

Tree Physiology

No preferential C-allocation to storage over growth in clipped birch and oak saplings

Journal:	Tree Physiology
Manuscript ID	TP-2019-416.R2
Manuscript Type:	Research Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Palacio, Sara; Instituto Pirenaico de Ecología; The James Hutton Institute Aberdeen Paterson, Eric; The James Hutton Institute Aberdeen Hester, Alison; The James Hutton Institute, Nogues, Salvador; Universitat de Barcelona Facultat de Biologia Lino, Gladys; Universidad Científica del Sur, Facultad de Ciencias Ambientales Anadon-Rosell, Alba; Universitat de Barcelona Facultat de Biologia; University Greifswald Institute of Botany and Landscape Ecology Maestro, Melchor; Instituto Pirenaico de Ecología Millard, Peter; The James Hutton Institute; Landcare Research , Science and Industry
Keywords:	Carbon Allocation, Herbivory, Storage, Non-Structural Carbohydrates, carbon isotope labelling

SCHOLARONE[™] Manuscripts

2 3 4	1	No preferential C-allocation to storage over growth in clipped birch and oak
5 6 7	2	saplings
7 8 9 10	3	
11 12	4	Sara Palacio ^{1,2*} , Eric Paterson ² , Alison J. Hester ² , Salvador Nogués ³ , Gladys Lino ^{3,}
13 14 15	5	⁴ , Alba Anadon-Rosell ^{3, 5} , Melchor Maestro ⁶ and Peter Millard ⁷
16 17	6	¹ Instituto Pirenaico de Ecología (IPE-CSIC), Av. Nuestra Señora de la Victoria, 16.
18 19	7	22700 Jaca (Huesca), Spain.
20 21	8	² James Hutton Institute, Craigiebuckler AB15 8QH, Aberdeen, UK.
22 23 24	9	³ Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona,
25 26	10	Spain.
27 28	11	⁴ Facultad de Ciencias Ambientales, Universidad Científica del Sur, Panamericana Sur
29 30 21	12	km 19, Lima, Peru.
32 33	13	⁵ Institute of Botany and Landscape Ecology, University of Greifswald, Soldmanstraße
34 35	14	15, 17487 Greifswald, Germany.
36 37	15	⁶ Instituto Pirenaico de Ecología (IPE-CSIC), Av. Montañana, 1005. 50059, Zaragoza,
38 39 40	16	Spain.
41 42	17	⁷ Manaaki Whenua Landcare Research, PO Box 69040, Lincoln 7640, New Zealand
43 44	18	
45 46 47	19	
47 48 49	20	* Author for correspondence: e-mail: <u>s.palacio@ipe.csic.es</u>
50 51	21	
52 53	22	
54 55		
56 57		
58		
59		
60		

23 Abstrac	t
------------	---

Herbivory is one of the most globally distributed disturbances affecting C-cycling in trees, yet our understanding of how it alters tree C-allocation to different functions like storage, growth or rhizodeposition is still limited. Prioritized C-allocation to storage replenishment vs. growth could explain the fast recovery of C-storage pools frequently observed in growth-reduced defoliated trees. We performed continuous ¹³C-labelling coupled to a clipping experiment to quantify the effects of simulated browsing on the growth, leaf morphology and relative allocation of stored vs. recently assimilated C to the growth (bulk biomass) and non-structural carbohydrate (NSC) stores (soluble sugars and starch) of the different organs of two tree species with contrasting wood anatomy: diffuse-porous (Betula pubescens) and ring-porous (Quercus petraea). C-tFransfers of E-from plants to bulk and rhizosphere soil were also evaluated. Clipped birch and oak trees shifted their C-allocation patterns above-ground as a means to recover from defoliation. However, such increased allocation to current-year stems and leaves did not entail reductions in the allocation to the rhizosphere, which remained unchanged between clipped and control trees of both species. B. pubescens and Q. petraea showed differences in their vulnerability and recovery strategies to clipping, the ring-porous species being less affected in terms of growth and architecture by clipping than the diffuse-porous. These contrasting patterns could be partly explained by differences in their C cycling after clipping. Defoliated oaks showed a faster recovery of their canopy biomass, which was supported by increased allocation of recently fixednew C, but associated with large decreases in their fine root biomass. Following clipping, both species recovered NSC pools to a larger extent than growth, but the allocation of ¹³C-labelled photo-assimilates into storage compounds was not increased as compared to controls. Despite their different response to clipping, our results indicate no preventative

species.

allocation into storage occurred during the first year after clipping in either of the

2	
3	
4	
5	
6	
7	
, 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
32	
33 24	
54 25	
35	
36	
3/	
38	
39	
40	
41	
4Z 42	
45 11	
44	
45	
40	
47 /18	
<u>40</u>	
-7 <i>2</i> 50	
50	
57	
52	
57	
54	
55	
50	
57	

Keywords: *Quercus petraea, Betula pubescens*, Carbon (C) allocation, δ^{13} C stable isotopes, non-structural carbohydrates, C-storage, below-ground allocation.

for per period

54 Introduction

Trees account for ca. 90% of the global biomass of carbon (C) (Körner 2003), and hence play a fundamental role in global C dynamics. C-allocation patterns in trees may shift depending on multiple factors, including age (Hartmann et al. 2018), phenology (Klein et al. 2016; Palacio et al. 2018), environmental conditions like water and light availability or temperature (Domisch et al. 2001; Messier and Nikinmaa 2000; Weber et al. 2019) and disturbances (Canham et al. 1994; Raitio et al. 1994; Van der Heyden and Stock 1995). C-allocation within the tree biomass may determine tree vulnerability to environmental stress and disturbance (Canham et al. 1999; McDowell 2011; Myers and Kitajima 2007; Wiley and Helliker 2012). Further, C-allocation to different functions like storage, growth, reproduction or rhizodeposition may affect the amount of C cycled and sequestered by trees (Hartmann et al. 2018). Understanding the response of tree C-allocation patterns to different factors may be crucial to predict the response of trees to global change (Körner 2003; Wiley and Helliker 2012).

Herbivory is one of the most globally distributed disturbances affecting C-cycling patterns in trees (Clark et al. 2010). Defoliation by herbivores reduces canopy leaf area causing a decrease in the net C gain of trees by current photosynthesis and altering the balance between C sinks and sources (Trumble et al. 1993). This may lead to important changes in C-allocation patterns, which can influence the environment by changes in below-ground C inputs (Eyles et al. 2009; Pinkard and Beadle 1998). Depending on the severity of damage, C demands of growing sinks may be supplied temporarily from storage (Pinkard et al. 1998; Quentin et al. 2011; Van der Heyden and Stock 1995), namely non-structural carbohydrates (NSC) and lipids, some of which can be mobilised to support growth or other plant functions (Chapin et al. 1990). Accordingly, several studies have reported a decrease in starch pools after defoliation in

deciduous (Canham et al. 1994; Kosola et al. 2001; Van der Heyden and Stock 1995) and evergreen tree species (Ericsson et al. 1985; Fierravanti et al. 2019; Webb and Karchesy 1977). However, trees are able to compensate to some degree for loss of foliage by changing allocation patterns (e.g. favouring foliage production), upregulating photosynthesis and changing leaf morphology (Fuenzalida et al. 2019; Hoogesteger and Karlsson 1992; Pinkard et al. 2007; Pinkard and Beadle 1998). Recovery from light defoliation is considered to rely mainly on current photo-assimilates produced by surviving foliage (Barry et al. 2011) and does not normally cause a significant decrease in NSC pools (Piper and Fajardo 2014; Tschaplinski and Blake 1994; Van der Heyden and Stock 1995). In the case of moderate or severe defoliation, decreases in NSC concentrations tend to be transient and of short duration, becoming non-significant over the course of a growing season, while the effects on tree growth seem to be more long-lasting (Palacio et al. 2008; Piper et al. 2015; Puri et al. 2015). Sometimes defoliated trees show even higher NSC concentrations than undefoliated controls (Palacio et al. 2012; Piper et al. 2015; Ramirez et al. 2018). The differential dynamics of growth vs. recovery of NSC pools in defoliated

trees have been interpreted in relation to two, non-exclusive processes: 1) a C-sink limitation to growth due to reductions in the numbers of buds, limiting levels of non-C reserves, hormonal changes or allometric adjustments in response to reduced leaf area, leading to surplus-C being allocated to storage (Palacio et al. 2012; Palacio et al. 2008; Piper et al. 2015; Puri et al. 2015; Schmid et al. 2017); 2) a preventative prioritized C-allocation to storage over growth, ultimately leading to C-limitation (Piper et al. 2015; Puri et al. 2015; Wiley et al. 2017a; Wiley and Helliker 2012; Wiley et al. 2013). Preferential allocation of C to NSC over growth has recently been demonstrated in C-starved plants subjected to prolonged shading (Weber et al. 2019) or complete darkness

104	(Weber et al. 2018). Nevertheless, its occurrence in other potentially C-limiting
105	conditions such as defoliation remains equivocal (Wiley et al. 2017a; Wiley et al. 2013).
106	In addition to changes in C-allocation among tree organs, defoliation can induce
107	shifts in C-transfers below-ground, influencing soil microbial communities (Bardgett
108	and Wardle 2003; Pestaña and Santolamazza-Carbone 2011, but see Barto and Rillig
109	2010) and nutrient cycling (Ayres et al. 2004). Approximately 50% of the C produced
110	by woody plants is allocated below-ground, either directly to the roots, or as
111	rhizodeposition of C exudates from roots to the surrounding soil (Giardina et al. 2005).
112	Defoliation can reduce below-ground C-allocation by enhancing fine root mortality,
113	particularly in trees (Bryant et al. 1993; Tuomi et al. 1990; Vanderklein and Reich 1999,
114	but see Endrulat et al. 2016; Kosola et al. 2001). In contrast, in herbaceous plants
115	herbivory can increase short-term allocation of C below-ground (Orians et al. 2011), as
116	has also been found for <i>Populus</i> spp. (Babst et al. 2005). Defoliation has been
117	demonstrated to elicit short-term increases in the flux of C to root exudates in grasses
118	(Paterson et al. 2005), while the detection of effects in woody species remains elusive
119	(Ayres et al. 2004; Frost and Hunter 2008). In general, there is a lack of information
120	related to below-ground responses of woody plants to defoliation.
121	Differences in wood anatomy have also been assumed to entail differences in C-
122	allocation dynamics (Barbaroux and Bréda 2002), with putative consequences on the
123	response of trees to defoliation (Foster 2017). Ring-porous species complete part of
124	earlywood growth (including large earlywood vessel formation) before bud burst in
125	spring (Dougherty et al. 1979). This phenology is putatively a result of winter embolism
126	of large-diameter vessels, and the need to produce a new set of xylem vessels prior to
127	bud burst to supply newly emerging leaves with water (Lechowicz 1984). Contrastingly,
128	diffuse-porous species have only small xylem vessels and winter embolism has

Page 7 of 96

1

2	
2	
5	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
21	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
27	
57	
38	
39	
40	
⊿1	
42	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	
60	

129	relatively less impact on the hydraulic conductivity of the tree, so leaf expansion can
130	proceed using xylem formed in the previous growing seasonestablished xylem, without
131	the need to produce new radial stem growth (Essiamah and Eschrich 1985; Lechowicz
132	1984-). The consequence for C-cycling is that ring-porous species show greater seasonal
133	variations in NSC pools and concentrations, and a relatively greater dependence on the
134	remobilization of stored NSC for earlywood growth in spring, than diffuse-porous
135	species (Barbaroux and Bréda 2002; Barbaroux et al. 2003, but see Palacio et al. 2011).
136	It has recently been suggested that these differences in C storage and allocation
137	underline potential differences between ring-porous and diffuse-porous species in the
138	vulnerability to spring defoliation, the former being more resistant to defoliation owing
139	to their larger C-stores and advanced wood growth phenology (Foster 2017).
140	Nevertheless, to our knowledge this possibility has never been explored experimentally.
141	We performed continuous ¹³ C-labelling coupled to a clipping experiment to
142	quantify the effects of simulated browsing on the relative allocation of stored and
143	recently assimilated C to growth (bulk biomass) and NSC (soluble sugars and starch) of
144	the different organs of two tree species with contrasting wood anatomy: diffuse-porous
145	downy birch (Betula pubescens Ehrh.) and ring-porous sessile oak (Quercus petraea
146	[Matt.] Liebl.). Transfers from the plants to bulk (i.e. not in direct contact with tree
147	roots) and rhizosphere soil were also evaluated. Clipping was selected as a defoliating
148	treatment to mimic the effects of browsing: a major factor hampering the regeneration
149	of native forests worldwide (Côté et al. 2004; Gill 2006; Hester et al. 2004) . The use of
150	continuous ¹³ C-labelling at close-to-ambient concentrations was chosen as a quantitative
151	mean to separate current from stored C-assimilates, estimate C-allocation to different
152	organs and C-compounds over the course of the growing season and track allocation
153	below-ground, without the potential drawbacks of pulse-chase labelling (see Paterson et

al. 2009). We hypothesized that: (i)-clipping would lead to: (i) increased C-allocation
above-ground *vs.* below-ground (i.e. roots and the rhizosphere); (ii) elipped trees would
show-increased allocation of new C into storage relative to control trees; and (iii)
detrimental effects of elipping onreduced tree-growth and C storage, would be more
noticeable in birch than in oak, owing to the ring-porous wood anatomy and subsequent
larger storage C-pools of the latter (Foster 2017).

161 Materials and methods

Experimental set up

The experimental set up was the same as described in Palacio et al. (2011). In brief, in 2007 we applied two clipping treatments: control (unclipped) and clipped (i.e. 66% shoots removal in two consecutive dates: July and September 2007) to two-year-old sessile oak (Quercus petraea [Matt.] Liebl.) and downy birch (Betula pubescens Ehrh.) saplings planted in pots (Fig. 1). In April 2008, before bud burst, five trees of each species and treatment were harvested to account for differences in biomass and NSC allocation in the short-term. At that same time, five extra trees of each species and treatment were moved into a polytunnel with altered $\delta^{13}C$ air composition to take part in a continuous δ^{13} C-labelling experiment, while five control trees of each species were left at the greenhouse to serve as "ambient" trees. The aim of the continuous labelling was to separate newly fixed C from "old" C. In August 2008, trees from the C-labelling experiment were harvested to evaluate differences in new C allocation to bulk biomass and NSC (SS and starch) between clipped and control trees of both species one year after clipping (Fig. 1). "Ambient" trees were harvested in November 2008 to provide natural abundance δ^{13} C values of the different organs of both species to be used in calculations. Further details of these experimental procedures follow.

Clipping experiment

1

2	
3	179
4 5 6	180
7	101
8 9	101
10 11	182
12 13	183
14 15	184
16 17 18	185
19 20	186
21 22	187
23 24	188
25 26 27	189
28 29	190
30 31	191
32 33 24	192
34 35 36	193
37 38	194
39 40	195
41 42 43	196
44 45	197
46 47	198
48 49 50	199
50 51 52	200
53 54	201
55 56	202
57 58	2 02
59 60	203

81	Trees of both study species were lifted from a nursery while dormant (5 April 2007) and
32	planted in 44 l pots filled with gravel at the bottom for drainage and freely-drained soil
33	derived from granite and granitic gneiss (Countesswells Association, Glentworth and
84	Muir 1963) At planting, saplings were approximately 0.3-0.5 m high, a stage
85	considered highly vulnerable to large herbivore browsing in nature (Gill 2006; Hester et
86	al. 2000; Hester et al. 1996). After planting, saplings were moved into an unheated
37	greenhouse and 20 trees of each species were randomly allocated into "clipped" and
88	"control" treatments, leading to 10 replicates per species and treatment combination.
89	Five extra trees per species were allocated to the "ambient" group, which did not
0	receive clipping or ¹³ C-labelling. Trees were numbered and positioned in the
91	greenhouse following a Latin square design. Between April and November 2007, soil
)2	was kept moist with tap water without exceeding field capacity and saplings received
)3	0.5 l of a nutrient solution with 3.0 mol N m ⁻³ as NH ₄ NO ₃ , 1.33 mol m ⁻³ Na ₂ HPO ₄ •12
94	H_2O and 1 mol m ⁻³ K ₂ SO ₄ once per week, to remove any potential nutrient limitation to
95	growth. A natural photoperiod was used and the greenhouse ventilated to provide
96	temperatures close to ambient. To account for initial tree variability and avoid potential
)7	confounding effects on tree growth, morphological measurements (tree height, length,
8	stem diameter, and number of short shoots and long shoots) were taken from every tree
9	at planting and prior to each clipping and harvest.

Clipping was applied as in Palacio et al. (2011) by removing 66% of current-)0 year shoots (2 out of every 3 current-year shoots) in early July and early September)1 2007, after the first and second flushes of shoot growth were finished (Fig. 1). This)2 intensity of damage was selected to reproduce high densities of browsing animals 3

2		
3 4	204	(Speed et al. 2011). In birch, clipping treatments were designed to reproduce browsing
5 6	205	damage by red deer or sheep by removing current-year long-shoots (including stems,
7 8	206	buds and leaves) up to the maximum stem diameters normally eaten by red deer or
9 10 11	207	sheep (Shipley et al. 1999). In oaks, clipped shoots were selected to ensure a decrease in
12 13	208	total tree leaf area of approx. 66% owing to the highly variable shoot length and fewer
14 15	209	shoots of this species. While the use of clipping to simulate browsing has received some
16 17 18	210	criticism (Baldwin 1990), woody plant responses to well-simulated damage do not
19 20	211	differ significantly from responses to real herbivore damage (Bergman 2002; Hester et
21 22	212	al. 2004).
23 24 25	213	
25 26 27	214	Short-term effects of clipping on biomass and carbohydrate allocation
28 29	215	Twenty dormant saplings (five of each species and clipping treatment) were removed
30 31	216	from their pots on 2 April 2008 and separated into: one and two-year-old stems (i.e.
32 33 34	217	stems formed in 2007 and 2006, respectively), woody stems (>2 years), coarse roots (>
35 36	218	2 mm diameter) and fine roots (< 2mm diameter). Samples were freeze-dried and
37 38	219	weighed (ca. 0.005 mg) and then milled to a fine powder in a ball mill (Retsch Mixer
39 40	220	MM301, Leeds, UK).
41 42 43	221	Soluble sugars (SS) were extracted with 80% (v/v) ethanol and their
44 45	222	concentration determined using the phenol-sulphuric method as modified by Buysse and
46 47	223	Merckx (1993). Starch and complex sugars remaining in the undissolved pellet after
48 49 50	224	ethanol extractions were reduced (i.e. enzymatically) to glucose and analyzed as
51 52	225	described in Palacio et al. (2007).
53 54	226	
55 56 57	227	Continuous ¹³ C labelling experiment
58		

59 60

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
ר∠ בר	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
JJ 2∧	
24	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
4/ 40	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
οU	

228	On 1 April 2008, five saplings from each species and clipping treatment combination
229	were transferred to an aluminium and polythene tunnel, 2.4 m wide, 3.0 m long and 2.2
230	high (Super 8 Hobby Tunnel, Northernpolytunnels, Colne, UK) as described previously
231	(Palacio et al., 2011; Fig. 1). At this time, trees were only just starting to break bud. The
232	polytunnel was supplied with air having CO ₂ with a depleted ¹³ C-signature (relative to
233	atmospheric CO ₂), in order to differentiate current (new) from previous (old) plant
234	assimilates (Nogués et al. 2004; Paterson et al. 2009). This was achieved by partially
235	scrubbing CO ₂ from the air using a CO ₂ -scrubber unit (Texol, Dundee, UK) that
236	reduced the CO_2 concentration to 74-103 µmol mol ⁻¹ . The scrubbed air was then mixed
237	with CO ₂ from a gas cylinder (BOC, Worsley, UK) with a δ^{13} C-signature of -34.0 ‰,
238	using Brooks 580s thermal mass flow controllers, interfaced with a Brooks control unit
239	(both Flotech Solutions Ltd, Stockport, UK). Resulting CO ₂ concentrations inside the
240	polytunnel averaged 332 ppm and had an average δ^{13} C of -21.4‰. Temperature inside
241	the polytunnel was checked regularly with a shielded thermometer. On the 6th of May
242	2008 we installed a shade mesh intercepting \sim 30% of the light on top of the polytunnel
243	to reduce warming.

