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ABSTRACT
We develop a practical methodology to remove modes from a galaxy survey power spectrum
that are associated with systematic errors. We apply this to the BOSS CMASS sample, to see if
it removes the excess power previously observed beyond the best-fitting �CDM model on very
large scales. We consider several possible sources of data contamination, and check whether
they affect the number of targets that can be observed and the power spectrum measurements.
We describe a general framework for how such knowledge can be transformed into template
fields. Mode subtraction can then be used to remove these systematic contaminants at least
as well as applying corrective weighting to the observed galaxies, but benefits from giving an
unbiased power. Even after applying templates for all known systematics, we find a large-scale
power excess, but this is reduced compared with that observed using the weights provided by the
BOSS team. This excess is at much larger scales than the BAO scale and does not affect the main
results of BOSS. However, it will be important for the measurement of a scale-dependent bias
due to primordial non-Gaussianity. The excess is beyond that allowed by any simple model of
non-Gaussianity matching Planck data, and is not matched in other surveys. We show that this
power excess can further be reduced but is still present using ‘phenomenological’ templates,
designed to consider further potentially unknown sources of systematic contamination. As all
discrepant angular modes can be removed using ‘phenomenological’ templates, the potentially
remaining contaminant acts radially.

Key words: methods: statistical – large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxy surveys allow measurements that are crucial for our under-
standing of the Universe. For instance, Baryon Acoustic Oscillation
(BAO) observations provide a standard ruler measurement that we
can use to study our Universe’s expansion history, while redshift
space distortion (RSD) measurements test the theory of gravity
that governs structure growth. Furthermore, a full measurement of
the shape of the galaxy power spectrum provides additional in-
formation about the total matter density �mh2, the baryon density

� E-mail: benedict.kalus@icc.ub.edu

�bh2, the neutrino mass density �νh2, and the local primordial non-
Gaussianity parameter fNL (e.g. Slosar et al. 2008; Ross et al. 2013;
Leistedt, Peiris & Roth 2014).

While the field of density fluctuations revealed by galaxy surveys
contains a lot of cosmological signal, which is contaminated by
various foreground and instrumental sources. A simple model of
such contaminations is that the true density field in Fourier space,

D(k) = F (k) − εf (k), (1)

is a linear combination of the measured density field F (k) and the
contaminant field that can be written in terms of a template f (k) with
unknown amplitude ε. In practice, we do not know the exact shape
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of f (k) and the data are affected by more than one contaminant.
This can be accounted for by extending equation (1) to include a
range of different templates fA(k) with unknown amplitudes εA:

D(k) = F (k) −
∑

A

εAfA(k). (2)

Mode deprojection (Rybicki & Press 1992) offers an elegant way
of mitigating contaminants that can be modelled as in equation (2)
by analytically marginalizing over all ε

(true)
A . This approach can di-

rectly be implemented in any covariance-based estimator for the
power spectrum, a natural choice being the Quadratic Maximum
Likelihood (QML; Tegmark 1997) Estimator whose estimates are
unbiased and optimal for any covariance matrix. This technique
has been applied by Slosar, Seljak & Makarov (2004) in angu-
lar power spectrum measurements from the Wilkinson Microwave
Anisotropy Probe at low multipoles �, in investigating the Integrated
Sachs-Wolfe effect as a function of redshift (Ho et al. 2008), and by
Pullen & Hirata (2013) to the SDSS quasar sample. Furthermore,
Leistedt et al. (2013) identified, using mode deprojection, a previ-
ously found large-scale excess in the angular auto and cross-power
spectra of the catalogue of photometric quasars from the Sixth Data
Release (DR6) of SDSS as being due to systematics.

The computational cost of mode deprojection can be reduced by
identifying the most important templates before marginalizing over
them as described by Leistedt & Peiris (2014). A complementary
strategy to improve the computational efficiency of mode deprojec-
tion is to incorporate it into fast, but suboptimal power spectrum
estimators, such as the Feldman, Kaiser & Peacock (1994, FKP)
Estimator for the 3D power spectrum, as described in Kalus et al.
(2016). This work was subsequently extended to the Pseudo-C�

(Hivon et al. 2002) Estimator for the angular power spectrum, by
Elsner, Leistedt & Peiris (2017).

In this article, we consider how systematic templates can be pro-
duced for common systematic issues, using the Northern Galactic
Cap (NGC) of the SDSS-III BOSS CMASS sample as our example
data set. We derive a set of templates for this sample, and use the
Mode Subtraction technique of Kalus et al. (2016) to remove these
modes when making power spectrum measurements of these data.
The MOde Subtraction code to Eliminate Systematic contamina-
tion in galaxy clustering power spectrum measurements (MOSES) is
available at https://github.com/KalusB/Moses.

The outline of this paper is as follows: In Section 2.2, we review
the Mode Subtraction technique and develop a method to generate
templates for a given contaminant and survey. We use this method to
generate templates for known contaminants driven by: foreground
stars (Section 3.1), seeing (Section 3.2), airmass variations (Sec-
tion 3.3), galactic extinction (Section 3.4), and the SDSS scanning
strategy (Section 3.5). We employ these templates in power spec-
trum measurements from the SDSS-III BOSS CMASS NGC sample
in Section 3.

2 ME T H O D S FO R R E M OV I N G
C O N TA M I NA N T S

We start by reviewing the key results of Kalus et al. (2016), which
discussed two related methods of mitigating systematic templates:
mode deprojection and mode subtraction. The two were shown to be
mathematically equivalent if we allow the templates to be matched,
modulo a final normalization step, although this can be added in
making the techniques identical. In concept however, they are quite
different as explained below.

2.1 Mode deprojection

Mode deprojection (Rybicki & Press 1992) works by updating the
mode-by-mode covariance matrix Cαβ in a covariance-based esti-
mator as

C̃αβ ≡ Cαβ + lim
σ→∞

σf (kα)f ∗(kβ ). (3)

Thus, contaminated modes are excluded from the analysis at the
likelihood stage, and consequently the result is an unbiased estimate
of the underlying power spectrum.

Following (Tegmark 1997)’s QML approach, the power spectrum
is estimated as

P̂ (ki) =
∑

j

N−1
ij pj , (4)

where

pj = −
∑
αβ

F ∗(kα)
∂C−1

αβ

∂P (kj )
F (kβ ) (5)

is a covariance-weighted two-point function of the contaminated
density field and

Nij = tr

{
C−1 ∂C

∂P (ki)
C−1 ∂C

∂P (kj )

}
(6)

normalizes and optimizes the estimator. After updating the covari-
ance as prescribed by equation (3) and, for clarity, assuming that all
modes are uncorrelated, equation (5) reads (Kalus et al. 2016)

pj =
∑

kα in bin j

|F (kα) − S
R
f (kα)|2

P 2(kj )
(7)

with

R =
∑

α

|f (kα)|2
P (kα)

and S =
∑

α

F ∗(kα)f (kα)

P (kα)
, (8)

as well as a prior model power spectrum P(k). The numerator in
equation (7) has the same form as equation (1) and we shall indeed
see in the next section that ε(BF) = S

R
can be interpreted as a best-

fitting estimate of the contamination amplitude.

2.2 Mode subtraction

Mode subtraction instead works by finding the best-fitting amplitude
of the contaminant, assuming that D(k) is Gaussian distributed,
and removing that directly from the data. Formally, for a single
contaminant, we can find the best-fitting amplitude

ε(BF) = S

R
, (9)

thus, we find the same result as with mode deprojection in the QML
approach prior to normalization and optimization. Extending this
result to several contaminants, we find the best-fitting amplitude for
a vector of contaminants as required in equation (2) as

ε(BF) = R−1S, (10)

where

RAB =
∑

μ

f ∗
A(kμ)fB (kμ)

P (kμ)
and SA =

∑
α

F ∗(kα)fA(kα)

P (kα)
(11)

are generalizations of equation (8).
Naı̈vely inserting equation (10) into equation (2) and then ap-

plying the FKP Estimator provide a biased estimate of the power
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spectrum because ε(BF) is correlated with the data (Elsner, Leist-
edt & Peiris 2016). However, we can debias the contribution of
each mode by modifying the estimator as (Kalus et al. 2016)

P̂ (ki) = 1

Ni

∑
kα in bin i

|F (kα) − ∑
AB R−1

ABSBfA(kα)|2

1 − ∑
AB

fA(kα )R−1
AB

f ∗
B

(kα )
P (ki )

, (12)

where Ni is the number of modes in bin i. Throughout this article,
we assume an isotropic power spectrum as there is no evidence for
anisotropy at large scales (Pullen & Hirata 2010).

