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Abstract

In this project we study the fluctuation of the zero set process of the parabolic
Gaussian analytic function, denoted S2-GAF and where S2 is the Riemann sphere.
There exist several ways to measure such fluctuations. One of them is to compute
the variance of certain variables counting the number of points of the process inside
a given region. Some asymptotics of such variables will lead us to conclude that the
S2-GAF process is more rigid than the Poisson process on S2 having, in mean, the
same number of points as the S2-GAF process. Also, we will see that the S2-GAF
process tends, as the intensity goes to infinity, to the planar GAF. Another point
of view to study the fluctuations of the S2-GAF is the so-called large deviations,
i.e., to measure how certain linear statistics deviate from its average by a fraction
of its same average. The latter allows us to estimate the hole probability, i.e., the
probability that the point process does not meet a given disk.
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Keywords: fluctuation, Gaussian analytic function, hole probability, large deviations, linear

statistic, zero point process.
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Chapter 1

Introduction

The main object of study in this project is a specific type of point process in the Rie-
mann sphere S2 := C∪{∞}, that is, a random sequence of points in S2. Probably the
best known point process is the Poisson process, denoted X , which is characterized
by two properties:

• For all A ⊆ S2, the random variable nA := #(A ∩ X ) follows a Poisson
distribution of parameter λ(A), which is the area of A in S2.

• If for all A,B ⊂ S2 we have A ∩ B = ∅, then nA and nB are independent
random variables.

Independence is natural sometimes, but sometimes is not. For example, some phys-
ical phenomena in quantum mechanics cannot be explained by using such a process,
due to the clumping points. In the 90’s some physicists realized that a good model
for point processes with local repulsion are the zero sets of some random analytic
functions.

1.1 Gaussian analytic functions

Several random analytic functions can be considered, but we are going to focus on
Gaussian analytic functions, GAFs for short, and see some properties of their zero
sets.

We say that the random variable Z follows a standard complex Gaussian distri-
bution, denoted Z ∼ NC(0, 1), if its density function, with respect to the Lebesgue
measure, is

fZ(z) =
1

π
e−|z|

2

, z ∈ C.

Now, assume that (en)+∞
n=0 is a sequence of analytic functions in a region Ω ⊆ C

and that (ξn)+∞
n=0 is a sequence of i.i.d. NC(0, 1) random variables. Under some

assumptions about convergence, we say that f is a GAF in Ω if:

f(z) =
+∞∑
n=0

ξnen(z), z ∈ Ω.

1
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From this definition and fixing z ∈ Ω, f follows a complex Gaussian distribution
with null mean due to the linear combination of (en)+∞

n=0 and (ξn)+∞
n=0 ∼ NC(0, 1) and

since the linear combination of Gaussian random variables is a Gaussian random
variable. So, if we denote the normalized GAF as

f̂(z) =
f(z)

Var[f(z)]
, z ∈ Ω,

it follows a NC(0, 1) distribution. We have that the covariance kernel of a GAF f is

Kf (z, w) := Cov
[
f(z), f(w)

]
= E

[
f(z)f(w)

]
=

+∞∑
n=0

en(z)en(w), z, w ∈ Ω.

In particular we have:

Var[f(z)] =
√
Kf (z, z).

Therefore, all the probabilistic properties of a GAF are encoded in its covariance
kernel.
Some remarkable properties about GAFs are:

• A GAF is an analytic function in Ω a.s. Fixed z ∈ Ω, f(z) converges up to
a possible set, that depends on z, with probability zero. The problem is that
the uncountable union of these sets can be the whole space or a significant
part of it. This can be solved by using a version of Kolmogorov’s inequality
for Hilbert spaces.

• A standard way to construct a GAF on a given space Ω as in the definition
is to consider the orthonormal basis (en)+∞

n=0 of a Hilbert space H of analytic
functions in Ω. In that case the covariance kernel coincides with the Bergman
kernel of H, defined as

B(z, w) =
+∞∑
n=0

en(z)en(w), z, w ∈ Ω.

Notice that Bw(z) = B(z, w) is the reproducing kernel of H at w ∈ Ω. Such
kernel is independent of the choice of the orthonormal basis.

