
ARTICLE

A retinoic acid-dependent stroma-leukemia
crosstalk promotes chronic lymphocytic leukemia
progression
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In chronic lymphocytic leukemia (CLL), the non-hematopoietic stromal microenvironment

plays a critical role in promoting tumor cell recruitment, activation, survival, and expansion.

However, the nature of the stromal cells and molecular pathways involved remain largely

unknown. Here, we demonstrate that leukemic B lymphocytes induce the activation of reti-

noid acid synthesis and signaling in the microenvironment. Inhibition of RA-signaling in

stromal cells causes deregulation of genes associated with adhesion, tissue organization and

chemokine secretion including the B-cell chemokine CXCL13. Notably, reducing retinoic acid

precursors from the diet or inhibiting RA-signaling through retinoid-antagonist therapy

prolong survival by preventing dissemination of leukemia cells into lymphoid tissues. Fur-

thermore, mouse and human leukemia cells could be distinguished from normal B-cells by

their increased expression of Rarγ2 and RXRα, respectively. These findings establish a role for

retinoids in murine CLL pathogenesis, and provide new therapeutic strategies to target the

microenvironment and to control disease progression.
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Chronic lymphocytic leukemia (CLL), the most frequent
adult leukemia in Western countries, is characterized by
the expansion of mature CD5+ B cells in protective

microenvironmental niches of secondary lymphoid organs
(SLOs) and bone marrow (BM). In these tissues, the interactions
between leukemia and cells of the microenvironment promote
tumor cell survival, chemoresistance, and disease progression1–3.
The non-hematopoietic compartment of SLOs comprises differ-
ent stromal cell subsets including follicular stromal cells, whose
role in CLL pathogenesis is still largely unknown4–7. Under-
standing how the stromal compartment evolves and which
molecular pathways are involved in supporting tumor cell sur-
vival and expansion is crucial to elucidate the contribution of
stromal cells in CLL pathogenesis and to design novel therapeutic
strategies aiming to target stromal microenvironmental interac-
tions. Stromal cells play a crucial role in organizing lymphoid
compartments and in regulating lymphoid homeostasis through
the secretion of chemokines and the deposition of the extra-
cellular matrix (ECM), a tri-dimensional scaffold that supports
adhesion and locomotion of normal and malignant lymphocytes
and acts as a reservoir of signaling molecules and growth factors8–
11. Aberrant stromal remodeling has been also differentially
associated with lymphoid malignancies, including CLL; although
the molecular mechanisms underlying it remain elusive.

Retinoic acid (RA), the active metabolite of Vitamin A, is an
essential molecule required for vertebrate development and tissue
homeostasis12–15. RA binds to nuclear receptors and regulates
numerous biological processes including cellular differentiation,
adhesion, migration, and tissue remodeling16–19. In cancer, reti-
noids and their synthetic analogs are used in the pre-clinical and
clinical settings for the treatment of hematologic malignancies
and other types of cancer with the rational to induce terminal
differentiation and/or apoptosis20,21. On the contrary, emerging
data indicate that genetic ablation of RA-nuclear receptors or
administration of retinoid-antagonist therapy has also been
effective in pre-clinical models of breast cancer, allograft rejec-
tion, and myelofibrosis, although these approaches have not yet
been reported in clinical setting or for the treatment of lymphoid
malignancies. Contrary to the pro-differentiation effect of reti-
noid-analogs, the inhibition of RA-signaling was shown to affect
multiple pathways ranging from reduced chemokine secretion,
lymphocyte migration, and stromal remodeling22–24.

Herein, we set out to characterize the evolution of the stromal
microenvironment during CLL progression and identify the
molecular pathways involved. We show that leukemia induces RA
synthesis and signaling in the stromal microenvironment, and
that inhibition of RA-signaling in stromal cells affects genes
associated with adhesion, tissue organization, and chemokine
secretion. We further demonstrate that blocking RA-signaling
controls disease progression and prolongs survival, thus opening
to novel potential therapeutic strategies to treat CLL by targeting
stroma–leukemia interactions through inhibition of retinoid
signaling.

Results
Leukemia induces tissue remodeling and retinoid metabolism.
Recent work in mice demonstrated that few hours after injection
into wild-type recipients, Eμ-TCL1 CLL cells migrate to follicles
in a CXCR5-dependent manner and engage a cross-talk with
follicular stromal cells via LTβR, resulting in CXCL13 secretion
by stromal cells, leukemia activation, and proliferation25. To
investigate the molecular pathways activated upon stroma-
leukemia cross-talk, including those implicated in chemokine
secretion, we performed a microarray analysis using mRNA
purified from a murine spleen stromal cell line (mSSC) cultured

for 48 h with either murine Eμ-TCL1 CLL cells or control splenic
B cells (Fig. 1a). Up-regulated transcripts in stromal cells cultured
with Eμ-TCL1 CLL cells revealed significant enrichment for
interferon regulatory factor (IRF) targets, genes related to extra-
cellular region, exosomes, and inflammatory responses (Fig. 1a
and Supplementary Fig. 1). Up-regulated IRF targets contain the
bone marrow stromal cell antigen 2 (Bst2) gene, a membrane
protein overexpressed in cancer (Supplementary Fig. 1)26. We
also found the over-expression of actin alpha 2 smooth muscle
(Acta2/αSma), a mesenchymal marker characteristic of cancer
associated fibroblasts (Supplementary Fig. 1)27. Among deregu-
lated genes annotated for extracellular region, we also discovered
the up-regulation of Aldh1a1, Cyp1b1, and Aldh3b1, all genes
encoding for RA-synthetizing enzymes (Supplementary Fig. 1).
Differentially expressed genes were overall found significantly
enriched for extracellular matrix (ECM) components annotated
in the Matrisome-DB atlas, which represents an effort toward the
characterization of global composition of the ECM28. They are
categorized in core matrisome genes, comprising ECM glyco-
proteins, collagens and proteoglycans, and ECM-associated pro-
teins including ECM-affiliated proteins, ECM regulators and
secreted factors (Fig. 1a). In addition, we found down-regulation
of gene-signatures related to cell cycle and cell division, indicating
that leukemic cells do not promote stromal cell proliferation
(Fig. 1a). To test if human CLL cells induce similar changes in
stromal cells, we cultured human leukemic cells, negatively pur-
ified from the peripheral blood of eight CLL patients with stable
disease, with the mSSC line for 24 h. qPRC analysis revealed a
differential induction of genes belonging to retinoid synthesis
(Aldh1a1, Cyp1b1,and Rdh10), fibroblast activation (αSma), and
ECM (Prelp, Lamininβ2, Nidogen2) (Supplementary Fig. 2a).
Previous work by Paggetti et al., showed that human CLL-derived
exosomes induce the transition of stromal cells into αSMA+