Trees were distributed within the polytunnel following a Latin square design, 244 which was changed in the middle of the experiment. They regularly received 0.5 l of the 245 same nutrient solution described above. We took initial and final tree morphological 246 measurements (as described above) at the beginning and at the end of the ¹³C-labelling 247 period. On 5th August 2008, four months after the beginning of the ¹³C-labelling, trees 248 249 inside the polytunnel were harvested for analysis (Fig. 1). At this time, leaf senescence was starting and most of the annual growth had been completed. Harvested trees were 250 separated into: current-year (formed in 2008), one and two-year-old stems (formed in 251 2007 and 2006, respectively), woody stems (>2 years), coarse roots (> 2mm diameter) 252

253	and fine roots (< 2mm diameter). A three-year-old branch was clipped off each tree to
254	measure leaf area, individual leaf weight and specific leaf area according to the
255	protocols in Cornelissen et al. (2003). Rhizosphere and bulk soil were harvested from
256	each pot. Rhizosphere soil was collected by separating roots from the soil, gently
257	shaking them and then submerging fine roots in distilled water. Samples were freeze-
258	dried and weighed (ca. 0.005 mg). Samples were milled to a fine powder in a ball mill
259	(Retsch Mixer MM301, Leeds, UK) and analysed for NSC as described above.
260	
261	Ambient trees
262	In early November 2008, the five non-clipped, "ambient", saplings of each species were
263	harvested from the greenhouse for analysis of the $\delta^{13}C$ at natural abundance in the bulk
264	biomass of the same fractions considered for ¹³ C-labelled trees. Throughout 2008,
265	growth conditions for these trees were similar to those in 2007 (see above). At the time
266	of harvest, trees were shedding their leaves and radial growth had been completed.
267	
268	C isotope analysis
269	The ¹³ C signature of samples was measured by continuous flow isotope ratio mass
270	spectrometer (Thermo Finnigan Delta Plus ^{advantage}) interfaced to an elemental analyser
271	(Thermo FlashEA1112, Thermo Finnigan, Bremen, Germany). Data were expressed as
272	$\delta^{13}\mathrm{C}_{\mathrm{V} ext{-PDB}}$:
273	δ^{13} C (‰) = (R _S / R _{VPDB} -1) x 1000
274	where R_S and R_{VPDB} are the molecular abundance ratios of carbon isotopes (¹³ C/ ¹² C), of
275	the sample and international standard (Vienna Pee Dee Belemnite), respectively. Long-
276	term precision for quality control standards (milled flour) was δ^{13} CV-PDB: -26.0 ±
277	0.24‰ (mean ± SD, n=187). δ^{13} C was measured in bulk plant biomass, bulk soil and

278 rhizosphere soil. Measurements of δ^{13} C in SS and starch followed compound-specific 279 analyses as detailed below.

 δ^{13} C in NSC were measured following the procedure in Tcherkez et al. (2003). In brief, leaf powder was suspended with 1 mL of distilled water in an Eppendorf tube (Eppendorf Scientific, Hamburg, Germany). After centrifugation, starch was extracted from the pellet by HCl solubilization. Soluble proteins of the supernatant were heat denatured and precipitated and SS and organic acids of the protein-free extract were separated by HPLC. After lyophilization, 200 mg of purified starch were weighted into tin capsules (Courtage Analyze Service, Mont Saint-Aignan, France) for isotope analysis. Determinations of δ^{13} C in NSC were conducted at the Centres Cientifics i *Tecnològics* (CCiT) of the University of Barcelona using an elemental analyser (EA1108, Series 1, Carbo Erba Instrumentazione, Milan, Italy) coupled to an isotope ratio mass spectrometer (Delta C, Finnigan, Mat., Bremen, Germany) operating in continuous flow mode. Data were expressed as indicated above.

Calculations

The proportion of newly assimilated C in the bulk biomass, SS and starch of the different fractions of trees grown in ¹³C-depleted conditions (F_{Cnew}) was calculated using the following equation (Nogués et al. 2004):

297
$$F_{Cnew} = \frac{\delta^{13}C_{Sample} - \delta^{13}C_{Ambient}}{\delta^{13}C_{Grass} - \delta^{13}C_{Ambient}}$$

Where $\delta^{13}C_{\text{Sample}}$ was the isotopic composition in the sample; $\delta^{13}C_{\text{Ambient}}$ was the natural baseline $\delta^{13}C$ value for the bulk biomass, SS or starch of a given fraction of each species calculated from fractions collected from ambient trees in November 2008 (in the case of the bulk biomass) or, in the case of SS and starch, by applying an enrichment of 1.71 and 2.02, respectively, owing to values reported in the literature (Badeck et al. 2005);

and $\delta^{13}C_{\text{Grass}}$ was the average of the $\delta^{13}C$ values obtained for *Lolium perenne* plants that were grown from seed within the polytunnel and hence represented C arising from current assimilation. We assumed that the discrimination against ¹³C during photosynthesis would be the same in both the grasses and the trees, because the grasses were grown under the same conditions as the trees and had no water stress. Statistical analyses We used univariate general linear models (glm) to analyse for differences in biomass and NSC-allocation between species, fractions and treatments. Short-term effects of simulated browsing on biomass and NSC-allocation of trees harvested in April 2008 (before the ¹³C-labelling experiment) and the effects of simulated browsing on tree growth, architecture, leaf morphology, biomass, NSC and % new C-allocation (in bulk biomass, SS and starch) and NSC concentrations in the year after clipping (trees harvested in August 2008) were evaluated by glms with species, fractions and treatments as fixed effects. Treatment effects were further tested within fractions and species using one-way ANOVAs. The initial length (i.e. distance from the base to the tip of the tree) of trees at the beginning of the experiment was included as a covariate in all analyses. Starch and NSC concentrations were angularly transformed to meet normality and homogeneity in variance assumptions. Analyses were done with SPSS Statistics 17.0. Results Short-term effects of clipping on biomass and NSC allocation At the beginning of the labelling experiment (i.e. seven months after the application of treatments), trees subjected to two successive clipping events were significantly smaller

Page 15 of 96

than control trees and showed a significant reduction in the biomass of the youngest shoot cohort, i.e. that formed in 2007 and directly affected by clipping, but larger main stem biomass (particularly in birch, Table 1, Table S1 available as Supplementary Data at Tree Physiology Online). Trees were still dormant and leafless at this time, and no other significant differences were observed in the allocation to different tree fractions in either of the two species. Differences in allocation to different plant components were quantified between birch and oak trees: birch allocated significantly more biomass to above-ground fractions like young and main stems, while oak had significantly more biomass in coarse roots (Table 1, Table S1). However, no significant treatment x species interaction was found, indicating that clipping did not lead to a different response in biomass allocation between species in the short-term. Clipped trees of both species harvested in April 2008, seven months after the application of treatments, showed significantly higher starch concentrations in young stems (Tables S1 and S2, available as Supplementary Data at Tree Physiology Online).

However, NSC pools were decreased in the youngest shoot cohort, showing the significant effect of clipping on the biomass reduction of this cohort for both species (Tables S1 and S3, available as Supplementary Data at Tree Physiology Online). Starch and SS pools in main stems were significantly larger in clipped trees of both species (Tables S1 and S3, available as Supplementary Data at Tree Physiology Online). This was not due to increased NSC concentrations (Tables S1 and S2, available as Supplementary Data at Tree Physiology Online), but to higher allocation of biomass to main stems in clipped trees (Tables 1 and S1 available as Supplementary Data at Tree Physiology Online). Overall, birch trees had higher SS concentrations, while oaks showed up to three times higher starch concentrations, particularly in coarse roots (Tables S1 and S2 available as Supplementary Data at Tree Physiology Online).

353	
354	Changes in growth, architecture, leaf morphology, biomass and NSC allocation one
355	year after clipping
356	Measurements taken at the end of the first year after the application of clipping
357	treatments (trees harvested in August 2008), indicated a lower compensating ability in
358	birch than in oak (Table 2). Although the effect of clipping on tree height was not
359	significant in the general model (F = 2.5, P = 0.134), significant treatment effects arose
360	in birch when both species were analysed separately, with clipped trees being
361	significantly shorter than controls (Table 2). Clipped B. pubescens trees also had fewer
362	branches, terminal shoots and short shoots than controls, indicating that significant
363	effects on the architecture of clipped trees remained measureable even one year after
364	clipping. On the contrary, regrowth of <i>Q. petraea</i> saplings completely compensated for
365	height and branching differences, with clipped trees showing only a marginally
366	significant smaller number of terminal shoots than control trees after one year (Table 2).
367	As regards the morphology of leaves, we observed no significant differences in
368	individual leaf area and weight or the SLA of clipped and control trees of both species
369	(Table 2).
370	There were no significant differences in biomass allocation to leaves and coarse
371	roots of both species in trees harvested one year after clipping, but clipped trees of both
372	birch and oak allocated significantly more biomass to current-year stems than control
373	trees (Fig. 2). In oak, clipped trees showed more biomass allocation to the main stems
374	and a sharp reduction in biomass allocation to fine roots, which were reduced by 45% in
375	relation to control trees (Fig. 2). Such reduction in fine root biomass led to a significant
376	decrease in the root:shoot ratio of clipped oaks, not observed in birch (Table 2). At the
377	end of the first growing season after clipping, the significant reduction of shoots formed

in 2007 observed at the beginning of the C-labelling experiment in both species (Table 1) was only noticeable in birch, and differences between treatments in oak were no longer significant (Fig. 2). There were no significant differences in total plant biomass between treatments, either in the general model (F = 3.1, P = 0.098) or when species were analysed separately (F = 2.3, P = 0.169 and F = 1.3, P = 0.280 in birch and oak, respectively). Differences between control and clipped trees in NSC pools of different plant fractions mimicked results for biomass allocation. Higher SS (and also starch in the case of oak) pools were found in current-year stems of clipped trees of both species (Fig. 3). Contrastingly, NSC pools were lower in one-year old stems of clipped birch trees (Fig. 3). Clipped oak trees showed also a trend for higher net allocation of SS to main stems, while both starch and SS pools were significantly reduced in their fine roots (Fig. 3). The differences observed in NSC pool allocation were not driven by changes in NSC concentrations, which remained similar for both SS and starch across treatments and fractions, except for SS concentrations in the leaves of clipped birch trees, which were lower than those of control trees (Table 3). In any case, the lower SS concentrations of the leaves of clipped birch trees did not result in significantly different SS pools between control and clipped birch trees (Fig. 3, Table 3). Changes in the net allocation of newly fixed C to different plant fractions and the soil during the recovery of clipped birch and oak trees The two species showed very different responses in their δ^{13} C isotopic composition after labelling and clipping (Table S4 available as Supplementary Data at Tree Physiology Online). In general, birch allocated significantly more new C to biomass

402 than oak, pointing to a lower reliance on C-stores and a higher C-fixing ability of birch

than oak (Fig. 4, Table 4). Across species and treatments, the fractions receiving
proportionally more newly fixed C were rapidly growing ones, including, in descending
order, leaves, current-year stems, young (one and two-year-old) stems and fine roots
(Fig. 4). Despite being winter deciduous, the leaves of both species were mainly built on
newly fixed C, which accounted for 80% of the bulk leaf biomass in birch and over 65%
in oak (Fig. 4).

Clipped trees allocated significantly more newly-fixed C to the different fractions than controls (Table 4, Fig. 4), but results were very different depending on the species (Fig. 4, Table S5 available as Supplementary Data at Tree Physiology Online). This explains why all interaction terms in the general model were significant (Table 4). In general, clipped trees tended to allocate more new C into fast growing fractions like young stems and fine roots than control trees (Fig. 4, Table S5 available as Supplementary Data at Tree Physiology Online), but when both species were analysed separately, effects were only significant in oak (Fig. 4). In the year after clipping, clipped Q. petraea trees allocated significantly more new C than controls to all fractions but the main stems (Fig. 4). Contrastingly, birch trees showed no differences in the allocation of new C to different fractions between control and clipped trees, except for the main stems, where control trees received a larger proportion of new C (Fig. 4). The rhizosphere soil collected underneath both study species showed more ¹³C-depleted values as compared to the bulk soil (F = 118.6, P < 0.001; Fig. 5), indicating that plant roots significantly altered the δ^{13} C signature of the soil in direct contact with them. δ^{13} C values of the rhizosphere soil collected underneath birch trees were more depleted than those of oak, potentially indicating a larger amount of labelled-C transferred to the rhizosphere in this species (F = 6.5, P = 0.016; Fig. 5). However, no significant clipping effects were observed in the δ^{13} C signature of bulk and rhizosphere

soil in both species (Fig. 5). This indicates the loss of newly-fixed C from roots wassimilar in clipped and control treatments of both species.

431 Differences in the allocation of new C to NSC between clipped and control trees

Birch allocated more new C to SS than oak in all fractions and also significantly more new C to starch, particularly in fast turnover fractions like leaves, young stems and fine-roots, while both species showed similar new C-allocation to starch in coarse roots and main stems (Table 4, Fig. 6, Table S6 available as Supplementary Data at Tree Physiology Online). In general, clipping had no significant effect on the allocation of newly fixed C to storage (both SS and starch) during the next season after clipping (Table 4). However, in the case of the allocation to starch the response varied depending on the species and the fraction and, consequently, the interaction terms between species and treatment and the full interaction term were significant (Table 4). Simplified models run separately per species and fraction indicated that, in birch, clipped trees allocated significantly less C to starch in leaves and main stems (the latter marginally significant only) and marginally higher C to SS in current-year stems than control ones (Fig. 6). Contrastingly, clipped oaks showed a trend for higher allocation of newly fixed C to starch in current-year and main stems (Fig. 6), but results were only marginally significant.

Discussion

In accordance with our first hypothesis, our results indicate that clipped birch and oak
trees shifted their C-allocation patterns above-ground as a means to recover from
defoliation. However, contrary to our expectations, such increased allocation to currentyear stems and leaves did not entail reductions in the allocation to the rhizosphere. As

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
17	
-17 10	
40	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

initially expected, B. pubescens and Q. petraea showed differences in their vulnerability 453 454 and recovery strategies to clipping, the ring-porous species being less vulnerable than the diffuse porous. These contrasting patterns could be explained by differences in their 455 C cycling after clipping. Defoliated oaks showed a more efficient recovery of their 456 canopy, which was supported by a larger allocation of new C into biomass, particularly 457 aboveground. However, this was associated with large decreases in the fine root 458 459 biomass of clipped oak trees. Although in both species clipped trees recovered NSC pools faster than growth, the allocation of ¹³C-labelled photo-assimilates into starch and 460 SS was not increased as compared to controls. This indicates that, contrary to our 461 462 second hypothesis, no preferential allocation into NSC occurred during the first year after clipping. 463

464

465 Trees recovered from defoliation by increasing C allocation aboveground but
466 maintaining allocation to the rhizosphere

Clipping led to a rapid reduction in tree growth (Palacio et al. 2011) and also in biomass 467 and NSC pools in current-year stems (the fraction directly affected by clipping 468 469 treatments). Over the course of the first year after clipping, trees managed to recover 470 initial differences in main stem diameter, total plant biomass and, in the case of oaks, also tree height (Table 2). This was mainly a result of shifting allocation above-ground, 471 with increased allocation to current-year stems (almost double to that of control trees in 472 473 oak) and producing similar leaf biomass to controls (Fig. 2). In oak, these results were consistent for both biomass allocation as a whole and when the proportion of new C 474 475 allocated to bulk biomass was considered (Fig. 4). The ability of trees to recover from defoliation by increased above-ground allocation is a well-known phenomenon (Eyles 476 et al. 2009; Quentin et al. 2011). Such increased allocation may be achieved by a 477

478 combination of shifts in architecture, leaf morphology and C-allocation patterns (Eyles479 et al. 2009).

The removal of apical buds by browsing, clipping or defoliating insects frequently leads to a decrease in apical dominance (due to changes in auxin fluxes, Teichmann and Muhr 2015) with subsequent increases in lateral branch growth (Haukioja et al. 1990; Wilson 1993). Clipped trees in our study showed a lower number of terminal shoots, but increased branching was not detected in either of the two study species. Clipped oaks showed similar lateral branch numbers to control trees, while clipped birch trees had less lateral branches than controls. However, birch trees showed a dramatic decrease in the number of short shoots produced after clipping (Table 2, Palacio et al. 2011), which may be a direct consequence of the decreased apical dominance after clipping (Haukioja et al. 1990). In addition, increases in the proportion of leaves per bud (Millard et al. 2001) or in the foliage to wood ratio (Mizumachi et al. 2004) have been reported as mechanisms to increase above-ground allocation in clipped trees. This was not the case in the trees included in this experiment, which showed similar leaf biomass to control trees but increased current-year stem biomass. It seems, therefore, that clipped trees in our experiment maximized the recovery of the canopy, increasing investment into new stems while keeping a similar allocation to foliage. In clipped birch trees, the decrease in short shoot number (likely in favour of long shoot development), may be a mechanism to recover canopy spread and renewal of bud numbers since, in this species, renewal buds are mostly borne in the long shoots (MacDonald et al. 1984).

Several previous studies have detected shifts in leaf morphology after defoliation
to compensate losses in the C-assimilating capacity of the canopy, frequently leading to
increased individual leaf area and weight and increased SLA (Fuenzalida et al 2019;

Millard et al. 2001; Piper and Fajardo 2015; Quentin et al. 2011; Trumble et al. 1993). We did not detect any significant differences in leaf morphology between clipped and control trees of either study species. Discrepancies with previous studies may be related to differences in the type of disturbance applied and in the duration of experiments. For example, Fuenzalida et al. (2019), Piper and Fajardo (2015) and Trumble et al. (1993) evaluated responses after defoliating insects or treatments simulating defoliation by arthropods, which may elicit a very different response by trees than clipping (Haukioja et al. 1990). Further, Millard et al. (2001) and Quentin et al. (2011) applied clipping in spring and measured the effects on leaf morphology at the end of the same growing season, while in our study effects on leaf morphology were recorded at the end of the next growing season after clipping, i.e. a much longer duration. Similarly, Eyles et al. (2009) carried out a shorter duration experiment and did not detect any significant effects on individual leaf area of *Eucalyptus globulus* five months after 40% defoliation. Our results show that the increased above-ground allocation of clipped trees was largely supported by currently-fixed (new) C, particularly in oak (Fig. 4). Increases in photosynthetic rate have been repeatedly reported in defoliated trees (e.g. Pinkard et al. 2007; Pinkard et al. 1998; Vanderklein and Reich 1999). Although we did not measure photosynthetic rates in our study, clipped oak trees showed higher new-C-allocation to bulk biomass, compatible with increased C-fixing ability and with decreased respiratory losses (see below). Both in control and clipped trees of both species, new C was preferentially allocated to actively growing fractions, like leaves, young stems and fine roots.