Mode subtraction is commonly performed by introducing addi-
tional weights w, which can either be assigned to individual galaxies
(to account for effects such as redshift failures, fibre collisions, etc.)
or which directly or indirectly depend on positions on the sky (such
as for seeing, airmass, stellar density, etc.). For example, one tem-
plate might be the inverse of the change in galaxy density as a
function of the seeing: by weighting galaxies by these numbers,
we are subtracting this template from the field. This will become
clearer in the following subsection.

2.3 A practical approach to decontamination: single
contaminant

We base our analysis on the Fourier-based framework of Feldman
et al. (1994), which we adjust to include the removal of systematics.
We start by defining the contaminated field, where the contaminants
are multiplicative and are accounted for by the systematic weight
w(x):

D(x) = wFKP(x)
w(x)ng(x) − αnr(x)√

I2
, (13)

where ng(x) is the galaxy density and αnr(x) is the expected density
derived from a random catalogue. Ignoring geometrical effects, the
power in the field D(x) gives an unbiased estimate of the power
spectrum after subtracting off a shot-noise term, if the normalization
is

I2 =
∫

d3 x n̄2(x)w2
FKP(x). (14)

The optimal weights are

wFKP(x) = 1

1 + n̄(x)PFKP
, (15)

where PFKP is a typical value of the power spectrum, which max-
imizes the signal-to-noise of the power spectrum estimate at the
desired scales.

The aim of this section is to translate equation (13) into the
debiased mode subtraction framework, i.e. writing D in terms of
F and f, and thence, identifying how F and f are related to the
weight w(x) and the observed galaxy and random counts, ng and
nr, respectively. Equation (13) reflects the fact that most known
contaminants affect the observed galaxy density multiplicatively.
To give an example, a bright star obscures a fraction of the targets in
its angular vicinity, i.e. the number of targets that are not observed
depends on the number of targets that actually exist. In spite of
that, the underlying assumption behind mode subtraction is given
by equation (1), i.e. that a template of the contaminant f can be
subtracted from the observation F to obtain a ‘clean’ density field D.
Jasche & Wandelt (2013) lift this apparent contradiction by adopting
a different data model that is implemented in the Algorithm for
Reconstruction and Sampling (Jasche et al. 2010; Jasche & Lavaux
2017). Here, we introduce a framework that allows us to directly
transform the corrective weights into contaminant templates that

can be applied within the simpler model of equation (1) and, hence,
the methods discussed in Kalus et al. (2016). To do so, we move
the weights from acting on the observed galaxy density to letting
their inverse act on the random catalogue. Mathematically speaking,
we divide both the numerator and denominator of the fraction in
equation (13) by the weights and obtain

D(x) = w′
FKP(x)

ng(x) − αw−1(x)nr(x)√
I2

, (16)

where w′
FKP(x) ≡ wFKP(x)w(x) is an updated FKP weight. We know

the parameter α well as it has been chosen to match the random
catalogue to the galaxy catalogue. The amplitude of the contaminant
is unknown and is something we wish to determine, so we split
the second term into a part without weights and into another with
weights, such that we can introduce a free parameter ε ≈ α that we
can marginalize over:

D(x) = w′
FKP(x)

ng(x) − α′nr(x) − ε[w−1(x) − 1]nr(x)√
I2

. (17)

In order to normalize equation (17) to give zero expected overden-
sity, we need to use a revised value of α

′
matching the galaxy and

revised random catalogues

α′ =
∫

d3 x [ng(x) − ε[w−1(x) − 1]nr(x)]∫
d3 x nr(x)

. (18)

Recalling that in the case of not including weights, we have

αFKP =
∫

d3 x ng(x)∫
d3 x nr(x)

, (19)

we can split α into two terms: one independent of ε and one pro-
portional to ε:

α′ = αFKP − ε

[∫
d3 xw−1(x)nr(x)∫

d3 xnr(x)
− 1

]
. (20)

Then we can write equation (17) as

D(x) = w′
FKP(x)

ng(x) − αFKPnr(x)√
I2

− εw′
FKP(x)

[
w−1(x) −

∫
d3 x w−1(x)nr(x)
∫

d3 x nr(x)

]
nr(x)

√
I2

. (21)

In the mode subtraction framework, we can identify

F (x) = w′
FKP(x)

ng(x) − αFKPnr(x)√
I2

(22)

and

f (x) = w′
FKP(x)nr(x)√

I2

[
w−1(x) −

∫
d3 x w−1(x)nr(x)∫

d3 x nr(x)

]
. (23)

Thus, the uncorrected field F is similar to the FKP field without
systematic weights, but with a modified FKP weight. The template
is the expected correction that has to be subtracted based on expec-
tation of the galaxy number density from the random catalogue and
the systematic weight.

2.4 A practical approach to decontamination: multiple
contaminants

One big advantage of the mode subtraction framework is that it can
be easily extended to Ncont different contaminant templates. Dif-
ferent contaminants can be included in the traditional weighting
scheme by just multiplying ng with a weight for each contaminant
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one can imagine. Formally, w(x) has to be known exactly for each
mode to be subtracted. In practice, if the functional form of the
weight is not exactly known, the mode subtraction framework al-
lows us to include more than one template for each contaminant: we
simply need a set of templates that span the region of uncertainty.
Having a free parameter for each template then naturally mitigates
the templates that are supported by the data with the correct ampli-
tude. When dealing with more than one template, we write the effect
of each contaminant EA(x) that we define such that 〈EA(x)〉 = 0 for
all contaminants A. We model the total weight in terms of

w′
FKP(x) = wFKP(x)

1 + ∑Ncont
A=1 EA(x)

. (24)

Equation (13) then reads

D(x) = w′
FKP(x)

ng(x) − α
(

1 + ∑Ncont
A=1 EA(x)

)
nr(x)

√
I2

. (25)

As stated, we introduce free parameters εA for each contaminant to
take the uncertainties of each of their amplitudes into account. We
then have

D(x) = w′
FKP(x)

ng(x) − α′nr(x) − ∑Ncont
A=1 εAEA(x)nr(x)√

I2
. (26)

To ensure again that the expected overdensity field is zero, we need

α′ = αFKP −
Ncont∑
A=1

εA

∫
d3 x EA(x)nr(x)∫

d3 x nr(x)
. (27)

Recollecting all εA terms yields

D(x) = w′
FKP(x)

ng(x) − αFKPnr(x)√
I2

−
Ncont∑
A=1

εA

EA(x) −
∫

d3 x EA(x)nr(x)
∫

d3 x nr(x)√
I2

w′
FKP(x)nr(x), (28)

where we can read off

F (x) = w′
FKP(x)

ng(x) − αFKPnr(x)√
I2

(29)

and

fA(x) = w′
FKP(x)

EA(x) −
∫

d3 x EA(x)nr(x)
∫

d3 x nr(x)√
I2

nr(x) (30)

in the same way as we did to obtain equations (22) and (23). The
field F is again similar to the FKP field. Each EA(x) describes how
contaminant A affects the number of galaxies in a certain region
around the point x. Although the effect of most contaminants is
expected to be relative to F, this section has shown how absolute
templates f can be constructed using the expected number of galaxies
from the random catalogue nr. Each template is an estimate of the
absolute number density that has to be added or subtracted to correct
for the contaminant in question. The following sections will show
how the EA is obtained in practice for specific contaminants.

2.5 Methodology for templates of known sources
of contamination

In order to be able to compare the results using mode subtraction to
the results using the weights as in Ross et al. (2017), we generate our
templates in a similar way as their weights. We start with a map of the
contaminant nc in Hierarchical Equal Area isoLatitude Pixelization

of a sphere (HEALPix,1 cf. maps in Appendix A; Gorski et al.
2005). To obtain a template to mitigate against the contaminant in
question, we pixelize the galaxy and random catalogues in the same
way as the contaminant map. We assign each cell to a bin according
to the degree of contamination in the respective cell. For each bin,
we average over the ratio of observed and expected galaxy number
count ng

〈ng〉 . We estimate the expected number density as

〈ng〉 = αnr. (31)

As random catalogues are usually constructed not to contain any
clustering information, equation (31) is a biased estimate of the
galaxy number density in a cluster or void. However, assuming that
the distribution of foreground stars and the actual galaxy number
density are uncorrelated, we expect the average over all ng

〈ng〉 in each
contaminant bin to equal unity. A significant deviation from one
is an indication of the contaminant affecting the observed galaxy
number density. Following Ross et al. (2017)’s procedure to obtain
weights for a given galaxy, we use this information and fit a linear
regression line

ng

〈ng〉
(1)

(nc) ≡ C0 + C1nc (32)

through the ng

〈ng〉 data points. The weight for the ith galaxy in the
survey at right ascension αi and δi is then given by the inverse of
the fitting function evaluated at the contaminant level in the pixel
that contains the galaxy:

wi = 1
ng

〈ng〉
(1)

(nc(αi, δi))
. (33)

To obtain a single template for the contaminant, we simply have to
insert this weight into equation (23).