• Let (en)+∞
n=0 be an orthonormal basis in H. Then, the GAF does not belong

to H a.s., because on the contrary we would have that
∑+∞

n=0 |ξn|2 converges,
something that happens with probability zero for (ξn)+∞

n=0 i.i.d. with NC(0, 1)
distribution.

As canonical examples of this construction, we introduce three of the most stud-
ied families of Hilbert spaces of analytic functions.
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• The planar space or the Bargmann-Fock space with real parameter L > 0 in
C is defined as

FL :=

{
f ∈ A(C) : ‖f‖2

FL =
L

π

∫
C
|f(z)|2 e−L|z|2dm(z) < +∞

}
,

where z ∈ C andA(C) is the space of analytic functions in C. The orthonormal
basis obtained by normalizing the monomials zn, n ∈ N, is:

en(z) =

√
Ln

n!
zn.

The GAF, also called C-GAF or planar GAF, is therefore

fL(z) =
+∞∑
n=0

ξn

√
Ln

n!
zn,

where (ξn)+∞
n=0 is a sequence of i.i.d. NC(0, 1) random variables. The covariance

kernel is

KfL(z, w) =
+∞∑
n=0

Ln

n!
(zw)n = eLzw.

• The hyperbolic space or the weighted Bergman space with real parameter L > 1
in D is defined as

BL :=

{
f ∈ A(D) : ‖f‖2

BL =
L

π

∫
D
|f(z)|2 (1− |z|2)L−2dm(z) < +∞

}
,

where z ∈ D and A(D) is the space of analytic functions in D. An orthonormal
basis is:

en(z) =

(
L+ n− 1

n

)1/2

zn, n ≥ 0.

The GAF, also called D-GAF or hyperbolic GAF, is then

fL(z) =
+∞∑
n=0

ξn

(
L+ n− 1

n

)1/2

zn,

which has sense for L > 0. The covariance kernel is

KfL(z, w) =
+∞∑
n=0

(
L+ n− 1

n

)
(zw)n = (1− zw)−L.

• The parabolic space or the space of polynomials of degree at most L ∈ N in C
is described as:

PL :=

{
f ∈ PL[C] : ‖f‖2

PL =
L+ 1

π

∫
C

|f(z)|2

(1 + |z|2)L+2
dm(z) < +∞

}
,
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where z ∈ C and PL[C] is the vector space of polynomials of degree at most L
with complex coefficients. The space PL[C] can be seen as the projection to C
of the space of sections of the L-th power of the canonical bundle of S2. The
norm defined in PL makes sense. Indeed, the term

|f(z)|2

(1 + |z|2)L

is the normalization by the degree of f , and

dm(z)

π(1 + |z|2)2

is the area measure of S2 projected to C.
An orthonormal basis is:

en(z) =

(
L
n

)1/2

zn, 0 ≤ n ≤ L.

The GAF, also called S2-GAF or parabolic GAF, is then

fL(z) =
L∑
n=0

ξn

(
L
n

)1/2

zn,

and the covariance kernel is

KfL(z, w) =
L∑
n=0

(
L
n

)
(zw)n = (1 + zw)L.

1.2 First intensity and the Edelman-Kostlan for-

mula

We will focus our attention on this last space and on the zero set of an S2-GAF fL
of parameter L ∈ N in a region Ω ⊆ C. The zero set of fL, denoted ZfL , will be
studied through its empirical measure

νfL =
∑
a∈ZfL

δa =
1

2π
∆ log |fL|,

where δa is the Dirac delta measure at a. Notice that νfL is a measure supported
precisely on the zeros of fL. The first intensity of the GAF fL is the measure E[νfL ]
defined by the action∫

Ω

ϕdE[νfL ] = E
[∫

Ω

ϕdνfL

]
, ϕ ∈ C∞c (Ω).
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The first intensity measures the average number of points of the point process.
According to the well-known Edelman-Kostlan formula:

E [νfL ] =
1

2π
∆ logE[|fL|] =

1

2π
∆ log

√
KfL(z, z), z ∈ Ω.

For the spaces before introduced, we have that:

• For a C-GAF fL of real parameter L > 0, the first intensity is

E[νfL ] =
1

2π
∆ log eL|z|

2/2 =
L

π
dm(z),

where dm stands for the Lebesgue measure on the plane.