cancer-associated fibroblasts29, a phenotype that is, at least in
part, induced in stromal cells by Eμ-TCL1 CLL cells (Supple-
mentary Fig. 1). The re-analysis of the dataset published by
Paggetti revealed induction in stromal cells of genes belonging to
inflammatory process, interferons, and cell cycle, all signatures
that we also found deregulated in stromal cells upon mouse
leukemic cell culture. Notably, of the commonly expressed genes
in the two datasets, a large fraction was similarly up-regulated in
stromal cells (Supplementary Fig. 2b).

To confirm that Eμ-TCL1 CLL cells can indeed modulate the
RA-signaling pathway in the microenvironment, we exploited an
in vitro system, in which F9 cells, expressing LacZ under the RA
responsive elements (RARE) are cultured with leukemic or
control B cells (Fig. 1b). We found that βgal activity, indicative of
the RA-signaling activation, was significantly higher in the
presence of leukemic, as compared to control B-cells (Fig. 1b).
To confirm that this effect was RA-dependent, we treated the
cultures with the RA-signaling inhibitor BMS49330, and found
that this significantly abrogates βgal activity, and thus RA-
signaling (Fig. 1b, right panel).

We then assessed whether modulation of RA-activity in
responder cells could be the consequence of a paracrine effect
of retinoids secreted by Eμ-TCL1 CLL cells. To this end, we
performed Aldefluor staining to determine the Aldehyde
dehydrogenase (ALDH) activity that is required to produce
retinoic acid. We found that a fraction of Eμ-TCL1 CLL cells
possesses ALDH activity, a phenotype that was specifically
abrogated using the ALDH inhibitor DEAB (Supplementary
Fig. 3).

Inhibiting RA-signaling prevents CLL-induced gene expres-
sion. We then assessed the effect of RA-signaling inhibition in
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stromal cells. To this end, we performed RNA-seq on stromal
cells (mSSC line) treated with BMS493 or control vehicle
(Fig. 2a). Transcriptome analysis revealed a significant down-
regulation in the expression of genes involved in cellular adhe-
sion, chemokine secretion, ECM-receptor interactions, and
migration (Fig. 2a). Among the down-regulated transcripts, we
validated a set of genes involved in retinoid metabolism (e.g.,
Cyp26b1, Aldh1a1) cellular adhesion (e.g., Vcam-1 and Itgα1),
migration (e.g., Cxcl12), and genes involved in stromal cell acti-
vation (e.g., Acta2/αSma) (Fig. 2a). Ablation of RA-signaling also
significantly reduced the expression of genes involved in ECM
remodeling, including Loxl2, Lama5, Nidogen2, Col1a1, Col3a1,
and Col4a6 (Fig. 2a).

Notably, we found that 30% of the genes deregulated in stromal
cells after leukemia co-culture were modulated in the opposite
manner following BMS493 treatment of stromal cells (Fig. 2b),
confirming that leukemia modulates the expression of a large
fraction of genes in stromal cells via RA nuclear receptor-
signaling. Based on the transcriptomic analysis of murine stromal
cells treated with BMS493, we decided to functionally validate the
possibility to alter stroma–leukemia interactions and cellular
adhesion through inhibition of retinoid-signaling in stromal cells.
To this end, we first treated stromal cells alone with the BMS493
inhibitor for 72 h, and then added to the culture murine Eμ-TCL1
CLL cells for the remaining 18 h in the absence of the inhibitor.

We then quantified the percentage of murine Eμ-TCL1 CLL cells
adherent to the monolayer of stromal cells. The results showed
that RA-signaling inhibition reduces adhesion of murine
leukemic cells to the stroma as compared to control (Fig. 2c).
To further test this under conditions that more closely mimic the
in vivo treatment where the inhibitor would target both leukemic
and stromal cells, we set up a 3D co-culture model. For this
purpose, we aggregated stromal and leukemic cells to form a
spheroid in the presence of BMS493 or control vehicle (Fig. 2d).
Under these conditions, we observed that while the overall
number of stromal cells did not significantly change during the
3D co-culture period, the number of CLL cells that took part to
the leukemic aggregate was significantly reduced in BMS493-
treated spheroids (Fig. 2d). These functional data are consistent
with the RNA-seq results, and indicate that retinoid-signaling
strengthen stroma–leukemia interactions by promoting cellular
adhesion.

Enhanced RA activity contributes to CXCL13 expression. As
retinoids have been implicated in regulating different cellular
processes and target genes, including Cxcl13 expression31, we
hypothesized that by strengthening stroma–leukemia interac-
tions, the enhanced RA-activity may contribute to induce Cxcl13
in stromal cells of the microenvironment.
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Gene expression profile analysis revealed a significant increase
in Cxcl13 mRNA levels in stromal cells (mSSC) cultured with
leukemia as compared to control cells (Fig. 3a). Notably,
treatment with the RA-signaling inhibitor BMS493 abrogated
the induction of Cxcl13 and Rarβ, a known target of the RA-
signaling (Fig. 3a). To corroborate these findings in a more
controlled setting, we cultured stromal cells in a vitamin A

deficient media, either in the presence or absence of exogenous
RA. Under these conditions, we found significant induction of
Cxcl13 and Rarβ expression by RA, which was blocked by
BMS493 treatment (Fig. 3b).

