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Abstract 

This article deals with the production of thick ceramic hydroxyapatite coatings obtained by Low Pressure 

Cold Gas Spray (LPCGS) system. Several factors such as powder microstructure, surface roughness and 

cold gas spray system are here discussed in the build-up process. The use of nanocrystalline powder 

composed by fine agglomerates and needle-like shape microstructure allows the realignment and 

compaction of individual crystallites to form thick deposits. In addition, the activation of the substrate 

surface results convenient for the first impinging particles anchored properly. Then, layer by layer, particles 

can remain attached leading to coating build-up. Additionally, the use of low shock pressure as well as 

constant feeding system provided by LPCGS system lead to homogeneous coatings in comparison with 

High Pressure Cold Gas Spray (HPCGS) system. The successful coating build-up has been achieved not 

only by the use of an agglomerated feedstock powder, but also by previous surface treatment and the use 

of the low pressure system. 

The obtaining of HA components by LPCGS is promising within biomedical field. An improvement of 

component strength is also suggested by means of thermomechanical analysis of the powder. The 

performance of a post heat-treatment leads to an increase of HA strength, as well as crystal size.  
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1. Introduction 

The Cold Gas Spray (CGS) technology is a solid-state process based on plastic deformation mechanisms 

of the feedstock material. It was originally intended to be used for the production of dense metallic coatings 

avoiding any type of transformation and the typical tensile residual stresses found in the as-sprayed coatings 

obtained by the conventional technologies. CGS has seen a noticeable evolution from the beginning, 



starting by the spraying of ideal metallic materials with relatively low melting point and lower mechanical 

strength such as Zn, Al and Cu, to higher strength materials such as Fe, Ni, Ti and the corresponding alloys, 

as well as tantalum and even cermet and ceramic materials [1,2,3].  

A careful reading of the few papers published about CGS of ceramics indicates that the actual bonding 

mechanism is highly dependent on the relative particle-substrate hardness ratio, surface topography and 

microstructure of the feedstock powder, but the actual mechanism has not been yet well clarified. This 

would explain why some authors observe the embedment of the ceramic particles into very soft and ductile 

substrates, whereas others, such as Yamada et al. [4] support a chemical bonding rather than anchoring. It 

appears that for dense powders, the effective deposition is either possible on soft substrates, where the 

embedment is possible but the posterior coating build-up is hardly likely [5,6] or, on harder substrates 

through particle fragmentation [7]. Some attempts have been performed with ceramic powders on soft 

substrates such as PEEK [8] and magnesium [9]. The first particles impact and embed into the soft 

substrates; further impinging particles collide on the previous deposited particles and help them to be deeper 

embedded, mostly resulting in thin layers with posterior coating build-up being hardly likely to occur [2, 

10]. On the other hand, it is thought on harder substrates that the optimal particle state for a successful 

substrate attachment is that in which the Hugoniot Elastic Limit (HEL) of the ceramic is reached [11].  

However, recent research has demonstrated the importance of the microstructure of ceramic particles and, 

as long as they are not dense, the deposition may be feasible, such as in the case of Hydroxyapatite (HA) 

[12,13,14]. Those studies evaluated the deposition of porous sintered microcrystalline HA powders, 

showing mechanisms proceeding through pore collapse, fragmentation and densification as well as grain 

refinement. However, the fragmentation of crystal grains which proceed by cracking and crushing, do not 

lead to the build-up of a coating [12]. On the other hand, the deposition mechanisms of agglomerated 

nanocrystalline HA powders has been understood by the compaction of nanocrystalline grains within the 

particle leading to successful build-up of a coating up to 350 µm [13].  

The present paper goes a step forward presenting the possibility to use the technology to produce thick 

ceramic coatings, in this case of HA, in contrast to other low temperature processes such as Aerosol 

Deposition (AD) [15], which are limited to the use of vacuum conditions and submicrometric particles. 

