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Abstract   Acidic solutions of trans-cinnamic acid at pH 3.0 have been comparatively treated by 

anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-

Fenton (PEF). The electrolytic experiments were carried out with a boron-doped diamond 

(BDD)/air-diffusion cell. The substrate was very slowly abated by AO-H2O2 because of its low 

reaction rate with oxidizing OH produced from water discharge at the BDD anode. In contrast, its 

removal was very rapid and at similar rate by EF and PEF due to the additional oxidation by OH in 

the bulk, formed from Fenton’s reaction between cathodically generated H2O2 and added Fe2+. The 

AO-H2O2 treatment yielded the lowest mineralization. The EF process led to persistent final 

products like Fe(III) complexes, which were quickly photolyzed upon UVA irradiation in PEF to 

give an almost total mineralization with 98% total organic carbon removal. The effect of current 

density and substrate concentration on all the mineralization processes was examined. GC-MS 

analysis of electrolyzed solutions allowed identifying five primary aromatics and one 

heteroaromatic molecule, whereas final carboxylic acids like fumaric, acetic and oxalic were 

quantified by ion-exclusion HPLC. From all the products detected, a degradation route for trans-

cinnamic acid is proposed. 

Keywords: Anodic oxidation; Electro-Fenton; Hydroxyl radical; Oxidation products; Photoelectro-

Fenton; Photolysis; trans-Cinnamic acid; Water treatment 
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Introduction 

 trans-Cinnamic acid (E-3-phenyl-2-propenoic acid) is an unsaturated carboxylic acid 

commonly present in many fruits and vegetables. It is obtained from oil of cinnamon, balsams such 

as storax and shea butter, and it is synthesized in the industry from the base-catalyzed condensation 

of acetic anhydride and benzaldehyde or from reaction between cinnamaldehyde and benzal 

chloride. It is largely used worldwide in fragrances including decorative cosmetics, fine fragrances, 

shampoos, toilet soaps and other toiletries as well as in non-cosmetic products such as household 

cleaners and detergents (Letizia et al. 2005). trans-Cinnamic acid has antifungal properties, inhibits 

the toxicity of metals in plants (Hojati et al. 2015) and acts as an antioxidant with very low toxicity 

in bacteria, animals and human beings (Letizia et al. 2005; Zeni et al. 2013; Hakkim et al. 2014). It 

is a main component of toxic and recalcitrant olive oil mill wastewater (OOMWW), where its 

concentration reaches up to 106 mg L-1 (Deeb et al. 2012), and it has been detected at relatively 

high contents of 10 g L-1 in rivers (Lafont et al. 2001). Kontos et al. (2014) described the removal 

and recovery of trans-cinnamic acid from OOMWW by crystallization. Several authors have 

reported the degradation of this acid and some polyphenolic components of OOMWW using 

different bacteria strains (Di Gioia et al. 2012) and by several advanced oxidation processes (AOPs) 

including zero-valent iron (Sanchez et al. 2012) and wet oxidation (Lopes et al. 2007; Lopes and 

Quinta-Ferreira 2010). AOPs are based on the oxidation of pollutants by in situ generated reactive 

oxygen species (ROS) like hydroxyl radical (OH). However, much less is known about the 

treatment of trans-cinnamic acid solutions by powerful electrochemical AOPs (EAOPs). 

Chatzisymeon et al. (2009) found a very poor mineralization with 25% chemical oxygen demand 

(COD) reduction upon anodic oxidation (AO) treatment of 110 mL of a 5 mM trans-cinnamic acid 

solution in 0.1 M HClO4 using a Ti/IrO2 anode after a specific charge consumption of 28 Ah L-1. 

These authors also describe a similar COD abatement of 30% for OOMWW with 5 mM NaCl after 

consuming 43 Ah L-1. 
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 AO is the most popular EAOP and consists in the application of a high current density (j) to the 

anode M of the cell for the direct anodic oxidation of pollutants or, primordially, for their 

destruction by physisorbed hydroxyl radical M(OH) produced as intermediate of water discharge to 

O2 at the anode surface (Marselli et al. 2003; Martínez-Huitle and Ferro 2006; Panizza and Cerisola 

2009; Brillas and Martínez-Huitle 2015): 

𝑀  +    𝐻2𝑂  →    𝑀( 𝑂𝐻• )   +    𝐻+   +    𝑒−                (1) 

 AO is more effective when a boron-doped diamond (BDD) thin-film electrode is employed as 

anode. This is due to the higher oxidation ability of physisorbed BDD(OH) generated by reaction 

(1) compared to that of other physisorbed M(OH) produced at anodes like Pt and PbO2 (Ciríaco et 

al. 2009; Guinea et al. 2009; Rodrigo et al. 2010; Cavalcanti et al. 2013), as a result of the low 

interaction BDD-OH and the larger O2-overpotential of BDD that favors the reaction of OH with 

organics (Panizza and Cerisola 2009). 

 The oxidation ability of AO with a BDD anode can be enhanced in an undivided cell by 

electrogenerating H2O2 at the cathode from the two-electron reduction of O2 gas via reaction (2). 