We then tested whether RA inhibition can affect the
distribution of CXCL13 in vivo. To this end, we assessed
CXCL13 in the spleen of wild-type mice following exposure to
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BMS493. The analysis revealed a consistent reduction of CXCL13
distribution particularly in the outer follicular region correspond-
ing to the marginal reticular cell layer that also appeared more
disorganized as compared to controls (Fig. 3c). Together, these
findings indicate that leukemia promotes a retinoic acid-enriched
microenvironment that contributes, at least in part, to CXCL13
induction.

CXCL13+ stromal cell expansion during disease progression.
Having established that leukemia promotes increased retinoid
metabolism, and that RA controls CXCL13 in stromal cells, we
then assessed the distribution of CXCL13 during leukemia
development. To this end, we performed confocal mosaic imaging
in the spleen of Eμ-TCL1 transgenic mice or in adoptively
transplanted mice with low, intermediate, and high leukemia
content. The analysis revealed different patterns of CXCL13
(Fig. 4a), and showed that in a large fraction of mice (50%), the
distribution of CXCL13 was increased in different leukemic
contexts, and showed a predominant ring-like pattern in the
outer region of the follicle corresponding to the area occupied by
marginal reticular cells (Fig. 4a, pattern #1). In a fraction of
transplanted mice, the CXCL13 meshwork appeared increased,
and diffused throughout the entire white pulp (Fig. 4a, pattern
#3). Co-localization experiments revealed that a large fraction of
CXCL13+ stromal cells did not express the FDC marker CD35
(Supplementary Fig. 4a). Co-staining with MOMA-1, a marker of
marginal metallophilic macrophages revealed no contribution of
this cell type to CXCL13 protein (Supplementary Fig. 4b).

To further assess whether murine CLL cells can induce
CXCL13 in stromal cells, we injected Eμ-TCL1 leukemic cells
into Rag2−/−γc−/− mice lacking CXCL13 and mature follicular
dendritic cells (FDCs)32. We found that, besides being capable of
inducing the formation of small foci of CD35+ FDC networks,
leukemic cells promoted the formation of large areas of CXCL13+

stromal cells not expressing mature FDC markers (Fig. 4b). Based
on this, we tested whether the increase in CXCL13 signal
observed during leukemogenesis may result from the prolifera-
tion of CXCL13+ stromal cells, or from the induction of CXCL13
in resident stromal cells not expressing the chemokine. To this
end, we took advantage of the Pdgfrαgfp/+ knock-in mouse model
in which the Pdgfrα promoter drives the expression of nuclear
green fluorescence protein (GFP)33. In this model, a large
majority of T-cell zone fibroblastic reticular cells (FRCs) and
marginal reticular cells (MRCs), and a fraction of FDCs can be
visualized by nuclear GFP expression, thus allowing a more
precise visualization of non-hematopoietic stromal cells. Immu-
nofluorescence analysis performed on Pdgfrαgfp/+ mice trans-
planted with Eμ-TCL1 leukemic cells revealed that the number of
CXCL13+GFP+ cells over the total GFP+ population increased
during disease progression (Fig. 4c). To discriminate between
induction of CXCL13 in stromal cells previously negative for this
chemokine or active stromal cell proliferation, we injected mice
with 5-ethynyl-2 deoxyuridine (EdU). The analysis revealed no
statistically significant differences in the proliferation of GFP+

stromal cells and consistently with this, we observed that despite
the increase in spleen cellularity due to leukemia infiltration, the
number of GFP+ stromal cells per field diminished instead of
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increasing, further suggesting that CXCL13 expansion likely
results from induction rather than from an increase in stromal
cell proliferation. This is consistent with the microarray data,
which revealed a down-regulation of genes related to cell cycle
and cell division (Fig. 1a), further indicating that leukemic cells
do not promote stromal cell proliferation. Altogether, these data
indicate that leukemic cells induce a CXCL13-rich stromal
microenvironment that favors the recruitment and accumulation
of neoplastic cells in the spleen.

Stromal cell remodeling accompanies leukemogenesis. Given
that FDCs are also involved in secreting CXCL13, we then
assessed the distribution of these specialized stromal cells in Eμ-
TCL1 transgenic mice and in wild-type mice transplanted with
leukemic cells, at different stages of disease progression. Confocal
mosaic imaging demonstrated a progressive reduction or loss of

CD35+ FDCs networks in a large fraction of mice analyzed
(Supplementary Fig. 5a, pattern #1 and #4). This phenotype was
already evident in mice with intermediate (10–30%) percentage of
leukemia in the peripheral blood, and it was maintained in the
majority of mice with high (≥50%) leukemia. In a fraction (35%)
of mice, however, we found persistence or expansion of dis-
organized CD35+ FDCs clusters (Supplementary Fig. 5a pattern #
2 and #3). Altogether, these findings further demonstrate that
leukemic cells promote CXCL13 in follicular stromal cells dif-
ferent from conventional FDCs.

We then evaluated the pattern of follicular stromal cells during
the course of human CLL. We stained human CLL splenic
biopsies with CD21 and MAdCAM-1 to visualize FDCs and
MRCs, respectively, which are known to express CXCL13. The
analysis revealed a disorganized pattern of FDCs and MRCs, and
the presence of CXCL13+ reticular stromal cells in all CLL
spleens tested (Supplementary Fig. 5b and c).
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Immunohistochemistry analysis also revealed the presence of
CXCL13 in lymph node (LN) biopsies of CLL patients, and a
significant increase of CXCL13+ cells during disease transforma-
tion (Supplementary Fig. 5d). Together, these findings demon-
strate that CLL cells induce remodeling of the splenic follicular
stromal compartment, and reveal that CXCL13 is modulated
during the evolution of murine and human CLL.