For the case that one does not want to assume a linear relation
between the contaminant and its effect on the observed number of
galaxies, one can fit higher order polynomials

ng

〈ng〉
(N)

(nc) ≡
N∑

A=0

CAnA
c (34)

and build multiple templates that can cover a range of fits to this
trend using equations (24)–(30). At linear order, the contaminant
has a significant effect if ng

〈ng〉 is significantly different from 1, thus
we define

E1(z, α, δ) ≡ ng

〈ng〉
(1)

(nc(α, δ)) − 1. (35)

In order to fulfil equation (24), we define

EA(z, α, δ) ≡ ng

〈ng〉
(A)

(nc(α, δ)) − ng

〈ng〉
(A−1)

(nc(α, δ)) (36)

for higher orders. In this way, correlations between the EA are
reduced. Therefore, templates that correspond to expansion orders
that are actually not in the data obtain naturally negligible best-
fitting values of ε(BF).

3 A PPLI CATI ON TO BOSS

We use data from the Final (Alam et al. 2015) SDSS-III (Eisenstein
et al. 2011) BOSS (Dawson et al. 2013) Data Release that has been

1http://healpix.sf.net
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obtained using the BOSS spectrograph (Smee et al. 2013) on the
Sloan Foundation 2.5-m Telescope (Gunn et al. 2006).

BOSS galaxies were selected for spectroscopic observation from
photometric SDSS-I and -II data. BOSS observed two spectroscopic
galaxy samples, the low-redshift (LOWZ) sample consisting of
361 762 LRGs at 0.16 < z < 0.36, and the constant-mass (CMASS)
sample, which includes both LRGs and fainter blue galaxies at 0.43
< z < 0.7. By combining the two red and blue populations into one
single sample the shot noise in the measured density field is reduced.
The total number of galaxies in CMASS amounts to 777 202, of
which 568 776 are in the Galactic North and the remaining 208 426
galaxies are in the Galactic South (Reid et al. 2016). There are
also 13 290 ‘known’ galaxy spectra from SDSS-II that fulfil the
selection criteria of CMASS and are therefore also included. The
number of ‘known’ spectra for the LOWZ sample is much larger,
with 153 517 ‘known’ galaxies, mainly SDSS-II LRGs. The final
footprint of BOSS covers 9329 square degrees and can be seen, e.g.
in Fig. A1. As the CMASS sample probes a larger volume than the
LOWZ sample and as it is more affected by large-scale systematics
(Ross et al. 2017), we have chosen it as the test sample for mode
subtraction.

The colour criterion used in the selection process for the CMASS
sample is dominated by limits on the parameter

d⊥ ≡ rmod − imod − gmod − rmod

8
, (37)

where gmod, rmod, and imod are the model g-, r-, and i-band magni-
tudes, respectively, adopting either a de Vaucouleurs or an expo-
nential luminosity profile, depending on which of the two fits better
in the r band (Stoughton et al. 2002). Other important quantities in
the selection process are the model i-band magnitude icmod calcu-
lated from the best-fitting linear combination of the de Vaucouleurs
and exponential luminosity profiles (Abazajian et al. 2004), and
the i-band magnitude within a 2 arcsec aperture radius ifib2. The
requirements on CMASS galaxies are then given by

17.5 < icmod < 19.9

rmod − imod < 2

d⊥ > 0.55

ifib2 < 21.5

icmod < 19.86 + 1.6(d⊥ − 0.8). (38)

Isolated stars can be distinguished from galaxies as they have pro-
files closer to that of the point spread function (PSF). After fitting
the magnitudes ipsf and zpsf to the PSF, one can define further criteria
to avoid targeting stars:

ipsf > 4.2 + 0.98imod

zpsf > 9.125 + 0.54zmod. (39)

Several observational and instrumental effects, such as the presence
of foreground stars, the Earth’s atmosphere, interstellar dust, or the
surveys scanning strategy, alter the magnitudes of objects depending
on the contaminant along the line of sight (LOS) to each object,
potentially affecting the selection as described in equation (38).
We therefore generate templates according to our recipe in 2.5 and
apply them to the BOSS CMASS NGC sample in the following
subsections.

3.1 Stellar density counts

The presence of foreground stars affects galaxy clustering mea-
surement through obscuration (we cannot observe galaxies behind

a foreground star that is brighter than the target), selection bias
(photometric measurements needed for the target selection of spec-
troscopic survey are more inaccurate close to foreground stars), and
confusion (a star is misclassified as a galaxy). For current spectro-
scopic surveys, we expect confusion to be negligible. Hence, the
higher the stellar density is, the lower is the number of galaxies we
observe, as found by Ross et al. (2011). It has been confirmed by
Ross et al. (2017) that foreground stars cause the strongest system-
atic error in BOSS CMASS data. The foreground stars are within
our own Galaxy, which can be described as a half-sky mode in
Fourier space. Thus, the foreground stars add large-scale power to
the actual galaxy power spectrum in a very similar way as a positive
fNL signal (Ross et al. 2013). As stellar densities have been reported
as the main source of systematic error in BOSS CMASS data Ross
et al. (2013), it is the first systematic we want to confront using the
mode subtraction technique.

As described in Section 2.5, we start by creating a stellar number
count map in HEALPix (cf. Fig. A1) of the contaminant which,
in this case, we take from the SDSS DR8 star catalogue. Both the
BOSS data and the catalogue of stars that we use thus come from the
same survey, hence having similar footprints (there are additional
stripes running through the Milky Way in the catalogue of stars
that are masked out in Fig. A1) and instrumental systematics. The
advantage of using HEALPix is that the number count in each
pixel is proportional to the angular density of stars, because all
pixels cover equally sized areas. Another advantage of HEALPix
in general is that the resolution of a map can be easily changed
due to the hierarchical ordering of the cells. The resolution can
be identified by the ‘number of pixels per side’ (Nside), which is
related to the total number of pixels on the sphere Npix = 12N2

side.
The resolution in Fig. A1 is Nside = 256. Ross et al. (2017) use
Nside = 128 to reduce the shot noise in the stellar data. We reduce
the resolution to Nside = 64, which is sufficient to cover the angular
positions of our FKP grid with 1283 grid points.

The number count and the number density of stars are only pro-
portional to each other in cells that are entirely within the survey
footprint. In the original stellar number count map, we could see
prominent edge effects, because HEALPix cells on the edges are
only partially filled. Considering that each cell has exactly four ad-
jacent cells, we reduce this effect by assuming the following for
the completeness of each HEALPix-pixel: pixels in the Nside = 256
map that have only non-zero neighbours are complete, and for ev-
ery neighbour that is zero, we assume that the pixel in question is
25 per cent less complete, such that cells, whose neighbours are all
empty, are also empty. We generate a HEALPix map with these
completeness values and reduce its resolution to Nside = 64 in the
same way as the stellar number count map. We divide the number
count of each partially filled pixel by this resulting completeness
map, such that we obtain a map whose entries are proportional to
the number density of stars.

The objects in the BOSS DR12 CMASS galaxy and random cat-
alogues are assigned to HEALPix cells as described in Section 2.5.
The randoms are a catalogue of Poisson sampled positions from
the expected background density (that is without clustering) under
the same spatial selection function as the actual galaxy catalogue.
The first step in the creation of the random catalogue is to pick
random angular positions distributed according to the completeness
of BOSS, which, in a given sector i, is estimated as

CBOSS,i ≡ Nstar,i + Ngal,i + Nfail,i + Ncp,i

Nstar,i + Ngal,i + Nfail,i + Ncp,i + Nmissed,i

, (40)
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Figure 1. The average ratio of observed galaxies to expected galaxies from
the random catalogue in cells with given numbers of stars.

where Nstar, i, Ngal, i, Nfail, i, Ncp, i, and Nmissed, i are the numbers of
objects spectroscopically confirmed to be stars, objects that were
spectroscopically confirmed as galaxies, objects whose classifica-
tion failed, close-pair objects of which no spectra could be taken
due to fibre collision but with at least one more object in the same
target class, and all other objects without spectra (Reid et al. 2016),
respectively. The next step is to apply veto masks to account for
regions where spectra cannot be taken for, e.g. the area around the
central bolts of the tiles, the area around targets that have higher
targeting priority, areas around bright stars with magnitudes smaller
than 11.5. Finally, each object that is still in the random catalogue
after vetoing is assigned a random redshift that follows the distri-
bution of the (weighted) galaxies. The random catalogues provided
by the BOSS collaboration contain 50 times more random galaxies
than there are in the galaxy catalogue. After averaging over all ng

〈ng〉
in stellar number count bins, we see a significant deviation from
one (cf. Fig. 1), as has been found by Ross et al. (2011, 2017)
before. In Fig. 1, we see that in pixels containing less than 1500
stars, we observe more galaxies than we expect from the random
catalogue, whereas in pixels with more than 2000 stars, we seem to
miss galaxies in the observations.