The so-called AO-H2O2 process involves the destruction of organics preferentially by physisorbed 

BDD(OH), with only a minor participation of ROS like H2O2 and its anodic oxidation product 

HO2
 (Sirés and Brillas 2012; Sirés et al. 2014). Carbon nanotubes (Khataee et al. 2013, 2014), 

graphite felt (Vatanpour et al. 2009), activated carbon fiber (Wang et al. 2008), carbon modified 

with metals or metal oxide nanoparticles (Assumpção et al. 2013), carbon felt (Dirany et al. 2012; 

El-Ghenymy et al. 2014; Yahya et al. 2014), carbon-polytetrafluoroethylene (PTFE) O2 or air-

diffusion (Borràs et al. 2010; Thiam et al. 2014, 2015b) and BDD (Cruz-González et al. 2010, 

2012) are considered the most suitable carbonaceous cathodes to electrogenerate H2O2. 

𝑂2(𝑔)   +    2𝐻+   +    2𝑒−    →    𝐻2𝑂2                           (2) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

 The performance of AO-H2O2 can be improved by means of EAOPs based on Fenton’s reaction 

chemistry like electro-Fenton (EF) and photoelectro-Fenton (PEF), which have recently gained 

increasing interest for wastewater remediation (Sirés and Brillas 2012: Sirés et al. 2014; Vasudevan 

and Oturan 2014; Brillas and Martínez-Huitle 2015). In the EF process, a small quantity of Fe2+ is 

added to the solution to react with H2O2 via Fenton’s reaction (3) yielding Fe3+ and OH in the bulk 

(Dirany et al. 2012; El-Ghenymy et al. 2014; Thiam et al. 2014, 2015a). Organics are then 

destroyed by both radicals, M(OH) and OH, at an optimum pH ~ 3. When the PEF process is 

applied, the treated solution is irradiated with artificial UVA light that causes the photoreduction of 

Fe(OH)2+ species to Fe2+ and OH generation via reaction (4), along with the photodecarboxylation 

of complexes of Fe(III) with generated carboxylic acids from reaction (5) (Ruiz et al. 2011; Moreira 

et al. 2013; Florenza et al. 2014; Thiam et al. 2015a). 

𝐻2𝑂2   +    𝐹𝑒2+    →    𝐹𝑒3+  +     𝑂𝐻•   +    𝑂𝐻−            (3) 

𝐹𝑒(𝑂𝐻)2+   +    ℎ𝜈   →    𝐹𝑒2+   +    𝑂𝐻•                           (4) 

𝐹𝑒(𝑂𝑂𝐶𝑅)2+   +    ℎ𝜈  →    𝐹𝑒2+   +    𝐶𝑂2   +    𝑅•             (5) 

 In this paper, we present a comparative study on the degradation of trans-cinnamic acid 

solutions of pH 3.0 by AO-H2O2, EF and PEF using a stirred BDD/air-diffusion cell. The influence 

of j and substrate content on the performance of these EAOPs was examined to clarify the role of 

generated hydroxyl radicals and UV light. The abatement of trans-cinnamic acid and the evolution 

of final carboxylic acids were followed by high-performance liquid chromatography (HPLC). Gas 

chromatography-mass spectrometry (GC-MS) allowed the identification of the primary aromatic 

intermediates. A plausible route for trans-cinnamic acid mineralization including all detected 

products is proposed. 
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Experimental details 

Chemicals 

 Analytical grade trans-cinnamic acid (purity > 99%) was supplied by Sigma-Aldrich and used 

as received. Acetic, fumaric and oxalic acids were of analytical grade purchased from Panreac. 

Heptahydrated Fe(II) sulfate and anhydrous sodium sulfate were of analytical grade supplied by 

Fluka. Analytical grade sulfuric acid was purchased from Merck and used to adjust the initial 

solution pH to 3.0. The solutions were prepared with ultrapure water provided by a Millipore Milli-

Q system (resistivity > 18.2 M cm at 25 ºC). Other chemicals were of HPLC or analytical grade 

supplied by Avocado, Fluka and Merck. 

Electrolytic system 

 The electrolytic assays were carried out in an open and undivided cylindrical glass cell of 150 

mL capacity equipped with a double jacket for recirculating water through a Thermo Electron 

Corporation HAAKE DC 10 thermostat. All the experiments were made at 25 ºC and under 

vigorous stirring with a magnetic bar at 700 rpm to ensure the solution mixing and the transport of 

reactants toward/from the electrodes. A 3 cm2 BDD thin-film electrode from NeoCoat (La-Chaux-

de-Fonds, Switzerland) was used as the anode and a 3 cm2 carbon-PTFE air-diffusion cathode from 

E-TEK (Somerset, NJ, USA) was used as the cathode. The air-diffusion cathode was mounted as 

described elsewhere (Boye et al. 2003) and was fed with air pumped at 300 mL min-1 for H2O2 

generation. The interelectrode gap was about 1 cm. The trials were performed at constant j provided 

by an EG&G Princeton Applied Research 273A potentiostat-galvanostat. 