Targeting RA-signaling prolongs leukemia survival. Taken
together our data suggest that inhibition of the RA-signaling
could affect disease progression by altering the stroma/
ECM–leukemia interactions and the chemokine networks. Thus,
to test the possibility that inhibition of this signaling pathway
may impact murine CLL progression, we exploited several
approaches to block RA signaling in vivo. First, we generated
mice deficient in vitamin A (VAD mice) from the day of birth34

and transplanted them at 2 months of age with Eμ-TCL1 leu-
kemic cells. We observed that leukemia engraftment was strongly
suppressed in the spleen and bone marrow (BM) of VAD mice, as
compared to mice fed with a control diet (Fig. 5a). We then
established a more physiological model, in which retinoids were
gradually depleted over time. To this end, we fed 2 months old
Eμ-TCL1 mice with a vitamin A deficient (VAD) or control diet
before leukemia onset. Long-term survival analysis revealed that
VAD Eμ-TCL1 mice survived longer (Fig. 5b), and this corre-
sponded to significantly reduced levels of retinoic acid precursors
as compared to control mice (Fig. 5b).

We then aimed to establish the potential of retinoid-antagonist
therapy on leukemia progression. We first treated wild-type mice
with the BMS493 or control vehicle 1 week after the injection of
1 × 107 leukemic cells. We found that inhibition of RA-signaling
significantly delayed leukemia onset and reduced tumor expan-
sion (Fig. 5c). In a separate cohort of mice analyzed, we found
that treatment diminished the accumulation of leukemic cells in
the spleen, bone marrow, peritoneal cavity, and peripheral blood
(Fig. 5c). Notably, annexin-V and Ki67 staining did not reveal
differences in apoptosis or proliferation, respectively, in mice
treated as compared to controls (data not shown). Next, we
performed a survival curve upon BMS493 treatment. The results
show that wild-type mice engrafted with Eμ-TCL1 CLL cells and
treated with BMS493 (n= 10) survive significantly longer as
compared to controls (Fig. 5d). Consistent with this, echogra-
phical measurement of the spleen size during disease progression
(day 35) revealed that at this stage treatment with
BMS493 significantly reduced infiltration of leukemic cells in
the spleen (Fig. 5d). These findings demonstrate that blocking
retinoid-signaling may represent an effective strategy to control
murine CLL progression.

Blocking RA-signaling controls peritoneal leukemia expansion.
Fat-associated lymphoid clusters (FALCs) are atypical lymphoid
tissues of the peritoneal cavity that are induced by inflammation
and contain different cell subsets including CXCL13+ non-
hematopoietic stromal cells35,36. Given that leukemic cells from
Eμ-TCL1 mice share features of peritoneal B-1 cells, a cell type
which is also present in the FALC, we hypothesized that perito-
neal FALCs may represent supportive niches for murine CLL
expansion. To test this, we first assessed the homing of leukemic
cells to the omental FALCs by injecting green-labeled Eμ-TCL1
CLL cells into the tail vein of wild-type recipients. Immuno-
fluorescence confocal analysis performed 48 h post injection
revealed a substantial accumulation of murine CLL cells in this
site (Supplementary Fig. 6a). We then analyzed the peritoneal
cavity of Eμ-TCL1 transgenic mice with a high percentage of
leukemia cells in their peripheral blood. In these mice, we found

enlarged omental FALCs, and an increased number of mesenteric
FALCs containing a high percentage of CD19+CD5+ leukemic
cells as compared to control mice in which mesenteric FALCs
were barely detected (Supplementary Fig. 6b and c). Moreover,
FALCs from leukemic mice were significantly larger and char-
acterized by a considerable expansion of CXCL13+ cells dis-
tributed within a network of collagen-IV (Supplementary Fig. 6b
and c).

Interestingly, gross morphology analysis revealed that inhibi-
tion of RA-signaling significantly suppressed induction of
mesenteric FALCs in transplanted mice (Supplementary Fig. 6d).
Altogether, these findings demonstrate that peritoneal FALCs are
supportive niches for the growth of leukemia, and that
antagonizing retinoid-signaling controls FALC formation and
disease expansion in the peritoneum.

Increased expression of RA-nuclear receptors in human CLL.
Previous work showed that RA induces the expression of different
target genes including RA-nuclear receptors37. Based on these
findings, we hypothesized that increased RA activity within the
microenvironment may promote induction of RA-associated
genes in responder leukemic cells. To test this hypothesis, we first
assessed the expression of genes belonging to the RA pathway in
CLL cells freshly isolated from the spleen of Eμ-TCL1 mice.
Among different genes tested, we found that expression of Rarγ2
was significantly increased in leukemia as compared to control
splenic B cells (Fig. 6a).

We then analyzed expression of RA-nuclear receptors in a
previously published human data set of CLL patients38, and
found that human CLL cells isolated from the peripheral blood
express higher levels of RXRα as compared to normal B cells
(Fig. 6b, left panel). Furthermore, we screened 60 human primary
CLL cases with different genomic aberrations, and found a
significant increase in RXRα expression in CLL cells of patients
with 17p and/or 11q deletions and worse prognosis, as compared
to those with 13q deletion and better outcome (Fig. 6b, right
panel). Moreover, the RXRα expression is independent from
other parameters such as immunoglobulin heavy chain variable
region (IGHV) gene mutational status, CD38 and ZAP70
expression (Fig. 6c). These data demonstrate that RA nuclear
receptors are up-regulated in human CLL cells, and that their
expression levels identify a subset of patients with bad prognosis;
and that human CLL cells are equipped to respond to endogenous
retinoids.

Discussion
In mouse and human CLL, the crosstalk between leukemia and
the surrounding microenvironment promotes tumor cell survival
and disease progression2,3.