Although clipping induced increased C-allocation above-ground, our results
showed no significant effects of clipping on net deposition to soil in either of the two
species analyzed. Frost and Hunter (2008) obtained similar results in red oak (Frost and

Hunter 2008) and suggested that rhizodeposition might be a tightly controlled process buffered against damage-induced shifts in C-allocation. Both species had a significant effect on the δ^{13} C isotopic composition of the soil, indicated by the depletion in 13 C detected in rhizosphere vs. bulk soils. Such an effect was larger in birch than oak, likely in relation to the larger C-fixing ability of the former. Consequently, trees were able to impose changes in the C dynamics of soils, but such effects were not modified by clipping. B. pubescens trees were more severely affected than oaks by clipping. In agreement with the predictions by Foster (2017), the ring-porous species, *O. petraea*, was more efficient in recovering the biomass lost by clipping than the diffuse-porous, B. *pubescens*. Clipped birch trees showed lower height and altered architecture (reduced number of branches, terminal and lateral shoots) as compared to controls. Also, while biomass losses in stems formed in 2007 (the cohort directly affected by clipping

they were still noticeable in birch. Foster (2017) hypothesized that ring-porous species would be more resistant to spring defoliation than diffuse-porous ones owing to their earlier wood phenology and increased C-stores (Barbaroux and Bréda 2002; Barbaroux et al. 2003; Dougherty et al. 1979). We did not measure wood phenology in this study, but it seems likely that this might have had an effect on the differential responses of both species. In our experiment, clipping consisted of shoot removal in early July and early September 2007, after the first and second flushes of shoot growth were finished. If the differences in wood growth phenology between ring-porous and diffuse-porous adult trees can be applied to saplings, oaks would be expected to have started wood

treatments) were no longer significant at the end of the 2008 growing season in oaks,

552 growth at least two weeks prior to the first defoliation event, while birch trees would be

ך ע	
4	
د د	
0	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

> just starting (Foster 2017). Foster (2017) further hypothesized that such differences in 553 554 damage due to wood growth phenology would entail a differential decrease in NSC stores, which would be more severely decreased in diffuse-porous trees and further 555 exacerbated by their lower C-storage capacity. Our results do not confirm this 556 prediction, since both species were equally able to recover NSC pools to the same level 557 558 as controls on the same year of clipping (except for the shoot cohort directly affected by 559 treatments). Similar fast recovery of NSC stores in defoliated trees has been previously reported (Palacio et al. 2008; Piper et al. 2015; Puri et al. 2015). 560

Instead, our results show that the differential recovery ability of birch and oak 561 562 trees after clipping could be, at least partly, explained by the different effects of clipping on their C-cycling, including differences in C-allocation. In accordance with previous 563 564 studies, oaks showed a larger reliance on storage than birch trees to support new growth 565 (Barbaroux et al. 2003; but see Palacio et al. 2011). This increased ability to re-mobilise C-stores could have been crucial to support the re-growth of clipped oaks, at least 566 initially. Several previous studies have reported a positive relationship between NSC 567 storage and the re-growth ability of defoliated trees (Fierravanti et al. 2019; Kays and 568 Canham 1991; Luostarinen and Kauppi 2005). However, clipped oak trees invested 569 570 significantly less "old" C (and proportionally more "new" C) in their new growth than control trees (Fig. 4). Consequently, while clipped oaks recovered to a larger extent than 571 clipped birch trees in our experiment, this was not linked to increased total NSC 572 573 remobilisation as measured at the end of the growing season.

The increased allocation of new C in clipped oaks to support re-growth as
compared to controls illustrates a shift in C cycling after damage resulting in
significantly more new C being allocated to most fractions in clipped vs. control oaks,
an effect not observed in birch. Such a change can be the result of increased C-fixation,

Page 25 of 96

but also of decreased losses by respiration or rhizosphere allocation. Differences in C allocation to the rhizosphere were not significant among treatments (see above). However, we cannot rule out the possibility that the increased allocation of new C assimilates in oak was (at least partly) due to reduced respiratory losses, particularly in relation to the drastic reduction in fine root biomass detected in clipped trees of this species. Accordingly, the increased investment into above-ground components in oak was associated with a reduced production of fine roots of 45% during the year after clipping. These changes were not observed in birch, which maintained similar biomass allocation below-ground between control and clipped trees. Increased fine root mortality is a frequently reported process in defoliated trees (Frost and Hunter 2008; Tuomi et al. 1990; Vanderklein and Reich 1999; but see Endrulat et al. 2016; Kosola et al. 2001). Tuomi et al. (1990) suggested that the reductions in fine root biomass after defoliation could vary largely depending on the relative root biomass, the degree of reserve depletion and the compensatory C gain of trees. All these three factors likely differed in the two study species, which could explain their contrasting response. Oaks have relatively high root:shoot ratios (Shaw 1974) as was the case also in this experiment (Table 1). This means an increased non-productive biomass to support during re-growth (Tuomi et al. 1990). The higher storage pool may not have been sufficient to recover above-ground losses and maintain a large root biomass in oak (Tuomi et al. 1990).

*Clipping did not result in preferential C-allocation to storage in the long-term*Our study did not detect temporal differences in NSC concentrations in the different
organs of clipped and control trees throughout the first year of recovery, but NSC
concentrations of clipped trees of both species reached similar levels to those of control
trees by the end of the first growing season. This indicates that decreases in NSC stores

603	due to canopy re-growth, if any, were short-lived and fully compensated within less
604	than one year. Similar results have been previously reported in the literature (e.g.
605	Palacio et al. 2012; Puri et al. 2015; Wiley et al. 2013). In our experiment, the
606	replenishment of stores was likely supported by an increased C-fixing ability in clipped
607	trees, particularly in oak, as denoted by their higher new-C-allocation to bulk biomass.
608	Despite NSC concentrations of clipped trees were rapidly restored to even higher
609	levels than control trees (Tables S2, S3), we did not detect a significant increase in new
610	C-allocation to storage in clipped trees in the first year after clipping. The only
611	significant effect of clipping on new C-allocation was a reduction in allocation to SS in
612	leaves of clipped birches. Wiley et al. (2017b; 2013) suggested that the growth of
613	defoliated trees would be largely limited by C-availability, first by the decrease in leaf
614	area directly related to defoliation, and then by a prioritized allocation to storage over
615	growth to secure tree survival under future potential defoliation events. They argued
616	that the fact that NSC stores were replenished to control levels did not necessarily mean
617	tree growth was not limited by C-availability, since prioritized allocation to storage over
618	growth could still proceed (Wiley and Helliker 2012). Two recent experiments have
619	experimentally demonstrated that NSC concentrations can be maintained to control
620	levels over periods of C-limitation by preferential allocation of C into storage, calling
621	for a cautious use of NSC concentrations to predict the C-status of trees (Weber et al.
622	2019; 2018). In both experiments, trees subjected to low or no illumination were
623	progressively C-deprived, reaching minimum SS and starch concentrations as low as
624	2% and 1%, respectively. Below these minimum thresholds, below which tree survival
625	was impaired. In both cases, re-illumination resulted in a period of reduced growth and
626	refilling of NSC stores up to a certain threshold. Weber et al. (2019) reported a
627	threshold of 25% and 30% replenishment of NSC concentrations before the growth rate

increased in *Acer* and *Quercus* saplings, respectively. These results indicate that
prioritized allocation to storage over growth does occur in C-starved trees (with very
low NSC levels), and that such prioritization is arrested once a certain level of recovery
of NSC is achieved.

In contrast to the experiments in Weber et al. (2019; 2018), our trees were not C-starved. We did not find the very significant depletion of NSC reported by these previous studies (Weber et al. 2019; 2018). Consequently, our trees probably did not prioritize allocation to NSC over growth. Starch and SS concentrations of defoliated trees are normally not depleted below the C-starvation thresholds detected by Weber et al. (2019; 2018), even after severe treatments (e.g. Kays and Canham 1991; Palacio et al. 2012; Raitio et al. 1994; Vanderklein and Reich 1999, but see Kosola et al. 2001; Puri et al. 2015). This seems to indicate C-limitation after defoliation in trees is normally short-lived and of low magnitude.

Conclusions

Our results show that clipping triggers a shift in biomass allocation aboveground favouring the recovery of the canopy both in oak and birch trees. However, such a shift does not entail a decrease in C-allocation to the rhizosphere, which seems to be a tightly regulated process. Future research on the mechanisms behind such tight regulation would greatly contribute to our understanding on the effects of defoliation on tree C-cycling and its impact on belowground processes. The observed differences in the recovery strategies of the two study species could have potential implications for their vulnerability under different browsing frequencies. The ring porous species, O. petraea, showed a faster recovery of its canopy after clipping than the diffuse porous, B. pubescens. However, this came at the cost of a marked decrease in the fine root biomass

2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
38	
39	
40	
41	
42	
43	
44	
45	
16	
-10 /7	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

> of oak, which raises questions on the potential consequences for the nutrition of the tree and its vulnerability to sustained browsing over longer time periods. Finally, despite the different effect of clipping on the C-allocation of study species, none of them increased new C allocation to storage one year after damage. This indicates that clipping does not entail a sustained preventative allocation of C into storage in the long term.

659 Data and Materials Availability

660 Authors agree to make experimental data and materials available to third party academic

661 researchers upon reasonable request.

662

658

- 663 Supplementary Data
- 664 The following supporting documents are provided as additional content:

- Table S1. Results of glms on the effect of clipping on the biomass (BM), and soluble

666 sugars (SS) and starch pools and concentrations of the different fractions of *B*.

667 *pubescens* and *Q. petraea* trees harvested at the beginning of the δ^{13} C-labelling

668 experiment in April 2008.

- Table S2. Soluble sugars (SS) and starch concentrations (mg g⁻¹) in the different plant

670 fractions of *B. pubescens* and *Q. petraea* trees harvested at the beginning of the δ^{13} C-

- 671 labelling experiment in April 2008.
 - Table S3. Soluble sugars (SS) and starch pools (as % of the total SS or starch pool in
- 673 the plant) in the different plant fractions in *B. pubescens* and *Q. petraea* trees harvested
- 674 at the beginning of the δ^{13} C-labelling experiment in April 2008.

- Table S4. Isotopic composition (δ^{13} C; ‰) of the different fractions of *B. pubescens*

and *Q. petraea* saplings harvested in August 2008.

2	
2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
10	
11	
12	
13	
14	
17	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
⊿2	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
57	
58	
59	

- Table S5. Results of glms on the effect of "Species" and "Treatment" on the allocation 677 678 of new C to bulk biomass of the different fractions of B. pubescens and Q. petraea trees 679 harvested in August 2008. - Table S6. Results of glms on the effect of "Species" and "Treatment" on the allocation 680 of new C to soluble sugars (SS) and starch in the different fractions of B. pubescens and 681 Q. petraea trees harvested in August 2008. 682 683 **Conflict of interest** 684 None declared. 685 686 Funding 687 Ministerio de Ciencia, Innovación y Universidades, Spain (MEC-SEUI postdoctoral 688 689 fellowship, a Ramón y Cajal fellowship (RYC-2013-14164) and project CGL2015-71360-P to SP). Scottish Government's Rural and Environmental Research and 690 691 Analysis Directorate to E.P., A.S., A.H. and P.M. 692 693 Acknowledgements 694 Thanks to Raul Castillo, Richard Gwatkin and Shona Osborne for their help in running the experiment, to Elena Lahoz and Elena Royo for carbohydrate analyses and to two 695 anonymous Reviewers for useful comments on an earlier version of the manuscript. 696 697

698 Authors' Contributions

699 SP, PM, AH and EP designed the study; SP, EP and PM implemented continuous δ^{13} C-1 labelling. SP, EP, PM, MM, GL, SN and AAR run carbohydrate and stable isotope

3 4	701	analyses. SP, PM and SN analysed data. All authors interpreted results. SP wrote the
5 6	702	manuscript receiving revisions from all authors.
7 8	703	
9 10	704	References
11 12	705	Avres F I Heath M Possell H I I Black G Kerstiens and R D Bardgett 2004 Tree
13 14	705	Tyres, E., J. Heath, W. 1055ch, H.I.J. Dlack, G. Kerstiens and K.D. Darugett. 2004. Tree
15 16	706	physiological responses to above-ground herbivory directly modify below-
17 18	707	ground processes of soil carbon and nitrogen cycling. Ecology Letters. 7:469-
19 20	708	479.
21 22	709	Babst, B.A., R.A. Ferrieri, D.W. Gray, M. Lerdau, D.J. Schlyer, M. Schueller, M.R.
23 24	710	Thorpe and C.M. Orians. 2005. Jasmonic acid induces rapid changes in carbon
25 26 27	711	transport and partitioning in Populus. New Phytologist. 167:63-72.
27 28 29	712	Badeck, F.W., G. Tcherkez, S. Nogués, C. Piel and J. Ghashghaie. 2005. Post-
30 31	713	photosynthetic fractionation of stable carbon isotopes between plant organs - A
32 33	714	widespread phenomenon. Rapid Communications in Mass Spectrometry.
34 35 36	715	19:1381-1391.
37 38	716	Baldwin, I.T. 1990. Herbivory simulations in ecological research. Trends in Ecology
39 40	717	and Evolution. 5:91-93.
41 42 43	718	Barbaroux, C. and N. Bréda. 2002. Contrasting distribution and seasonal dynamics of
44 45	719	carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-
46 47	720	porous beech trees. Tree Physiology. 22:1201-1210.
48 49 50	721	Barbaroux, C., N. Bréda and E. Dufrêne. 2003. Distribution of above-ground and
51 52	722	below-ground carbohydrate reserves in adult trees of two contrasting broad-
53 54	723	leaved species (Quercus petraea and Fagus sylvatica). New Phytologist.
55 56 57 58 59 60	724	157:605-615.

1 ว		
2 3 4	725	Bardgett, R.D. and D.A. Wardle. 2003. Herbivore-mediated linkages between
5 6	726	aboveground and belowground communities. Ecology. 84:2258-2268.
7 8	727	Barry, K.M., A. Quentin, A. Eyles and E.A. Pinkard. 2011. Consequences of resource
9 10 11	728	limitation for recovery from repeated defoliation in Eucalyptus globulus
12 13	729	Labilladière. Tree physiology. 32:24-35.
14 15	730	Barto, E.K. and M.C. Rillig. 2010. Does herbivory really suppress mycorrhiza? A meta-
16 17	731	analysis. Journal of Ecology. 98:745-753.
18 19 20	732	Bergman, M. 2002. Can saliva from moose, Alces alces, affect growth responses in the
21 22	733	sallow, Salix caprea? Oikos. 96:164-168.
23 24	734	Bryant, J.P., P.B. Reichardt, T.P. Clausen and R.A. Werner. 1993. Effects of mineral
25 26 27	735	nutrition on delayed inducible resistance in Alaska paper birch. Ecology.
27 28 29	736	74:2072-2084.
30 31	737	Buysse, J. and R. Merckx. 1993. An improved colorimetric method to quantify sugar
32 33	738	content of plant tissue. Journal of Experimental Botany. 44:1627-1629.
34 35 36	739	Canham, C.D., R.K. Kobe, E.F. Latty and R.L. Chazdon. 1999. Interspecific and
37 38	740	intraspecific variation in tree seedling survival: Effects of allocation to roots
39 40	741	versus carbohydrate reserves. Oecologia. 121:1-11.
41 42	742	Canham, C.D., J.B. Mcaninch and D.M. Wood. 1994. Effects of the frequency, timing,
43 44 45	743	and intensity of simulated browsing on growth and mortality of tree seedlings.
46 47	744	Canadian Journal of Forest Research-Revue Canadienne De Recherche
48 49	745	Forestiere. 24:817-825.
50 51	746	Clark, K.L., N. Skowronski and J. Hom. 2010. Invasive insects impact forest carbon
52 53 54	747	dynamics, Global Change Biology, 16:88-101.
55 56	740	Complian LUC S Loverel E Comier S Diez N Duchmann D E Curvich D.D.
57 58	/48	Differencessen, J.H.C., S. Lavorei, E. Garmer, S. Diaz, N. Buchmann, D.E. Gurvich, P.B.
59 60	749	Keich, H. ter Steege, H.D. Morgan, M.G.A. van der Heijden, J.G. Pausas and H.

Manuscripts submitted to Tree Physiology

2		
3	750	Poorter. 2003. A handbook of protocols for standardised and easy measurement
5		
6	751	of plant functional traits worldwide. Australian Journal of Botany. 51:335-380.
/ 8 9	752	Côté, S.D., T.P. Rooney, J.P. Tremblay, C. Dussault and D.M. Waller. 2004. Ecological
10 11	753	impacts of deer overabundance. Annual Review of Ecology Evolution and
12 13	754	Systematics. 35:113-147.
14 15	755	Chapin, F.S., E.D. Schulze and H.A. Mooney. 1990. The ecology and economics of
16 17 19	756	storage in plants. Annual Review of Ecology and Systematics. 21:423-447.
19 20	757	Domisch, T., L. Finér and T. Lehto. 2001. Effects of soil temperature on biomass and
21 22	758	carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the
23 24 25	759	beginning of the growing season. Tree Physiology. 21:465-472.
26 27	760	Dougherty, P.M., R.O. Teskey, J.E. Phelps and T.M. Hinckley. 1979. Net
28 29	761	photosynthesis and early growth trends of a dominant white oak (Quercus-alba
30 31 32	762	L). Plant Physiology. 64:930-935.
33 34	763	Endrulat, T., N. Buchmann and I.B. Brunner. 2016. Carbon allocation into different
35 36	764	fine-root classes of young Abies alba trees is affected more by phenology than
37 38 30	765	by simulated browsing. PLoS ONE. 11
40 41	766	Ericsson, A., C. Hellqvist, B. Langstrom, S. Larsson and O. Tenow. 1985. Effects on
42 43	767	growth of simulated and induced shoot pruning by Tomicus piniperda as related
44 45 46	768	to carbohydrate and nitrogen dynamics in Scots pine. Journal of Applied
40 47 48	769	Ecology. 22:105-124.
49 50	770	Essiamah, S. and W. Eschrich. 1985. Changes of starch content in the storage tissues of
51 52	771	deciduous trees during winter and spring. Iawa Bulletin. 6:97-106.
53 54 55	772	Eyles, A., E.A. Pinkard and C. Mohammed. 2009. Shifts in biomass and resource
56 57	773	allocation patterns following defoliation in Eucalyptus globulus growing with
58 59 60	774	varying water and nutrient supplies. Tree physiology. 29:753-764.

2		
3	775	Fierravanti, A., S. Rossi, D. Kneeshaw, L. De Grandpré and A. Deslauriers. 2019. Low
4 5		
6	776	Non-structural Carbon Accumulation in Spring Reduces Growth and Increases
7 8 9	777	Mortality in Conifers Defoliated by Spruce Budworm. Frontiers in Forests and
9 10 11	778	Global Change. 2
12 13	779	Foster, J.R. 2017. Xylem traits, leaf longevity and growth phenology predict growth and
14 15 16	780	mortality response to defoliation in northern temperate forests. Tree physiology.
17 18	781	37:1151-1165.
19 20 21	782	Frost, C.J. and M.D. Hunter. 2008. Herbivore-induced shifts in carbon and nitrogen
21 22 23	783	allocation in red oak seedlings. New Phytologist. 178:835-845.
24 25	784	Fuenzalida, T.I., Á. Hernández-Moreno and F.I. Piper. 2019. Secondary leaves of an
26 27 28	785	outbreak-adapted tree species are both more resource acquisitive and more
20 29 30	786	herbivore resistant than primary leaves. Tree physiology. 39:1499-1511.
31 32	787	Giardina, C.P., M.D. Coleman, J.E. Hancock, J.S. King, E.A. Lilleskov, W.M. Loya,
33 34 25	788	K.S. Pregitzer, M.G. Ryan and C.C. Trettin. 2005. The Response of
35 36 37	789	Belowground Carbon Allocation in Forests to Global Change. Springer
38 39	790	Netherlands, Dordrecht, pp 119-154.
40 41	791	Gill, R.M.A. 2006. The influence of large herbivores on tree recruitment and forest
42 43 44	792	dynamics. In Large herbivore ecology and ecosystem dynamics Eds. K. Danell,
45 46	793	R. Bergström, P. Duncan and J. Pastor. Cambridge University Press, Cambridge,
47 48	794	pp 170-202.
49 50 51	795	Hartmann, H., H.D. Adams, W.M. Hammond, G. Hoch, S.M. Landhäusser, E. Wiley
51 52 53	796	and S. Zaehle. 2018. Identifying differences in carbohydrate dynamics of
54 55	797	seedlings and mature trees to improve carbon allocation in models for trees and
56 57 58 59 60	798	forests. Environmental and experimental botany. 152:7-18.