 Comparative treatment of 100 mL of solutions with trans-cinnamic acid and 0.05 M Na2SO4 as 

background electrolyte at pH 3.0 was carried out by AO-H2O2, EF and PEF. Electrolyses for the 

two latter EAOPs were run after addition of 0.50 mM Fe2+ as catalyst since this content was found 

optimal for many organics treated under similar conditions (Ruiz et al. 2011; Moreira et al. 2013; 
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Florenza et al. 2014; Thiam et al. 2015a). For PEF, a Philips TL/6W/08 fluorescent black light blue 

tube was placed at 8 cm above the solution. This UVA lamp emitted at max = 360 nm and with 5 W 

m-2 average power density, as determined with a Kipp&Zonen CUV 5 UV radiometer. 

Instruments and analytical procedures 

 A Crison GLP 22 pH-meter was used to measure the solution pH. Total organic carbon (TOC) 

was determined with a Shimadzu VCSN TOC analyzer. This analysis was performed by filtering 

the samples withdrawn from treated solutions at regular times with Whatman 0.45 µm PTFE filters 

and, subsequently, directly injecting 50 L aliquots into the above analyzer. Reproducible TOC 

values with ±1% accuracy were always determined. 

 Since the total conversion of trans-cinnamic acid into CO2 can be written as follows: 

𝐶9𝐻8𝑂2   +    16𝐻2𝑂   →    9𝐶𝑂2   +    40𝐻+   +    40𝑒−        (6) 

the mineralization current efficiency (MCE) for each trial was then estimated from Eq. (7) (Ruiz et 

al. 2011): 

𝑀𝐶𝐸(%) =
𝑛𝐹𝑉𝛥(𝑇𝑂𝐶)𝑒𝑥𝑝

4.32𝑥107𝑚𝐼𝑡
𝑥100                    (7) 

where n is the number of electrons for total mineralization (40 e from reaction (6)), F is the 

Faraday constant (96,487 C mol-1), V is the solution volume (in L), Δ(TOC)exp is the 

experimental TOC abatement (in mg L-1), 4.32  107 is a conversion factor (3,600 s h-1  12,000 

mg C mol-1), m is the number of carbon atoms of trans-cinnamic acid (9 C atoms), I is the 

current (in A) and t is the electrolysis time (in h). 

 Reversed-phase HPLC was used to follow the kinetic decay of trans-cinnamic acid. These 

measurements were made by injecting 10 L aliquots into a Waters 600 LC containing a BDS 

Hypersil C18 6 m, 250 mm  4.6 mm, column at 35 ºC, coupled to a Waters 996 photodiode 

array detector selected at  = 276 nm. All the samples were filtered with Whatman 0.45 m 
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PTFE filters, although for the EF and PEF assays, they were previously diluted with acetonitrile 

(1:1) to stop the degradation process. The mobile phase was an 80:20 (v/v) acetonitrile/water 

mixture eluted at 0.8 mL min-1 and the chromatograms exhibited a well-defined peak for trans-

cinnamic acid at retention time (tr) = 3.45 min. 

 The same LC system was used to detect and quantify the generated carboxylic acids by ion-

exclusion HPLC, but with a Bio-Rad Aminex HPX 87H, 300 mm × 7.8 mm, column at 35 ºC 

and the photodiode array detector set at λ = 210 nm. This analysis was also performed with 10 

L aliquots, circulating 4 mM H2SO4 at 0.6 mL min-1 as mobile phase. The chromatograms 

recorded displayed peaks associated to oxalic (tr = 6.9 min), acetic (tr = 14.9 min) and fumaric 

(tr = 15.6 min) acids. 

 The primary aromatic products of trans-cinnamic acid were identified from the AO-H2O2 

treatment of 100 mL of a 0.926 mM substrate solution at 33.3 mA cm-2. Various electrolyses were 

run up to 30 and 90 min and the remaining organic components of each solution were extracted out 

with CH2Cl2 (3  25 mL). The resulting organic fractions were dried over anhydrous Na2SO4, 

filtered and their volume reduced to near 1 mL for further analysis by GC-MS using a NIST05-MS 

library to elucidate the mass spectra. GC-MS measurements were performed with an Agilent 

Technologies system composed of a 6890N GC and a 5975C MS operating in electron impact mode 

at 70 eV. The GC was fitted with either a non-polar Agilent J&W HP-5ms or a polar HP INNOWax 

column, both of 0.25 µm, 30 m × 0.25 mm. The temperature ramp was: 36 ºC for 1 min, 5 ºC min-1 

up to 300 ºC for the non-polar column or 250 ºC for the polar one, and hold time 10 min. The 

temperature of the inlet, source and transfer line was 250, 230 and 280 ºC for the non-polar column 

and 250, 230 and 250 ºC for the polar one. 
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Results and discussion 

