupling initiatives, should be made to 

further integrate the Nordic market, Italy and Spain, whose low level of 

interconnection with France has led some analysts to refer to Spain as an 

“energetic island” in Europe (Knodt and Piefer, 2015). 

Furthermore, our results are of relevance to practitioners, as a correct valuation 

of the risks being assumed crucially depends on a proper knowledge of the 

shock-transmission mechanisms across markets and the way the information 

flows from one market to the others. If volatility is transmitted across markets 

in a a quite systematic way when arriving new information, this should be 

taken into account when devising trading strategies and particularly for risk 

hedging purposes.  
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APPENDIX 

 

Table 1A. Unit Root tests 

 Prices Returns 

 ADF PP KPSS ADF PP KPSS 

GER -2.386 -3.074 1.993 -27.939 -42.312 0.063 

FRA -3.218 -4.014 0.556 -22.252 -43.657 0.045 

NETH -2.752 -3.899 2.369 -26.777 -42.871 0.111 

ITA 2.733 -2.486 2.965 -31.963 -46.567 0.056 

NOR -2.969 -3.152 0.908 -12.047 -40.645 0.015 

SPA -3.768 -4.289 1.279 -8.056 -45.769 0.061 

NBP -1.650 -2.296 3.594 -28.257 -48.347 0.162 

ZEE -1.675 -2.250 3.737 -16.623 -48.731 0.163 

TTF -1.563 -2.280 3.717 -16.386 -41.882 0.185 

NCG -1.745 -2.202 3.618 -9.518 -44.603 0.181 

GASP -1.685 -2.200 3.681 -27.287 -49.449 0.156 

HHub -4.336 -4.269 0.958 -16.620 -49.655 0.085 

EUA -1.571 -1.973 2.523 -11.378 -43.681 0.051 

Brent -1.308 -1.152 5.065 -9.940 -47.182 0.222 

WTI -1.558 -1.501 4.485 -25.666 -45.761 0.118 

API2 -1.308 -1.881 3.588 -15.444 -41.189 0.097 

CAPP -2.485 -3.851 1.939 -9.612 -37.133 0.132 

This table shows the Augmented Dickey and Fuller (ADF), Philips Perron 

(PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests. The 

number of lags in the ADF test is determined following the Akaike 

Information Criteria. The critical values at 1%, 5% and 10% significance level 

of Mackinnon (1991) for the ADF and PP tests (process with intercept but 

without trend) are −3.43, −2.86 and −2.56, respectively. The critical values at 

1%, 5% and 10% significance level for the KPSS test (process with intercept 

but without trend) are 0.739, 0.463 and 0.347, respectively 
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Table 2A. Kolmogorov-Smirnov Statistic 

 df=2 df=10 df=20 

GER 0,477 

(<0.01) 

0,476 

(<0.01) 

0,467 

(<0.01) 

FRA 0,457 

(<0.01) 

0,449 

(<0.01) 

0,453 

(<0.01) 

NETH 0,484 

(<0.01) 

0,465 

(<0.01) 

0,484 

(<0.01) 

ITA 0,483 

(<0.01) 

0,481 

(<0.01) 

0,480 

(<0.01) 

NOR 0,458 

(<0.01) 

0,446 

(<0.01) 

0,441 

(<0.01) 

SPA 0,472 

(<0.01) 

0,466 

(<0.01) 

0,468 

(<0.01) 

NBP 0,491 

(<0.01) 

0,471 

(<0.01) 

0,466 

(<0.01) 

ZEE 0,473 

(<0.01) 

0,470 

(<0.01) 

0,476 

(<0.01) 

TTF 0,474 

(<0.01) 

0,471 

(<0.01) 

0,478 

(<0.01) 

NCG 0,470 

(<0.01) 

0,477 

(<0.01) 

0,474 

(<0.01) 

GASP 0,465 

(<0.01) 

0,466 

(<0.01) 

0,462 

(<0.01) 

HHub 0,468 

(<0.01) 

0,467 

(<0.01) 

0,463 

(<0.01) 

EUA 0,458 

(<0.01) 

0,456 

(<0.01) 

0,480 

(<0.01) 

Brent 0,481 

(<0.01) 

0,468 

(<0.01) 

0,466 

(<0.01) 

WTI 0,477 

(<0.01) 

0,466 

(<0.01) 

0,466 

(<0.01) 

API2 0,476 

(<0.01) 

0,482 

(<0.01) 

0,496 

(<0.01) 

CAPP 0,482 

(<0.01) 

0,479 

(<0.01) 

0,505 

(<0.01) 

This table shows the Kolmogorov-Smirnov statistic to test weather each series 

follows a t-student distribution with different degrees of freedom (df). P-

values in brackets. 
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Figure 1A. Net volatility spillovers within sectors (power)
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Figure 1B. Net volatility spillovers within sectors (gas)
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Figure 1C. Net volatility spillovers within sectors (oil and coal)

 

Note: Daily net dynamic spillovers within sectors. The time axis is presented in years. A positive number means that the market is a net transmitter of 

shocks in this period, while a negative number means it is a net receiver.   