799	Haukioja, E., K. Ruohomaki, J. Senn, J. Suomela and M. Walls. 1990. Consequences of
800	herbivory in the mountain birch (Betula pubescens ssp tortuosa) - Importance of
801	the functional organization of the tree. Oecologia. 82:238-247.
802	Hester, A.J., L. Edenius, R.M. Buttenschon and A.T. Kuiters. 2000. Interactions
803	between forests and herbivores: the role of controlled grazing experiments.
804	Forestry. 73:381-391.
805	Hester, A.J., P. Millard, G.J. Baillie and R. Wendler. 2004. How does timing of
806	browsing affect above- and below-ground growth of Betula pendula, Pinus
807	sylvestris and Sorbus aucuparia? Oikos. 105:536-550.
808	Hester, A.J., F.J.G. Mitchell and K.J. Kirby. 1996. Effects of season and intensity of
809	sheep grazing on tree regeneration in a British upland woodland. Forest Ecology
810	and Management. 88:99-106.
811	Hoogesteger, J. and P.S. Karlsson. 1992. Effects of defoliation on radial stem growth
812	and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa).
813	Functional Ecology. 6:317-323.
814	Kays, J.S. and C.D. Canham. 1991. Effects of time and frequency of cutting on
815	hardwood root reserves and sprout growth. Forest Science. 37:524-539.
816	Klein, T., Y. Vitasse and G. Hoch. 2016. Coordination between growth, phenology and
817	carbon storage in three coexisting deciduous tree species in a temperate forest.
818	Tree physiology
819	Körner, C. 2003. Carbon limitation in trees. Journal of Ecology. 91:4-17.
820	Kosola, K.R., D.I. Dickmann, E.A. Paul and D. Parry. 2001. Repeated insect defoliation
821	effects on growth, nitrogen acquisition, carbohydrates, and root demography of
822	poplars. Oecologia. 129:65-74.

2		
3 4	823	Lechowicz, M.J. 1984. Why do temperate deciduous trees leaf out at different times?
5 6	824	Adaptation and ecology of forest communities. American Naturalist. 124:821-
7 8	825	842.
9 10 11	826	Luostarinen, K. and A. Kauppi. 2005. Effects of coppicing on the root and stump
12 13	827	carbohydrate dynamics in birches. New Forests. 29:289-303.
14 15	828	MacDonald, A.D., D.H. Mothersill and J.C. Caesar. 1984. Shoot development in Betula
16 17	829	papyrifera. III. Long-shoot organogenesis. Canadian Journal of Botany. 62:437-
18 19 20	830	445.
21 22	831	McDowell, N.G. 2011. Mechanisms linking drought, hydraulics, carbon metabolism,
23 24 25	832	and vegetation mortality. Plant Physiology. 155:1051-1059.
25 26 27	833	Messier, C. and E. Nikinmaa. 2000. Effects of light availability and sapling size on the
28 29	834	growth, biomass allocation, and crown morphology of understory sugar maple,
30 31 22	835	yellow birch, and beech. Ecoscience. 7:345-356.
33 34	836	Millard, P., A. Hester, R. Wendler and G. Baillie. 2001. Interspecific defoliation
35 36	837	responses of trees depends on sites of winter nitrogen storage. Functional
37 38 20	838	Ecology. 15:535-543.
39 40 41	839	Mizumachi, E., N. Osawa, R. Akiyama and N. Tokuchi. 2004. The effects of herbivory
42 43	840	and soil fertility on the growth patterns of Quercus serrata and Q. crispula
44 45	841	saplings at the shoot and individual levels. Population Ecology. 46:203-211.
46 47 48	842	Myers, J.A. and K. Kitajima. 2007. Carbohydrate storage enhances seedling shade and
49 50	843	stress tolerance in a neotropical forest. Journal of Ecology. 95:383-395.
51 52	844	Nogués, S., G. Tcherkez, G. Cornic and J. Ghashghaie. 2004. Respiratory carbon
53 54 55	845	metabolism following illumination in intact French bean leaves using ${}^{13}C/{}^{12}C$
56 57 58 59 60	846	isotope labeling. Plant Physiology. 136:3245-3254.
847	Orians, C.M., A. Thorn and S. Gomez. 2011. Herbivore-induced resource sequestration	
-----	--	
848	in plants: why bother? Oecologia. 167:1-9.	
849	Palacio, S., J.J. Camarero, M. Maestro, A.Q. Alla, E. Lahoz and G. Montserrat-Martí.	
850	2018. Are storage and tree growth related? Seasonal nutrient and carbohydrate	
851	dynamics in evergreen and deciduous Mediterranean oaks. Trees - Structure and	
852	Function. 32:777-790.	
853	Palacio, S., R. Hernández, M. Maestro-Martínez and J.J. Camarero. 2012. Fast	
854	replenishment of initial carbon stores after defoliation by the pine processionary	
855	moth and its relationship to the re-growth ability of trees. Trees - Structure and	
856	Function:1-14.	
857	Palacio, S., A.J. Hester, M. Maestro and P. Millard. 2008. Browsed Betula pubescens	
858	trees are not carbon-limited. Functional Ecology. 22:808-815.	
859	Palacio, S., M. Maestro and G. Montserrat-Martí. 2007. Seasonal dynamics of non-	
860	structural carbohydrates in two species of Mediterranean sub-shrubs with	
861	different leaf phenology. Environmental and Experimental Botany. 59:34-42.	
862	Palacio, S., E. Paterson, A. Sim, A.J. Hester and P. Millard. 2011. Browsing affects	
863	intra-ring carbon allocation in species with contrasting wood anatomy. Tree	
864	Physiology. 31:150-159.	
865	Paterson, E., A.J. Midwood and P. Millard. 2009. Through the eye of the needle: A	
866	review of isotope approaches to quantify microbial processes mediating soil	
867	carbon balance. New Phytologist. 184:19-33.	
868	Paterson, E., B. Thornton, A.J. Midwood and A. Sim. 2005. Defoliation alters the	
869	relative contributions of recent and non-recent assimilate to root exudation from	
870	Festuca rubra. Plant, Cell and Environment. 28:1525-1533.	

2		
3 4	871	Pestaña, M. and S. Santolamazza-Carbone. 2011. Defoliation negatively affects plant
5 6	872	growth and the ectomycorrhizal community of Pinus pinaster in Spain.
7 8	873	Oecologia. 165:723-733.
9 10 11	874	Pinkard, E.A., M. Battaglia and C.L. Mohammed. 2007. Defoliation and nitrogen
12 13	875	effects on photosynthesis and growth of Eucalyptus globulus. Tree physiology.
14 15	876	27:1053-1063.
16 17 18	877	Pinkard, E.A. and C.L. Beadle. 1998. Regulation of photosynthesis in <i>Eucalyptus nitens</i>
19 20	878	(Deane and Maiden) Maiden following green pruning. Trees-Structure and
21 22	879	Function. 12:366-376.
23 24	880	Pinkard, E.A., C.L. Beadle, N.J. Davidson and M. Battaglia. 1998. Photosynthetic
25 26 27	881	responses of Eucalyptus nitens (Deane and Maiden) Maiden to green pruning.
28 29	882	Trees-Structure and Function. 12:119-129.
30 31	883	Piper, F.I. and A. Fajardo. 2014. Foliar habit, tolerance to defoliation and their link to
32 33 34	884	carbon and nitrogen storage. Journal of Ecology. 102:1101-1111.
35 36	885	Piper, F.I., M.J. Gundale and A. Fajardo. 2015. Extreme defoliation reduces tree growth
37 38	886	but not C and N storage in a winter-deciduous species. Annals of botany.
39 40	887	115:1093-1103.
41 42 43	888	Puri, E., G. Hoch and C. Körner. 2015. Defoliation reduces growth but not carbon
44 45	889	reserves in Mediterranean Pinus pinaster trees. Trees - Structure and Function.
46 47	890	29:1187-1196.
48 49 50	891	Quentin, A.G., C.L. Beadle, A.P. O'Grady and E.A. Pinkard. 2011. Effects of partial
51 52	892	defoliation on closed canopy Eucalyptus globulus Labilladière: Growth, biomass
53 54	893	allocation and carbohydrates. Forest ecology and management. 261:695-702.
55 56 57	894	Raitio, H., K. Paukkonen and A. Kauppi. 1994. Effects of defoliation, nitrogen
57 58 59 60	895	nutrition, and temperature on leafing and root carbohydrates of birch seedlings.

3 4	896	Canadian Journal of Forest Research-Revue Canadienne De Recherche
5 6	897	Forestiere. 24:1914-1920.
7 8 0	898	Ramirez, J.A., I.T. Handa, J.M. Posada, S. Delagrange and C. Messier. 2018.
9 10 11	899	Carbohydrate dynamics in roots, stems, and branches after maintenance pruning
12 13	900	in two common urban tree species of North America. Urban Forestry and Urban
14 15	901	Greening. 30:24-31.
16 17 18	902	Schmid, S., S. Palacio and G. Hoch. 2017. Growth reduction after defoliation is
19 20	903	independent of CO_2 supply in deciduous and evergreen young oaks. New
21 22	904	Phytologist. 214:1479-1490.
23 24 25	905	Shaw, M.W. 1974. The reproductive characteristics of oaks. In British oak: its history
26 27	906	and natural history. Botanical Society of the British Isles, Brighton, pp 162-181.
28 29	907	Shipley, L.A., A.W. Illius, K. Danell, N.T. Hobbs and D.E. Spalinger. 1999. Predicting
30 31 22	908	bite size selection of mammalian herbivores: a test of a general model of diet
32 33 34	909	optimization. Oikos. 84:55-68.
35 36	910	Speed, J.D.M., G. Austrheim, A.J. Hester and A. Mysterud. 2011. Growth limitation of
37 38	911	mountain birch caused by sheep browsing at the altitudinal treeline. Forest
39 40 41	912	Ecology and Management. 261:1344-1352.
42 43	913	Tcherkez, G., S. Nogués, J. Bleton, G. Cornic, F. Badeck and J. Ghashghaie. 2003.
44 45	914	Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in
46 47 48	915	French bean. Plant Physiology. 131:237-244.
49 50	916	Teichmann, T. and M. Muhr. 2015. Shaping plant architecture. Frontiers in Plant
51 52	917	Science. 6
53 54 55	918	Trumble, J.T., D.M. Kolodny-Hirsch and I.P. Ting. 1993. Plant compensation for
55 56 57 58 59	919	arthropod herbivory. Annual Review of Entomology. 38:93-119.

1		
2 3 4	920	Tschaplinski, T.J. and T.J. Blake. 1994. Carbohydrate mobilization following shoot
5 6	921	defoliation and decapitation in hybrid poplar. Tree Physiology. 14:141-151.
7 8	922	Tuomi, J., P. Niemelä and S. Sirén. 1990. The Panglossian paradigm and delayed
9 10 11	923	inducible accumulation of foliar phenolics in mountain birch. Oikos. 59:399-
12 13	924	410.
14 15	925	Van der Heyden, F. and W.D. Stock. 1995. Non-structural carbohydrate allocation
16 17	926	following different frequencies of simulated browsing in three semiarid shrubs.
18 19 20	927	Oecologia. 102:238-245.
20 21 22	928	Vanderklein, D.W. and P.B. Reich. 1999. The effect of defoliation intensity and history
23 24	929	on photosynthesis, growth and carbon reserves of two conifers with contrasting
25 26 27	930	leaf lifespans and growth habits. New Phytologist. 144:121-132.
27 28 29	931	Webb, W.L. and J.J. Karchesy. 1977. Starch content of Douglas-fir defoliated by the
30 31	932	tussock moth. Canadian Journal of Forest Research. 7:186-188.
32 33	933	Weber, R., A. Gessler and G. Hoch. 2019. High carbon storage in carbon-limited trees.
34 35 26	934	New Phytologist. 222:171-182.
30 37 38	935	Weber, R., A. Schwendener, S. Schmid, S. Lambert, E. Wiley, S.M. Landhäusser, H.
39 40	936	Hartmann and G. Hoch. 2018. Living on next to nothing: tree seedlings can
41 42	937	survive weeks with very low carbohydrate concentrations. New Phytologist
43 44	020	
45 46	938	218.107-118.
47 48	939	Wiley, E., B.B. Casper and B.R. Helliker. 2017a. Recovery following defoliation
49 50	940	involves shifts in allocation that favour storage and reproduction over radial
51 52	941	growth in black oak. Journal of Ecology. 105:412-424.
53 54	942	Wiley, E. and B. Helliker. 2012. A re-evaluation of carbon storage in trees lends greater
55 56 57	943	support for carbon limitation to growth. New Phytologist. 195:285-289.
58 59 60		

- Wiley, E., G. Hoch and S.M. Landhäusser. 2017b. Dying piece by piece: Carbohydrate
 dynamics in aspen (*Populus tremuloides*) seedlings under severe carbon stress.
 Journal of Experimental Botany. 68:5221-5232.
 - 947 Wiley, E., S. Huepenbecker, B.B. Casper and B.R. Helliker. 2013. The effects of
 - 948 defoliation on carbon allocation: Can carbon limitation reduce growth in favour
 - 949 of storage? Tree physiology. 33:1216-1228.
 - 950 Wilson, B.F. 1993. Compensatory shoot growth in young black birch and red maple

951 trees. Canadian journal of Forest Research. 23:302-306.

954	Figure legends
955	Fig. 1. Experimental design with the indication of the main treatments (clipping – red
956	arrows-, 13C-labelling), growth measurements (blue arrows) and harvests (black
957	arrows) applied to <i>B. pubescens</i> and <i>Q. petraea</i> saplings.
958	Fig. 2. Biomass allocation to different tree fractions in clipped and control trees of <i>B</i> .
959	pubescens and Q. petraea harvested in August 2008 (ca. one year after clipping).
960	Average values are shown for each fraction. $L = Leaves$, $0-St = current$ year stems, $1-St$
961	= one-year-old stems, 2-St = two-year-old stems, MS = main stems, CR = coarse roots,
962	FR = fine roots. Significant differences between treatments within species are indicated
963	by asterisks: $* = P < 0.10$, $** = P < 0.05$.
964	Fig. 3. Differences between clipped (grey bars) and control (black bars) <i>B. pubescens</i>
965	and Q. petraea saplings in the allocation of SS and starch pools to different plant
966	fractions one year after clipping (trees harvested in August 2008). Asterisks denote
967	significant differences between treatments within a given species at $\alpha = 0.10$ (*) and $\alpha =$
968	0.05 (**).
969	Fig. 4. Differences between clipped (grey bars) and control (black bars) <i>B. pubescens</i>
970	and <i>Q. petraea</i> saplings in the allocation of newly fixed C to the different plant organs
971	one year after clipping (trees harvested in August 2008). Asterisks denote significant
972	differences between treatments within a given species at $\alpha = 0.05$.
973	Fig 5. Isotopic composition ($\delta^{13}C$; ‰) of the rhizosphere and bulk soil collected
974	underneath control (white dots) and clipped (black dots) B. pubescens and Q. petraea
975	trees harvested in August 2008 (ca. one year after clipping). No significant differences
976	between treatments were detected at $\alpha = 0.05$.
977	Fig 6. Differences between control (black bars) and clipped (grey bars) B. pubescens
978	and Q. petraea saplings in the allocation of newly fixed C to SS and starch to different

2 3	979	plant fractions on the year after clipping (trees harvested in August 2008). Asterisks
4 5 6	980	denote significant differences between treatments within a given species at $\alpha = 0.10$ (*),
7 8	981	and $\alpha = 0.05$ (**).
9 10	982	
11 12 13	983	
13 14 15		
16 17		
18 19		
20 21		
22 23 24		
25 26		
27 28		
29 30		
31 32		
34 35		
36 37		
38 39		
40 41 42		
43 44		
45 46		
47 48		
49 50 51		
52 53		
54 55		
56 57		
58 59		
60		

2		
3	1	No preferential C-allocation to storage over growth in clipped birch and oak
4 5		
6	2	saplings
7		
8	-	
9	3	
10		
11	Л	Sava Dalagial.2* Enia Datangan ² Aligan I. Hastan ² Salvadan Naguás ³ Cladus Lina ³
12	4	Sara raiacio", Eric raterson", Alison J. nester", Sarvauor Nogues", Glauys Lino"
13 14	-	4 Alba Anadan Dagall3.5 Malabar Maastral and Datar Millard7
15	Э	, Alba Anauon-Kosen ^{3, e} , Melchor Maestro [*] and Feter Minaru [*]
16	c	Institute Direngias de Ecología (IDE CSIC). Au Nucetra Señera de la Vietoria, 16
17	6	¹ Instituto Pitenaico de Ecologia (IPE-CSIC), AV. Nuestra Senora de la victoria, 10.
18	-	22700 Loss (Harris) Susin
19	/	22700 Jaca (Huesca), Spain.
20	0	² Lower Hotten Institute Contrictor AD15 COUL Abordoon LIV
21	8	² James Hutton Institute, Craiglebuckler AB15 8QH, Aberdeen, UK.
22	0	3 Equiltat de Dielogie, Universitat de Denselone, Av. Disconel (42, 08028, Denselone
24	9	⁹ Facultat de Biologia, Universitat de Barcelona, AV. Diagonal 645, 08028, Barcelona,
25	40	Surviv.
26	10	Spain.
27		4 Frencherd de Ciencies Ambienteles Universided Científicos del Sem Demonseries e Sem
28	11	Facultad de Ciencias Ambientaies, Universidad Científica del Sur, Panamericana Sur
30	10	
31	12	km 19, Lima, Peru.
32	10	⁵ Institute of Determy and Londsone Ecology University of Craifavald Soldmonstroße
33	13	Institute of Botany and Landscape Ecology, Oniversity of Orenswald, Soldinanstrabe
34	1.4	15 17487 Graifswald Cormany
35	14	15, 17487 Orenswald, Germany.
30	15	6 Institute Direngias de Ecología (IDE CSIC) Au Montañana 1005 50050 Zaragoza
38	12	Instituto Filenaico de Ecologia (IFE-CSIC), AV. Montanana, 1005. 50059, Zaragoza,
39	16	Spain
40	10	Spain.
41	17	7 Manaaki Whenua Landcare Research PO Box 69040 Lincoln 7640 New Zealand
42	17	Wanaaki whenda Landeare Research, i O Dox 09040, Emeoni 7040, ivew Zearand
43 44	10	
45	10	
46	10	
47	19	
48	20	* Author for correspondence: e-mail: s palacio@ipe csic es
49	20	Autor for correspondence. e man. <u>s.paracio(grpc.esic.es</u>
50 51	21	
52	21	
53	22	
54		
55		
56		
5/ 58		
59		
60		

23 Abstract

Herbivory is one of the most globally distributed disturbances affecting C-cycling in trees, yet our understanding of how it alters tree C-allocation to different functions like storage, growth or rhizodeposition is still limited. Prioritized C-allocation to storage replenishment vs. growth could explain the fast recovery of C-storage pools frequently observed in growth-reduced defoliated trees. We performed continuous ¹³C-labelling coupled to clipping to quantify the effects of simulated browsing on the growth, leaf morphology and relative allocation of stored vs. recently assimilated C to the growth (bulk biomass) and non-structural carbohydrate (NSC) stores (soluble sugars and starch) of the different organs of two tree species: diffuse-porous (Betula pubescens) and ringporous (Quercus petraea). C-transfers from plants to bulk and rhizosphere soil were also evaluated. Clipped birch and oak trees shifted their C-allocation patterns above-ground as a means to recover from defoliation. However, such increased allocation to current-year stems and leaves did not entail reductions in the allocation to the rhizosphere, which remained unchanged between clipped and control trees of both species. B. pubescens and Q. petraea showed differences in their vulnerability and recovery strategies to clipping, the ring-porous species being less affected in terms of growth and architecture by clipping than the diffuse-porous. These contrasting patterns could be partly explained by differences in their C cycling after clipping. Defoliated oaks showed a faster recovery of their canopy biomass, which was supported by increased allocation of new C, but associated with large decreases in their fine root biomass. Following clipping, both species recovered NSC pools to a larger extent than growth, but the allocation of ¹³C-labelled photo-assimilates into storage compounds was not increased as compared to controls. Despite their different response to clipping, our

2	
3	
4	
5	
6 7	
7 8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22 23	
23	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36 27	
38	
39	
40	
41	
42	
43 11	
44	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57	

results indicate no preventative allocation into storage occurred during the first year after clipping in either of the species.