Kinetic decay of trans-cinnamic acid by AO-H2O2, EF and PEF 

 The decay kinetics of trans-cinnamic acid by the different EAOPs using a BDD/air-diffusion 

cell was first determined for 100 mL of 0.926 mM substrate solutions in 0.05 M Na2SO4 of pH 3.0 

at 33.3 mA cm-2. In AO-H2O2 (no catalyst) as well as in EF and PEF (0.50 mM Fe2+ as catalyst), the 

solution pH underwent a slight fall from 3.0 to ~ 2.7-2.8 after 360 min of electrolysis, which can be 

ascribed to the production of acidic products such as carboxylic acids (Ruiz et al. 2011; Moreira et 

al. 2013; Florenza et al. 2014; Thiam et al. 2015a). A preliminary study with the same solution 

under a 6 W UVA irradiation in the absence of electric current confirmed that the substrate content 

did not vary with time, as expected if trans-cinnamic acid is not directly photolyzed by UVA light.  

 Fig. 1a depicts a very slow abatement of trans-cinnamic acid by AO-H2O2, requiring 360 min 

to completely disappear. The reaction rate of this compound with generated ROS, pre-eminently 

with BDD(OH) originated from reaction (1), is then very low. In contrast, Fig. 1b depicts a much 

quicker decay and at similar rate in EF and PEF, being completely removed in about 42 min in both 

cases. The more rapid disappearance of this compound in such processes can be related to its faster 

reaction occurring in the bulk with OH originated from Fenton’s reaction (3) compared with the 

much slower attack of BDD(OH) confined near the anode. The quite similar removal rate in EF 

and PEF can be explained by a very small contribution of the photolytic reaction (4) to produce 

greater quantities of OH in the bulk. 

 The concentration decays of Figs. 1a and b were well fitted to a pseudo-first-order kinetic 

equation, as can be seen in the inset panels. This behavior suggests that trans-cinnamic acid is 

attacked by a steady concentration of BDD(OH) and/or OH in each treatment. From this analysis, 

apparent rate constants (k1) of 0.012 min-1 (square regression coefficient R2 = 0.991) for AO-H2O2, 

0.052 min-1 (R2 = 0.998) for EF and 0.050 min-1 (R2 = 0.9990) for PEF were obtained. The k1 value 
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in EF and PEF was 4.2-4.3 orders of magnitude greater than that in AO-H2O2, corroborating the 

much larger oxidation ability of OH compared to BDD(OH) in the two former EAOPs. 

 The study of the kinetic decay of trans-cinnamic acid was extended to lower concentrations of 

0.185 and 0.463 mM by applying 33.3 mA cm-2. Total removal of the substrate occurred at shorter 

time as the initial organic load decreased. For example, in AO-H2O2, trans-cinnamic acid 

disappeared at 270, 330 and 360 min for 0.185, 0.463 and 0.926 mM, respectively, whereas its 

removal in the EF treatment occurred at 8, 20 and 42 min for the same concentrations. According to 

this trend, a raising k1 value with decreasing substrate content was obtained from the corresponding 

pseudo-first-order kinetic analysis. Thus, k1 grew from 0.012 min-1 (R2 = 0.991) to 0.014 min-1 (R2 = 

0.992) in AO-H2O2 and from 0.052 min-1 (R2 = 0.998) to 0.58 min-1 (R2 = 0.994) in EF when 

changing from 0.926 mM to 0.185 mM. It is then evident that the kinetic decay of this acid does not 

obey a true pseudo-first-order reaction, because similar k1 values should be found independently of 

its initial content. Since analogous quantities of BDD(OH) and/or OH are produced in each EAOP 

at j = 33.3 mA cm-2 as the organic load grows, a larger proportion of these oxidizing radicals is able 

to react with the oxidation products generated, thus decreasing their available quantity to attack the 

trans-cinnamic acid, eventually decelerating its removal. 

3.2. Mineralization of trans-cinnamic acid solutions by AO-H2O2, EF and PEF 

 For the above solutions with 0.926 mM trans-cinnamic acid of pH 3.0 treated by the EAOPs at 

33.3 mA cm-2, their TOC decay was determined in order to ascertain the relative mineralization 

ability. Fig. 2a highlights a slow and continuous TOC removal under AO-H2O2 conditions, reaching 

a partial mineralization of 68% after 360 min of electrolysis. A much rapid TOC abatement can be 

observed in EF, with a final TOC reduction of 78%. It should be noted that the mineralization 

process in EF was very fast up to 120 min as a result of the efficient oxidation by OH but, at longer 

time, it underwent a progressive deceleration suggesting the generation of more recalcitrant 

products, like Fe(III)-carboxylate complexes, which are very refractory to OH and can only be 
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slowly destroyed by BDD(OH) (Sirés et al. 2014). Fig. 2a also evidences a very positive effect of 

UVA irradiation during the PEF process, which yielded a high TOC decay rate to attain an almost 

total mineralization with 98% TOC reduction at 360 min. This large acceleration of the 

mineralization process can be ascribed to the photolysis of products such as Fe(III)-carboxylate 

species via reaction (5) (Sirés et al. 2014; Brillas and Martínez-Huitle 2015). These findings 

indicate that the oxidation ability of the EAOPs to mineralize the trans-cinnamic acid increases in 

the sequence AO-H2O2 < EF < PEF. 