• For a D-GAF fL of real parameter L > 1, the first intensity is

E[νfL ] =
1

4π
∆ log(1− zw)−L =

L

π

dm(z)

(1− |z|2)2
.

• For an S2-GAF fL of parameter L ∈ N, the first intensity is

E[νfL ] =
1

4π
∆ log

[
(1 + |z|2)L

]
=
L

π

dm(z)

(1 + |z|2)2 .

A remarkable feature of these processes is the invariance by the natural translations
on each space.

• For a C-GAF the zero point process is invariant by translations

φa(z) = z − a, z, a ∈ C.

• For a D-GAF the zero point process is invariant by automorphisms in D

φa(z) =
z − a
1− az

eiθ, z, a ∈ D, θ ∈ [0, 2π).

• For an S2-GAF the zero point process is invariant by rotations in S2, which in
the C-chart are seen as the Möbius transformations

φa(z) =
z − a
1 + az

, z, a ∈ C.

Since the first intensity determines the distribution in mean of ZfL , it is also
invariant by the suitable transformations just introduced.
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1.3 Fluctuations of the parabolic GAF

Having this basic background in GAF theory, we can face the main problem of this
project. We know how the zeros of a GAF are distributed in average according to
the Edelman-Kostlan formula, but how do they interact? Or what is equivalent,
how do they fluctuate?

We quantify this fact from different points of view:

• The variance of the random variable νfL(U) = # (ZfL ∩ U), where U ⊆ C. We
are going to make an exhaustive study of the variance, denoted V, in a disk
of radius 2ρ, ρ > 0, endowed with the chordal metric (see (2.4.4)). Denoting
the chordal disk as Dch := Dch(z0, 2ρ), for z0 ∈ C, using the definition of the
variance and the properties of the GAF we prove that

V [νfL (Dch)] =
L2

2π
ρ
√

1− ρ2

∫ 4ρ2(1−ρ2)

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− x
4ρ2(1−ρ2)

dx.

For the proof see Theorem 3.2.2.
This is the integral of a positive function in a bounded interval, from which
we can extract some information. For example:

1. Asymptotics as L→ +∞ (see Subsection 3.2.3). We will show that:

Proposition 1.3.1. Let fL be an S2-GAF of intensity L ∈ N. Consider
a chordal disk Dch := Dch(z0, 2ρ), for z0 ∈ C. Then

V [νfL (Dch)] =

( √
L

4
√
π
ζ(3/2)ρ

√
1− ρ2

)
(1 + o(1)), as L→ +∞.

Here ζ stands for the Riemann’s zeta function and o(1) is a term tending
to 0 as L→ +∞.
For the Poisson process X with underlying measure

L

π
dm,

the random variable

nL(D(0, r)) := # (X ∩D(0, r)) (1.3.1)

has the same average number of points as our GAF:

E [nL(D(0, r))] = Lr2. (1.3.2)

But the variance is much larger:

V [nL(D(0, r))] = Lr2. (1.3.3)

It is in this sense that the GAF process is more rigid.
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2. Asymptotics as ρ → 0 (see Subsection 3.2.4). It is intuitive that the
variance will tend to zero as ρ → 0. We will quantify the speed of
convergence. More precisely:

Proposition 1.3.2. Let fL be an S2-GAF of intensity L ∈ N. Consider
a chordal disk Dch := Dch(z0, 2ρ), for z0 ∈ C. Then

V [νfL (Dch)] = Lρ2(1 + o(1)) as ρ→ 0.

In here, we see that the speed of convergence is equivalent to the Poisson
process as the radius tends to zero (see 1.3.3).

3. F1 as the limit of PL as L → +∞ (see Subsection 3.2.5). There is a
result stating that the functions in F1 can be seen as limits of rescaled
polynomials of PL as L→ +∞. More precisely:

Lemma 1.3.3. Given a GAF fC
1 ∈ F1 and a constant M > 0, there is

L0 ∈ N such that for all L ≥ L0, there exist GAFs fS2
L ∈ PL such that∫

{|z|≤M/
√
L}

∣∣∣fC
1 (
√
Lz)− fS2

L (z)
∣∣∣2 e−L|z|2dm(z) .

1

L

∥∥fC
1

∥∥2

F1

and ∫
{|z|>M/

√
L}

∣∣∣fS2
L (z)

∣∣∣2
π(1 + |z|2)L+2

dm(z) .
1

L

∥∥fC
1

∥∥2

F1
.