50 Keywords: *Quercus petraea, Betula pubescens*, Carbon (C) allocation, δ^{13} C stable

51 isotopes, non-structural carbohydrates, C-storage, below-ground allocation.

for per peries

53 Introduction

Trees account for ca. 90% of the global biomass of carbon (C) (Körner 2003), and hence play a fundamental role in global C dynamics. C-allocation patterns in trees may shift depending on multiple factors, including age (Hartmann et al. 2018), phenology (Palacio et al. 2018), environmental conditions like water and light availability or temperature (Domisch et al. 2001; Messier and Nikinmaa 2000; Weber et al. 2019) and disturbances (Canham et al. 1994; Van der Heyden and Stock 1995). C-allocation within the tree biomass may determine tree vulnerability to environmental stress and disturbance (Canham et al. 1999; Wiley and Helliker 2012). Further, C-allocation to different functions like storage, growth, reproduction or rhizodeposition may affect the amount of C cycled and sequestered by trees (Hartmann et al. 2018). Understanding the response of tree C-allocation patterns to different factors may be crucial to predict the response of trees to global change (Körner 2003; Wiley and Helliker 2012). Herbivory is one of the most globally distributed disturbances affecting C-cycling patterns in trees (Clark et al. 2010). Defoliation by herbivores reduces canopy leaf area causing a decrease in the net C gain of trees by current photosynthesis and altering the balance between C sinks and sources (Trumble et al. 1993). This may lead to important changes in C-allocation patterns, which can influence the environment by changes in below-ground C inputs (Eyles et al. 2009; Pinkard and Beadle 1998). Depending on the severity of damage, C demands of growing sinks may be supplied temporarily from storage (Pinkard et al. 1998; Quentin et al. 2011; Van der Heyden and Stock 1995), namely non-structural carbohydrates (NSC) and lipids, some of which can be mobilised to support growth or other plant functions (Chapin et al. 1990).

Accordingly, several studies have reported a decrease in starch pools after defoliation in

deciduous (Canham et al. 1994; Kosola et al. 2001; Van der Heyden and Stock 1995)

Page 49 of 96

1

2
2
3
4
5
6
-
/
8
9
10
10
11
12
13
14
15
15
16
17
18
10
17
20
21
22
22
23
24
25
26
27
20
28
29
30
31
22
32
33
34
35
26
30
37
38
39
10
40
41
42
43
44
45
40
46
47
48
10
47 50
50
51
52
53
54
55
56
57
50
ъ
59

60

and evergreen tree species (Ericsson et al. 1985; Fierravanti et al. 2019). However, trees 78 79 are able to compensate to some degree for loss of foliage by changing allocation patterns (e.g. favouring foliage production), upregulating photosynthesis and changing 80 leaf morphology (Fuenzalida et al. 2019; Pinkard and Beadle 1998). Recovery from 81 light defoliation is considered to rely mainly on current photo-assimilates produced by 82 surviving foliage (Barry et al. 2011) and does not normally cause a significant decrease 83 in NSC pools (Tschaplinski and Blake 1994; Van der Heyden and Stock 1995). In the 84 case of moderate or severe defoliation, decreases in NSC concentrations tend to be 85 transient and of short duration, becoming non-significant over the course of a growing 86 87 season, while the effects on tree growth seem to be more long-lasting (Palacio et al. 2008; Piper et al. 2015; Puri et al. 2015). Sometimes defoliated trees show even higher 88 NSC concentrations than undefoliated controls (Palacio et al. 2012; Piper et al. 2015). 89 90 The differential dynamics of growth vs. recovery of NSC pools in defoliated trees have been interpreted in relation to two, non-exclusive processes: 1) a C-sink 91 92 limitation to growth due to reductions in the numbers of buds, limiting levels of non-C reserves, hormonal changes or allometric adjustments in response to reduced leaf area, 93 leading to surplus-C being allocated to storage (Palacio et al. 2012; Palacio et al. 2008; 94 95 Piper et al. 2015; Puri et al. 2015; Schmid et al. 2017); 2) a preventative prioritized Callocation to storage over growth, ultimately leading to C-limitation (Piper et al. 2015; 96 Puri et al. 2015; Wiley et al. 2017a; Wiley and Helliker 2012; Wiley et al. 2013). 97 98 Preferential allocation of C to NSC over growth has recently been demonstrated in Cstarved plants subjected to prolonged shading (Weber et al. 2019) or complete darkness 99 (Weber et al. 2018). Nevertheless, its occurrence in other potentially C-limiting 100 conditions such as defoliation remains equivocal (Wiley et al. 2017a; 2013). 101

102	In addition to changes in C-allocation among tree organs, defoliation can induce
103	shifts in C-transfers below-ground, influencing soil microbial communities (Bardgett
104	and Wardle 2003 but see Barto and Rillig 2010) and nutrient cycling (Ayres et al.
105	2004). Approximately 50% of the C produced by woody plants is allocated below-
106	ground, either directly to the roots, or as rhizodeposition of C exudates from roots to the
107	surrounding soil (Giardina et al. 2005). Defoliation can reduce below-ground C-
108	allocation by enhancing fine root mortality, particularly in trees (Bryant et al. 1993;
109	Tuomi et al. 1990; Vanderklein and Reich 1999, but see Endrulat et al. 2016; Kosola et
110	al. 2001). In contrast, in herbaceous plants herbivory can increase short-term allocation
111	of C below-ground (Orians et al. 2011), as has also been found for <i>Populus</i> spp. (Babst
112	et al. 2005). Defoliation has been demonstrated to elicit short-term increases in the flux
113	of C to root exudates in grasses (Paterson et al. 2005), while the detection of effects in
114	woody species remains elusive (Ayres et al. 2004; Frost and Hunter 2008). In general,
115	there is a lack of information related to below-ground responses of woody plants to
116	defoliation.
117	Differences in wood anatomy have also been assumed to entail differences in C-
118	allocation dynamics (Barbaroux and Bréda 2002), with putative consequences on the
119	response of trees to defoliation (Foster 2017). Ring-porous species complete part of
120	earlywood growth (including large earlywood vessel formation) before bud burst in
121	spring (Dougherty et al. 1979). This phenology is putatively a result of winter embolism
122	of large-diameter vessels, and the need to produce a new set of xylem vessels prior to
123	bud burst to supply newly emerging leaves with water (Lechowicz 1984). Contrastingly,
124	diffuse-porous species have only small xylem vessels and winter embolism has
125	relatively less impact on the hydraulic conductivity of the tree, so leaf expansion can
126	proceed using xylem formed in the previous growing season, without the need to

2
3
4
5
6
0
/
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
22
22
∠_) 24
24
25
26
27
28
29
30
21
22
32
33
34
35
36
37
38
30
39
40
41
42
43
44
45
46
47
10
+0 40
49
50
51
52
53
54
55
56
50
5/
58
59
60

127	produce new radial stem growth (Lechowicz 1984). The consequence for C-cycling is
128	that ring-porous species show greater seasonal variations in NSC pools and
129	concentrations, and a relatively greater dependence on the remobilization of stored NSC
130	for earlywood growth in spring, than diffuse-porous species (Barbaroux and Bréda
131	2002; Barbaroux et al. 2003, but see Palacio et al. 2011). It has recently been suggested
132	that these differences in C storage and allocation underline potential differences
133	between ring-porous and diffuse-porous species in the vulnerability to spring
134	defoliation, the former being more resistant to defoliation owing to their larger C-stores
135	and advanced wood growth phenology (Foster 2017). Nevertheless, to our knowledge
136	this possibility has never been explored experimentally.
137	We performed continuous ¹³ C-labelling coupled to a clipping experiment to
138	quantify the effects of simulated browsing on the relative allocation of stored and
139	recently assimilated C to growth (bulk biomass) and NSC (soluble sugars and starch) of
140	the different organs of two tree species with contrasting wood anatomy: diffuse-porous
141	downy birch (Betula pubescens Ehrh.) and ring-porous sessile oak (Quercus petraea
142	[Matt.] Liebl.). Transfers from the plants to bulk (i.e. not in direct contact with tree
143	roots) and rhizosphere soil were also evaluated. Clipping was selected to mimic the
144	effects of browsing: a major factor hampering the regeneration of native forests
145	worldwide (Gill 2006; Hester et al. 2004). The use of continuous ¹³ C-labelling at close-
146	to-ambient concentrations was chosen as a quantitative mean to separate current from
147	stored C-assimilates, estimate C-allocation to different organs and C-compounds over
148	the course of the growing season and track allocation below-ground, without the
149	potential drawbacks of pulse-chase labelling (see Paterson et al. 2009). We
150	hypothesized that clipping would lead to: (i) increased C-allocation above-ground vs.
151	below-ground (i.e. roots and the rhizosphere); (ii) increased allocation of new C into

storage; and (iii) reduced growth and C storage, more noticeable in birch than in oak,
owing to the ring-porous wood anatomy and subsequent larger storage C-pools of the
latter (Foster 2017).

156 Materials and methods

Experimental set up

The experimental set up was the same as described in Palacio et al. (2011). In brief, in 2007 we applied two clipping treatments: control (unclipped) and clipped (i.e. 66% shoots removal in two consecutive dates: July and September 2007) to two-year-old sessile oak (*Quercus petraea* [Matt.] Liebl.) and downy birch (*Betula pubescens* Ehrh.) saplings planted in pots (Fig. 1). In April 2008, before bud burst, five trees of each species and treatment were harvested to account for differences in biomass and NSC allocation in the short-term. At that same time, five extra trees of each species and treatment were moved into a polytunnel with altered $\delta^{13}C$ air composition to take part in a continuous δ^{13} C-labelling experiment, while five control trees of each species were left at the greenhouse to serve as "ambient" trees. The aim of the continuous labelling was to separate newly fixed C from "old" C. In August 2008, trees from the C-labelling experiment were harvested to evaluate differences in new C allocation to bulk biomass and NSC (SS and starch) between clipped and control trees of both species one year after clipping (Fig. 1). "Ambient" trees were harvested in November 2008 to provide natural abundance δ^{13} C values of the different organs of both species to be used in calculations. Further details of these experimental procedures follow.

175 Clipping experiment

Page 53 of 96

176	Trees of both study species were lifted from a nursery while dormant (5 April 2007) and
177	planted in 44 l pots filled with gravel at the bottom for drainage and freely-drained soil
178	derived from granite and granitic gneiss (Countesswells Association, Glentworth and
179	Muir 1963). At planting, saplings were approximately 0.3-0.5 m high, a stage
180	considered highly vulnerable to large herbivore browsing in nature (Gill 2006; Hester et
181	al. 2000; Hester et al. 1996). After planting, saplings were moved into an unheated
182	greenhouse and 20 trees of each species were randomly allocated into "clipped" and
183	"control" treatments, leading to 10 replicates per species and treatment combination.
184	Five extra trees per species were allocated to the "ambient" group, which did not
185	receive clipping or ¹³ C-labelling. Trees were numbered and positioned in the
186	greenhouse following a Latin square design. Between April and November 2007, soil
187	was kept moist with tap water without exceeding field capacity and saplings received
188	0.5 l of a nutrient solution with 3.0 mol N m ⁻³ as NH ₄ NO ₃ , 1.33 mol m ⁻³ Na ₂ HPO ₄ •12
189	H_2O and 1 mol m ⁻³ K ₂ SO ₄ once per week, to remove any potential nutrient limitation to
190	growth. A natural photoperiod was used and the greenhouse ventilated to provide
191	temperatures close to ambient. To account for initial tree variability and avoid potential
192	confounding effects on tree growth, morphological measurements (tree height, length,
193	stem diameter, and number of short shoots and long shoots) were taken from every tree
194	at planting and prior to each clipping and harvest.

195 Clipping was applied as in Palacio et al. (2011) by removing 66% of current-196 year shoots (2 out of every 3 current-year shoots) in early July and early September 197 2007, after the first and second flushes of shoot growth were finished (Fig. 1). This 198 intensity of damage was selected to reproduce high densities of browsing animals 199 (Speed et al. 2011). In birch, clipping treatments were designed to reproduce browsing 200 damage by red deer or sheep by removing current-year long-shoots (including stems,

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
77	
50	
21	
52	
53	
54	
55	
56	
57	
58	
59	
60	

201	buds and leaves) up to the maximum stem diameters normally eaten by red deer or
202	sheep (Shipley et al. 1999). In oaks, clipped shoots were selected to ensure a decrease in
203	total tree leaf area of approx. 66% owing to the highly variable shoot length and fewer
204	shoots of this species. While the use of clipping to simulate browsing has received some
205	criticism (Baldwin 1990), woody plant responses to well-simulated damage do not
206	differ significantly from responses to real herbivore damage (Bergman 2002; Hester et
207	al. 2004).
208	
209	Short-term effects of clipping on biomass and carbohydrate allocation
210	Twenty dormant saplings (five of each species and clipping treatment) were removed
211	from their pots on 2 April 2008 and separated into: one and two-year-old stems (i.e.
212	stems formed in 2007 and 2006, respectively), woody stems (>2 years), coarse roots (>
213	2 mm diameter) and fine roots (< 2mm diameter). Samples were freeze-dried and
214	weighed (ca. 0.005 mg) and then milled to a fine powder in a ball mill (Retsch Mixer
215	MM301, Leeds, UK).
216	Soluble sugars (SS) were extracted with 80% (v/v) ethanol and their
217	concentration determined using the phenol-sulphuric method as modified by Buysse and
218	Merckx (1993). Starch and complex sugars remaining in the undissolved pellet after
219	ethanol extractions were reduced (i.e. enzymatically) to glucose and analyzed as
220	described in Palacio et al. (2007).
221	
222	Continuous ¹³ C labelling experiment
223	On 1 April 2008, five saplings from each species and clipping treatment combination
224	were transferred to an aluminium and polythene tunnel, 2.4 m wide, 3.0 m long and 2.2
225	high (Super 8 Hobby Tunnel, Northernpolytunnels, Colne, UK) as described previously

(Palacio et al., 2011; Fig. 1). At this time, trees were only just starting to break bud. The polytunnel was supplied with air having CO₂ with a depleted ¹³C-signature (relative to atmospheric CO_2), in order to differentiate current (new) from previous (old) plant assimilates (Nogués et al. 2004; Paterson et al. 2009). This was achieved by partially scrubbing CO₂ from the air using a CO₂-scrubber unit (Texol, Dundee, UK) that reduced the CO₂ concentration to 74-103 µmol mol⁻¹. The scrubbed air was then mixed with CO₂ from a gas cylinder (BOC, Worsley, UK) with a δ^{13} C-signature of -34.0 ‰, using Brooks 580s thermal mass flow controllers, interfaced with a Brooks control unit (both Flotech Solutions Ltd, Stockport, UK). Resulting CO₂ concentrations inside the polytunnel averaged 332 ppm and had an average δ^{13} C of -21.4‰. Temperature inside the polytunnel was checked regularly with a shielded thermometer. On the 6th of May 2008 we installed a shade mesh intercepting ~30% of the light on top of the polytunnel to reduce warming.

Trees were distributed within the polytunnel following a Latin square design, which was changed in the middle of the experiment. They regularly received 0.5 l of the same nutrient solution described above. We took initial and final tree morphological measurements (as described above) at the beginning and at the end of the ¹³C-labelling period. On 5th August 2008, four months after the beginning of the ¹³C-labelling, trees inside the polytunnel were harvested for analysis (Fig. 1). At this time, leaf senescence was starting and most of the annual growth had been completed. Harvested trees were separated into: current-year (formed in 2008), one and two-year-old stems (formed in 2007 and 2006, respectively), woody stems (>2 years), coarse roots (> 2mm diameter) and fine roots (< 2mm diameter). A three-year-old branch was clipped off each tree to measure leaf area, individual leaf weight and specific leaf area according to the protocols in Cornelissen et al. (2003). Rhizosphere and bulk soil were harvested from

3	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
15	
75	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
59	
60	

each pot. Rhizosphere soil was collected by separating roots from the soil, gently

shaking them and then submerging fine roots in distilled water. Samples were freeze-

dried and weighed (ca. 0.005 mg). Samples were milled to a fine powder in a ball mill

254 (Retsch Mixer MM301, Leeds, UK) and analysed for NSC as described above.

255

1 2

256 Ambient trees

In early November 2008, the five non-clipped, "ambient", saplings of each species were harvested from the greenhouse for analysis of the δ^{13} C at natural abundance in the bulk biomass of the same fractions considered for ¹³C-labelled trees. Throughout 2008, growth conditions for these trees were similar to those in 2007 (see above). At the time of harvest, trees were shedding their leaves and radial growth had been completed.

262

263 *C* isotope analysis

The ¹³C signature of samples was measured by continuous flow isotope ratio mass spectrometer (Thermo Finnigan Delta Plus^{advantage}) interfaced to an elemental analyser (Thermo FlashEA1112, Thermo Finnigan, Bremen, Germany). Data were expressed as $\delta^{13}C_{V-PDB}$:

268 $\delta^{13}C$ (‰) = (R_S / R_{VPDB}-1) x 1000

269 where R_S and R_{VPDB} are the molecular abundance ratios of carbon isotopes (¹³C/¹²C), of

the sample and international standard (Vienna Pee Dee Belemnite), respectively. Long-

term precision for quality control standards (milled flour) was δ^{13} CV-PDB: -26.0 ±

272 0.24‰ (mean ± SD, n=187). δ^{13} C was measured in bulk plant biomass, bulk soil and

rhizosphere soil. Measurements of δ^{13} C in SS and starch followed compound-specific

analyses as detailed below.

2		
3 4	275	δ^{13} C in NSC were measured following the procedure in Tcherkez et al. (2003).
5 6	276	In brief, leaf powder was suspended with 1 mL of distilled water in an Eppendorf tube
7 8	277	(Eppendorf Scientific, Hamburg, Germany). After centrifugation, starch was extracted
9 10 11	278	from the pellet by HCl solubilization. Soluble proteins of the supernatant were heat
11 12 13	279	denatured and precipitated and SS and organic acids of the protein-free extract were
14 15	280	separated by HPLC. After lyophilization, 200 mg of purified starch were weighted into
16 17	281	tin capsules (Courtage Analyze Service, Mont Saint-Aignan, France) for isotope
18 19	282	analysis. Determinations of δ^{13} C in NSC were conducted at the <i>Centres Cientifics i</i>
20 21 22	283	<i>Tecnològics</i> (CCiT) of the University of Barcelona using an elemental analyser
22 23 24	284	(EA1108 Series 1 Carbo Erba Instrumentazione Milan Italy) coupled to an isotope
25 26	201	ratio mass spectrometer (Delta C Finnigan Mat. Bremen Germany) operating in
27 28	285	ratio mass spectrometer (Denta C, Finingan, Mat., Bremen, Germany) operating in
29 30	286	continuous flow mode. Data were expressed as indicated above.
31 32	287	
33 34	288	Calculations
35 36	289	The proportion of newly assimilated C in the bulk biomass, SS and starch of the
37 38	290	different fractions of trees grown in ¹³ C-depleted conditions (F _{Cnew}) was calculated
39 40 41	291	using the following equation (Nogués et al. 2004):
41 42 43 44 45	292	$F_{Cnew} = \frac{\delta^{13}C_{Sample} - \delta^{13}C_{Ambient}}{\delta^{13}C_{Grass} - \delta^{13}C_{Ambient}}$
46 47	293	Where $\delta^{13}C_{\text{Sample}}$ was the isotopic composition in the sample; $\delta^{13}C_{\text{Ambient}}$ was the natural
48 49 50	294	baseline δ^{13} C value for the bulk biomass, SS or starch of a given fraction of each species
50 51 52	295	calculated from fractions collected from ambient trees in November 2008 (in the case of
53 54	296	the bulk biomass) or, in the case of SS and starch, by applying an enrichment of 1.71
55 56	297	and 2.02, respectively, owing to values reported in the literature (Badeck et al. 2005);
57 58 50	298	and $\delta^{13}C_{Grass}$ was the average of the $\delta^{13}C$ values obtained for <i>Lolium perenne</i> plants that
60	299	were grown from seed within the polytunnel and hence represented C arising from

current assimilation. We assumed that the discrimination against ¹³C during

301 photosynthesis would be the same in both the grasses and the trees, because the grasses

302 were grown under the same conditions as the trees and had no water stress.