For the effect of obscuration, it is reasonable to assume that
galaxies with different magnitudes are affected differently by fore-
ground stars. Ross et al. (2013, 2017) therefore made plots similar
to Fig. 1, but with the galaxies split into subsamples by their i-band
magnitudes within a 2 arcsec aperture radius ifib2. We also follow
that procedure to generate Fig. 2, where we can see that galaxy
observations are affected very differently according to their surface
brightnesses: for galaxies with ifib2 < 20.6, we see no significant
deviation between the expected and observed number of galaxies.
For fainter (in terms of surface brightness) galaxies, the best-fitting
ng

〈ng〉 -lines are negative and are steeper the larger the galaxies’ magni-
tudes (i.e. the fainter they are). This meets our expectation, because
part of the stellar contamination effect is due to obscuration. To
obtain Ross et al. (2017)’s weights for a given galaxy, equation (32)
is extended by making the fitting coefficients C0(ifib2) and C1(ifib2)
magnitude dependent:

ng

〈ng〉
(1)

(nstars, ifib2) ≡ C0(ifib2) + C1(ifib2)nstars. (41)

Figure 2. Plot similar to Fig. 1, but points in different colours are for
different subsamples of galaxies with different ifib2 ranges. The dashed lines
are the best-fitting lines through the data points.

Figure 3. Mean and median values of the ifib2-magnitudes of BOSS DR12
CMASS galaxies at given redshifts z.

In Ross et al. (2017), the stellar density weight for the ith galaxy
in the survey with magnitude ifib2 at right ascension αi and δi is
obtained by evaluating equation (41) at its magnitude and at the
number of stars in the pixel where it is situated:

wi = 1
ng

〈ng〉
(1)

(nstars(αi, δi), ifib2)
. (42)

A template-based technique, however, requires a field value for
ifib2 in either configuration space or Fourier space, so one cannot
generate the template using the ifib2-values of individual galaxies.
Instead, we average ifib2 in redshift slices (cf. Fig. 3), because farther
galaxies tend to have smaller surface brightness, and we assign the
averages to template grid cells according to their redshifts. Apart
from this, the weights entering equation (23) are obtained in the
same way as Ross et al. (2017)’s weights:

w(x) = w(z, α, δ) = 1
ng

〈ng〉
(1)

(nstars(α, δ), 〈ifib2〉(z))
. (43)

MNRAS 482, 453–470 (2019)



Mitigating systematic modes from galaxy power 459

Figure 4. The power spectra of the uncorrected BOSS DR12 CMASS NGC
galaxies Puncorr and after 1–5 iterations of the debiased mode subtraction
procedure, compared to the average power spectrum of the MultiDark-
Patchy mocks PPatchy.

We compute the BOSS DR12 CMASS NGC power spectrum
using MOSES. We additionally apply the FKP, fibre-collision,
redshift-failure, and seeing weights that are provided in the cata-
logue files. The resulting power spectrum is shown in Fig. 4. We also
compute the power spectra of 2048 MultiDark-Patchy mock cata-
logues (Kitaura et al. 2016) generated using the Perturbation Theory
Catalog Generator of Halo and Galaxy Distributions (PATCHY; Ki-
taura et al. 2015). The mocks are generated using Kitaura, Yepes &
Prada (2014)’s Augmented Lagrangian Perturbation Theory and a
non-linear bias stochastic scheme. The bias parameters are fitted
to the clustering of the BigMultiDark Planck simulation for each
redshift snapshot (Klypin et al. 2016).2 The mass assignment to
haloes was done with the Halo mAss Distribution ReconstructiON
(HADRON) code (Zhao et al. 2015), which takes the local dark mat-
ter density, the cosmic web environment, and the halo-exclusion ef-
fect into account. Finally, light cones are obtained using the SUrvey
GenerAtoR (SUGAR; Rodrı́guez-Torres et al. 2016) code.

We use the MultiDark-Patchy mock power spectra for three dif-
ferent purposes:

(i) We estimate the error on our power spectrum measurements
as the sample variance of the MultiDark-Patchy power spectra.

(ii) We compare the power spectrum estimates from data against
the average of the mock power spectra. This has the advantage that
the comparison is free of any kind of window effects even though
the window changes the large scales a lot.

(iii) We also use the average mock power spectrum as the prior
power spectrum needed for MOSES in the debiasing step of equa-
tion (12).

To check the stability of this choice of prior power spectrum, we
use, for the first run, the average of the MultiDark-Patchy power
spectra as the input prior power spectrum of the error mitigation
procedure, and then we iterate by rerunning MOSES with the previ-
ous output power spectrum as the prior for the next run. We cannot

2www.multidark.org

Table 1. Best-fitting contamination amplitudes ε(BF) for a power spectrum
measurement using different numbers of stellar templates.

Order #templates: 1 2 3 4

1st 0.0071 0.0071 0.0072 0.0073
2nd 0.0008 0.0001 0.0008
3rd 0.0055 0.0054
4th − 0.0001

see any significant difference between the power spectra of the five
runs plotted in Fig. 4. Furthermore, all of the five spectra agree well
with the power spectrum obtained by mitigating the stellar density
contamination using Ross et al. (2017)’s weights (cf. Fig. 4). This
shows that MOSES can successfully remove the stellar contamina-
tion to first order. On the other hand, we also observe a significant
discrepancy between the average MultiDark-Patchy power and our
result. One might argue that, due to this discrepancy, the MultiDark-
Patchy mocks are not suitable to calculate the covariance of this
measurement. However, we are not testing any alternative model to
the �CDM model, but any possible deviations from this caused by
systematics. Thus, in the absence of any alternative model that we
could use to generate a different set of mock catalogues, the errors
of the MultiDark-Patchy mocks and their underlying �CDM model
describe well the error on our expectation.

3.1.1 Higher order stellar templates

A linear fit is not the only possible relationship between observed
galaxies and the number of stars. As discussed in Section 2.4, one
big advantage of our template-based method is that we can add
more templates for any form of contamination we have a reason to
include. To liberate ourselves from the linear assumption, we follow
the steps described in Section 2.5 but, as in the previous subsection,
we allow for ifib2-dependent fitting coefficients and generate our
higher order templates with the redshift dependence of the average
magnitude in mind.

We use equation (10) to find the best-fitting amplitude of each
template, which are listed in Table 1. The amplitudes for the first-
and third-order templates, ε(BF)

1 and ε
(BF)
3 , respectively, do not change

significantly when other templates are fitted at the same time. The
second-order amplitude changes, but it is always at least one order
of magnitude less than ε

(BF)
1 and ε

(BF)
3 . The fourth-order amplitude

ε
(BF)
4 is also much smaller, which suggests that the true relationship

between observed number of stars and galaxies is an odd function.
We compute the debiased mode subtracted power spectra, which we
plot in Fig. 5. We observe that, even though ε

(BF)
3 is almost as large as

ε
(BF)
1 , including the third-order stellar contamination template, or in

fact any other higher order template, does not change the resulting
power spectrum significantly. This is because the field values of the
third-order template are two orders of magnitude smaller than those
of the first-order template. Therefore, for the third-order template
to have an effect, we would need ε

(BF)
3  ε

(BF)
1 . This is similar for

other higher order templates.

3.1.2 Subsampling the stars by magnitude

As the distribution of faint and bright stars is different on the sky,
we split the SDSS star catalogue into subsamples according to the
stellar magnitudes.