In accordance with this lemma, we prove that:

Proposition 1.3.4. The limit of the variance of an S2-GAF as L→ +∞
coincides with the variance of a C-GAF of parameter L = 1, that is,

lim
L→+∞

V
[
ν
fS

2
L

(
Dch(z0, 2r/

√
L)
)]

= V
[
νfC1 (D(z0, r))

]
, z0 ∈ C.

• Large deviations (see Section 4.1). Consider test-functions ϕ ∈ C2
c (C). We

define the linear statistic associated to ϕ as

IL(ϕ) :=

∫
C
ϕdνfL .

We have, by the Edelman-Kostlan formula,

E [IL(ϕ)] = E
[∫

C
ϕdνfL

]
=

∫
C
ϕdE[νfL ].

Here we will study how much IL(ϕ) deviates from its mean E [IL(ϕ)] by a
fraction of the same mean. More concretely:

Theorem 1.3.5. For all ϕ ∈ C2
c (C) and for all δ > 0, there exist constants

c = c(ϕ, δ) and L0 = L0(ϕ, δ) ∈ N such that, for all L ≥ L0,

P
[∣∣∣∣ IL(ϕ)

E [IL(ϕ)]
− 1

∣∣∣∣ > δ

]
≤ e−cL

2

.
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• Hole probability (see Section 4.2). As a consequence of the large deviations
we will estimate the probability that there is a hole in the zero point process,
that is, a disk without zeros of fL. More precisely:

Theorem 1.3.6. For a given ρ > 0, there exist C1 = C1(ρ) > 0, C2 = C2(ρ) >
0 and L0 ∈ N such that, for all L ≥ L0 and a disk Dch := Dch(z0, ρ) ⊂ C with
z0 ∈ C,

e−C1L2 ≤ P [ZfL ∩Dch = ∅] ≤ e−C2L2

.

For the Poisson process in the planar case with intensity L > 0, we have that

P
[
nD(z0,r) = 0

]
= e−Lr

2

, z0 ∈ C, r > 0.

But for the S2-GAF we have lower and upper bounds such that the power of
the exponential depends on L2. Then, it is more unlikely to have a hole in the
zero point process of an S2-GAF than in the Poisson process.

This manuscript is divided in three parts. Chapter 2 is devoted to introduce the
basis of GAF theory. I followed [1], [2] and [9].

Chapter 3 is devoted to compute explicitly the variance of the random variables
of the zero point process of a C-GAF and an S2-GAF in suitable disks. Then we
give the asymptotic results described above for an S2-GAF. Here I used [2], [5], [6]
and [9].

In Chapter 4 we give a full description of the large deviations and the hole
probability of an S2-GAF. The statements, results and proofs are analogous to [6].
Also [4] was helpful to write these pages.



Chapter 2

Preliminaries

In this chapter we will introduce the basic elements and results about the theory of
Gaussian analytic functions. Since the project is focused on the zero set of Gaussian
analytic functions on the Riemann sphere S2 := C ∪ {∞}, we are going to explicit
these elements on this space and the suitable Hilbert space we are going to use. The
following pages are strongly based on [1] and [2], so all the statements and proofs
come from those references. The source [9] was also helpful at some points.

2.1 Complex Gaussian distribution

Recall that a real-valued random variable X follows a real Gaussian distribution,
denoted X ∼ NR(µ, σ2), if its density function is

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R,

where µ ∈ R is the mean and σ2 ∈ (0,+∞) is the variance. We can define also the
complex version of the standard Gaussian distribution.

Definition 2.1.1. A complex-valued random variable Z follows a standard complex
Gaussian distribution, denoted Z ∼ NC(0, 1), if its density function, with respect to
the Lebesgue measure, is

fZ(z) =
1

π
e−|z|

2

, z ∈ C.

We outline the following result:

Proposition 2.1.2. i) If Z ∼ NC(0, 1), then |Z|2 is an exponential random vari-
able of parameter 1, i.e., P [|Z|2 > t] = e−t for all t > 0.

ii) If (ξn)+∞
n=0 is a sequence of i.i.d. NC(0, 1) random variables, then

lim sup
n→+∞

|ξn|1/n = 1, a.s.