Consistent with the notion that leukemic cells modify the
microenvironment, gene expression profile (GEP) analysis of
stromal cells cultured with murine Eμ-TCL1 CLL cells revealed
deregulation of genes involved in inflammation and stroma/
extracellular matrix remodeling. Interestingly, our findings revealed
that human leukemic cells also deregulate similar gene signatures,
thus indicating commonalities between mouse and human CLL
cells. Among those genes, we found up-regulation of αSma/Acta2, a
marker of activated and cancer-associated fibroblasts, and Nidogen-
2, Lamb2, and Prelp, which encode for ECM-associated proteins. In
addition, PRELP and its family member FMOD are two ECM
secreted glycoproteins overexpressed in CLL cells, and whose role
in CLL remains unknown39,40. The analysis also revealed that
mouse leukemic cells, and to some extent human CLL cell as well
promote retinoid-synthesis and signaling, and that retinoids con-
tribute to tissue remodeling and disease progression in mouse
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models. Indeed, a murine stromal cell line treated with the RA-
signaling inhibitor showed repression of genes involved in adhe-
sion, ECM–cell interactions, migration and tissue remodeling.
Interestingly, our findings indicate that 30% of the genes deregu-
lated in the stromal cell line after leukemia co-culture are controlled
by RA nuclear receptors, thus indicating that activation of retinoid
signaling upon stroma–leukemia interactions are responsible for
regulating a large subset of stromal-associated genes including
genes encoding for chemokines.

Our work in mice demonstrates that the CLL-dependent
induction of Cxcl13 in stromal cells is, at least in part, retinoid-
dependent, since treatment with the RA antagonist BMS493
prevents Cxcl13 induction. In line with this, treatment of spleen
stromal cells with RA induces Cxcl13 expression. Consistent with
our results and with previous findings indicating that retinoids
regulate Cxcl13 expression31,41, inhibition of RA-signaling in
mice causes a slight but consistent reduction and disorganization
of spleen CXCL13 distribution.
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In agreement with our in vitro findings, the distribution of
CXCL13 also increased during disease progression. This was
particularly evident in transplanted mice, in which CXCL13+

stromal cells are spread throughout the white pulp, and in the
outer follicular region corresponding to the marginal reticular cell
layer where they form a thicker ring of stromal cells positive for
this chemokine. Although we found that CXCL13 was also
expressed by FDCs, our results indicate that to a major extent
follicular stromal cells different from FDCs express CXCL13
during leukemia progression. This is further supported by the fact
that the signal of CXCL13 remained abundant in stromal cells not
expressing FDC markers. Our findings revealed that in mice, the
expansion of CXCL13+ cells result from induction of CXCL13 in
stromal cells previously negative for this chemokine, rather than
an increase in stromal proliferation. However, we cannot exclude
the possibility that a slow-rate proliferation of CXCL13+ stromal
cells takes place during disease progression and may contribute to
CXCL13 expansion. Of note, recent work showed that during
inflammation, B-cell follicles expanding into the T-cell zone
convert pre-existing stromal cells, positioned at the B-T border,
into CXCL13+ secreting cells42. These cells, different from con-
ventional T-zone FRCs, were termed versatile stromal cells. A
similar mechanism might operate during murine CLL progres-
sion and contribute to observed phenomena, where leukemic cells
expanding into the T-cell zone change the phenotype of local
stromal cells.

Similar to the mouse model, we found altered stromal com-
position and loss of FDCs in the spleen of CLL patients. We also
observed the presence of CXCL13 in human CLL spleen and
lymph nodes, and that the number of CXCL13+ cells increases
during disease transformation. Our findings demonstrate that
leukemia progression induces changes in the follicular stromal
microenvironment, and indicate that FDCs are dispensable for
the late phase of CLL progression, and likely play a role only in
the early phase, as previously proposed25.

Based on the GEP data, we hypothesized that preventing RA-
signaling could be a strategy to interfere with stroma–leukemia

interactions at multiple levels. Indeed, our results showed that
mice fed with a VAD diet or treated with an RA-signaling inhi-
bitor survive longer as compared to controls, and this phenotype
appears to be the result of reduced accumulation and expansion
of leukemic cells in lymphoid tissues. Although our data point to
a role of retinoids in modulating stroma–leukemia interactions at
multiple levels, we cannot exclude that RA-signaling inhibition
may also have a cell autonomous effect on leukemic cells. This
hypothesis is based on findings showing that RA-signaling plays a
role in the development of marginal zone B cells and B1 cells43.

Our findings also reveal that mesenteric FALCs represent
additional leukemia-supportive niches, and that retinoid-
antagonist therapy prevents FALC formation, and consequently
the expansion of leukemia in the peritoneal cavity. These findings
are in line with the notion that RA was shown to affect the
migration of B cells to the gut by inducing α4β7 integrin43.
Furthermore, given the high retinoids content of the peritoneal
adipose tissue, it is also likely that RA-signaling impacts on
Cxcl13 expression, homing of leukemia to the peritoneal cavity,
and consequently FALC formation. Of note, peritoneal infiltra-
tion and enlargement of abdominal LNs occurs in CLL and other
blood malignancies44. Although several reports have linked
omental FALCs with solid tumor metastasis, it is unknown
whether FALCs are induced in human CLL, and function as
supportive niches promoting disease progression.

Based on our findings in mice, we propose that leukemic cells
are capable to increase retinoic acid activity in the micro-
environment. In addition, our work also indicates that upon
interaction with mouse and human leukemic cells, stromal cells
can up-regulate the enzymes involved in RA synthesis, which can
act in an autocrine and paracrine fashion to stimulate multiple
pathways, including ECM–leukemia interactions, adhesion, and
chemokine secretion, and possibly in combination with other
pathways such as toll-like receptor signaling, as previously
demonstrated45. In addition, we suggest that RA acting in a
paracrine manner activates target genes in both neoplastic and
other non-tumoral cells of the microenvironment. Recently, a
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retinoic acid-low microenvironment in multiple myeloma (MM)
was shown to prevent differentiation of MM cells and promote
drug resistance46, a mechanism that we have not investigated.
However, previous work indicate that retinoic acid does not
promote differentiation of CLL cells47.