First, we split the star sample into two subsamples at the central
i-band magnitude value of i = 18.7. In Fig. A2 one can see that the
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Figure 5. The power spectra of the uncorrected BOSS DR12 CMASS NGC
galaxies and after applying debiased mode subtraction with a first-order
stellar template P1, an additional second-order template P2, and a third-
order template P3. We also show the cases of using one seeing template
P3 + seeing and of using three airmass templates (first, second, and third
order) P3 + seeing + airmass3. We compare to the average power spectrum of
the MultiDark-Patchy mocks.

two subsamples also have different spatial distributions: Bright stars
are more likely to be found close to the Galactic plane, whereas faint
stars are more spread out. The ng/〈ng〉 diagrams in Fig. 6 do not look
very different, though. We refine the magnitude split of the stars and
split them into five magnitude bins, each with a width of 0.5, except
for the last bin with 19.5 < i < 19.9. By comparing the masked
maps of each sample (Fig. A3), one can see that the differences
in the distribution of stars are only prominent in regions close to
the galactic plane from where no galaxies enter BOSS. Therefore,
the templates are all strongly correlated, which we can also see
in Table 2. When fitted separately, all templates have roughly the
same amplitude, and each template alone can remove the whole
stellar contamination signal, suggesting that they contain mostly
the same information. When combined, their amplitudes differ, but
the resulting power spectrum does not change. The resulting power
spectra are plotted in Fig. 7. We therefore conclude that at different
magnitudes, the effect of stars on the galaxy power spectrum is
very similar and we therefore do not have to subsample the stars by
magnitude when mitigating against stellar effects.

3.1.3 Number count versus integrated magnitude

So far, all our stellar templates are based on the number count of
stars in regions of the sky. As the effect of the stars is due to their
light, this is not the only plausible way of making templates and we
explore, as an alternative, basing the templates on the stellar fore-
ground brightness I(α, δ) in each HEALPix cell. The astronomical
magnitude m of an object is defined through the decimal logarithm
of its brightness I in units of the brightness of a reference object
Iref:

m − mref ≡ −2.5 log10

(
I

Iref

)
. (44)

Given the i-band magnitudes provided in the star catalogue file and
used in the previous section, we can obtain the stellar foreground

Figure 6. The relationship between observed galaxy density and the number
of bright stars (i < 18.7, upper panel) and faint stars (i > 18.7, lower panel).

Table 2. Best-fitting contamination amplitudes for a power spectrum mea-
surement using five templates for different magnitude ranges of the stars.
The values on the left-hand side are obtained by fitting only one template at
a time, whereas those on the right have been obtained in a simultaneous fit.

Magnitude range Separate fit Simultaneous fit

17.5 < i < 18.0 0.007 0.013
18.0 < i < 18.5 0.006 − 0.009
18.5 < i < 19.0 0.006 − 0.004
19.0 < i < 19.5 0.007 0.009
19.5 < i < 19.9 0.006 − 0.003

Table 3. Best-fitting contamination amplitudes for a power spectrum mea-
surement using three stellar templates and seeing weights (left) and replacing
the seeing weights by seeing templates (right).

Template Only stellar +1 seeing template

Stars 1st order 0.007 19 0.007 39
Stars 2nd order 0.000 09 − 0.000 02
Stars 3rd order 0.005 52 0.005 76
Seeing − 0.002 37
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Figure 7. The power spectra of the uncorrected BOSS DR12 CMASS
NGC galaxies (green), and those after mode subtraction using five different
templates for stars with different magnitudes, compared to the average power
spectrum of the MultiDark-Patchy mocks (black) and the power spectrum
using the Ross et al. weights (blue).

Figure 8. The relationship between observed galaxy density and the inte-
grated stellar foreground brightness in units of the brightness of Vega.

brightness as the sum over the brightness of all stars in a HEALPix
cell around the coordinates (α, δ):

I (α, δ) ∝
∑

stars∈cell

10−i/2.5. (45)

The distribution of the stellar foreground brightness, mapped in
Fig. A4, is very similar to the distribution of the number of fore-
ground stars (cf. Fig. A1). However, in Fig. 8 we see that the relation-
ship between observed galaxy density and the foreground brightness
ng/〈ng〉(I(α, δ), ifib2) looks very different compared to the same plot
for the number counts (cf. Fig. 2), but this can be explained by
the fact that the number count and the brightness are approximately

Figure 9. Plot similar to Fig. 5 but with templates based on the integrated
brightness of stars rather than their number counts.

logarithmically related. A linear fit does not agree well with the data
and the error bars are so large that we could fit almost any shape
with almost any slope. In this case, a more thorough treatment of
the error of the template would be needed; however, as the quality
of fit of the number count-based templates is much better, we leave
this for future work.

The first-order template for integrated brightness of stars also
does worse in removing the contamination than the first-order tem-
plate based on the number counts, as the plot of the resulting power
spectrum in Fig. 9 shows. Introducing higher order templates results
in power spectra that are similar to the power spectra obtained in the
sections before. It shows that the method of introducing templates
based on a series expansion of the expected contaminant is working
if more than one template is significant, and if they are uncorrelated.
On the other hand, it also shows that there is no improvement by
constructing the templates on the integrated brightness rather than
on the number count of the foreground stars.

3.2 Seeing

The light travelling to ground-based telescopes has to travel through
the Earth’s atmosphere. Due to turbulence in the atmosphere, its re-
fractive index changes on short time-scales. This blurs the image of
an astronomical object and the flux of the object is spread out. This
causes an increased magnitude error, and hence, makes it problem-
atic to distinguish between galaxies and stars in the target selection
process (Ross et al. 2011), because the star–galaxy separation cut
relies entirely on magnitudes. This can cause spurious fluctuations
in the observed density field of galaxies (Ross et al. 2011). The see-
ing can be quantified by measuring the apparent diameter of a point
source. In all power spectrum estimates in the previous subsection,
we took seeing into account by applying the seeing weights that
are provided in the galaxy catalogue file and which are mapped in
Fig. A5, which is inconsistent with the way we mitigated against
the effects of foreground stars. Here, we use it as a test case of the
equivalence of templates and corrective weights that was outlined
in Section 2.3.
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Figure 10. The relationship between observed galaxy density and airmass
(cf. equation 46).

As the effect is purely angular and does not depend on intrinsic
properties of the galaxies, we can build our templates by directly
inserting Ross et al. (2017)’s weights into equation (23). Its best-
fitting amplitude is given in Table 3. The yellow lines and left-facing
triangles in Fig. 5 represent the power spectrum we obtained after
replacing the direct application of the seeing weights with seeing
templates, and using three templates for the stellar contamination.
The plot shows that there is no difference between the results ob-
tained using the weights and those obtained using templates based
on the same weights. This shows that MOSES works and that the
discrepancy between the measured and theoretical power spectra is
not due to using different error mitigation techniques inconsistently.

3.3 Airmass

Another variation in astronomical observations due to the Earth’s
atmosphere arises because light coming from a source close to
the horizon has to travel through more atmosphere than the light
coming from a source close to the zenith. The effect is quantified
by the airmass

mair ≡
∫

d s ρ∫
d szenith ρ

, (46)

which is the column density, i.e. the integral over the mass density
of the atmosphere ρ, along the LOS s, divided by the zenith column
density. The mass density depends on time-varying quantities such
as the temperature and other weather phenomena. Furthermore, the
angle between the zenith and the LOS changes with the seasons.
Hence, the amount of photons to be scattered or absorbed varies with
both position and observing times, effectively varying the depth of
the survey and the magnitude error. Information about the airmass is
provided in the random catalogue. A map can be found in Fig. A6. It
prominently shows the drift scanning strategy of SDSS. The airmass
does not change significantly along SDSS scanning stripes, as the
telescope remains stationary along a great circle, but there are sharp
leaps from stripe to stripe, which can cause spurious fluctuations in
the density field. A plot similar to Fig. 1 that relates ng/〈ng〉 to the
airmass is shown in Fig. 10, where the data points are consistent with
ng/〈ng〉 = 1 for almost all values of airmass. The linear fit ng/〈ng〉(1)

through Fig. 10 is almost constantly equal to one. The quadratic fit
ng/〈ng〉(2) shows a slight negative trend at larger airmasses and the

Table 4. Best-fitting contamination amplitudes for a power spectrum mea-
surement using three stellar templates (left) and additionally three airmass
templates (right).

Template Only stellar +airmass templates

Stars 1st order 0.0072 0.0061
Stars 2nd order 0.0001 − 0.0013
Stars 3rd order 0.0055 0.0042
Airmass 1st order − 0.0014
Airmass 2nd order 0.0202
Airmass 3rd order − 0.0003

cubic fit ng/〈ng〉(3) looks like an overfit. Ross et al. (2017) made a
similar analysis including a χ2 null test. Based on that test, they
state that corrections for such a marginally significant effect are
ill-advised. However, they recommend to reconsider this choice for
any future studies of the clustering of BOSS galaxies at the largest
scales.