9
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Proof. i) By applying polar coordinates and the change of variable s = r2, we
have for all t > 0,

P
[
|Z|2 > t

]
= 1− P

[
|Z|2 ≤ t

]
= 1−

∫
{0≤|z|2≤t}

1

π
e−|z|

2

dm(z) = 1−
∫ √t

0

2re−r
2

dr

= 1−
∫ t

0

e−sds = e−t.

ii) It is a consequence of the Borel-Cantelli lemma. See for instance [2], p. 15.

2.2 Gaussian analytic functions

Here we introduce the main object of study of the project, the so-called Gaussian
analytic function. For this we endow the space of analytic functions over a region
Ω with the topology of uniform convergence on compact sets of Ω. Denote by A(Ω)
the space just described. A very natural question is: how can we generate GAFs?
The next definition addresses this.

Definition 2.2.1. Let (en)+∞
n=0 be a sequence in A(Ω) and let (ξn)+∞

n=0 be a sequence
of i.i.d. random variables with NC(0, 1) distribution. Assume that

∑∞
n=0 |en(z)|2

converges locally uniformly on Ω. A Gaussian analytic function (GAF from now
on) is the linear combination

f(z) =
+∞∑
n=0

ξnen(z), z ∈ Ω. (2.2.1)

Fixing z ∈ Ω, the random variable f described in Definition 2.2.1 follows a complex
Gaussian distribution with null mean due to the linear combination of (en)+∞

n=0 and
(ξn)+∞

n=0 ∼ NC(0, 1) and since the linear combination of Gaussian random variables
is a Gaussian random variable. So, if we denote the normalized GAF as

f̂(z) =
f(z)

Var[f(z)]
, z ∈ Ω,

it follows a NC(0, 1) distribution. We have that the covariance kernel of a GAF f is

Kf (z, w) := Cov
[
f(z), f(w)

]
= E

[
f(z)f(w)

]
=

+∞∑
n=0

en(z)en(w), z, w ∈ Ω.

(2.2.2)
In particular, we have

Var[f(z)] =
√
Kf (z, z).

Therefore, all the probabilistic properties of a GAF are encoded in its covariance
kernel.
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Remark 2.2.2. To justify the last equality of (2.2.2) notice that

Kf (z, w) = E
[
f(z)f(w)

]
=

+∞∑
n,m=0

en(z)en(w)E
[
ξnξm

]
.

Since (ξn)+∞
n=0 is a sequence of i.i.d. random variables with NC(0, 1) distribution, we

have that
E
[
ξnξm

]
= δn,m,

where δn,m denotes the Kronecker delta function. Thus the equality follows.

Let us state a few remarks and properties about GAFs:

• A GAF is an analytic function in Ω a.s. Fixed z ∈ Ω, f(z) converges up to
a possible set, that depends on z, with probability zero. The problem is that
the uncountable union of these sets can be the whole space or a significant
part of it. This can be solved by using a version of Kolmogorov’s inequality
for Hilbert spaces (see [2], Lemma 2.2.3).

• The radius of convergence of a GAF is computed with the conditions of growth
of the sequence (en)+∞

n=0 and with ii) of Proposition 2.1.2.

• A standard way to construct a GAF on a given space Ω is to consider the
orthonormal basis (en)+∞

n=0 of a Hilbert space H of analytic functions in Ω and
consider (2.2.1). In that case the covariance kernel (2.2.2) coincides with the
Bergman kernel of H, defined as

B(z, w) =
+∞∑
n=0

en(z)en(w), z, w ∈ Ω.

Notice that Bw(z) = B(z, w) is the reproducing kernel of H at w ∈ Ω. Such
kernel is independent of the choice of the orthonormal basis.

• Let (en)+∞
n=0 be an orthonormal basis in H. Then, (2.2.1) does not belong

to H a.s., because on the contrary we would have that
∑+∞

n=0 |ξn|2 converges,
something that happens with probability zero for (ξn)+∞

n=0 i.i.d. with NC(0, 1)
distribution.

Lemma 2.2.3. The normalized kernel

K(z, w) =
|Kf (z, w)|2

Kf (z, z)Kf (w,w)

satisfies |K(z, w)| ≤ 1.