 



2. Materials and experimental methods 

Nanocrystalline HA feedstock powder with a particle size distribution between 15-63 μm was obtained 

from Medicoat (France). The powder has spherical morphology and is composed by fine agglomerates. A 

laser diffraction (LS) particle size analyzer Beckman Coulter LS 13320 was used to study the granulometry 

of the feedstock powders. Therefore, real density was evaluated with the same protocol that in previous 

research [13]. 

The microstructural characterization of the powder was carried out by Transmission Electron Microscopy 

(TEM) using a JEM 2100 microscope, operated at 200 kV (with current density of 80–250pA/cm2). The X-

Ray Diffraction (XRD) measurements were carried out on a Bragg–Brentano θ/2θ Siemens D-500 

diffractometer with Cu Kα radiation. The phase identification was analyzed with X'Pert PRO MPD 

diffractometer (PANalytical).  

Ti6Al4V coupons were used as substrates and three different surface treatments were evaluated to study 

the influence of coating build-up, i.e. by (i) grinding with #240 SiC paper, (ii) sandblasting (SB) with 

alumina particles grit 24, and the deposition of highly rough CP-Ti coating [16]. Two CGS systems were 

used for the HA deposition: (i) Low Pressure Cold Gas Spray (LPCGS) Dycomet 423 equipment (The 

Netherlands) and (ii) High Pressure Cold Gas Spray (HPCGS) KINETICS®4000 (Ampfing, Germany). 

The  LPCGS is limited to the use of air as the propellant gas and works with a maximum operating pressure 

of 10 bars and temperature of 600 ºC;  the HPCGS has a maximum operating pressure of 40 bars, 

temperature of 800 °C and operates with nitrogen as the propellant gas. The cross-section of the coatings 

were subjected to metallographic procedure by grinding up to 4000 SiC paper and then polishing with 

colloidal silica. 

In order to strengthen HA bulk deposits, a thermomechanical analysis of the HA feedstock powder was 

performed to analyze the phase transitions and chemical reactions. The equipment used for that purpose 

was a Setaram TMA Setsys 16/18 (France). The temperature range is from 25 ºC up to 1600 ºC with an 

accuracy of 0.01µm, using a heat rate of 5 ºC/min. Thus, two Thermal Treatments (TT) were performed, at 

1000 °C and 1400 °C under controlled atmosphere with Argon. Therefore, free surface area of the 

specimens was examined by Field Emission Scanning Electron Microscopy (FESEM), using a JEOL JSM 

7100F equipment. 

http://photometrics.net/field-emission-scanning-electron-microscopy-fesem/


3. Results  

3.1. Powder microstructure 

The HA powder that has been used for the present study exhibits spherical morphology and, at high 

magnification, the microstructure is observed to be an agglomeration of fine particulates. Rather than 

keeping the strength of a sintered ceramic, the single particles, with a real density of 0.485 g/cm3, showed 

a tendency to loose easily the as-provided round shape [13].  Figure 1a shows the particle size distribution 

of the as-received powder in which both, differential (continuous line) and accumulative (dashed line) 

volume percentages are plotted.  As it can be observed, the particles show a broad distribution where the 

Ømean= 33.0 µm, being the Ø10=22.7 µm and Ø90=56.4 μm. A tail of fine particles below to 15 µm and a 

coarse tail of coarse particles from 80 µm to 140 µm can be observed. Figure 1b shows the differential 

number percentage of particles versus particle diameter percentage according to the number percentage of 

the particles. It can be clearly observed that there is a high amount of particles under 1 µm particle size.    

 

a) 

 

b) 

Figure 1. Particle size distribution of the as-received sintered HA powder a) differential volume and b) 

differential number percentages as Y axis versus particle diameter as X axis. 

 
Figure 2 shows the needle-like shape featured microstructure of HA powder (Fig. 2). The electron 

diffraction (inset fig. 2) showed a ring pattern indicating the presence of the small crystallite sizes, which 

had as well been confirmed previously by XRD [13].  



 

Figure 2. SEM and TEM micrographs of HA feedstock powder and its microstructure. 