We proceed as in Section 2.5. We fit the three polynomials

ng

〈ng〉
(N)

(mair) =
N∑

i=0

Cim
i
air (47)

to the data that we have plotted in Fig. 10. We define

Eam,N (α, δ) ≡ ng

〈ng〉
(N)

(mair(α, δ)) − ng

〈ng〉
(N−1)

(mair(α, δ)), (48)

which we insert into equations (24) and (30) to obtain templates to
mitigate the effect of the airmass.

We perform the mode subtraction method and find the best-fitting
template amplitudes given in Table 4. The third-order template in-
deed is not favoured by the data and obtains a very small amplitude,
suggesting that the third order describes noise rather than an actual
effect of the airmass on the observed galaxy density. The first or-
der is almost constant and equal to one, so it cannot be expected
to significantly change the resulting power spectrum. The second-
order template, however, has the largest amplitude coefficient. Yet,
including all templates into the power spectrum measurement does
only lead to minor corrections in the result, as the blue line in Fig. 5
shows.

3.4 Galactic extinction

The interstellar medium within our Galaxy causes Galactic extinc-
tion that can be mapped. As blue light is more affected by scattering,
extinction causes the light to become redder, and extinction is usu-
ally quantified as the difference between the observed (obs) and
intrinsic (int) B − V colour

EB − V = (B − V )obs − (B − V )int, (49)

where B stands for the filter sensitive to blue light and V is sensitive
to visible green-yellow light.

The photometric magnitudes used in the BOSS target selection
were corrected using the dust map by Schlegel, Finkbeiner & Davis
(1998, SFD). Schlafly & Finkbeiner (2011) found that, using a
more accurate reddening law, the SFD map EB − V ,SFD has to be
recalibrated such that (Schlafly & Finkbeiner 2011)

EB − V = 0.86EB − V ,SFD. (50)

Due to the recalibration, there might be a colour-dependent shift in
the target density. A similar χ2 null test by Ross et al. (2017) led to a
similar conclusion as for the airmass test: extinction weights do not
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Table 5. Best-fitting contamination amplitudes for a power spectrum mea-
surement using three stellar templates (left) and additionally three extinction
templates (right).

Template Only stellar +extinction templates

Stars 1st order 0.0072 0.0070
Stars 2nd order 0.0001 0.0023
Stars 3rd order 0.0055 0.0043
Extinction 1st order − 0.0009
Extinction 2nd order 0.0016
Extinction 3rd order 0.0020

Figure 11. The power spectra of the uncorrected BOSS DR12 CMASS
NGC galaxies (green), and those after mode subtraction using three stellar
templates (magenta) and three stellar and three extinction templates (red),
compared to the average power spectrum of the MultiDark-Patchy mocks
(black) and the power spectrum using the Ross et al. weights (blue).

significantly change the clustering statistics at BAO scales, but one
should be prudent at large scales. For that reason, we test whether
including extinction templates changes our power spectrum at large
scales. The SFD values of EE − V ,SFD used in the BOSS targeting
and listed in the catalogue files are mapped in Fig. A7. There, one
can see that extinction mostly affects the SGC part of the BOSS
footprint, which we do not analyse in this work. Extinction in NGC
occurs mostly in the regions close to the Galactic disc, similar to
the stars in Fig. A1. We therefore might expect some correlation
between the stellar and extinction templates, as their best-fitting
amplitudes ε(BF), listed in Table 5, also suggest. The amplitudes of
the first- and third-order stellar templates are slightly smaller when
fitted at the same time as the extinction templates. The amplitudes of
all extinction templates are less than all stellar template amplitudes,
explaining why the power spectrum does not change much when
extinction templates are included (cf. Fig. 11).

3.5 Scanning stripes

Another possible source of data contamination is the instrument
itself rather than astronomical or atmospheric foregrounds. For ex-
ample, the telescope might have a calibration offset between dif-
ferent nights. Furthermore, one can see in Figs A5 and A6 that
time-varying systematics are mostly exposing the drift scanning
strategy of SDSS. In fact, Fig. 12 shows that the observed number

Figure 12. ng/〈ng〉 in the different scanning stripes.

Figure 13. Power spectra of BOSS DR 12 CMASS NGC data, using mode
subtraction to mitigate the effect of foreground stars (green), as well as
stars and possible stripe-dependent effects (dotted blue), compared to the
power using Ross et al. (2017)’s stellar weights (solid blue) and the average
MultiDark-Patchy power spectrum (magenta).

of galaxies in certain stripes can be significantly different from the
number that is expected from the random catalogue.

We use equation (30) to build templates for each scanning stripe
ηA where everything within the scanning stripe can be mitigated
against, but not between stripes, i.e.

EA(x) =
{

1, if x ∈ ηA,

0, else.
(51)

Applying these templates causes a smoothing of the power spec-
trum (cf. Fig. 13) that can be explained by the fact that the stripe
templates affect short scales perpendicular to the scanning stripes
and long scales along the stripes. The changes are less than the
sample variance of the mock power spectra and therefore leave us
with the large-scale excess. The stripe templates also remove a dip
in the power spectrum compared to the MultiDark-Patchy power
spectrum at around k ≈ 0.27 h Mpc−1 that is also present, e.g. in
the power spectrum monopole used for the RSD measurements by
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Figure 14. Graphical representation of multipoles (�, m) whose measured
values of a�m are with 2σ (green), 3σ (blue), or more than 4σ (red) discrepant
with the average value obtained from MultiDark-Patchy mocks.

Gil-Marı́n et al. (2016). Still, most of their signal comes from scales
that are not accessible with the coarse grid that we use here, thus,
their results are likely to be unaffected by the stripe templates.

4 PH E N O M E N O L O G I C A L T E M P L AT E S

The large-scale offset of the BOSS DR12 CMASS NGC power
spectrum compared to what we expect from the MultiDark-Patchy
mocks could be due to new or not fully understood physics. How-
ever, it is at least as likely instead to be due to unknown systematics.
In this section, we explore phenomenological templates that we gen-
erate without any particular source of systematic data contamination
in mind.

4.1 Templates based on spherical harmonics analyses

As most systematics are expected to affect the data only in different
angular directions, i.e. not radially, we start with a spherical har-
monics decomposition of the data and the mocks. We average the
density field along each LOS to obtain a density map

Fmap(δ, α) ≡ 1

rmax − rmin

∫ rmax

rmin

d r F (r, δ, α), (52)

where F(r, δ, α) is the density field at distance r, declination δ, and
right ascension α. This map can then be decomposed as

Fmap(δ, α) =
∞∑

�=0

�∑
m=−�

a�mY�m(δ, α) (53)

using normalized spherical harmonics Y�m(δ, α) and coefficients
a�m that we estimate using the HEALPix software package as the
following sum over all Npix = 12N2

side HEALPix-pixels (Gorski
et al. 2005):

a�m = 4π

Npix

Npix−1∑
p=0

Y ∗
�m(p)Fmap(p). (54)

We compute equation (54) for both the data (after applying stel-
lar templates) and all MultiDark-Patchy mocks. This allows us to
identify multipoles at which the data a�m is discrepant with the

distribution of the respective mock a�m. These multipoles are rep-
resented by a dot in Fig. 14. At small scales (� ≥ 12), we see that
these appear randomly distributed, whereas at large scales (� < 12),
we see a large concentration of multipoles that are more than 4σ

away from the expected a�m from the MultiDark-Patchy mocks.
Interestingly, these are all at positive m.

We use the information contained in Fig. 14 to generate our first
phenomenological templates: choosing a significance threshold, we
do not include multipoles for which the significance of the discrep-
ancy between data and mocks is less than the threshold, but we
include the ones exceeding the threshold by inserting

EA(z, α, δ) =
∑

�m significant

(
a

(data)
�m −

〈
a

(mocks)
�m

〉)
Y�m(δ, α) (55)

into equation (30). Fig. A8 shows the maps corresponding to such a
contaminant for a 2σ , 3σ , and 4σ threshold. All maps show that the
centre of the survey footprint is overdense compared to the mocks.
In the 4σ map, an underdense ring around the edge becomes more
prominent which could be due to unknown galactic effects, or might
hint that our treatment of stars could be improved, e.g. by a more
thorough treatment of the error on the templates. In Fig. 15, we plot
the data power spectrum after applying these phenomenological
templates. With the 2σ template, the power offset in the first two bins
halves, but for the 3σ and 4σ templates, this is not the case. Applying
all three phenomenological templates, the power in the first bin is
further reduced compared to just applying the 2σ template, however,
in the third bin, we almost see the same power spectrum as if we do
not apply the phenomenological templates.