Statistical analyses

We used univariate general linear models (glm) to analyse for differences in biomass and NSC-allocation between species, fractions and treatments. Short-term effects of simulated browsing on biomass and NSC-allocation of trees harvested in April 2008 (before the ¹³C-labelling experiment) and the effects of simulated browsing on tree growth, architecture, leaf morphology, biomass, NSC and % new C-allocation (in bulk biomass, SS and starch) and NSC concentrations in the year after clipping (trees harvested in August 2008) were evaluated by glms with species, fractions and treatments as fixed effects. Treatment effects were further tested within fractions and species using one-way ANOVAs. The initial length (i.e. distance from the base to the tip of the tree) of trees at the beginning of the experiment was included as a covariate in all analyses. Starch and NSC concentrations were angularly transformed to meet normality and homogeneity in variance assumptions. Analyses were done with SPSS Statistics 17.0.

Results

320 Short-term effects of clipping on biomass and NSC allocation

At the beginning of the labelling experiment (i.e. seven months after the application of treatments), trees subjected to two successive clipping events were significantly smaller than control trees and showed a significant reduction in the biomass of the youngest shoot cohort, i.e. that formed in 2007 and directly affected by clipping, but larger main

2	
3	
4	
5	
6	
7	
, Ω	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
17	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
29	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
79 50	
JU 71	
51	
52	
53	
54	
55	
56	
57	
58	
50	
17	

60

stem biomass (particularly in birch, Table 1, Table S1 available as Supplementary Data 325 326 at Tree Physiology Online). Trees were still dormant and leafless at this time, and no other significant differences were observed in the allocation to different tree fractions in 327 either of the two species. Differences in allocation to different plant components were 328 quantified between birch and oak trees: birch allocated significantly more biomass to 329 above-ground fractions like young and main stems, while oak had significantly more 330 331 biomass in coarse roots (Table 1, Table S1). However, no significant treatment x species interaction was found, indicating that clipping did not lead to a different 332 response in biomass allocation between species in the short-term. 333 334 Clipped trees of both species harvested in April 2008, seven months after the application of treatments, showed significantly higher starch concentrations in young 335 stems (Tables S1 and S2, available as Supplementary Data at Tree Physiology Online). 336 337 However, NSC pools were decreased in the youngest shoot cohort, showing the significant effect of clipping on the biomass reduction of this cohort for both species 338 339 (Tables S1 and S3, available as Supplementary Data at Tree Physiology Online). Starch 340 and SS pools in main stems were significantly larger in clipped trees of both species (Tables S1 and S3, available as Supplementary Data at Tree Physiology Online). This 341 342 was not due to increased NSC concentrations (Tables S1 and S2, available as Supplementary Data at Tree Physiology Online), but to higher allocation of biomass to 343 main stems in clipped trees (Tables 1 and S1 available as Supplementary Data at Tree 344 345 Physiology Online). Overall, birch trees had higher SS concentrations, while oaks showed up to three times higher starch concentrations, particularly in coarse roots 346 (Tables S1 and S2 available as Supplementary Data at Tree Physiology Online). 347 348

*Changes in growth, architecture, leaf morphology, biomass and NSC allocation one*350 *year after clipping*

Measurements taken at the end of the first year after the application of clipping treatments (trees harvested in August 2008), indicated a lower compensating ability in birch than in oak (Table 2). Although the effect of clipping on tree height was not significant in the general model (F = 2.5, P = 0.134), significant treatment effects arose in birch when both species were analysed separately, with clipped trees being significantly shorter than controls (Table 2). Clipped B. pubescens trees also had fewer branches, terminal shoots and short shoots than controls, indicating that significant effects on the architecture of clipped trees remained measureable even one year after clipping. On the contrary, regrowth of *Q. petraea* saplings completely compensated for height and branching differences, with clipped trees showing only a marginally significant smaller number of terminal shoots than control trees after one year (Table 2). As regards the morphology of leaves, we observed no significant differences in individual leaf area and weight or the SLA of clipped and control trees of both species (Table 2).

There were no significant differences in biomass allocation to leaves and coarse roots of both species in trees harvested one year after clipping, but clipped trees of both birch and oak allocated significantly more biomass to current-year stems than control trees (Fig. 2). In oak, clipped trees showed more biomass allocation to the main stems and a sharp reduction in biomass allocation to fine roots, which were reduced by 45% in relation to control trees (Fig. 2). Such reduction in fine root biomass led to a significant decrease in the root:shoot ratio of clipped oaks, not observed in birch (Table 2). At the end of the first growing season after clipping, the significant reduction of shoots formed in 2007 observed at the beginning of the C-labelling experiment in both species (Table

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
7J 16	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

1) was only noticeable in birch, and differences between treatments in oak were no longer significant (Fig. 2). There were no significant differences in total plant biomass between treatments, either in the general model (F = 3.1, P = 0.098) or when species were analysed separately (F = 2.3, P = 0.169 and F = 1.3, P = 0.280 in birch and oak, respectively).

Differences between control and clipped trees in NSC pools of different plant fractions mimicked results for biomass allocation. Higher SS (and also starch in the case of oak) pools were found in current-year stems of clipped trees of both species (Fig. 3). Contrastingly, NSC pools were lower in one-year old stems of clipped birch trees (Fig. 3). Clipped oak trees showed also a trend for higher net allocation of SS to main stems,

while both starch and SS pools were significantly reduced in their fine roots (Fig. 3).

The differences observed in NSC pool allocation were not driven by changes in NSC concentrations, which remained similar for both SS and starch across treatments

and fractions, except for SS concentrations in the leaves of clipped birch trees, which

were lower than those of control trees (Table 3). In any case, the lower SS

389 concentrations of the leaves of clipped birch trees did not result in significantly different

390 SS pools between control and clipped birch trees (Fig. 3, Table 3).

391

60

392 Changes in the net allocation of newly fixed C to different plant fractions and the soil
393 during the recovery of clipped birch and oak trees

The two species showed very different responses in their δ^{13} C isotopic composition after labelling and clipping (Table S4 available as Supplementary Data at Tree

396 Physiology Online). In general, birch allocated significantly more new C to biomass

than oak, pointing to a lower reliance on C-stores and a higher C-fixing ability of birch

than oak (Fig. 4, Table 4). Across species and treatments, the fractions receiving

proportionally more newly fixed C were rapidly growing ones, including, in descending
order, leaves, current-year stems, young (one and two-year-old) stems and fine roots
(Fig. 4). Despite being winter deciduous, the leaves of both species were mainly built on
newly fixed C, which accounted for 80% of the bulk leaf biomass in birch and over 65%
in oak (Fig. 4).

Clipped trees allocated significantly more newly-fixed C to the different fractions than controls (Table 4, Fig. 4), but results were very different depending on the species (Fig. 4, Table S5 available as Supplementary Data at Tree Physiology Online). This explains why all interaction terms in the general model were significant (Table 4). In general, clipped trees tended to allocate more new C into fast growing fractions like young stems and fine roots than control trees (Fig. 4, Table S5 available as Supplementary Data at Tree Physiology Online), but when both species were analysed separately, effects were only significant in oak (Fig. 4). In the year after clipping, clipped *O. petraea* trees allocated significantly more new C than controls to all fractions but the main stems (Fig. 4). Contrastingly, birch trees showed no differences in the allocation of new C to different fractions between control and clipped trees, except for the main stems, where control trees received a larger proportion of new C (Fig. 4). The rhizosphere soil collected underneath both study species showed more ¹³C-depleted values as compared to the bulk soil (F = 118.6, P < 0.001; Fig. 5), indicating that plant roots significantly altered the δ^{13} C signature of the soil in direct contact with

them. δ^{13} C values of the rhizosphere soil collected underneath birch trees were more

420 depleted than those of oak, potentially indicating a larger amount of labelled-C

422 significant clipping effects were observed in the δ^{13} C signature of bulk and rhizosphere

transferred to the rhizosphere in this species (F = 6.5, P = 0.016; Fig. 5). However, no

soil in both species (Fig. 5). This indicates the loss of newly-fixed C from roots wassimilar in clipped and control treatments of both species.

426 Differences in the allocation of new C to NSC between clipped and control trees

Birch allocated more new C to SS than oak in all fractions and also significantly more new C to starch, particularly in fast turnover fractions like leaves, young stems and fine-roots, while both species showed similar new C-allocation to starch in coarse roots and main stems (Table 4, Fig. 6, Table S6 available as Supplementary Data at Tree Physiology Online). In general, clipping had no significant effect on the allocation of newly fixed C to storage (both SS and starch) during the next season after clipping (Table 4). However, in the case of the allocation to starch the response varied depending on the species and the fraction and, consequently, the interaction terms between species and treatment and the full interaction term were significant (Table 4). Simplified models run separately per species and fraction indicated that, in birch, clipped trees allocated significantly less C to starch in leaves and main stems (the latter marginally significant only) and marginally higher C to SS in current-year stems than control ones (Fig. 6). Contrastingly, clipped oaks showed a trend for higher allocation of newly fixed C to starch in current-year and main stems (Fig. 6), but results were only marginally significant.

Discussion

In accordance with our first hypothesis, our results indicate that clipped birch and oak
trees shifted their C-allocation patterns above-ground as a means to recover from
defoliation. However, contrary to our expectations, such increased allocation to currentyear stems and leaves did not entail reductions in the allocation to the rhizosphere. As

2 2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
<u>,</u> ,	
22	
2.J 7∧	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
25 26	
30 27	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
יי 48	
-10 ⊿0	
77 50	
50 71	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

initially expected, B. pubescens and Q. petraea showed differences in their vulnerability 448 449 and recovery strategies to clipping, the ring-porous species being less vulnerable than the diffuse porous. These contrasting patterns could be explained by differences in their 450 C cycling after clipping. Defoliated oaks showed a more efficient recovery of their 451 canopy, which was supported by a larger allocation of new C into biomass, particularly 452 aboveground. However, this was associated with large decreases in the fine root 453 454 biomass of clipped oak trees. Although in both species clipped trees recovered NSC pools faster than growth, the allocation of ¹³C-labelled photo-assimilates into starch and 455 SS was not increased as compared to controls. This indicates that, contrary to our 456 457 second hypothesis, no preferential allocation into NSC occurred during the first year after clipping. 458

459

460 *Trees recovered from defoliation by increasing C allocation aboveground but*

461 *maintaining allocation to the rhizosphere*

Clipping led to a rapid reduction in tree growth (Palacio et al. 2011) and also in biomass 462 and NSC pools in current-year stems (the fraction directly affected by clipping 463 464 treatments). Over the course of the first year after clipping, trees managed to recover 465 initial differences in main stem diameter, total plant biomass and, in the case of oaks, also tree height (Table 2). This was mainly a result of shifting allocation above-ground, 466 with increased allocation to current-year stems (almost double to that of control trees in 467 468 oak) and producing similar leaf biomass to controls (Fig. 2). In oak, these results were consistent for both biomass allocation as a whole and when the proportion of new C 469 470 allocated to bulk biomass was considered (Fig. 4). The ability of trees to recover from defoliation by increased above-ground allocation is a well-known phenomenon (Eyles 471 et al. 2009; Quentin et al. 2011). Such increased allocation may be achieved by a 472

473 combination of shifts in architecture, leaf morphology and C-allocation patterns (Eyles474 et al. 2009).

The removal of apical buds by browsing, clipping or defoliating insects frequently leads to a decrease in apical dominance (due to changes in auxin fluxes, Teichmann and Muhr 2015) with subsequent increases in lateral branch growth (Haukioja et al. 1990; Wilson 1993). Clipped trees in our study showed a lower number of terminal shoots, but increased branching was not detected in either of the two study species. Clipped oaks showed similar lateral branch numbers to control trees, while clipped birch trees had less lateral branches than controls. However, birch trees showed a dramatic decrease in the number of short shoots produced after clipping (Table 2, Palacio et al. 2011), which may be a direct consequence of the decreased apical dominance after clipping (Haukioja et al. 1990). In addition, increases in the proportion of leaves per bud (Millard et al. 2001) or in the foliage to wood ratio (Mizumachi et al. 2004) have been reported as mechanisms to increase above-ground allocation in clipped trees. This was not the case in the trees included in this experiment, which showed similar leaf biomass to control trees but increased current-year stem biomass. It seems, therefore, that clipped trees in our experiment maximized the recovery of the canopy, increasing investment into new stems while keeping a similar allocation to foliage. In clipped birch trees, the decrease in short shoot number (likely in favour of long shoot development), may be a mechanism to recover canopy spread and renewal of bud numbers since, in this species, renewal buds are mostly borne in the long shoots (MacDonald et al. 1984).

495 Several previous studies have detected shifts in leaf morphology after defoliation
496 to compensate losses in the C-assimilating capacity of the canopy, frequently leading to
497 increased individual leaf area and weight and increased SLA (Fuenzalida et al 2019;

Millard et al. 2001; Piper and Fajardo 2015; Quentin et al. 2011; Trumble et al. 1993). We did not detect any significant differences in leaf morphology between clipped and control trees of either study species. Discrepancies with previous studies may be related to differences in the type of disturbance applied and in the duration of experiments. For example, Fuenzalida et al. (2019), Piper and Fajardo (2015) and Trumble et al. (1993) evaluated responses after defoliating insects or treatments simulating defoliation by arthropods, which may elicit a very different response by trees than clipping (Haukioja et al. 1990). Further, Millard et al. (2001) and Quentin et al. (2011) applied clipping in spring and measured the effects on leaf morphology at the end of the same growing season, while in our study effects on leaf morphology were recorded at the end of the next growing season after clipping, i.e. a much longer duration. Similarly, Eyles et al. (2009) carried out a shorter duration experiment and did not detect any significant effects on individual leaf area of *Eucalyptus globulus* five months after 40% defoliation. Our results show that the increased above-ground allocation of clipped trees was largely supported by currently-fixed (new) C, particularly in oak (Fig. 4). Increases in photosynthetic rate have been repeatedly reported in defoliated trees (e.g. Pinkard et al. 1998; Vanderklein and Reich 1999). Although we did not measure photosynthetic rates in our study, clipped oak trees showed higher new-C-allocation to bulk biomass, compatible with increased C-fixing ability and with decreased respiratory losses (see below). Both in control and clipped trees of both species, new C was preferentially allocated to actively growing fractions, like leaves, young stems and fine roots. Although clipping induced increased C-allocation above-ground, our results showed no significant effects of clipping on net deposition to soil in either of the two species analyzed. Frost and Hunter (2008) obtained similar results in red oak (Frost and Hunter 2008) and suggested that rhizodeposition might be a tightly controlled process

2	
3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ 21	
∠ I วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
50	

60

buffered against damage-induced shifts in C-allocation. Both species had a significant 523 effect on the δ^{13} C isotopic composition of the soil, indicated by the depletion in 13 C 524 detected in rhizosphere vs. bulk soils. Such an effect was larger in birch than oak, likely 525 in relation to the larger C-fixing ability of the former. Consequently, trees were able to 526 impose changes in the C dynamics of soils, but such effects were not modified by 527 clipping. 528 529 B. pubescens trees were more severely affected than oaks by clipping. 530 In agreement with the predictions by Foster (2017), the ring-porous species, Q. petraea, 531 532 was more efficient in recovering the biomass lost by clipping than the diffuse-porous, B. pubescens. Clipped birch trees showed lower height and altered architecture (reduced 533 number of branches, terminal and lateral shoots) as compared to controls. Also, while 534 535 biomass losses in stems formed in 2007 (the cohort directly affected by clipping treatments) were no longer significant at the end of the 2008 growing season in oaks, 536 they were still noticeable in birch. Foster (2017) hypothesized that ring-porous species 537 would be more resistant to spring defoliation than diffuse-porous ones owing to their 538 earlier wood phenology and increased C-stores (Barbaroux and Bréda 2002; Barbaroux 539 540 et al. 2003; Dougherty et al. 1979). We did not measure wood phenology in this study, but it seems likely that this might have had an effect on the differential responses of 541 both species. In our experiment, clipping consisted of shoot removal in early July and 542 early September 2007, after the first and second flushes of shoot growth were finished. 543 If the differences in wood growth phenology between ring-porous and diffuse-porous 544 adult trees can be applied to saplings, oaks would be expected to have started wood 545 growth at least two weeks prior to the first defoliation event, while birch trees would be 546

547 just starting (Foster 2017). Foster (2017) further hypothesized that such differences in

damage due to wood growth phenology would entail a differential decrease in NSC stores, which would be more severely decreased in diffuse-porous trees and further exacerbated by their lower C-storage capacity. Our results do not confirm this prediction, since both species were equally able to recover NSC pools to the same level as controls on the same year of clipping (except for the shoot cohort directly affected by treatments). Similar fast recovery of NSC stores in defoliated trees has been previously reported (Palacio et al. 2008; Piper et al. 2015; Puri et al. 2015). Instead, our results show that the differential recovery ability of birch and oak trees after clipping could be, at least partly, explained by the different effects of clipping on their C-cycling, including differences in C-allocation. In accordance with previous studies, oaks showed a larger reliance on storage than birch trees to support new growth (Barbaroux et al. 2003; but see Palacio et al. 2011). This increased ability to re-mobilise C-stores could have been crucial to support the re-growth of clipped oaks, at least initially. Several previous studies have reported a positive relationship between NSC storage and the re-growth ability of defoliated trees (Fierravanti et al. 2019; Kays and Canham 1991; Luostarinen and Kauppi 2005). However, clipped oak trees invested significantly less "old" C (and proportionally more "new" C) in their new growth than control trees (Fig. 4). Consequently, while clipped oaks recovered to a larger extent than clipped birch trees in our experiment, this was not linked to increased total NSC remobilisation as measured at the end of the growing season. The increased allocation of new C in clipped oaks to support re-growth as compared to controls illustrates a shift in C cycling after damage resulting in significantly more new C being allocated to most fractions in clipped vs. control oaks, an effect not observed in birch. Such a change can be the result of increased C-fixation, but also of decreased losses by respiration or rhizosphere allocation. Differences in C

http://mc.manuscriptcentral.com/tp

allocation to the rhizosphere were not significant among treatments (see above). However, we cannot rule out the possibility that the increased allocation of new C assimilates in oak was (at least partly) due to reduced respiratory losses, particularly in relation to the drastic reduction in fine root biomass detected in clipped trees of this species. Accordingly, the increased investment into above-ground components in oak was associated with a reduced production of fine roots of 45% during the year after clipping. These changes were not observed in birch, which maintained similar biomass allocation below-ground between control and clipped trees. Increased fine root mortality is a frequently reported process in defoliated trees (Frost and Hunter 2008; Tuomi et al. 1990; Vanderklein and Reich 1999; but see Endrulat et al. 2016; Kosola et al. 2001). Tuomi et al. (1990) suggested that the reductions in fine root biomass after defoliation could vary largely depending on the relative root biomass, the degree of reserve depletion and the compensatory C gain of trees. All these three factors likely differed in the two study species, which could explain their contrasting response. Oaks have relatively high root:shoot ratios (Shaw 1974) as was the case also in this experiment (Table 1). This means an increased non-productive biomass to support during re-growth (Tuomi et al. 1990). The higher storage pool may not have been sufficient to recover above-ground losses and maintain a large root biomass in oak (Tuomi et al. 1990).