 
3.2. Surface activation and CGS systems 

Direct deposition onto a Ti6Al4V alloy coupon did not provide suitable deposition and coating build-up. 

The low density of certain ceramics causes the blow of the small particles through the high impact gas jet 

(Fig. 3, left), usually known as bow shock effect [17]. Therefore, just few of HA particles were able to 

deposit onto the substrate. In order to increase the deposition efficiency and achieve an initial improved 

particle bonding, the activation of the surface was attempted by spraying onto three different types of 

surface roughness’s: (i) grinding with #240 SiC paper, and (ii) sandblasting (SB) with alumina particles the 

Ti6Al4V alloy substrate, as well as by the deposition of a highly rough CGS CP-Ti coating  [16] (Fig. 3, 

right).  

 

Figure 3.  Particle trajectories of low dense ceramic particles by CGS. 



3.3. High and low pressure CGS systems 

Figure 4 shows the optimized CGS conditions of HA powder [18] onto the three substrates with HPCGS 

(Fig. 4a) and LPCGS (Fig. 4b) systems. The low rough surfaces obtained after ground or sandblasted 

treatments did not contribute enough on the activation of the surfaces in comparison with the high rough 

CGS CP-Ti coating. Initial attempts on using HPCGS were not successful at all, showing thick but highly 

inhomogeneous coatings, due to the design of the feeding system (Fig. 4a). Therefore, the constant feeding 

system of LPCGS and the assumption that not much large shock pressures seems to be more suitable for 

this particular structure of the feedstock (Fig. 4b). The results obtained with the low pressure system were 

incredibly successful, with highly homogeneous deposits; by using as well the appropriate combination of 

spraying parameters such as traverse gun speed, feeding rate, gas pressure and temperature, cohesive and 

well-adhered thick coatings were obtained [18].  

  

a) b) 

Figure 4. Agglomerate HA powder deposited onto SB and #240 SiC grinded Ti6Al4V alloy coupon 

surfaces and onto highly- rough CGS CP-Ti coating by a) HPCGS and b) LPCGS. 

 
The cross section area of HA onto CGS CP-Ti bondcoat by LPCGS is shown in figure 5. The first impinging 

HA particles impact onto the high surface and anchor properly by filling up the valleys of the surface 

roughness, thus leading to the build-up of the coating.   
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a) b) 

Figure 5.  Optical micrographs of HA coating obtained by LPCGS, a) Bright field and b) Dark field. 

Figure 6a shows the evolution of the progressive build-up of the coating from 1 to 4 layers as well as their 

thickness values (Fig. 6b) with the optimal spraying conditions [18]. In addition, the nanocrystalline 

structure is well maintained since the XRD of the feedstock powder and the coating are analogous [13]. 

The preservation of the fine structure, as observed revealed in previous studies by XRD, is interesting in 

terms of keeping a similar bone microstructure. A final thickness of 10 mm was obtained after 10 passes. 

  

a) b) 

Figure 6.  a) Macrograph image and b) thickness of LPCGS HA coatings after 1, 2, 3 and 4 layers.  

 
3.4. Thermal treatments of HA bulks 

The formation of thin layers is desirable for bioactive coatings in cementless orthopedic applications. 

However, the production of thick coatings to be considered as bulks needs that they can be detached 

afterwards; further thermal treatments can be performed with the aim to increase their structural strength in 

case that it may be used for bone graft. The as-sprayed coatings seem to behave as a ceramic green preform 

before sintering the material. As it has been exposed for other materials, the spraying process promotes 

compaction but not the required densification so that the piece is as consistent as the bulk hydroxyapatite 

[19]. 

First attempts to develop a thermal treatment were performed according to the thermomechanical analysis 

of HA powder (Fig. 7). Thus, according to the dilatometry graph, two different thermal treatments were 

performed with the aim to know the most suitable temperature so that it becomes densified. The first one 

consists in increasing the temperature up to 1000 ºC at 5 ºC/min, while the second thermal treatment up to 

1400ºC. Inset micrographs of figure 7 show the top surfaces of as-sprayed HA bulk, and after both thermal 

treatments. The increase of sub-micron HA grains of HA particles increases with the increase of the 



temperature of the thermal treatment. Therefore, both thermal treatments lead to crystalline phase structure 

(Fig. 8). 

