Comment on "Reaction Coordinates and Pathways of Mechanochemical Transformations"

Wolfgang Quapp*, ${ }^{*}$ and Josep Maria Bofill ${ }^{*}$,
${ }^{\dagger}$ Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany
${ }^{\dagger}$ Departament de Química Orgànica, Universitat de Barcelona, and Institut de Química Teòrica i Computacional, Universitat de Barcelona, (IQTCUB), Martí i Franquès, 1, 08028 Barcelona Spain

J. Phys. Chem. B 2016, 120 (8). DOI: 10.1021/acs.jpcb.5b07613
J. Phys. Chem. B 2016, 120. DOI: 10.1021/acs.jpcb.6b00917

The adiabatic potential energy surface (PES) is a basic concept of many theoretical chemistry models. Over the past several years, the phenomena of the action of a mechanical stress over a molecular system have motivated experimental and theoretical research. In a recent article, Avdoshenko and Makarov ${ }^{1}$ describe how the concepts of an effective PES and of a reaction path (RP), or a reaction coordinate, can be used for mechanochemistry.

The RP is a one-dimensional description of a pathway on the PES in an N-dimensional configuration space. We use $N=3 n-$ 6 nonredundant internal coordinates, and n is the number of the atoms of the molecule. An early used curve is the distinguished coordinate, ${ }^{2}$ which was later generalized as a distinguished coordinate path (DCP) ${ }^{3}$ and finally refined as a Newton trajectory (NT). ${ }^{4-6}$ This type of RP holds the following property: the gradient of the PES points to the same direction at every point of the curve. It is the reason that NTs should be taken into account for mechanochemical problems.

Basically, the mechanochemistry model ${ }^{1}$ consists of a first order perturbation on the associated PES of the unperturbed molecular system due to a stress or pulling force, \mathbf{f}

$$
\begin{equation*}
V_{\mathrm{f}}(\mathbf{r})=V(\mathbf{r})-\mathbf{f}^{T} \mathbf{R} \tag{1}
\end{equation*}
$$

\mathbf{R} is the distance between the two pulling points of the molecule. ${ }^{7}$ It will be associated with one of the coordinates, ${ }^{7}$ or a linear combination of them. So we can assume that $\mathrm{d} R \approx \mathrm{~d} r$ for a coordinate change in the direction of \mathbf{R}. The potential $V_{\mathrm{f}}(\mathbf{r})$ with a fixed \mathbf{f} can be seen as an effective PES where "normal" chemistry takes place. Due to the external force, the stationary points of $V_{\mathrm{f}}(\mathbf{r})$ are located at different positions, ${ }^{8}$ with respect to the unperturbed potential. The new minimum holds with eq 1

$$
\begin{equation*}
\nabla_{\mathbf{r}} V_{f}(\mathbf{r})=\mathbf{0}=\mathbf{g}-\mathbf{f} \tag{2}
\end{equation*}
$$

thus one searches a point where the gradient, \mathbf{g}, of the zeroforce PES has to be equal to the mechanochemical force. If the mechanical stress in a defined direction is $\mathbf{f}=F l$ with a fixed unit vector, \mathbf{l}, then it is $\mathbf{l}=\mathbf{g} / \mathbf{g} \mid$ and $F=|\mathbf{g}|$. Another form of eq 2 is the projector equation which was applied many years ago ${ }^{5,9}$

$$
\begin{equation*}
\left(\mathbf{U}-\mathbf{l l}^{T}\right) \mathbf{g}=\mathbf{0} \tag{3}
\end{equation*}
$$

where \mathbf{U} is the unit matrix. Solution curves of both eqs 2 and 3 are equal, and they are also equal ${ }^{5}$ to the solutions of the differential equation of Branin ${ }^{10}$

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}= \pm \mathbf{A}(\mathbf{r}) \mathbf{g}(\mathbf{r}) \tag{4}
\end{equation*}
$$

t is a curve parameter, and matrix \mathbf{A} is constructed by a multiplication of the inverse Hessian with the determinant of the Hessian, $\mathbf{A}=\operatorname{det}(\mathbf{H}) \mathbf{H}^{-1}$. Curves $\mathbf{r}(t)$ satisfying eq 4 are called Newton trajectories (NTs). The name is also used for the equivalent solution curves of eqs 2 and 3.