Furthermore, we generate templates

EA(z, α, δ) =
11∑

�=0

�∑
m=−�

(
a

(data)
�m −

〈
a

(mocks)
�m

〉)
Y�m(δ, α) (56)

that remove all angular modes at � < 12. Applying this template
yields almost the same power spectrum as applying all three pre-
vious phenomenological templates. This suggests that something
alters the power spectrum along the LOS because equation (56)
removes all angular modes at multipoles where the data and the
mocks are inconsistent with each other. This could be new or not
well-understood physics, or a new type of unknown systematic,
which would require rethinking the common assumption that fore-
ground effects are purely angular.

4.2 Cross-correlating redshift shells

One can access the information encoded in the radial modes by only
considering those modes when computing the power spectrum. In
order to not lose information, here we use the projected angular
power spectrum of the cross-correlation of non-overlapping redshift
bins. Given a wide enough separation between the two subsamples
(so that the density correlations are negligible), the only physical
correlation arises due to magnification effects. None the less, ra-
dial variations in observing conditions or foreground contaminants
may also correlate the subsamples. Therefore, in this section we
test whether the remaining offset in the power spectrum is a fore-
ground angular contamination, or whether it is a cosmic signal. A
foreground contaminant would affect all redshift slices in a similar
way and we would therefore see a strong correlation between dif-
ferent shells at the same scales. Therefore, as suggested, e.g. by Ho
et al. (2012), Pullen & Hirata (2013), and Agarwal et al. (2014), the
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Figure 15. Power spectra of BOSS DR 12 CMASS NGC data, using mode
subtraction to mitigate the effect of foreground stars (green), as well as stars
and the phenomenological templates of equation (55) with a 2σ (red), 3σ

(blue), or 4σ (cyan) threshold, as well as all templates combined (yellow),
and a template that removes all modes at � < 12. We compare these with
the power using Ross et al. (2017)’s stellar weights (solid blue) and to the
Patchy power (magenta).

 

Figure 16. Cross-correlations between BOSS CMASS redshift shells. We
applied bandpowering with a width �� = 4. The error bars were obtained
by cross-correlating the same redshift shells in all MultiDark-Patchy mocks.
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between redshift shells x and y can be used to characterize unknown
systematics. In Fig. 16, we quantify cross-correlations between red-
shift shells by the correlation coefficient
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Figure 17. Plot similar to Fig. 1 but with the galaxy overdensity δg in the
redshift shell between 0.49 < z < 0.55 as the foreground and considering
only galaxies between 0.6 < z < 0.7 for ng/〈ng〉.

To estimate by-chance correlations, one can do the same cross-
correlation studies to the mock catalogues. We choose four radial
bins in a way that they contain the same number of objects, thus the
first bin extends from redshifts of 0.43 to 0.49, the second until 0.55,
the third until 0.6, and the fourth up to 0.7. Fig. 16 shows that, as
expected, at scales (� ≥ 12), there is no significant cross-correlation
between non-adjacent shells. However, the second and fourth shells
are strongly correlated at large scales and the first and third only
mildly. We do not see any evidence of cross-correlation between
the first and fourth shells.

As we saw a strong correlation between the second and fourth
radial bins, we test how the ratio of observed versus expected galaxy
number density ng/〈ng〉 in the fourth shell changes with respect to the
foreground galaxy overdensity δg (cf. Fig. 17). For almost all values
of δg in the second bin, we see the expected amount of objects in the
fourth bin. A template built in this way is therefore not significantly
different from zero and, therefore, does not influence the power
spectrum measurement significantly.

4.3 Cross-correlating LOWZ and CMASS

After all the mode subtraction discussed above, we still find no an-
gular contaminant that causes the remaining excess in the measured
power spectrum at very large scales with respect to the one com-
puted from the mocks. Surprisingly, the scales at which this excess
is located coincide with the largest radial scales of the volume cov-
ered by the CMASS catalogue. This is why it is possible that such a
deviation appears only in radial modes. Therefore, and as we have
checked that there is no consistent correlation between different
combinations of subsamples of CMASS separated by redshift, here
we test if this excess can be explained with cosmic magnification.

Cosmic magnification due to foreground galaxies affects back-
ground galaxy number counts in two competing ways. On one hand,
the space behind the lens is stretched, so the background num-
ber density decreases. On the other hand, as background sources
are magnified, faint galaxies may surpass the detection threshold,
which otherwise would have remained undetected. The net effect
is then accounted for in the magnification bias, which depends on
the specific background sample. Although the magnification sig-
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Figure 18. Plots similar to Fig. 2 but with the LOWZ overdensity field as
the foreground. In the top panel, we used the whole LOWZ sample as the
foreground, whereas in the bottom panel, only galaxies at redshifts z < 0.29
have been considered.

nal does not strongly depend on the redshift of the background
sources, it may have affected the targeting strategy and contaminate
the selection procedure for CMASS, including more galaxies than
expected in the faint end of the galaxy population, which is most
probably the galaxies with the highest redshifts. Galaxy mocks as-
sume Newtonian gravity but magnification is a relativistic effect,
hence we can test if the CMASS sample has a significant amount
of magnified galaxies that would not have been targeted otherwise
by comparing the cross-correlation of CMASS galaxies with fore-
ground catalogues with the corresponding mocks. In order to avoid
the introduction of different assumptions or systematics in this anal-
ysis, we choose the BOSS LOWZ sample (spectroscopic as well)
as our foreground sample.

In Fig. 18, we show the ratio between the observed and the ex-
pected number counts as a function of the number overdensity in
the LOWZ sample. We split the CMASS data again by ifib2, even

though it is regarded as a measure of surface brightness, which is
unaffected by lensing. However, as the aperture covers most of the
galaxy flux (both before and after it is lensed), ifib2 will catch extra
photons from the magnification, i.e. even though surface brightness
is conserved, the number of subpixels illuminated by this surface
brightness increases. Indeed, we find that significantly fewer very
bright galaxies with i-fibre magnitudes ifib2 < 20.6 are observed
behind underdense regions in LOWZ, and significantly more be-
hind overdensities. However, such bright galaxies are rare and have
no effect on any template because the average magnitude of even
the closest CMASS galaxies (cf. Fig. 3) is fainter than the galaxies
showing the effect. Due to their rareness, we also do not see any
sizeable effect when applying the classic galaxy-by-galaxy weight-
ing scheme. Moreover, the brightest galaxies in CMASS are the
closest ones to us, so it is likely that this positive correlation has a
clustering origin rather than being due to magnification. This is fur-
ther supported by the fact that, if we restrict the LOWZ foreground
to z < 0.29, the cross-correlation is insignificant, suggesting that
the significant cross-correlation visible in the top panel of Fig. 18 is
due to clustering between LOWZ galaxies at z > 0.29 and CMASS
galaxies at low redshifts.

In order to rule out cosmic magnification as the origin of the
excess in the power spectrum, a more comprehensive analysis com-
paring the results using photometric and spectroscopic catalogues
as well as using different galaxy populations as foreground lenses
is required. However, this study is beyond the scope of this work
and is left for future research.

5 C O N C L U S I O N S

We have presented a practical approach to decontamination using
mode subtraction (cf. 2.3 and 2.4). In Section 3, we generated tem-
plates to mitigate against the effect of foreground stars, seeing,
airmass, galactic extinction, and the SDSS scanning stripes. We
applied these to the final SDSS-III BOSS CMASS NGC sample.
We have found that mode subtraction mitigates against systematic
contaminants at least as well as deriving and applying corrective
weights to the observed objects. As with the corrective weight-
ing, we measure a large-scale excess beyond the power spectrum
expected from the standard �CDM cosmology with Gaussian ini-
tial density fluctuations. This excess is only present at scales that
are much larger than the BAO scale, thus leaving the main results
of BOSS unaffected. In Fig. 19, we show that after applying our
template-based approach the power spectrum is slightly reduced
compared to after applying corrective weights. This is because of a
small correlation of the observed galaxy density field with the scan-
ning stripes of SDSS, which has previously not been addressed.