 

Figure 7. Dilatometry and FESEM micrographs of the top surface of HA bulks: as-sprayed and after 

thermal treatments at 1000 and 1400 °C. 

 

 

Figure 8. XRDs of HA bulks: as-sprayed and after TT at 1000 °C and 1400 °C. 

 

4. Discussion  

4.1. Build-up of ceramic HA coating  

Without the thermal input of the conventional spraying technologies, we avoid the decomposition of the 

HA phase into other phases whose solubility in the body fluids cannot be much controlled [20]. The use of 



the CGS technique can overcome this handicap but the feedstock may lack of toughness to be able to 

produce a suitable coating. The use of a HA feedstock has overcome such handicap but another key point 

has been proved to be necessary to build-up a coating with noticeable thickness, this is the surface activation 

by considerable roughening. The valleys on the surface could thus be filled and serve as further contact 

points for proper build-up. In addition, the LPCGS system was observed to be more suitable than the 

HPCGS by means of feeding rates. The LPCGS was originally created as a portable system for industrial 

environment. Two fundamental aspects that distinguish LPCGS from HPCGS are: (i) The utilization of low 

pressure gas (0.5-1 MPa instead of 2.5-3 MPa) and (ii) Radial injection of the powder instead of axial 

injection (in most cases) [21]. In LPCGS process, feedstock particles are drawn in from the powder feeder 

by Venturi effect, contrary of the particles in HPCGS, which are mixed with the propellant gas in the pre-

chamber zone and then are axially fed into the gas stream [22]. Due to that, LPCGS system was observed 

to be more suitable than the high pressure, due to the more constant feeding rate. 

In addition, the need of surface activation has been sometimes reported to be beneficial for coating 

deposition [23,24], reducing the induction time required for bonding, although controversy also arises when 

this implies surface hardening that makes difficult simultaneous particle-substrate deformation. However, 

as it has been here proved, it seems to play some role regarding ceramic materials with small particle size 

and low density, although more related to compaction and constraint of particles deposited within the 

valleys of the roughened surface [25].  

Once the valleys are full, the build-up process appears to be a result of a compaction mechanism of the 

deposited ceramic particles [19]; we previously reported that this may be attributed to the tamping effect 

produced by continuous impact of incoming particles onto the already adhered ones. Particle contours are 

not more distinguishable and the original filaments of the agglomerates become compacted (Fig.9). This 

has also been observed in other room temperature techniques, such as: Vacuum Cold Gas Spraying (VCGS) 

[26], AD [27] or Nano Particle Deposition System (NPDS) [28] for different ceramic powders, but they 

mainly use sub-micron sized particles, the spraying system is slightly different and there is not need of 

surface activation. In such processes, the suggested mechanism for ceramic deposition is described in two 

steps: the fragmentation of submicron ceramic particles into nanoparticles and the successive impact of 

submicron particles, which provides sufficient bonding energy in the form of heat and pressure to the 

fragmented nanoparticles via the shock wave. Dense HA coatings up to 1 μm have been obtained onto 

titanium alloy substrates by AD technique for coatings implant. However, the same study reported a HA 



thickness up to 100 μm [29]. Therefore, dense ceramic layers of α-Al2O3 and PZT with thickness of 1–100 

μm were successfully formed on glass, plastic, and metal substrates with agglomerate and submicronic 

feedstock powder by the same technique [27]. TiO2 particles of a size of 25 nm and 200 nm were 

successfully deposited by VCGS on conducting glass and stainless steel substrates. Apparently, dense 

coatings consist of particles stacked as agglomerates that build-up together with the number of spray passes. 

In comparison with CGS, the specimen in VCGS is placed in a vacuum tank coupled to a vacuum pump 

with a pressure that is substantially less than the atmospheric pressure. The vacuum tank allows for gas 

recovery and for powder overspray collection. These authors achieved a coating thickness of ~40 μm with 

12 passes with a 25 nm particle size [26]. 