Clipping did not result in preferential C-allocation to storage in the long-term

593 Our study did not detect temporal differences in NSC concentrations in the different 594 organs of clipped and control trees throughout the first year of recovery, but NSC 595 concentrations of clipped trees of both species reached similar levels to those of control 596 trees by the end of the first growing season. This indicates that decreases in NSC stores 597 due to canopy re-growth, if any, were short-lived and fully compensated within less

than one year. Similar results have been previously reported in the literature (e.g. Palacio et al. 2012; Puri et al. 2015; Wiley et al. 2013). In our experiment, the replenishment of stores was likely supported by an increased C-fixing ability in clipped trees, particularly in oak, as denoted by their higher new-C-allocation to bulk biomass. Despite NSC concentrations of clipped trees were rapidly restored to even higher levels than control trees (Tables S2, S3), we did not detect a significant increase in new C-allocation to storage in clipped trees in the first year after clipping. The only significant effect of clipping on new C-allocation was a reduction in allocation to SS in leaves of clipped birches. Wiley et al. (2017b; 2013) suggested that the growth of defoliated trees would be largely limited by C-availability, first by the decrease in leaf area directly related to defoliation, and then by a prioritized allocation to storage over growth to secure tree survival under future potential defoliation events. They argued that the fact that NSC stores were replenished to control levels did not necessarily mean tree growth was not limited by C-availability, since prioritized allocation to storage over growth could still proceed (Wiley and Helliker 2012). Two recent experiments have experimentally demonstrated that NSC concentrations can be maintained to control levels over periods of C-limitation by preferential allocation of C into storage, calling for a cautious use of NSC concentrations to predict the C-status of trees (Weber et al. 2019; 2018). In both experiments, trees subjected to low or no illumination were progressively C-deprived, reaching minimum SS and starch thresholds below which tree survival was impaired. In both cases, re-illumination resulted in a period of reduced growth and refilling of NSC stores up to a certain threshold. These results indicate that prioritized allocation to storage over growth does occur in C-starved trees (with very low NSC levels), and that such prioritization is arrested once a certain level of recovery of NSC is achieved.

In contrast to the experiments in Weber et al. (2019; 2018), our trees were not C-starved. We did not find the very significant depletion of NSC reported by these previous studies (Weber et al. 2019; 2018). Consequently, our trees probably did not prioritize allocation to NSC over growth. Starch and SS concentrations of defoliated trees are normally not depleted below the C-starvation thresholds detected by Weber et al. (2019; 2018), even after severe treatments (e.g. Kays and Canham 1991; Palacio et al. 2012; Vanderklein and Reich 1999, but see Kosola et al. 2001; Puri et al. 2015). This seems to indicate C-limitation after defoliation in trees is normally short-lived and of low magnitude.

Conclusions

Our results show that clipping triggers a shift in biomass allocation aboveground favouring the recovery of the canopy both in oak and birch trees. However, such a shift does not entail a decrease in C-allocation to the rhizosphere, which seems to be a tightly regulated process. Future research on the mechanisms behind such tight regulation would greatly contribute to our understanding on the effects of defoliation on tree C-cycling and its impact on belowground processes. The observed differences in the recovery strategies of the two study species could have potential implications for their vulnerability under different browsing frequencies. The ring porous species, *O. petraea*, showed a faster recovery of its canopy after clipping than the diffuse porous, B. pubescens. However, this came at the cost of a marked decrease in the fine root biomass of oak, which raises questions on the potential consequences for the nutrition of the tree and its vulnerability to sustained browsing over longer time periods. Finally, despite the different effect of clipping on the C-allocation of study species, none of them increased
new C allocation to storage one year after damage. This indicates that clipping does not

3	
4	
5	
6	
7	
8	
g	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

647

648 entail a sustained preventative allocation of C into storage in the long term. 649 **Data and Materials Availability** 650 Authors agree to make experimental data and materials available to third party academic 651 652 researchers upon reasonable request. 653 **Supplementary Data** 654 The following supporting documents are provided as additional content: 655 656 - Table S1. Results of glms on the effect of clipping on the biomass (BM), and soluble sugars (SS) and starch pools and concentrations of the different fractions of B. 657 pubescens and Q. petraea trees harvested at the beginning of the δ^{13} C-labelling 658 659 experiment in April 2008. - Table S2. Soluble sugars (SS) and starch concentrations (mg g⁻¹) in the different plant 660 fractions of *B. pubescens* and *Q. petraea* trees harvested at the beginning of the δ^{13} C-661 labelling experiment in April 2008. 662 - Table S3. Soluble sugars (SS) and starch pools (as % of the total SS or starch pool in 663 664 the plant) in the different plant fractions in *B. pubescens* and *Q. petraea* trees harvested at the beginning of the δ^{13} C-labelling experiment in April 2008. 665 - Table S4. Isotopic composition (δ^{13} C; ‰) of the different fractions of *B. pubescens* 666 and *Q. petraea* saplings harvested in August 2008. 667 - Table S5. Results of glms on the effect of "Species" and "Treatment" on the allocation 668 of new C to bulk biomass of the different fractions of B. pubescens and Q. petraea trees 669 harvested in August 2008. 670

2			
3	671	- Table S6. Results of glms on the effect of "Species" and "Treatment" on the allocation	
4			
6	672	of new C to soluble sugars (SS) and starch in the different fractions of <i>B. pubescens</i> and	
7			
8	673	Q. petraea trees harvested in August 2008.	
9 10	674		
11	074		
12	675	Conflict of interest	
13 14			
14	676	None declared.	
16			
17	677		
18 19			
20	678	Funding	
21	670	Ministerio de Ciencia, Innevezión y Universidados, Spain (MEC SEUI postdectoral	
22	679	Ministerio de Ciencia, innovación y Universidades, Spain (MEC-SEUI postdoctoral	
23 24	680	fellowship a Ramón y Cajal fellowship (RYC-2013-14164) and project CGL 2015-	
25	000	renowship, a Ramon y edga renowship (RTE 2015 THOT) and project COL2015	
26	681	71360-P to SP). Scottish Government's Rural and Environmental Research and	
27			
28 29	682	Analysis Directorate to E.P., A.S., A.H. and P.M.	
30			
31	683		
32			
33	684	Acknowledgements	
35	~~~		
36	685	Thanks to Raul Castillo, Richard Gwatkin and Shona Osborne for their help in running	
37	686	the experiment to Elena I aboz and Elena Royo for carbohydrate analyses and to two	
38	080	the experiment, to Elena Lanoz and Elena Royo for carbonydrate analyses and to two	
40	687	anonymous Reviewers for useful comments on an earlier version of the manuscript	
41			
42	688		
43 44			
45	689	Authors' Contributions	
46			
47	690	SP, PM, AH and EP designed the study; SP, EP and PM implemented continuous δ^{13} C-	
48 40	604		
50	691	labelling. SP, EP, PM, MM, GL, SN and AAR run carbonydrate and stable isotope	
51	602	analysis SP PM and SN analysis data. All authors interpreted results SP wrote the	
52	092	analyses. S1, 1 W and SN analysed data. An authors interpreted results. S1 wrote the	
53	693	manuscript receiving revisions from all authors	
55	055	manasen per receiving revisions nom an addicis.	
56	694		
57			
58 59	695	References	
60			

2			
3 4	696	Ayres, E., J. Heath, M. Possell, H.I.J. Black, G. Kerstiens and R.D. Bardgett. 2004. Tree	
5 6	697	physiological responses to above-ground herbivory directly modify below-	
7 8 0	698	ground processes of soil carbon and nitrogen cycling. Ecology Letters. 7:469-	
9 10 11	699	479.	
12 13	700	Babst, B.A., R.A. Ferrieri, D.W. Gray, M. Lerdau, D.J. Schlyer, M. Schueller, M.R.	
14 15	701	Thorpe and C.M. Orians. 2005. Jasmonic acid induces rapid changes in carbon	
16 17 18	702	transport and partitioning in Populus. New Phytologist. 167:63-72.	
19 20	703	Badeck, F.W., G. Tcherkez, S. Nogués, C. Piel and J. Ghashghaie. 2005. Post-	
21 22	704	photosynthetic fractionation of stable carbon isotopes between plant organs - A	
23 24 25	705	widespread phenomenon. Rapid Communications in Mass Spectrometry.	
26 27	706	19:1381-1391.	
28 29	707	Baldwin, I.T. 1990. Herbivory simulations in ecological research. Trends in Ecology	
30 31 32	708	and Evolution. 5:91-93.	
32 33 34	709	Barbaroux, C. and N. Bréda. 2002. Contrasting distribution and seasonal dynamics of	
35 36	710	carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-	
37 38	711	porous beech trees. Tree Physiology. 22:1201-1210.	
39 40 41	712	Barbaroux, C., N. Bréda and E. Dufrêne. 2003. Distribution of above-ground and	
42 43	713	below-ground carbohydrate reserves in adult trees of two contrasting broad-	
44 45	714	leaved species (Quercus petraea and Fagus sylvatica). New Phytologist.	
46 47 48	715	157:605-615.	
49 50	716	Bardgett, R.D. and D.A. Wardle. 2003. Herbivore-mediated linkages between	
51 52	717	aboveground and belowground communities. Ecology. 84:2258-2268.	
53 54	718	Barry, K.M., A. Quentin, A. Eyles and E.A. Pinkard. 2011. Consequences of resource	
55 56 57	719	limitation for recovery from repeated defoliation in Eucalyptus globulus	
58 59 60	720	Labilladière. Tree physiology. 32:24-35.	

2					
3 4	721	. Barto, E.K. and M.C. Rillig. 2010. Does herbivory really suppress mycorrhiza? A			
5 6	analysis. Journal of Ecology. 98:745-753.				
7 8	723	Bergman, M. 2002. Can saliva from moose, Alces alces, affect growth responses in the			
9 10 11	724	sallow, Salix caprea? Oikos. 96:164-168.			
12 13	725	Bryant, J.P., P.B. Reichardt, T.P. Clausen and R.A. Werner. 1993. Effects of mineral			
14 15	726	nutrition on delayed inducible resistance in Alaska paper birch. Ecology.			
16 17 18	727	74:2072-2084.			
19 20	728	Buysse, J. and R. Merckx. 1993. An improved colorimetric method to quantify sugar			
21 22	729	content of plant tissue. Journal of Experimental Botany. 44:1627-1629.			
23 24 25	730	Canham, C.D., R.K. Kobe, E.F. Latty and R.L. Chazdon. 1999. Interspecific and			
26 27	731	intraspecific variation in tree seedling survival: Effects of allocation to roots			
28 29	732	versus carbohydrate reserves. Oecologia. 121:1-11.			
30 31	733	Canham, C.D., J.B. Mcaninch and D.M. Wood. 1994. Effects of the frequency, timing,			
32 33 34	734	and intensity of simulated browsing on growth and mortality of tree seedlings.			
35 36	735	Canadian Journal of Forest Research-Revue Canadienne De Recherche			
37 38	736	Forestiere. 24:817-825.			
39 40 41	737	Clark, K.L., N. Skowronski and J. Hom. 2010. Invasive insects impact forest carbon			
42 43	738	dynamics. Global Change Biology. 16:88-101.			
44 45	739	Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D.E. Gurvich, P.B.			
46 47	740	Reich, H. ter Steege, H.D. Morgan, M.G.A. van der Heijden, J.G. Pausas and H.			
40 49 50	741	Poorter. 2003. A handbook of protocols for standardised and easy measurement			
51 52	742	of plant functional traits worldwide. Australian Journal of Botany. 51:335-380.			
53 54	743	Chapin, F.S., E.D. Schulze and H.A. Mooney. 1990. The ecology and economics of			
55 56 57 58 59 60	744	storage in plants. Annual Review of Ecology and Systematics. 21:423-447.			

3 4	745	Domisch, T., L. Finér and T. Lehto. 2001. Effects of soil temperature on biomass and	
5 6	746	carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the	
7 8	747	beginning of the growing season. Tree Physiology. 21:465-472.	
9 10 11	748	Dougherty, P.M., R.O. Teskey, J.E. Phelps and T.M. Hinckley. 1979. Net	
12 13	749	photosynthesis and early growth trends of a dominant white oak (Quercus-alba	
14 15	750	L). Plant Physiology. 64:930-935.	
16 17 19	751	Endrulat, T., N. Buchmann and I.B. Brunner. 2016. Carbon allocation into different	
19 20	752	fine-root classes of young Abies alba trees is affected more by phenology than	
21 22	753	by simulated browsing. PLoS ONE. 11	
23 24 25	754	Ericsson, A., C. Hellqvist, B. Langstrom, S. Larsson and O. Tenow. 1985. Effects on	
25 26 27	755	growth of simulated and induced shoot pruning by Tomicus piniperda as related	
28 29	756	to carbohydrate and nitrogen dynamics in Scots pine. Journal of Applied	
30 31	757	Ecology. 22:105-124.	
32 33 34	758	Eyles, A., E.A. Pinkard and C. Mohammed. 2009. Shifts in biomass and resource	
35 36	759	allocation patterns following defoliation in Eucalyptus globulus growing with	
37 38	760	varying water and nutrient supplies. Tree physiology. 29:753-764.	
39 40 41	761	Fierravanti, A., S. Rossi, D. Kneeshaw, L. De Grandpré and A. Deslauriers. 2019. Low	
42 43	762	Non-structural Carbon Accumulation in Spring Reduces Growth and Increases	
44 45	763	Mortality in Conifers Defoliated by Spruce Budworm. Frontiers in Forests and	
46 47 48	764	Global Change. 2	
40 49 50	765	Foster, J.R. 2017. Xylem traits, leaf longevity and growth phenology predict growth and	
51 52	766	mortality response to defoliation in northern temperate forests. Tree physiology.	
53 54	767	37:1151-1165.	
55 56 57	768	Frost, C.J. and M.D. Hunter. 2008. Herbivore-induced shifts in carbon and nitrogen	
58 59 60	769	allocation in red oak seedlings. New Phytologist. 178:835-845.	

2					
3 4	770	Fuenzalida, T.I., A. Hernández-Moreno and F.I. Piper. 2019. Secondary leaves of an			
5 6	771	outbreak-adapted tree species are both more resource acquisitive and more			
7 8	772	herbivore resistant than primary leaves. Tree physiology. 39:1499-1511.			
9 10 11	773	Giardina, C.P., M.D. Coleman, J.E. Hancock, J.S. King, E.A. Lilleskov, W.M. Loya,			
12 13	774	K.S. Pregitzer, M.G. Ryan and C.C. Trettin. 2005. The Response of			
14 15	775	Belowground Carbon Allocation in Forests to Global Change. Springer			
16 17	776	Netherlands, Dordrecht, pp 119-154.			
18 19 20	777	Gill, R.M.A. 2006. The influence of large herbivores on tree recruitment and forest			
21 22	778	dynamics. In Large herbivore ecology and ecosystem dynamics Eds. K. Danell,			
23 24	779	R. Bergström, P. Duncan and J. Pastor. Cambridge University Press, Cambridge,			
25 26 27	780	pp 170-202.			
28 29	781	Hartmann, H., H.D. Adams, W.M. Hammond, G. Hoch, S.M. Landhäusser, E. Wiley			
30 31	782	and S. Zaehle. 2018. Identifying differences in carbohydrate dynamics of			
32 33 34	783	seedlings and mature trees to improve carbon allocation in models for trees and			
35 36	784	forests. Environmental and experimental botany. 152:7-18.			
37 38	785	Haukioja, E., K. Ruohomaki, J. Senn, J. Suomela and M. Walls. 1990. Consequences of			
39 40 41	786	herbivory in the mountain birch (Betula pubescens ssp tortuosa) - Importance of			
41 42 43	787	the functional organization of the tree. Oecologia. 82:238-247.			
44 45	788	Hester, A.J., L. Edenius, R.M. Buttenschon and A.T. Kuiters. 2000. Interactions			
46 47	789	between forests and herbivores: the role of controlled grazing experiments.			
40 49 50	790	Forestry. 73:381-391.			
51 52	791	Hester, A.J., P. Millard, G.J. Baillie and R. Wendler. 2004. How does timing of			
53 54	792	browsing affect above- and below-ground growth of Betula pendula, Pinus			
55 56 57 58 59	793	sylvestris and Sorbus aucuparia? Oikos. 105:536-550.			
60					

- 3 4	794	Hester, A.J., F.J.G. Mitchell and K.J. Kirby. 1996. Effects of season and intensity of	
5 6	795	sheep grazing on tree regeneration in a British upland woodland. Forest Ecology	
7 8	796	and Management. 88:99-106.	
9 10 11	797	Kays, J.S. and C.D. Canham. 1991. Effects of time and frequency of cutting on	
12 13	798	hardwood root reserves and sprout growth. Forest Science. 37:524-539.	
14 15	799	Körner, C. 2003. Carbon limitation in trees. Journal of Ecology. 91:4-17.	
16 17 18	800	Kosola, K.R., D.I. Dickmann, E.A. Paul and D. Parry. 2001. Repeated insect defoliation	
19 20	801	effects on growth, nitrogen acquisition, carbohydrates, and root demography of	
21 22	802	poplars. Oecologia. 129:65-74.	
23 24 25	803	Lechowicz, M.J. 1984. Why do temperate deciduous trees leaf out at different times?	
25 26 27	804	Adaptation and ecology of forest communities. American Naturalist. 124:821-	
28 29	805	842.	
30 31	806	Luostarinen, K. and A. Kauppi. 2005. Effects of coppicing on the root and stump	
32 33	807	carbohydrate dynamics in birches. New Forests. 29:289-303.	
34 35 36	808	MacDonald, A.D., D.H. Mothersill and J.C. Caesar. 1984. Shoot development in Betula	
37 38	809	papyrifera. III. Long-shoot organogenesis. Canadian Journal of Botany. 62:437-	
39 40	810	445.	
41 42 43	811	Messier, C. and E. Nikinmaa. 2000. Effects of light availability and sapling size on the	
44 45	812	growth, biomass allocation, and crown morphology of understory sugar maple,	
46 47	813	yellow birch, and beech. Ecoscience. 7:345-356.	
48 49 50	814	Millard, P., A. Hester, R. Wendler and G. Baillie. 2001. Interspecific defoliation	
51 52	815	responses of trees depends on sites of winter nitrogen storage. Functional	
53 54 55 56	816	Ecology. 15:535-543.	
57 58 50			
60			

1 ว					
2 3 4	817	Mizumachi, E., N. Osawa, R. Akiyama and N. Tokuchi. 2004. The effects of herbivory			
5 6	818	and soil fertility on the growth patterns of Quercus serrata and Q. crispula			
7 8	saplings at the shoot and individual levels. Population Ecology. 46:203-211.				
9 10 11	820	Nogués, S., G. Tcherkez, G. Cornic and J. Ghashghaie. 2004. Respiratory carbon			
12 13	821	metabolism following illumination in intact French bean leaves using ${}^{13}C/{}^{12}C$			
14 15	822	isotope labeling. Plant Physiology. 136:3245-3254.			
16 17 19	823	Orians, C.M., A. Thorn and S. Gomez. 2011. Herbivore-induced resource sequestration			
19 20	824	in plants: why bother? Oecologia. 167:1-9.			
21 22	825	Palacio, S., J.J. Camarero, M. Maestro, A.Q. Alla, E. Lahoz and G. Montserrat-Martí.			
23 24	826	2018. Are storage and tree growth related? Seasonal nutrient and carbohydrate			
25 26 27	827	dynamics in evergreen and deciduous Mediterranean oaks. Trees - Structure and			
28 29	828	Function. 32:777-790.			
30 31	829	Palacio, S., R. Hernández, M. Maestro-Martínez and J.J. Camarero. 2012. Fast			
32 33 24	830	replenishment of initial carbon stores after defoliation by the pine processionary			
34 35 36	831	moth and its relationship to the re-growth ability of trees. Trees - Structure and			
37 38	832	Function:1-14.			
39 40	833	Palacio, S., A.J. Hester, M. Maestro and P. Millard. 2008. Browsed Betula pubescens			
41 42 43	834	trees are not carbon-limited. Functional Ecology. 22:808-815.			
44 45	835	Palacio, S., M. Maestro and G. Montserrat-Martí. 2007. Seasonal dynamics of non-			
46 47	836	structural carbohydrates in two species of Mediterranean sub-shrubs with			
48 49	837	different leaf phenology. Environmental and Experimental Botany. 59:34-42.			
50 51 52	838	Palacio, S., E. Paterson, A. Sim, A.J. Hester and P. Millard. 2011. Browsing affects			
53 54	839	intra-ring carbon allocation in species with contrasting wood anatomy. Tree			
55 56	840	Physiology. 31:150-159.			
57 58					
59 60					