For different, point-to-point changing forces, F, one should get a curve of the reaction path following force displaced stationary points (FDSPs) ${ }^{1,7,11}$

$$
\begin{equation*}
\delta \mathbf{r}=\mathbf{H}^{-1}(\mathbf{r}) \mathbf{f}(\mathbf{r})=\mathbf{H}^{-1}(\mathbf{r}) \mathbf{g}(\mathbf{r}) \tag{5}
\end{equation*}
$$

where $\delta \mathbf{r}$ is the distance from the minimum of $V(\mathbf{r})$ to the minimum of $V_{\mathrm{f}}(\mathbf{r})$. Note that the inverse Hessian \mathbf{H}^{-1} will be singular on the pathway from the minimum to the saddle point of the original PES, and eq 5 loses its meaning. However, such points are the important catastrophe points in ref 1.

There is another way to make the FDSPs without the singularity: the Branin equation, eq 4. It is the result of a different parametrization of the curve parameter, t, by the multiplication of the right-hand side of eq 5 by the determinant of the Hessian. The determinant is a number. It does not change the direction of the vector of the right-hand side of eq 5 . However, it removes the singularity of \mathbf{H}^{-1} on the way to the SP. Matrix \mathbf{A} is named the desingularized inverse Hessian, or the adjoint to \mathbf{H}.

The solution curve of the Branin equation to a given initial direction is a regular curve (if no valley-ridge inflection point is crossed, ${ }^{5,12}$ but this is another, seldom property). The Branin equation is a well-known model for RPs. ${ }^{5}$ However, the model is used here for the FDSPs. The stationary points of the different effective potentials with fixed 1 move with increasing F on the original PES along an NT. The behavior of NTs is wellknown. ${ }^{13}$

We will still discuss an example: ${ }^{1}$ the ring opening of trans1,2 -dimethylcyclobutane. There is chosen a DCP for the curve of FDSPs. However, the DCP jumps over the PES. The DCP method has been criticized during its first years for such jumps. ${ }^{3}$ Avdoshenko and Makarov ${ }^{1}$ circumvent the problem by calculating two different curves, one DCP from the minimum,

[^0]and one direct FDSPs by eq 5 from the SP, and both curves meet at the jump point. The reason is, both curves are parts of a Newton trajectory (NT) with a turning point, compare Figure 1 and Figure 2 of ref 1.

A general solution of the DCP jump problems was given in 1998 by Quapp et al. ${ }^{4,5}$ using eqs 3 and 4. NTs can have turning points (TPs) where the energy profile over the curve changes its direction. These TPs are the breakdown points of the DCP method. Important points are also the valley-ridge inflection points (VRI) of the PES ${ }^{5,12}$ where singular NTs bifurcate. VRIs discriminate different families of NTs which lead to different SPs around the initial minimum. An NT which leads to a not desired SP represents an incorrect pulling scenario. On the PES of Figure 1, a VRI is at $\approx(3,0)$. We show an NT (thick and dashed) which does not find the SP.

Figure 1. NTs on a PES which is similar to Figure 2 in ref 1. The thicker NTs are direct curves from the lower minimum to the SP. The thin dashed curves are NTs with a turning point (TP) in the lower bowl with higher energy than the SP. They may be questionable pulling scenarios. The thick dashed NT goes wrong. It represents a pulling force which does not enforce the desired reaction.

It should be noted that an additional mathematical method gives curves in the coordinate space which are equivalent to NTs, the Newton homotopy method. ${ }^{14-16}$ It can extend the arsenal of methods to get the FDSPs curve.