 Fig. 2b shows the MCE values estimated from Eq. (7) for the assays of Fig. 2a. A higher 

current efficiency was obtained as the relative mineralization power of the EAOP increased. This 

tendency was more apparent between 60 and 120 min of electrolysis, because of the effect of 

BDD(OH) and OH oxidation and photolysis on the mineralization rate in each treatment. In PEF, 

the MCE value dropped from 71% at the beginning of the treatment to 16% at 360 min. This fall in 

current efficiency can be explained by the production of more recalcitrant final oxidation products 

as well as the progressive loss of organic matter (Panizza and Cerisola 2009; Florenza et al. 2014; 

Thiam et al. 2015b). In the case of EF, the MCE value rose from an initial 14% to 28% at 120 min, 

further decaying to 13%. This is due to the initial formation of some persistent products that react 

slowly with OH in EF, requiring longer time for their mineralization, whereas their continuous 

removal caused the increase in MCE at the beginning of this process. In contrast, the MCE values in 

AO-H2O2 remained practically constant between 13% and 15%, indicating a constant mineralization 

rate of products upon BDD(OH) oxidation. 

Effect of applied current density and substrate concentration on the performance of EAOPs 

 It is well known that the amount of oxidizing hydroxyl radicals acting in each EAOP is limited 

by the applied j. To clarify the influence of this key operation parameter, the mineralization of 

0.926 mM trans-cinnamic acid solutions was carried out at j in the range 16.7 - 100 mA cm-2. Figs. 
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3a-c depict the TOC decay vs. electrolysis time measured in the AO-H2O2, EF and PEF assays, 

respectively. For the former process, Fig. 3a shows a quite similar TOC abatement at 16.7 - 66.7 

mA cm-2 during about 240 min, whereas the mineralization rate increased more significantly at 100 

mA cm-2. This means that the expected rise in BDD(OH) from the acceleration of reaction (1) at 

higher j (Sirés et al. 2014) has little influence on the destruction of organics, indicating that the 

excess of ROS produced are rather consumed in parasitic reactions, as will be discussed below. The 

influence of j in AO-H2O2 was more apparent between 240 and 360 min, when final products like 

short-linear carboxylic acids are the main accumulated organics. At 360 min, for example, 

increasing TOC reductions of 64%, 68%, 76% and 84% for 16.7, 33.3, 66.7 and 100 mA cm-2, 

respectively, were found. A partial mineralization but with greater TOC decay can be seen in Fig. 

3b for the comparative EF runs. In this process, higher j originated more quantities of BDD(OH) as 

well as greater amounts of OH in the bulk due to the quicker generation of H2O2 by reaction (2) 

and the concomitant acceleration of Fenton’s reaction (3). Both ROS then play a pre-eminent role to 

destroy the intermediates and their Fe(III) complexes and thus, greater TOC decay at higher j values 

can be clearly distinguished in Fig. 3b from 120 min of electrolysis. At the end of these treatments, 

however, the best j of 100 mA cm-2 only yielded 90% mineralization. The behavior was very 

different when PEF was applied. Fig. 3c reveals that the low production of BDD(OH) and OH at 

16.7 mA cm-2 impeded the complete production of photosensitive products and, therefore, only 91% 

TOC reduction was achieved at 360 min. In contrast, the use of j  33.3 mA cm-2 favored an 

effective generation of oxidants, and nearly all the accumulated products were photosensitive and 

were removed at similar rate yielding an almost total mineralization with 97-98% TOC reduction at 

the end of all the treatments. These findings indicate that 33.3 mA cm-2 can be considered as the 

best j value for the application of this EAOP to degrade a 0.926 mM trans-cinnamic solution. 

 Figs. 4a-c show a loss in current efficiency for each EAOP as j rose. This tendency is not 

surprising in view of the low effect of this parameter on the TOC decay of all the treatments, mainly 
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in AO-H2O2 and PEF (see Figs. 3a and c). As shown in Fig. 4a, the MCE values in each AO-H2O2 

at a given j  33.3 mA cm-2 basically remained unchanged during each run, as expected for a 

constant mineralization rate of intermediates, whereas at 16.7 mA cm-2, it gradually dropped from 

39% to 21% due to the smaller mineralization ability of the lower amounts of BDD(OH) generated. 

For EF, a maximum MCE value was attained after 90-120 min of all the assays (see Fig. 4b), 

corroborating the initial formation of several products that are slowly destroyed by hydroxyl 

radicals while their gradual mineralization largely improves the current efficiency at the beginning 

of the process. The same phenomenon is shown in Fig. 4c for PEF at 16.7 mA cm-2, since the 

smaller amounts of BDD(OH) and OH produced under these conditions attack slowly the 

substrate and its products and low quantities of photosensitive species are formed to be removed by 

UVA light. Current efficiency then grew as these initial recalcitrant products progressively 

disappeared from the medium. This behavior was not found for greater j values because the 

mineralization was enhanced by the faster photolysis of larger quantities of products, like Fe(III)-

carboxylate species. In all the EF and PEF assays, the current efficiency diminished at long 

electrolysis time due to two main contributions, the loss of organic load and the formation of more 

recalcitrant intermediates, as stated above. For the most powerful EAOP, i.e., PEF process, 

maximum MCE of ~ 71-73% was obtained after 90 and 30 min at 16.7 and 33.3 mA cm-2. 