Although future work is required to fully elucidate the role of
RA in the CLL microenvironment, our findings reveal that mouse
and human leukemic cells could be distinguished from normal B-
cells by their increased expression of Rarγ2 and RXRα respec-
tively, thus indicating they are equipped with the machinery to
activate RA-target genes upon RA-binding. At present, the
meaning of the correlation between increase expression of RXRα
in a subset of patients carrying high-risk genetic aberrations and
bad prognosis remains unclear. Nevertheless, emerging data point
to a critical contribution of RXRα in lymphoid malignancies48. In
support of this, loss of Rxrα protects mice from developing leu-
kemia49. It is worth mentioning that RXRα is a dimerization
partner for other nuclear receptors such LXRs, VDRs, and
PPARs, and thus it might be involved in the regulation of other
signaling pathways implicated in CLL pathogenesis.

In cancer, agonists of RA nuclear receptors have been used
with the rational to induce terminal differentiation, inhibit pro-
liferation and promote apoptosis20,21. Interestingly, using in vitro
models it was demonstrated that both agonists and antagonists of
RA-signaling induce similar growth inhibitory effects in cancer
cells, thus indicating that inhibition of RA signaling is also det-
rimental and may represent a strategy for cancer treatment as we
propose50.

In conclusion, although our findings were mostly obtained
using mouse models that may not fully reflect the human CLL,
they indicate that retinoid-signaling plays an important role in
the pathogenesis of murine CLL, and that retinoid-antagonist
therapy may represent an effective strategy to target CLL-
microenvironmental interactions at multiple levels to control
disease progression.

Methods
Mice. C57BL6 were purchased from Charles River Italia; Eμ-TCL1, Rag2−/−γc

−/−48–
51 and Pdgfrαgfp/+ mice have been previously described33,51,52. For in vivo analysis,
female and male mice of 8–10 weeks of age were used. Animals were maintained in a
specific pathogen-free animal facility and treated in accordance with European Union
and Institutional Animal Care and Use Committee guidelines.

Immunofluorescence staining and confocal analysis. Tissues were collected and
fixed for 5 min in 4% (w/v) PFA (Sigma-Aldrich), then washed in PBS 1 × and
dehydrated overnight in 30% sucrose (Sigma-Aldrich) at 4 °C. Samples were
embedded in Tissue-Tek OCT compound (Bio-optica) and frozen in ethanol dry-
ice bath (using Dehyol 95 (Bio-optica)). Around 8–10 μm thick sections were
placed onto glass slides (Bio-optica), fixed in cold acetone for 5 min, dried, and
kept at −80°C until used. Slides were incubated 30 min with a blocking solution of
PBS at 0.5%FBS and 0.05% Tween (VWR) (PBS-T 0.05%), followed by primary
(supplementary material) specific antibodies or secondary reagents (supplementary
material). Primary antibodies, secondary antibodies, and streptavidin reagents were
diluted in blocking solution PBS-T 0.05% and incubated for 1 h and 30 min,
respectively. For anti-mouse and biotin-conjugated primary antibodies, additional
incubation with MoM (Vector Lab) and Avidin/Biotin blocking solution (Vector
Lab), respectively, were performed following the manufacturer’s instructions.
Nuclei were visualized with DAPI (Fluka), and mounting was performed with
Mowiol (Calbiochem). For detection of MAdCAM-1, CXCL13 and PDPN anti-
bodies, Tyramide Signal Amplification kit (Perkin Elmer) was used. To visualize
proliferating cells, Click-iT® EdU Imaging Kits (Invitrogen) was employed
accordingly to manufacturer’s protocol. Confocal images were acquired using Leica
TCS SP2 and Leica TCS SP8 microscopes. Digital images were recorded in sepa-
rately scanned channels with no overlap in detection of emissions from the
respective fluorochromes. Final image processing was performed with Adobe
Illustrator CS4 and Adobe Photoshop CS4. For immunohistochemistry of human
biopsies, tissue sections from formalin-fixed, paraffin-embedded blocks were used.
Sections were stained with primary goat polyclonal antibody to CXCL13 (dilution
1:30; R&D Systems) and upon appropriate antigen retrieval, reactivity was revealed
using biotinilated anti-goat IgG (dilution 1:250; Vector Laboratories) followed by
3,3′-diaminobenizidine tetrahydrochloride (DAB), and finally counterstained with
H&E according to standard protocols. After dehydratation slides were permanently

mounted in Eukitt (Bioγ-Optica). Digital images were acquired using the Olympus
BX60 microscope with DP-70 Olympus digital camera and processed using Ana-
lysis Image Processing software.

Isolation, purification, and characterization of leukemic cells. Eμ-TCL1,
transplanted and control mouse tissues (peripheral blood, lymph nodes, omentum,
mesentery, and femoral bone marrow) were collected from mice either alive
(peripheral blood) or killed (other tissues). Solid tissues were smashed and filtered
on a 40 μm cell strainer (Corning). Single-cell suspensions were washed in PBS and
erythrocytes were depleted using an ammonium chloride solution (ACK) lysis
buffer (NH4Cl 0.15 M, KHCO3 10mM, Na2EDTA 0.1 mM, pH 7.4). For flow
cytometry analyses, samples were incubated for 15 min at RT with Mouse BD Fc
Block™ (purified rat anti-mouse CD16/CD32; BD Bioscience Pharmingen). Then
cells were washed and incubated for 15 min at 4 °C with conjugated antibodies and
finally data were acquired on FACSCanto™ II (BD Biosciences) and analyzed using
FlowJo software (Tree Star). For culture experiments, B-lymphocytes were collected
from the spleen, purified and enriched by negative depletion (EasySep™ Mouse B
Cell Enrichment Kit; StemCell Technologies). The purity of all murine CLL sam-
ples and control B cells was always more than 90%. Human CLL cells were purified
immediately after blood withdrawal, by negative depletion using the RosetteSep B-
lymphocyte enrichment kit (StemCell Technologies). The purity of all human
preparations was always more than 99% and the cells co-expressed CD19 and CD5
on their cell surface as checked by flow cytometry (FC500; Beckman Coulter);
preparations were virtually devoid of natural killer cells, T lymphocytes, and
monocytes. Human primary samples were obtained from RAI stage 0-1 CLL
patients, after informed consent as approved by the Institutional committee
(protocol ViVi-CLL) of San Raffaele Scientific Institute (Milan, Italy) in accordance
with the Declaration of Helsinki.