Proof. To check this inequality just notice that, since B(z, w) = Kf (z, w),

|Kf (z, w)| = |(Bz, Bw)H| ≤ ‖Bz‖H ‖Bw‖H ,

where H is the Hilbert space we are working in and Bz (respectively Bw) is the
reproducing kernel of H at the point z ∈ Ω (respectively at w ∈ Ω). By squaring at
both sides and passing the RHS to the left, we see that |K(z, w)| ≤ 1.
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2.3 The Gamma function

The Gamma function, denoted Γ, is defined for all y > 0 as

Γ(y) =

∫ +∞

0

xy−1e−xdx.

We state a few well-known properties:

Lemma 2.3.1. i) Γ(1) = 1.

ii) For all y > 0, Γ(y + 1) = yΓ(y).

iii) Γ(1/2) =
√
π.

iv) For all n ∈ N, Γ(n+ 1) = n!

v) For L ∈ N and n ≤ L:(
L
n

)
=

Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)
=

L!

n!(L− n)!
. (2.3.1)

vi) For all a ∈ R,

lim
`→+∞

Γ(`)

Γ(`+ a)
= `−a. (2.3.2)

We shall also use the Beta function, denoted B, which is defined, for all x, y > 0,
as

B(x, y) =

∫ 1

0

sx−1(1− s)y−1ds =

∫ +∞

0

sx−1

(1 + s)x+y
ds =

Γ(x)Γ(y)

Γ(x+ y)
. (2.3.3)

2.4 The C-GAF and the S2-GAF

We are going to introduce two families of Hilbert spaces of analytic functions that
depend on a positive parameter L. These will be used to generate GAFs and to
study the properties of their zero sets.

2.4.1 The spaces FL

Given a real value L > 0, we define the planar space, also known as the Bargmann-
Fock space, as

FL :=

{
f ∈ A(C) : ‖f‖2

FL =
L

π

∫
C
|f(z)|2 e−L|z|2dm(z) < +∞

}
,

where dm stands for the Lebesgue measure. The factor L/π is chosen so that

L

π
e−L|z|

2

dm(z), z ∈ C,
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is a probability measure, i.e., ‖1‖FL = 1.
In this space,

en(z) =

√
Ln

n!
zn, n ≥ 0,

is an orthonormal basis. Let us show this property.

Lemma 2.4.1. (en)+∞
n=0 is an orthonormal basis in FL.

Proof. We have to show that (en, em)FL = δn,m and that (en)+∞
n=0 is complete.

Let us focus on the first part. For n,m ∈ N we have, using polar coordinates:

(en, em)FL =
L

π

∫
C

√
Ln+m

n!m!
e−L|z|

2

dm(z)

=
L

π

√
Ln+m

n!m!

∫ 2π

0

∫ +∞

0

rn+m+1eiθ(n−m)e−Lr
2

drdθ.

However, if n 6= m, ∫ 2π

0

eiθ(n−m)dθ = 0. (2.4.1)

Hence, if n 6= m, we conclude that (en, em)FL = 0. Otherwise, if n = m, we have,
by using the definition and properties of the Gamma function and the change of
variable t = Lr2, that

(en, en)FL =
Ln+1

n!

∫ +∞

0

2r2n+1e−Lr
2

dr =
1

n!

∫ +∞

0

tne−t =
Γ(n+ 1)

n!
= 1.

Thus (en)+∞
n=0 is an orthonormal system in FL.

For completeness just notice that (en)+∞
n=0 is a normalization of the monomial basis.

Using Definition 2.2.1, for every L > 0 we can generate the GAF

fL(z) =
+∞∑
n=0

ξn

√
Ln

n!
zn, (2.4.2)

where (ξn)+∞
n=0 is a sequence of i.i.d. random variables with NC(0, 1) distribution.

This is known as the planar Gaussian analytic function (C-GAF, for short). The
covariance kernel of this GAF is

KfL(z, w) =
+∞∑
n=0

Ln

n!
znwn = eLzw. (2.4.3)
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2.4.2 The Riemann sphere S2

We deal mainly with GAFs on the Riemann sphere. Let us reveal some properties
of it. The topology is defined in the following way:

• If w ∈ C the neighbourhood system is generated by the family of disks
{D(w, r)}r>0.

• Otherwise, if w = ∞ the neighbourhood system is generated by the family
S2 \ {D(0, r)}r>0.