 The decay in MCE as j grows is typical of EAOPs and can be associated with the consumption 

of the excess of generated hydroxyl radicals by waste reactions. For example, the anodic oxidation 

of physisorbed BDD(OH) to O2 via reaction (8) and the removal of OH by Fe2+ and H2O2 via 

reactions (9) and (10), respectively (Sirés and Brillas 2012; Sirés et al. 2014). It is also expected that 

the formation of other weaker oxidants at the BDD anode such as ozone via reaction (11) and 

S2O8
2 ion from SO4

2 ion of the electrolyte via reaction (12), thereby inhibiting the H2O discharge 

from reaction (1) (Panizza and Cerisola 2009), become largely enhanced as well. 

2𝐵𝐷𝐷( 𝑂𝐻• )    →    2𝐵𝐷𝐷  +    𝑂2   +    2𝐻+   +    2𝑒−      (8) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 
 

𝐹𝑒2+   +    𝑂𝐻•    →    𝐹𝑒3+   +    𝑂𝐻−        (9) 

𝐻2𝑂2   +    𝑂𝐻•    →    𝐻𝑂2
•   +    𝐻2𝑂            (10) 

3𝐻2𝑂  →    𝑂3   +    6𝐻+   +    6𝑒−                 (11) 

2𝑆𝑂4
2−    →    𝑆2𝑂8

2−   +    2𝑒−                          (12) 

 Another important operation parameter in the EAOPs is the substrate concentration since it 

determines the oxidation ability of hydroxyl radicals and/or their combined action with the photo-

oxidation by UVA light. The influence of this parameter was examined for 0.185, 0.463, 0.926 and 

1.852 mM of trans-cinnamic acid at the best j = 33.3 mA cm-2 found for PEF, and the results are 

presented in Figs. 5a-c. Oscillating final percentages of TOC removal were always found for each 

EAOP with increasing substrate content. For example, at the end of the above treatments, TOC was 

reduced by 68-81% in AO-H2O2, 75-81% in EF and 87-97% in PEF. Note that quite analogous 

percentages of TOC abatement were found for the two former treatments up to 0.463 mM, thus 

showing similar final mineralization values. 

 For the above assays, however, greater amounts of TOC were always removed with raising the 

organic load of the solution and this fact is reflected in Figs. 6a-c from the concomitant 

enhancement of the corresponding MCE values. At 120 min, for example, operating between 0.185 

and 1.852 mM trans-cinnamic acid, the current efficiency gradually grew from 3.6% to 38%, from 

5.1% to 53% and from 8.6% to 60% in AO-H2O2, EF and PEF, respectively. These findings 

confirm again that the relative oxidation ability of these EAOPs always increased in the sequence 

AO-H2O2 < EF < PEF. As mentioned above, similar quantities of BDD(OH) and/or OH are 

expected to be generated in each EAOP at 33.3 mA cm-2. Consequently, one can infer that a larger 

organic load favors the reaction of higher quantities of these oxidizing species with intermediates, 

with deceleration of the waste reactions (8)-(12). The quicker formation of products also enhanced 

the PEF process because the resulting photosensitive species can be more rapidly removed upon 
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UVA irradiation. Nevertheless, the most concentrated solution was only mineralized up to a 92% by 

this procedure, a value lower than 98% obtained for 0.463 and 0.962 mM solutions, where lower 

amounts of undesired persistent products are finally accumulated. Figs. 6b and c highlight again the 

fall of current efficiency at prolonged electrolysis because of both, the gradual generation of highly 

recalcitrant products and the loss of organic matter, as pointed out above. 

 All these findings allow concluding that the most convenient conditions for applying the PEF 

process involve the treatment of 0.926 mM trans-cinnamic at 33.3 mA cm-2, since this yielded the 

greatest mineralization with 98% TOC removal and an acceptable current efficiency of 16% during 

final stages. Higher current values did not accelerate the process and produced a significant MCE 

decay. The use of more concentrated solutions is not beneficial because of the lower TOC removal. 

Identification of products and evolution of generated carboxylic acids 

 Table 1 summarizes the characteristics of five primary aromatics and one heteroaromatic 

product of trans-cinnamic acid (1) identified by GC-MS after 30 and 90 min of AO-H2O2 treatment 

of a 0.926 mM substrate solution at pH 3.0 and 33.3 mA cm-2. While the heteroaromatic 2 arises 

from an internal cyclization of the carboxylic group of 1, the aldehyde 3 is produced from its 

decarboxylation and the acid 4 from the oxidation of its double bond to a single one. Further 

degradation of 3 yields compounds 5-7. 