We further tested our methodology by building a range of phe-
nomenological templates. Templates built on a comparison of a
spherical harmonics decomposition of the data with the distribu-
tion of the decomposed mock catalogue data reduce the large-scale
power offset (cf. Section 4.1). However, after applying these phe-
nomenological templates, our large-scale power spectrum measure-
ments are still discrepant with the average mock power spectrum
(cf. Fig. 19). Thus, the excess signal is not only coming from angu-
lar modes, but there might be a contaminant, or a physical effect,
that amplifies the power spectrum along the LOS. The power spec-
tra presented in Figs 15 and 19 have only been computed to test
the Mode Subtraction method; they should not be interpreted as a
true measurement, as by using the mock catalogues to generate our
templates, we have already partially assumed what we expect.
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Figure 19. Power spectrum of BOSS DR 12 CMASS NGC data after applying weights for all known systematics (stellar density, seeing, airmass, extinction,
scanning stripes; to third order where applicable) presented in Section 3 (dot–dashed green), as well as after additionally applying the template removing all
angular modes at � < 12 (dotted blue). These are compared to the power spectrum we obtain using the same data but applying Ross et al. (2017)’s corrective
weights for stars and seeing (solid cyan) and not applying any correction for systematic modes (dashed red). The magenta line represents the average power
spectrum of 2049 MultiDark-Patchy realizations.

In Section 4.2, we generate further phenomenological templates
based on cross-correlations between the CMASS and LOWZ, the
other BOSS galaxy sample at lower redshifts, and between redshift
shells within the CMASS sample. None of these templates have
any sizeable effect on the resulting power spectrum. We therefore
do not yet have a satisfactory explanation for the large-scale power
spectrum excess, which we leave for future work.

In this work, we have shown that MOSES provides power spec-
trum measurements that are consistent with measurements obtained
using corrective weights. The computationally most expensive part
of MOSES is the generation of the templates. This is done in the
same way that Ross et al. (2017) generate their corrective weights,
and when already having weights at hand, equation (23) provides
a straightforward conversion of the weights into templates. As
MOSES is built to ensure an unbiased estimate of the power spec-
trum, and as one can easily introduce more templates to explore
more functional shapes of the contaminant effect, we encourage the
use of MOSES.

AC K N OW L E D G E M E N T S

The authors would like to thank Hector Gil-Marı́n for his support
when using the MultiDark-Patchy mock catalogues, and Michael
Brown and Rob Crittenden for their valuable comments.

We acknowledge support from European Union’s Horizon 2020
research and innovation programme ERC (BePreSySe, grant agree-
ment 725327), Spanish MINECO under projects AYA2014-58747-
P AEI/FEDER, UE, and MDM-2014-0369 of ICCUB (Unidad de
Excelencia Marı́a de Maeztu). WJP acknowledges support from the

European Research Council through the Darksurvey grant 614030.
DB is supported by STFC consolidated grant ST/N000668/1. LS
acknowledges support from NASA grant 12-EUCLID11-0004 and
the DOE grant DE-SC0011840. JLB is supported by the Span-
ish MINECO under grant BES-2015-071307, co-funded by the
ESF.

We use publicly available SDSS-III data. Funding for SDSS-III
has been provided by the Alfred P. Sloan Foundation, the Partici-
pating Institutions, the National Science Foundation, and the U.S.
Department of Energy Office of Science. The SDSS-III web site is
http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consor-
tium for the Participating Institutions of the SDSS-III Collabora-
tion including the University of Arizona, the Brazilian Participation
Group, Brookhaven National Laboratory, Carnegie Mellon Uni-
versity, University of Florida, the French Participation Group, the
German Participation Group, Harvard University, the Instituto de
Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Par-
ticipation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max
Planck Institute for Extraterrestrial Physics, New Mexico State Uni-
versity, New York University, Ohio State University, Pennsylvania
State University, University of Portsmouth, Princeton University,
the Spanish Participation Group, University of Tokyo, University
of Utah, Vanderbilt University, University of Virginia, University
of Washington, and Yale University.

Some of the results in this paper have been derived using the
HEALPix (Gorski et al. 2005) package. We used matplotlib (Hunter
2007) to generate plots. We made use of the facilities and staff of

MNRAS 482, 453–470 (2019)

http://www.sdss3.org/


468 B. Kalus et al.

the UK Sciama High Performance Computing cluster supported by
the ICG, SEPNet, and the University of Portsmouth.

RE FERENCES

Abazajian K. et al., 2004, AJ, 128, 502
Agarwal N. et al., 2014, JCAP, 1404, 007
Alam S. et al., 2015, ApJS, 219, 12
Dawson K. S. et al., 2013, AJ, 145, 10
Eisenstein D. J. et al., 2011, AJ, 142, 72
Elsner F., Leistedt B., Peiris H. V., 2016, MNRAS, 456, 2095
Elsner F., Leistedt B., Peiris H. V., 2017, MNRAS, 465, 1847
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Gil-Marı́n H. et al., 2016, MNRAS, 460, 4188
Gorski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke

M., Bartelman M., 2005, ApJ, 622, 759
Gunn J. E. et al., 2006, AJ, 131, 2332
Hivon E., Gorski K. M., Netterfield C. B., Crill B. P., Prunet S., Hansen F.,

2002, ApJ, 567, 2
Ho S., Hirata C., Padmanabhan N., Seljak U., Bahcall N., 2008, Phys. Rev.

D, 78, 043519
Ho S. et al., 2012, ApJ, 761, 14
Hunter J. D., 2007, Comput. Sci. Eng., 9, 90
Jasche J., Lavaux G., 2017, A&A, 606, A37
Jasche J., Wandelt B. D., 2013, ApJ, 779, 15
Jasche J., Kitaura F. S., Wandelt B. D., Ensslin T. A., 2010, MNRAS, 406,

60
Kalus B., Percival W. J., Bacon D., Samushia L., 2016, MNRAS, 463, 467
Kitaura F.-S., Yepes G., Prada F., 2014, MNRAS, 439, 21
Kitaura F.-S., Gil-Marı́n H., Scoccola C., Chuang C.-H., Müller V., Yepes

G., Prada F., 2015, MNRAS, 450, 1836
Kitaura F.-S. et al., 2016, MNRAS, 456, 4156
Klypin A., Yepes G., Gottlober S., Prada F., Hess S., 2016, MNRAS, 457,

4340
Leistedt B., Peiris H. V., 2014, MNRAS, 444, 2
Leistedt B., Peiris H. V., Mortlock D. J., Benoit-Lévy A., Pontzen A., 2013,
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APPENDIX A : MAPS

Figure A1. The distribution of stars in the 8th SDSS data release in
HEALPix. The map is presented in Mollweide projection, equatorial co-
ordinates, astronomical orientation, i.e. east is left, and it has been rotated
by 180◦ to show the NGC in the centre. The resolution is Nside = 256. The
catalogue includes stars in areas that were not targeted by BOSS. These are
masked out in the relevant cells.

Figure A2. Maps of two subsamples of the SDSS DR8 star catalogue. The
upper panel shows the distribution of bright stars with 17.5 < i < 18.7 and
the lower one faint stars with 18.7 < i < 19.9. The plot is in Mollweide
projection and in equatorial coordinates with astronomical orientation.
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Figure A3. Maps of five subsamples of the SDSS DR8 star catalogue. The
panels show the distribution of stars with 17.5 < i < 18.0 (top left), 18.0 <

i < 18.5 (top right), 18.5 < i < 19.0 (centre left), 19.0 < i < 19.5 (centre
right), and 19.5 < i < 19.9 (bottom). The plot is in Mollweide projection
and in equatorial coordinates with astronomical orientation.

Figure A4. Map of the brightness distribution of the SDSS DR8 star cat-
alogue. The plot is in Mollweide projection and in equatorial coordinates
with astronomical orientation. The map is rotated by 180◦ to feature the
NGC in the centre. The brightness is given in units of the brightness of the
star Vega.

Figure A5. The seeing condition weights of BOSS DR12 CMASS NGC
in HEALPix. The map is presented in Mollweide projection, equatorial
coordinates, and astronomical orientation, but it is rotated by 180◦ such that
the region observed is in the centre of the map.

Figure A6. The airmass mair (cf. equation 46) in the NGC subsample of
BOSS DR12 CMASS in HEALPix. The map is presented in Mollweide
projection, equatorial coordinates, and astronomical orientation, but it is
rotated by 180◦ such that the region observed is in the centre of the map.

Figure A7. The values of EE − V ,SFD used to correct for extinction in the
BOSS targeting in HEALPix. The map is presented in Mollweide projection,
equatorial coordinates, and astronomical orientation.
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Figure A8. Phenomenological ‘contaminant’ maps for a 2σ (top), 3σ (cen-
tre), and 4σ (bottom) threshold as defined by equation (55) presented in
Mollweide projection, equatorial coordinates, and astronomical orientation.
The maps have been rotated to centre the BOSS NGC footprint. We masked
out regions outside of the BOSS NGC footprint since they are unphysical
and do not contribute to the templates as the number density of the randoms
is zero.
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