Let us set S2 := {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}. Denote N := (0, 0, 1).

Lemma 2.4.2. The stereographic projection

p : S2 \ {N} −→ C

x = (x1, x2, x3) 7−→ x1

1− x3

+ i
x2

1− x3

establishes a homeomorphism between S2 \ {N} and C.

Proof. The mapping p is well-defined, continuous and bijective. For the inverse
mapping, take p(x) = a + ib, for all a, b ∈ R. So, imposing a = x1/(1 − x3) and
b = x2/(1− x3), we get

|z|2 = a2 + b2 =
x2

1 + x2
2

(1− x3)2
=

1− x2
3

(1− x3)2
=

1 + x3

1− x3

.

Thus, since a = (z + z)/2 and b = (z − z)/2i, from

(1− x3)|z|2 = 1 + x3

we deduce that

x3 =
|z|2 − 1

1 + |z|2
.

Also it follows that

x1 = a(1− x3) = a

(
1− |z|

2 − 1

1 + |z|2

)
=

z + z

1 + |z|2
,

x2 = b(1− x3) = b

(
1− |z|

2 − 1

1 + |z|2

)
=

z − z
i(1 + |z|2)

.

Hence the inverse mapping is defined as

p−1 : C −→ S2 \ {N}

z 7−→
(

z + z

1 + |z|2
,

z − z
i(1 + |z|2)

,
|z|2 − 1

1 + |z|2

)
,
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and it is continuous. Therefore p is a homeomorphism between S2 \{N} and C. We
extend p to the mapping

p∞ : S2 −→ S2

x 7−→

{
p(x), if x 6= N ,

∞, if x = N .

Then we have that p∞ is bijective and that limx→N |p∞(x)| = ∞. This implies
that p∞ is a homeomorphism between S2 and S2 and, since S2 is compact, S2 is also
compact. Therefore S2 can be understood as the Alexandroff compactification of C
with the point {∞}.

The chordal distance

The metric we are going to consider is the chordal distance, which is the Euclidian
distance in R3 projected to C by the stereographic projection. It has the expression:

dch(z, w) :=
2|z − w|

(1 + |z|2)1/2(1 + |w|2)1/2
, z, w ∈ C. (2.4.4)

Remark 2.4.3. Let us state a few properties about the chordal distance:

i) We define the chordal disk as

Dch(z0, ρ) := {z ∈ C : dch(z0, z) < ρ}, z0 ∈ C, ρ > 0.

ii) The relation between the radii of D(0, r) and Dch(0, ρ), for r, ρ > 0, is:

Dch(0, ρ) = D

(
0,

ρ√
4− ρ2

)

and

D(0, r) = Dch

(
0,

2r√
1 + r2

)
.

iii) The expression

dm∗(z) :=
dm(z)

π(1 + |z|2)2
, z ∈ C,

called the parabolic measure, is the push-forward in C of the surface area
measure in S2, by the stereographic projection. We will see in Corollary 2.4.5
that the parabolic measure is invariant by the rotations of S2 projected to C.

iv) Let us compute the parabolic measure of a chordal disk Dch := Dch(z0, ρ) with
z0 ∈ C and ρ > 0. Denote

|z| ≤ ρ̃ :=
ρ√

4− ρ2
.
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Using polar coordinates and the change of variable t = 1 + r2:

m∗(Dch) =

∫
Dch

dm∗(z) =

∫
Dch

dm(z)

π(1 + |z|2)2
=

∫ ρ̃

0

2r

(1 + r2)2
dr

=

∫ 1+ρ̃2

1

dt

t2
=

ρ̃2

1 + ρ̃2
=
ρ2

4
.

Transformations

The transformations we consider are the rotations of S2 projected to C, which are
the Möbius transformations of the form

φθa(z) =
z − a
1 + az

eiθ, z, a ∈ C and θ ∈ [0, 2π).

As notation, φa ≡ φ0
a, for all a ∈ C.

Remark 2.4.4. From the expression of φa it follows

1 + |φa(z)|2 =
(1 + |a|2)(1 + |z|2)

|1 + az|2
, a, z ∈ C. (2.4.5)

Due to (2.4.4) and (2.4.5), it can be easily checked that

(1 + |φa(z)|2)−1 = 1−
(
dch(z, a)

2

)2

, a, z ∈ C. (2.4.6)

Also notice that

φ′a(z) =
1 + |a|2

(1 + az)2
. (2.4.7)

Corollary 2.4.5. The parabolic measure is invariant by φa, for all a ∈ C.