 It is expected that the cleavage of the benzene ring of the above compounds leads to linear 

products that evolve to short-linear aliphatic carboxylic acids (El-Ghenymy et al. 2014; Sirés et al. 

2014). This possibility was corroborated by ion-exclusion HPLC analysis of the solutions degraded 

under the conditions of Fig. 2. Fumaric (8), acetic (9) and oxalic (10) acids were detected in these 

chromatograms allowing the quantification of their concentrations during the electrolysis. Acid 10 

was also identified by GC-MS as a deprotonated ion with m/z 89 (see Table 1). Note that the final 

acids 8 and 9 are oxidized to the ultimate acid 10, which is directly converted into CO2 (Ruiz et al. 

2011; Sirés and Brillas 2012). These acids form Fe(III) complexes to a large extent in EF and PEF, 
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being slowly oxidized by BDD(OH) and more hardly attacked by OH (Moreira et al. 2013; 

Florenza et al. 2014; Thiam et al. 2015a). 

 Traces of acid 8 (< 0.0043 mM) appeared until 120 min of all treatments, whereas small 

contents of acid 9 were only found after 180 min of AO-H2O2. These compounds and their Fe(III) 

complexes were then rapidly removed by hydroxyl radicals. In contrast, Fig. 7 shows that the final 

acid 10 was much more largely accumulated in all the EAOPs, then being the main carboxylic acid 

generated during the mineralization process of trans-cinnamic acid. In AO-H2O2, this acid was 

progressively accumulated up to 0.137 mM as maximal at 180 min, whereupon it decayed to 0.094 

mM. This value accounts for 2.3 mg L-1 TOC, only contributing in 7.2% to the organic load of the 

remaining solution (32 mg L-1 TOC, see Fig. 2). This means that the majority of components (93%) 

of such solution were recalcitrant products that are slowly destroyed by BDD(OH). On the other 

hand, Fig. 7 reveals a very high accumulation of acid 10 up to 0.86 mM at 60 min in EF and 1.02 

mM at 40 min in PEF as a result of the much faster destruction of primary intermediates by OH. At 

longer time, the evolution of this acid depended on the characteristics of each treatment. In EF, the 

slow oxidation of Fe(III)-oxalate species mainly by BDD(OH) yielded 0.38 mM of 10, related to 

9.1 mg L-1 TOC and a 41% of the 22 mg L-1 TOC of the final solution (see Fig. 2). The remaining 

solution of EF then contained 59% of undetected products that are highly recalcitrant to hydroxyl 

radicals. Conversely, the UVA irradiation used in PEF led to rapid and total photodecarboxylation 

of Fe(III)-oxalate complexes via reaction (5), with all the acid 10 disappearing in only 240 min, 

although the final solution at 360 min still contained a 2% of the starting TOC (see Fig. 2). One can 

infer that the PEF process destroys most of persistent products that cannot be oxidized by hydroxyl 

radicals in EF, thanks to the photolytic action of UVA light. This behavior along with the total 

removal of final carboxylic acids justifies the almost total mineralization achieved in PEF. 
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Degradation route for trans-cinnamic acid by EAOPs with BDD 

 Based on the products identified in this work, a plausible route for trans-cinnamic acid 

mineralization by EAOPs with a BDD anode is proposed in Fig. 8. The oxidation of the substrate 

and its aromatic and heteroaromatic products occurs by reaction with BDD(OH) in AO-H2O2 and 

more rapidly with OH in EF and PEF. The final carboxylic acids and Fe(III)-carboxylate species 

are preferentially attacked by BDD(OH). Other generated oxidants like H2O2, HO2
, O3 and S2O8

2 

can oxidize much more slowly some of the products as well. In the proposed path, only the fate of 

Fe(III)-oxalate complexes is specified for the sake of simplicity. 

 The route is initiated by the attack of hydroxyl radicals over 1 to cause: (i) an internal 

cyclization of its carboxylic group producing the heteroaromatic 2, (ii) its decarboxylation followed 

by oxidation to generate the aldehyde 3 and (iii) the transformation of its double bond giving the 

saturated carboxylic acid 4. Subsequent oxidation of 3 yields the saturated acid 5 and benzaldehyde 

6, which is then oxidized to benzoic acid 7. Further cleavage of the benzene ring of all the above 

compounds gives a mixture of final acids 8-10. Acids 8 and 9, formed to a small extent, are rapidly 

converted into acid 10. This acid is transformed into CO2 by BDD(OH) in AO-H2O2, whereas in 

EF and PEF, it forms Fe(III)-oxalate species that are slowly mineralized by BDD(OH) and much 

more quickly photodecarboxylated by UVA light with Fe2+ regeneration via reaction (5). 