1 2

60

3 4	841	Paterson, E., A.J. Midwood and P. Millard. 2009. Through the eye of the needle: A	
5 6	842	review of isotope approaches to quantify microbial processes mediating soil	
7 8	843	carbon balance. New Phytologist. 184:19-33.	
9 10 11	844	Paterson, E., B. Thornton, A.J. Midwood and A. Sim. 2005. Defoliation alters the	
11 12 13	845	relative contributions of recent and non-recent assimilate to root exudation from	
14 15	846	Festuca rubra. Plant, Cell and Environment. 28:1525-1533.	
16 17	847	Pinkard, E.A. and C.L. Beadle. 1998. Regulation of photosynthesis in Eucalyptus nitens	
18 19 20	848	(Deane and Maiden) Maiden following green pruning. Trees-Structure and	
21 22	849	Function. 12:366-376.	
23 24 25	850	Pinkard, E.A., C.L. Beadle, N.J. Davidson and M. Battaglia. 1998. Photosynthetic	
25 26 27	851	responses of Eucalyptus nitens (Deane and Maiden) Maiden to green pruning.	
28 29	852	Trees-Structure and Function. 12:119-129.	
30 31 22	853	Piper, F.I., M.J. Gundale and A. Fajardo. 2015. Extreme defoliation reduces tree growth	
32 33 34	854	but not C and N storage in a winter-deciduous species. Annals of botany.	
35 36	855	115:1093-1103.	
37 38	856	Puri, E., G. Hoch and C. Körner. 2015. Defoliation reduces growth but not carbon	
39 40 41	857	reserves in Mediterranean Pinus pinaster trees. Trees - Structure and Function.	
41 42 43	858	29:1187-1196.	
44 45	859	Quentin, A.G., C.L. Beadle, A.P. O'Grady and E.A. Pinkard. 2011. Effects of partial	
46 47	860	defoliation on closed canopy Eucalyptus globulus Labilladière: Growth, biomass	
48 49 50	861	allocation and carbohydrates. Forest ecology and management. 261:695-702.	
50 51 52	862	Schmid, S., S. Palacio and G. Hoch. 2017. Growth reduction after defoliation is	
53 54	863	independent of CO ₂ supply in deciduous and evergreen young oaks. New	
55 56	864	Phytologist. 214:1479-1490.	
57 58 59			

2		
3 4	865	Shaw, M.W. 1974. The reproductive characteristics of oaks. In British oak: its history
5 6	866	and natural history. Botanical Society of the British Isles, Brighton, pp 162-181.
7 8	867	Shipley, L.A., A.W. Illius, K. Danell, N.T. Hobbs and D.E. Spalinger. 1999. Predicting
9 10 11	868	bite size selection of mammalian herbivores: a test of a general model of diet
12 13	869	optimization. Oikos. 84:55-68.
14 15	870	Speed, J.D.M., G. Austrheim, A.J. Hester and A. Mysterud. 2011. Growth limitation of
16 17 18	871	mountain birch caused by sheep browsing at the altitudinal treeline. Forest
19 20	872	Ecology and Management. 261:1344-1352.
21 22	873	Tcherkez, G., S. Nogués, J. Bleton, G. Cornic, F. Badeck and J. Ghashghaie. 2003.
23 24 25	874	Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in
25 26 27	875	French bean. Plant Physiology. 131:237-244.
28 29	876	Teichmann, T. and M. Muhr. 2015. Shaping plant architecture. Frontiers in Plant
30 31	877	Science. 6
32 33 34	878	Trumble, J.T., D.M. Kolodny-Hirsch and I.P. Ting. 1993. Plant compensation for
35 36	879	arthropod herbivory. Annual Review of Entomology. 38:93-119.
37 38	880	Tschaplinski, T.J. and T.J. Blake. 1994. Carbohydrate mobilization following shoot
39 40 41	881	defoliation and decapitation in hybrid poplar. Tree Physiology. 14:141-151.
42 43	882	Tuomi, J., P. Niemelä and S. Sirén. 1990. The Panglossian paradigm and delayed
44 45	883	inducible accumulation of foliar phenolics in mountain birch. Oikos. 59:399-
46 47 48	884	410.
48 49 50	885	Van der Heyden, F. and W.D. Stock. 1995. Non-structural carbohydrate allocation
51 52	886	following different frequencies of simulated browsing in three semiarid shrubs.
53 54	887	Oecologia. 102:238-245.
55 56		
57		
58 50		
27		

3 4	888	Vanderklein, D.W. and P.B. Reich. 1999. The effect of defoliation intensity and history
5 6	889	on photosynthesis, growth and carbon reserves of two conifers with contrasting
7 8 0	890	leaf lifespans and growth habits. New Phytologist. 144:121-132.
9 10 11	891	Weber, R., A. Gessler and G. Hoch. 2019. High carbon storage in carbon-limited trees.
12 13	892	New Phytologist. 222:171-182.
14 15	893	Weber, R., A. Schwendener, S. Schmid, S. Lambert, E. Wiley, S.M. Landhäusser, H.
16 17 18	894	Hartmann and G. Hoch. 2018. Living on next to nothing: tree seedlings can
19 20	895	survive weeks with very low carbohydrate concentrations. New Phytologist.
21 22	896	218:107-118.
23 24	897	Wiley, E., B.B. Casper and B.R. Helliker. 2017a. Recovery following defoliation
25 26 27	898	involves shifts in allocation that favour storage and reproduction over radial
28 29	899	growth in black oak. Journal of Ecology. 105:412-424.
30 31	900	Wiley, E. and B. Helliker. 2012. A re-evaluation of carbon storage in trees lends greater
32 33 34	901	support for carbon limitation to growth. New Phytologist. 195:285-289.
35 36	902	Wiley, E., G. Hoch and S.M. Landhäusser. 2017b. Dying piece by piece: Carbohydrate
37 38	903	dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.
39 40	904	Journal of Experimental Botany. 68:5221-5232.
41 42 43	905	Wiley, E., S. Huepenbecker, B.B. Casper and B.R. Helliker. 2013. The effects of
44 45	906	defoliation on carbon allocation: Can carbon limitation reduce growth in favour
46 47	907	of storage? Tree physiology. 33:1216-1228.
48 49 50	908	Wilson, B.F. 1993. Compensatory shoot growth in young black birch and red maple
50 51 52	909	trees. Canadian journal of Forest Research. 23:302-306.
53 54	910	
55 56 57		

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
11	
11	
12	
13	
14	
15	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

912	Figure legends
913	Fig. 1. Experimental design with the indication of the main treatments (clipping – red
914	arrows-, 13C-labelling), growth measurements (blue arrows) and harvests (black
915	arrows) applied to <i>B. pubescens</i> and <i>Q. petraea</i> saplings.
916	Fig. 2. Biomass allocation to different tree fractions in clipped and control trees of <i>B</i> .
917	pubescens and Q. petraea harvested in August 2008 (ca. one year after clipping).
918	Average values are shown for each fraction. $L = Leaves$, $0-St = current$ year stems, $1-St$
919	= one-year-old stems, 2-St = two-year-old stems, MS = main stems, CR = coarse roots,
920	FR = fine roots. Significant differences between treatments within species are indicated
921	by asterisks: $* = P < 0.10$, $** = P < 0.05$.
922	Fig. 3. Differences between clipped (grey bars) and control (black bars) <i>B. pubescens</i>
923	and Q. petraea saplings in the allocation of SS and starch pools to different plant
924	fractions one year after clipping (trees harvested in August 2008). Asterisks denote
925	significant differences between treatments within a given species at $\alpha = 0.10$ (*) and $\alpha =$
926	0.05 (**).
927	Fig. 4. Differences between clipped (grey bars) and control (black bars) <i>B. pubescens</i>
928	and Q. petraea saplings in the allocation of newly fixed C to the different plant organs
929	one year after clipping (trees harvested in August 2008). Asterisks denote significant
930	differences between treatments within a given species at $\alpha = 0.05$.
931	Fig 5. Isotopic composition (δ^{13} C; ‰) of the rhizosphere and bulk soil collected
932	underneath control (white dots) and clipped (black dots) B. pubescens and Q. petraea
933	trees harvested in August 2008 (ca. one year after clipping). No significant differences
934	between treatments were detected at $\alpha = 0.05$.
935	Fig 6. Differences between control (black bars) and clipped (grey bars) <i>B. pubescens</i>
936	and Q. petraea saplings in the allocation of newly fixed C to SS and starch to different

1		
2 3 4	937	plant fractions on the year after clipping (trees harvested in August 2008). Asterisks
5 6	938	denote significant differences between treatments within a given species at $\alpha = 0.10$ (*),
7 8 0	939	and $\alpha = 0.05$ (**).
9 10 11	940	
12 13	941	
14 15		
16 17		
18 19		
20		
22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58		
59 60		

Table 1. Biomass allocation to the different plant fractions in *B. pubescens* and *Q. petraea* trees harvested at the beginning of the δ^{13} C-labelling experiment in April 2008 (i.e. at the beginning of the first growing season after clipping). Data are means and SE (in parentheses). Significant differences between treatments within species are indicated by asterisks: * = *P* < 0.10, ** = *P* < 0.05, *N* = 5.

BM allocation	В. ри	bescens	Q. petraea		
(% total plant	Clipped	Control	Clipped	Control	
biomass)					
One-year-old stems	2.4 (0.3)	9.8 (1.6)**	1.3 (0.3)	4.8 (0.7)**	
Two-year-old stems	12.5 (2.8)	14.3 (1.8)	11.1 (2.0)	11.8 (1.5)	
Main stems	30.3 (1.8)	23.8 (2.0)*	21.7 (1.5)	18.6 (1.3)	
Coarse roots	25.0 (1.9)	24.8 (2.0)	39.6 (3.0)	36.8 (1.6)	
Fine roots	16.0 (1.3)	16.6 (3.7)	10.0 (1.2)	13.8 (0.9)	

3
4
5
5
0
7
8
9
10
11
11
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
20
20
29
30
31
32
33
24
54
35
36
37
38
20
27
40
41
42
43
44
45
رب ^ہ ۸۷
40
47
48
49
50
51
51
52
53
54
55
56
50
5/
58
50

1 2

Table 2. Results for architectural: tree height (cm), canopy area (m2), basal stem diameter (mm), number of branches, number of terminal shoots, number of lateral shoots, number of long shoots, number of short shoots; and morphological: individual leaf area (LA; cm²), individual leaf weight (g), and specific leaf area (SLA, cm² g⁻¹) variables measured in clipped and control saplings of *B. pubescens* and *Q. petraea* before harvest in August 2008 (ca. one year after clipping). Significant differences between treatments within species are highlighted in bold. Asterisks indicate the degree of significance: * = P < 0.10; ** = P < 0.05; *** = P < 0.001, N = 5.

Measurements	B. pu	ıbescens	Q. petraea		
	Clipped	Control	Clipped	Control	
Tree height (cm)	130.9 (8.7)	161.8 (11.3) **	124.8 (6.9)	128.6 (17.4)	
Canopy area (m ²)	2.9 (0.4)	2.5 (0.2)	2.3 (0.4)	2.6 (0.3)	
Stem diam (mm)	15.5 (0.3)	15.3 (0.5)	14.3 (0.5)	14.9 (0.5)	
No. branches	12.4 (0.7)	25.8 (1.7) ***	7.4 (1.4)	13.2 (2.9)	
No. terminal shoots	15.4 (1.6)	38.2 (7.5) **	6.0 (0.8)	12.2 (2.8) *	
No. lateral shoots	47.4 (6.9)	61.6 (17.4)	15.4 (1.9)	20.8 (5.0)	
No. long shoots	62.8 (7.9)	99.8 (23.9)	21.4 (1.4)	33.0 (6.8)	
No. short shoots	20.6 (3.1)	237.0 (59.0) **	0.2 (0.2)	1.4 (0.9)	
Root:Shoot ratio	0.52 (0.05)	0.44 (0.07)	0.57 (0.06)	0.81 (0.04) **	
Ind. LA (cm ²)	10.8 (0.8)	9.2 (0.4)	41.2 (5.4)	40.6 (4.9)	
Ind. leaf weight (g)	0.04 (0.00)	0.03 (0.00)	0.18 (0.03)	0.19 (0.02)	
SLA (cm ² g ⁻¹)	250.1 (11.0)	273.9 (20.8)	231.2 (10.0)	219.9 (10.5)	

Table 3. Soluble sugar (SS) and starch concentrations in the different fractions of clipped (B) and control (C) *B. pubescens* and *Q. petraea* trees harvested in August 2008 (ca. one year after clipping). L = Leaves, 0-St = current year stems, 1-St = one-year-old stems, 2-St = two-year-old stems, MS = main stems, CR = coarse roots, FR = fine roots. Data are means and SE (in parentheses). Significant differences between treatments within a given species at $\alpha = 0.05$ are indicated by asterisks.

B. pubescens				Q. petraea			
SS (mg g ⁻¹)		Starch (mg g ⁻¹)		SS (mg g ⁻¹)		Starch (mg g ⁻¹)	
В	С	В	С	В	С	В	С
65.2	79.1*	69.2	68.0	56.7	50.8	55.0	57.7
(3.6)	(4.0)	(6.8)	(3.9)	(4.8)	(3.5)	(9.6)	(5.1)
37.9	38.9	40.3	42.9	20.8	21.1	70.2	81.2
(1.7)	(1.4)	(2.6)	(3.7)	(1.1)	(0.9)	(8.8)	(15.9)
33.4	37.9	36.3	44.9	22.4	22.2	68.2	68.3
(3.9)	(2.5)	(2.1)	(6.3)	(2.2)	(1.0)	(10.0)	(10.4)
30.9	33.0	43.5	51.6	21.3	19.6	73.6	90.9
(2.4)	(2.0)	(3.1)	(9.3)	(2.2)	(2.3)	(13.4)	(10.9)
23.8	26.3	54.8	43.6	20.0	16.5	107.0	121.3
(2.1)	(1.3)	(6.4)	(3.0)	(2.0)	(0.7)	(10.1)	(14.0)
28.1	30.3	182.2	147.6	27.9	24.3	270.3	266.8
(2.5)	(2.7)	(14.4)	(12.7)	(3.3)	(1.1)	(6.4)	(9.9)
23.4	25.3	85.8	75.0	22.0	19.2	65.7	66.7
(1.7)	(1.6)	(5.2)	(8.5)	(1.5)	(1.1)	(5.8)	(5.6)
	SS (n B 65.2 (3.6) 37.9 (1.7) 33.4 (3.9) 30.9 (2.4) 23.8 (2.1) 28.1 (2.5) 23.4 (1.7)	$\begin{tabular}{ c c c c c c c } \hline B. pub \\ \hline SS (mg g^{-1}) \\ \hline B & C \\ \hline 65.2 & 79.1* \\ \hline (3.6) & (4.0) \\ 37.9 & 38.9 \\ \hline (1.7) & (1.4) \\ 33.4 & 37.9 \\ \hline (3.9) & (2.5) \\ 30.9 & 33.0 \\ \hline (2.4) & (2.0) \\ 23.8 & 26.3 \\ \hline (2.1) & (1.3) \\ 28.1 & 30.3 \\ \hline (2.5) & (2.7) \\ 23.4 & 25.3 \\ \hline (1.7) & (1.6) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline B. pubescens \\ \hline SS (mg g^{-1}) Starch \\ \hline B C B \\ \hline \hline 65.2 79.1* 69.2 \\ \hline (3.6) (4.0) (6.8) \\ 37.9 38.9 40.3 \\ \hline (1.7) (1.4) (2.6) \\ 33.4 37.9 36.3 \\ \hline (3.9) (2.5) (2.1) \\ 30.9 33.0 43.5 \\ \hline (2.4) (2.0) (3.1) \\ 23.8 26.3 54.8 \\ \hline (2.1) (1.3) (6.4) \\ 28.1 30.3 182.2 \\ \hline (2.5) (2.7) (14.4) \\ 23.4 25.3 85.8 \\ \hline (1.7) (1.6) (5.2) \\ \hline \end{tabular}$	B. pubescens Starch (mg g ⁻¹) Starch (mg g ⁻¹) B C B C 65.2 79.1^* 69.2 68.0 (3.6) (4.0) (6.8) (3.9) 37.9 38.9 40.3 42.9 (1.7) (1.4) (2.6) (3.7) 33.4 37.9 36.3 44.9 (3.9) (2.5) (2.1) (6.3) 30.9 33.0 43.5 51.6 (2.4) (2.0) (3.1) (9.3) 23.8 26.3 54.8 43.6 (2.1) (1.3) (6.4) (3.0) 28.1 30.3 182.2 147.6 (2.5) (2.7) (14.4) (12.7) 23.4 25.3 85.8 75.0 (1.7) (1.6) (5.2) (8.5)	B. pubescens SS (mg g ⁻¹) Starch (mg g ⁻¹) SS (m B C B 65.2 79.1* 69.2 68.0 56.7 (3.6) (4.0) (6.8) (3.9) (4.8) 37.9 38.9 40.3 42.9 20.8 (1.7) (1.4) (2.6) (3.7) (1.1) 33.4 37.9 36.3 44.9 22.4 (3.9) (2.5) (2.1) (6.3) (2.2) 30.9 33.0 43.5 51.6 21.3 (2.4) (2.0) (3.1) (9.3) (2.2) 23.8 26.3 54.8 43.6 20.0 (2.1) (1.3) (6.4) (3.0) (2.0) 28.1 30.3 182.2 147.6 27.9 (2.5) (2.7) (14.4) (12.7) (3.3) 23.4 25.3 85.8 75.0 22.0 (1.7)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 4. Summary statistics of glm analysis showing the effects of the different factors included in the full model on the allocation of new C to bulk biomass, SS and starch to the different fractions of *B. pubescens* and *Q. petraea* saplings subjected to different clipping treatments and harvested in August 2008 (ca. one year after clipping). F-rations along with P-values (in parentheses) are shown. Significant differences at $\alpha = 0.05$ are highlighted in bold.

Model term	Bulk BM	SS	Starch
Initial length	20.4 (< 0.001)	12.3 (0.001)	0.2 (0.641)
Species	170.7 (< 0.001)	212.1 (< 0.001)	105.2 (< 0.001)
Treatment	12.0 (0.001)	1.9 (0.175)	0.1 (0.814)
Fraction	155.6 (< 0.001)	43.2 (< 0.001)	33.8 (< 0.001)
Species * Treatment	17.6 (< 0.001)	1.5 (0.225)	10.0 (0.002)
Species * Fraction	2.8 (0.013)	1.2 (0.314)	6.6 (< 0.001)
Treatment * Fraction	2.5 (0.027)	0.3 (0.957)	2.7 (0.017)
Species * Treat. * Fraction	0.8 (0.562)	0.9 (0.505)	2.5 (0.025)
		CZ	

314x85mm (600 x 600 DPI)

- 57 58
- 59 60

289x168mm (600 x 600 DPI)

Figure 4 259x159mm (600 x 600 DPI)

http://mc.manuscriptcentral.com/tp