Cell cultures and treatments. A mouse spleen-derived stromal cell line (mSSC)
expressing yfp was generated as previously described4. F9-RARE-LacZ cell line was
previously described37. Cells were cultured at 37 °C, 5% CO2 in DMEM (Gibco)
supplemented with 10% heat-inactivated FBS (Euroclone), 2 mM L-glutamine
(L-Glu; Gibco), 100 U/ml penicillin and 100 μg/ml streptomycin (Pen/Strep;
Gibco). All cell lines are monthly tested for mycoplasma. For experiments in
Vitamin A deficient medium, the FBS serum was substituted with B27 supplement
normal and without retinyl acetate (B27-normal and B27-vitA-; Invitrogen).
Stromal cells were treated for 24 or 48 h with different stimuli: 1 μM all-trans
Retinoic Acid (in DMSO; Sigma-Aldrich), 1 μM BMS493 (in DMSO; Tocris
Bioscience)30 or vehicle (DMSO).

Leukemia propagation, co-culture assays and lymphoid aggregate formation.
For leukemia propagation, Eμ-TCL1 mice were killed when CD19+CD5+ cells
reached 90% in PB. A total of 1 × 107 leukemic cells (from different donor mice)
were purified form the spleen and injected intraperitoneally into syngeneic
C57BL6/N, Rag2−/−γc

−/− or Pdgfrαgfp/+ recipients. Treatment with the BMS493
inhibitor was performed by oral gavage at 5 mg/Kg dosage (in corn oil) three times
a week for 6–8 consecutive weeks. For ex vivo organ cultures, animals were killed
when terminally sick. Labeling of B-lymphocytes with CellTracker™ Green CMFDA
Dye (ThermoFisher Scientific) was performed by incubating 1 × 107 cells /mL for
20 min at 37 °C according to manufacture instructions. Labeled cells were injected
intraperitoneally and mice killed at the indicated time points. Vitamin A Deficient
mice were generated as previously described34.

Co-culture experiments were performed using purified B-lymphocytes in
combination with either mSSC or F9-RARE LacZ reporter cell line. For the co-
culture experiments with F9-RARE LacZ reporter cell line, 1 × 107 B-lymphocytes
were seeded on top of 2.5 × 105 of F9-RARE LacZ cells in poly-L-Lysine-coated 48-
well plate (Costar). After 48 h, floating cells were discarded while remaining
adherent cells were lysed and β-gal activity assay was assessed. Co-culture
experiments were conducted in triplicate, and cells were maintained in complete
DMEM with 5% CO2 at 37 °C. Assessment of βgal activity was performed as
previously described37.

For lymphoid aggregate formation, immortalized mSSC and leukemic B-
lymphocytes were used. Specifically, mSSC and Eμ-TCL1 CLL cells were mixed in a
ratio 1:20 (specifically 4 × 105 cells and 80 × 105 cells for each aggregate), pelleted and
re-suspended in 1ml of 0.9% type I rat tail collagen solution. This solution was
prepared, on ice, with the following components: 360 µl of DMEM, 14 µl of PBS ×10,
3 µl of NaOH 1M, and 125 µl of Collagen I (Corning), and was used immediately
after the preparation. A volume of 5 µl drops of the resulting cell suspension were
spotted on the lid of a petri dish, as hanging drops, and were incubated for 20–25
min in humidified incubator with 5% CO2 at 37 °C, to favor collagen polymerization.
Next, the polymerized cells-collagen drops were transferred into a petri dish with 10
ml of DMEM. After 24 h, the organoids were formed by collagen contraction53. For
BMS493 treatment experiments: mSSCs and murine Eμ-TCL1 leukemic cells were
pre-treated individually before the organoids formation for 24 h with 1 µM of
BMS493 (in DMSO; Sigma) and vehicle (DMSO). On established organoids,
BMS453 or vehicle treatment was repeated for additional 48 h, with one
administration per day. At the end of the treatments, pools of four organoids were
digested in 60 μl of 0.225mg/ml Liberase (Roche) solution for 10min at 37 °C,
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agitating at 1000 rpm. Digested organoids were analyzed by MACSQuant Analizer
10 (Miltenyi Biotec) in order to assess the number of live cells (DAPI negative).
Further analysis was performed using FlowJo software (Tree Star).