Conclusions 

 The PEF degradation of 0.926 mM trans-cinnamic acid solutions of pH 3.0 led to an almost 

total mineralization at j  33.3 mA cm-2. PEF is much more powerful than EF, which yielded 90% 

TOC abatement as maximal at 100 mA cm-2, because of the quick photodegradation of highly 

recalcitrant products like Fe(III)-carboxylate complexes. The oxidation power of AO-H2O2 was 

always lower than that of EF, indicating the positive combination of BDD(OH) produced at the 

anode and OH formed from Fenton’s reaction to remove organics. For each EAOP, increasing j 
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from 16.7 to 100 mA cm-2 caused more rapid mineralization with lower current efficiency, whereas 

the use of more concentrated solutions from 0.185 to 1.852 mM enhanced the amount of TOC 

abated, which caused a gradual rise of current efficiency at long electrolysis time. Five primary 

aromatics, one heteroaromatic and three short final carboxylic acids were identified. Oxalic acid 

was the most important final product. It presented a large persistence in AO-H2O2 and EF, but 

disappeared rapidly in PEF due to the quick photolysis of its Fe(III) complexes that explains the 

superior oxidation power of this EAOP. 
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Figure captions 

Fig. 1 trans-Cinnamic acid content vs. electrolysis time for the degradation of 100 mL of a 0.926 

mM substrate solution in 0.05 M Na2SO4 at pH 3.0 and 25 ºC using a BDD/air-diffusion cell of 3 

cm2 electrode area at 33.3 mA cm-2. In (a), anodic oxidation with electrogenerated H2O2 (AO-

H2O2). In (b), () electro-Fenton (EF) with 0.50 mM Fe2+ and () photoelectro-Fenton (PEF) with 

0.50 mM Fe2+ using a 6 W UVA light. The pseudo-first-order kinetic analysis for the trans-

cinnamic acid concentration abatement is shown in the inset panels 

Fig. 2 (a) TOC removal and (b) variation of mineralization current efficiency with electrolysis time 

under the conditions of Fig. 1. Method: () AO-H2O2, () EF and () PEF 

Fig. 3 Effect of current density on TOC decay vs. electrolysis time for the treatment of 100 mL of a 

0.926 mM trans-cinnamic acid solution in 0.05 M Na2SO4 at pH 3.0 and 25 ºC using a BDD/air-

diffusion cell. Method: (a) AO-H2O2, (b) EF and (c) PEF. Applied current density: () 16.7 mA 

cm-2, () 33.3 mA cm-2, () 66.7 mA cm-2 and () 100 mA cm-2 

Fig. 4 Mineralization current efficiency vs. electrolysis time for the trials of Fig. 3 

Fig. 5 Effect of trans-cinnamic acid concentration on TOC removal with electrolysis time for the 

degradation of 100 mL of solutions of this substrate in 0.05 M Na2SO4 at pH 3.0 using a BDD/air-

diffusion cell at 33.3 mA cm-2 and 25 ºC. Method: (a) AO-H2O2, (b) EF and (c) PEF. Content of 

trans-cinnamic acid: () 0.185 mM, () 0.463 mM, () 0.926 mM and () 1.852 mM 

Fig. 6 Variation of mineralization current efficiency with electrolysis time for the experiments given 

in Fig. 5 

Fig. 7 Time-course of the concentration of oxalic acid (10) detected during the treatments shown in 

Fig. 2. Method: () AO-H2O2, () EF and () PEF 
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Fig. 8 Route for trans-cinnamic acid mineralization by AO-H2O2, EF and PEF using a BDD/air-

diffusion cell. The species OH in the sequence of aromatics represents their oxidation by 

BDD(OH) at the BDD surface and/or OH from Fenton’s reaction in the bulk 
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Table 1 Products identified by GC-MS during the electrolysis of 100 mL of a 0.926 mM trans-

cinnamic acid solution in 0.05 M Na2SO4 at pH 3.0 and 25 ºC by AO-H2O2 using a stirred BDD/air-

diffusion cell at 33.3 mA cm-2. 

 

Number 

 

Name 

 

Molecular structure 

 

tr (min) 

 

m/z 

Electrolysis 

time (min) 

1 trans-Cinnamic acid  

OH

O

 

26.2a 

42.2b 

148 (M+), 

147, 131, 

103 

30, 90 

30, 90 

2 2H-1-Benzopyran-2-

one or Coumarin 

OHO  

35.7b 

 

146 (M+), 

118, 90, 63 

30, 90 

 

3 Benzeneacetaldehyde O

 

19.9b 120 (M+), 

91, 65 

30, 90 

4 3-Phenylpropanoic acid 

OH

O

 

20.5a 

31.3b 

150 (M+), 

135, 107, 77 

30, 90 

30, 90 

5 4-Hydroxyphenylacetic 

acid 

OH

O

HO  

37.5b 152 (M+), 

151, 137, 

123, 109, 81 

30, 90 

6 Benzaldehyde O

 

17.1b 106 (M+), 

105, 77 

30 

7 Benzoic acid OHO

 

35.3b 122 (M+), 

105, 77, 51 

30, 90 

10 Oxalic acid COOH-COOH 24.9b 89 ((M-H)-), 

71, 50 

90 

Retention times for: a non-polar Agilent J&W HP-5ms and b polar HP INNOWax columns. 

Table