We conclude that Newton trajectories can be used for the reaction path following force displaced stationary points (FDSPs). This kind of curve forms an important model for the treatment of mechanochemistry. The theory of NTs is wellprepared. We hope that it can accomplish deeper insights into the understanding of mechanochemistry.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: quapp@uni-leipzig.de.
*E-mail: jmb@ub.edu.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Avdoshenko, S. M.; Makarov, D. E. Reaction Coordinates and Pathways of Mechanochemical Transformations. I. Phvs. Chem. B 2015, DOI: 10.1021/acs.jpcb.5b07613.
(2) Rothman, M. J.; Lohr, L. L., Jr. Analysis of an Energy Minimization Method for Locating Transition States on Potential Energy Hypersurfaces. Chem. Phvs. Lett. 1980, 70, 405-409.
(3) Williams, I. H.; Maggiora, G. M. Use and Abuse of the Distinguished-Coordinate Method For Transition-State Structure Seraching. I. Mol. Struct.: THEOCHEM 1982, 89, 365-378.
(4) Quapp, W.; Hirsch, M.; Imig, O.; Heidrich, D. Searching for Saddle Points of Potential Energy Surfaces by Following a Reduced Gradient. I. Comput. Chem. 1998, 19, 1087-1100.
(5) Quapp, W.; Hirsch, M.; Heidrich, D. Bifurcation of Reaction Pathways: the Set of Valley-Ridge Inflection Points of a Simple Threedimensional Potential Energy Surface. Theor. Chem. Acc. 1998, 100, 285-299.
(6) Bofill, J. M.; Anglada, J. M. Finding Transition States using Reduced Potential-Energy Surfaces. Theor. Chem. Acc. 2001, 105, 463-472.
(7) Bailey, A.; Mosey, N. J. Prediction of Reaction Barriers and Force-induced Instabilities under Mechanochemical Conditions with an Approximate Model: A Case Study of the Ring Opening of 1,3cyclohexadiene. L. Chem. Phys. 2012, 136, 044102.
(8) Konda, S. S. M.; Brantley, J. M.; Bielawski, C. W.; Makarov, D. E. Chemical Reactions Modulated by Mechanical Stress: Extended Bell Theory. I. Chem. Phys. 2011, 135, 164103.
(9) Crehuet, R.; Bofill, J. M.; Anglada, J. M. A new Look at the Reduced-Gradient-Following Path. Theor. Chem. Acc. 2002, 107, 130139.
(10) Branin, F. Widely Convergent Methods for Finding Multiple Solutions of Simultaneous Nonlinear Equations. IBM I. Res. Dev. 1972, 16, 504-522.
(11) Konda, S. S. M.; Avdoshenko, S. M.; Makarov, D. E. Exploring the Topography of the Stress-modified Energy Landscapes of Mechanosensitive Molecules. I. Chem. Phys. 2014, 140, 104114.
(12) Quapp, W. Can We Understand the Branching of Reaction Valleys for more than two Degrees of Freedom? I. Math. Chem. 2016, 54, 137-148.
(13) Quapp, W. Reduced Gradient Methods and their Relation to Reaction Paths. I. Theor. Comput. Chem. 2003, 2, 385-417.
(14) Ackermann, S.; Kliesch, W. Computation of Stationary Points via Homotopy Method. Theor. Chem. Acc. 1998, 99, 255-264.
(15) Mehta, D.; Chen, T.; Morgan, J. W. R.; Wales, D. J. Exploring the Potential Energy Landscape of the Thomson Problem via Newton Homotopies. I. Chem. Phys. 2015, 142, 194113.
(16) Bofill, J. M. Comment on "Exploring the Potential Energy Landscape of the Thomson Problem via Newton Homotopies" [J. Chem. Phys. 142, 194113 (2015)]. J. Chem. Phys. 2015, 143, 247101.

[^0]: Received: December 28, 2015
 Revised: January 9, 2016
 Published: January 25, 2016