Microarray, RNA-seq, and qPCR analyses. For microarray analysis, 2 × 107

purified B-lymphocytes were seeded on top of 7.5 × 105 mSSC in 60 mm dishes
(Costar). After 40–48 h, floating B-lymphocytes were collected with the super-
natant by gently flushing, instead yfp+ stromal cells and stroma-adherent B lym-
phocytes were separated by sorting using MoFlo™ XDP (Beckman Coulter) cell
sorter. Total RNA was extracted with RNeasy Micro or Mini kit (Qiagen). For
microarray analysis, cRNA preparation and amplification was performed using
Illumina TotalPrep™ RNA Amplification Kit, and then the analysis was performed
using Illumina Whole-Genome Gene Expression Direct Hybridization Assay sys-
tem (Illumina). For RNA-seq analysis, quality of the RNA was checked with
Agilent RNA 6000 Nano chip, and run on Bioanalyzer 2100 (Agilent) (The Center
of Bioinformatics and Functional Genomics at OSR performed RNA sequencing).
Briefly, library preparation was performed using the Illumina TrueSeq Stranded
mRNA kit (Illumina), starting from 300 ng of total RNA. After barcoding, the RNA
libraries were pooled, denatured, and diluted to an 8 pM final concentration.
Cluster formation was performed on cBot (Illumina) using flow cell v.3. The
sequencing by synthesis (SBS) was performed according to TruSeq SR protocol
(Illumina) for the HiSeq 2500 (Illumina) set to 100 cycles, yielding an average of
18 × 106 clusters for each sample. For qPCR analysis, reverse transcription of 0.2–2
μg of total RNA was performed with the ImProm-II Reverse Transcription System
kit with random primers (Promega). qPCRs were performed using Universal Probe
Library system (Roche) on a LightCycler480 (Roche). The Ct of Rpl13 or GAPDH
(housekeeping genes for mouse and human, respectively) was subtracted from the
Ct of the target gene, and the relative expression was calculated as 2−ΔCt. qPCRs
were performed in triplicate or quadruplicates and mean ± SD represented as
relative expression (primer sequences are described in supplementary material).

HPLC/UV analysis of retinyl ester (RE) and retinol (ROL). Vitamin A depletion
was assessed by measurement of retinol and retynil palmitate with UV-HPLC as
previously described54. Solvents and controls were purchased from Sigma-Aldrich.
300–500 mg of tissue were frozen immediately after collecting and were kept at
−80 °C until assay. Samples were extracted as previously described with some
modifications. Immediately before the analysis, 5 μl of internal standard (IS, 20 μM
retinyl acetate) were added to each sample. Then tissues were homogenized on ice
using a Heavy Duo Stirrer motorized potter in 1.5 ml of cold 0.9% NaCl. A volume
of 1.5 ml of 0.025 M KOH in ethanol was added to tissue homogenates and mixed
at 1100 rpm, RT for 30 min, and after 5 ml hexane was added to the aqueous
ethanol phase. The samples were vortexed and centrifuged for 10 min at 1200 rpm.
The hexane phase containing ROL and RE was recovered. The extraction was
repeated twice, the hexane phase collected and dryed under nitrogen. ROL/RE
extracts were resuspended in 500 μl acetonitrile. A volume of 100 μl portions were
analyzed by high pressure liquid chromatography (HPLC). Separations were
obtained on a LiChrospher 100 RP18 column (5 μm, 250 × 4 mm; Merck) and were
quantified by UV absorbance at 325 nm. Elution was carried out at a flow rate of 1
mL/min, with gradient formed by the solvent A, consisting of water, solvent B,
consisting of acetonitrile, and solvent C consisting of acetonitrile with 0.1%
dichloromethane. The gradient elution program was as follows: 19 min 30% A and
70% B, 11 min linear gradient to 11% A and 89% B, 1 min 11% A and 89% B, 1 min
linear gradient to 100% B, 8 min to 100%, 2 min linear gradient to 100% C, 8 min
linear gradient to 100% B, and 5 min linear gradient 30% A and 70% B.

Ultrasound imaging of the spleen. Murine spleens were imaged using the Vevo
2100® High-Resolution Ultrasound Imaging System (VisualSonics, FUJIFILM,
Toronto, Canada). 2D Ultrasound images were performed in B-mode using the
Vevo 2100 linear array transducers MS 550D (center frequency of 40 MHz) and
MS 250 (center frequency of 21 MHz). After removal of the fur from the abdomen
of the mice using depilatory cream (Veet), a warmed ultrasound Gel was placed
between the skin surface and the transducer. The sonograms were analyzed and the
transversal and sagittal diameters of the widest part of the spleen, and the length of
the spleen were determined using the image analysis software Vevo LAB
(Visualsonic, FUJIFILM). All the ultrasonographic evaluations were performed by
a single examiner.

Statistical analysis. Illumina microarray data were processed in the R environ-
ment. Normalization was obtained with the lumi package55, and differential ana-
lysis was performed by applying a permutation-based non-parametric method
implemented in the RankProd package56. Differential expressed genes were
selected according to the threshold FDR q-value < 0.05.

Statistical analysis using a 2-tailed unpaired Student’s t test or 2-way Anova or
Log-rank (Mantel-Cox for survival curves) test was performed with GraphPad
Prism 5.0c (GraphPad Software), and values were expressed as mean ± SD or SEM
(indicated in the figure legends). Differences were considered statistically
significant at p less than 0.05. For RNA-seq analysis, raw sequences (fastq) were
filtered for good quality scores using FastQC software. FastQC: a quality control
tool for high throughput sequence data. Available online at: http://www.

bioinformatics.babraham.ac.uk/projects/fastqc. Sequences obtained were aligned to
the Mouse genome (mm10 release) using STAR aligner (version 2.3.0e_r291)57.
Only uniquely mapped reads were used to estimate gene counts using the reported
Ensembl gene annotations (v85) using Rsubread Bioconductor package.
Subsequent to mapping the gene count, data were normalized using the “weighted
trimmed mean of M-values” described elsewhere57. After normalization,
differential gene expression was performed using the limi package in R55.
Annotation analysis was performed using VLAD – Visual Annotation Tool at MGI
(Mouse Genome Informatics)58. No statistical method for sample size choice was
used; however, a similar number of mice is generally used in the field for similar
experiments. No animals have been excluded from the analysis, and no
randomization methods were used to allocate mice to different groups. For
assessing experiment outcome no blinding method was used.

Study approval. Biological samples were obtained from patients affected by CLL
according to the research protocol “ViViCLL” approved by the institutional review
board at San Raffaele Hospital (Milan, Italy). Informed consent was obtained in
accordance with the Declaration of Helsinki.

Data availability. Microarray and RNA-seq data were deposited in the Gene
Expression Omnibus (GSE111613). The authors declare that all data supporting
the findings of this study are available within the manuscript or its supplementary
files or are available from the corresponding author upon reasonable request.
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