 

Figure 9. Deposition of agglomerate HA particles onto a valley of a rough surface. 

 
Rather than VCGS, the use of micron sized ceramic particles but with nanoagglomerate structure is highly 

advantageous in CGS compared to others such as sintered powders since the impact energy may be directly 

used for compaction rather than neck fracture and grain crushing. As previously reported, Ekinetic= Efracture+ 

Ethermal [12], but here the energy necessary to fracture the agglomerated particles is much lower than the 

corresponding for a sintered particle. This is why, in the present study, coatings up to ~5 mm thick after 10 

passes can be reached without delamination.  

4.2. Improving component strength  

The production of thick coatings was surprising but further thermal treatments should be performed with 

the aim to increase their structural strength so that they can have consistency in the application.  For that 

purpose, heating is needed to activate diffusion mechanisms. The grain boundary diffusion and lattice 

diffusion from the grain boundary to the neck are the most important densifying mechanism in 



polycrystalline ceramics. Diffusion from the grain boundaries to the pores permits neck growth as well as 

shrinkage (densification) [30]. After the thermal treatment at 1000 ºC, submicron grains start coalesce and 

reduce pore size. At a thermal treatment at 1400 ºC, sinterization occurs and it is observed a dense structure 

with big grains between 5-10 μm. The XRDs from HA bulks of both thermal treatments show narrower 

pecks than XRD from the as-sprayed HA bulk, indicating the grown up of crystal size from nanocrystalline 

to crystalline within the HA bulk.  

Pure crystalline HA powders used to shown one peak between the range of 1000 ºC and 1200 ºC on 

dilatometry graphs. This temperature is associated to the sinterization temperature and phase 

transformations take place [31]. The presence of a second peak in the present case of HA powder, could 

appear as the presence of other elements [32] or amorphous phase [33]. As reported in previous research 

[13], HA coating has a content of 86.58 % HA, 2.07 % of monetite phase and 11.34 % of amorphous phase, 

which mostly consists of a dehydroxylated calcium phosphate. When heated, the crystallization of 

hydroxyl-rich areas produces HA, followed by diffusion of hydroxyl ions, thus increasing the amount of 

crystalline phase. Hydroxyl-deficient amorphous areas crystallize to oxyapatite at 700 ºC [33]. 

Bone grafts proved to be successful in humans and animals, especially orthopedic cases like intrabone 

defect repairs, maxillofacial surgery, jaw bone restoration and augmenting mandibular ridge. It eliminates 

the need for patients to undergo painful autograft bone grafting procedures [34]. B-OstIN is made by wet 

chemical methods and thereafter converted into porous mass (60-70 % porosity with pores size between 

100-300 µm) through ceramic processing routes. B-OstIN is most osteoconductive material which helps in 

bone bonding within 3 months [35]. Some bone grafts used to be composed by mineral-collagen composite 

matrix in order to enhance biological response. Ossigen® has mineral particles dispersed within collagen 

fibers forming a three-dimensional porous matrix consist of 80 % bone mineral and 20 % collagen by dry 

weight with a 100-400 μm optimal pore size for tissue regeneration [36]. Those commercial grafts are 

commercialized by blocks. HA bulks by CGS could be a good and economic process to build-up customized 

grafts with the desired composition, shape and microstructure. However, more studies should be performed 

for future perspectives. 

5. Conclusion 

Thick ceramic HA coatings were successfully obtained by LPCGS. Several factors such as powder 

microstructure, surface roughness and CGS system are involved in the build-up process. 



 Nanocyrstalline mictrostructured HA powder with needle-like shape morphology resulted on the 

compaction of nanocrystals, thus leading to the build-up of the coating.  

 The activation of the substrate surface is convenient for the first impinging particles to anchor 

properly to build-up the coating. A highly rough surface is required in for that purpose.  

 The feeding rate of LPCGS system leads to more constant feeding rates in comparison with 

HPCGS. 
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