Proof. Recalling that dm∗ is the surface area measure of S2 projected to C, we have,
by using (2.4.5) and (2.4.7), that for all z ∈ C:

dm∗ (φa(z)) =
|φ′a(z)|2

π(1 + |φa(z)|2)2
dm(z) =

dm(z)

π(1 + |z|2)2
= dm∗(z).

2.4.3 The spaces PL

We represent the Hilbert spaces of holomorphic functions used in the definition of
GAF in the C-chart. Given L ∈ N we define the parabolic space or the space of
polynomials of degree at most L as:

PL :=

{
f ∈ PL[C] : ‖f‖2

PL = (L+ 1)

∫
C

|f(z)|2

(1 + |z|2)L
dm∗(z) < +∞

}
,
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where PL[C] is the vector space of polynomials of degree at most L with complex
coefficients and dm stands for the Lebesgue measure on C. The space PL[C] can be
seen as the projection to C of the space of sections of the L-th power of the canonical
bundle of S2.
It is not strange to consider such a norm. We normalize |f(z)|2 by (1+ |z|2)L, which
is a rescaled by the degree of f , to avoid that the first terms tends to infinite. The
factor L+ 1 is chosen so that

L+ 1

(1 + |z|2)L
dm∗(z), z ∈ C,

is a probability measure, i.e., ‖1‖PL = 1.

Lemma 2.4.6. The family

en(z) =

(
L
n

)1/2

zn, n = 0, ..., L,

forms an orthonormal basis of PL.

Proof. We have to show that (en, em)PL = δn,m and that (en)+∞
n=0 is complete.

For n,m ∈ N we have, by applying a change of variables in polar coordinates:

(en, em)PL =
L+ 1

π

∫
C

(
L
n

)1/2(
L
m

)1/2
znzm

(1 + |z|2)L+2
dm(z)

=
L+ 1

π

(
L
n

)1/2(
L
m

)1/2 ∫ 2π

0

∫ +∞

0

rn+m+1eiθ(n−m)

(1− r2)L+2
drdθ.

Thus, if n 6= m, (en, em)PL = 0 by (2.4.1). Otherwise, if n = m, we get, by using
the property (2.3.1), the definition of the Beta function (2.3.3) and the change of
variable t = r2, that

(en, en)PL =
(L+ 1)Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)

∫ +∞

0

2r2n+1

(1 + r2)L+2
dr

=
(L+ 1)Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)

∫ +∞

0

tn

tL+2
dt

=
(L+ 1)Γ(L+ 1)

Γ(n+ 1)Γ(L− n+ 1)

Γ(n+ 1)Γ(L− n+ 1)

Γ(L+ 2)

=
(L+ 1)Γ(L+ 1)

Γ(L+ 2)
= 1.

Hence (en)Ln=0 is an orthonormal system in PL.
Completeness follows since (zn)Ln=0 is an orthogonal basis and (en)Ln=0 is its orthonor-
malization.
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By using Definition 2.2.1, for all L ∈ N we can define the GAF

fL(z) =
L∑
n=0

ξn

(
L
n

)1/2

zn, (2.4.8)

where (ξn)Ln=0 is a sequence of i.i.d. random variables NC(0, 1). This is known as the
parabolic Gaussian analytic function (S2-GAF, for short). The covariance kernel of
this GAF is

KfL(z, w) =
L∑
n=0

(
L
n

)
znwn = (1 + zw)L. (2.4.9)

2.5 Distribution, intensity and invariance of the

zero set of a GAF

In this section we would like to see how these zero point sets are distributed.
Assume that f is a GAF in a region Ω ⊆ C and denote Zf its zero set.

Definition 2.5.1. The empirical measure of f is

νf =
∑
a∈Zf

δa =
1

2π
∆ log |f |,

where δa is the Dirac delta measure at a and the Laplacian ∆ must be understood
in the distributional sense.

The empirical measure encodes all the information of Zf , and allows the use of
the tools of the theory of distributions to extract information from it.

Definition 2.5.2. Let µ be measure that is finite over compact sets of Ω. We say
that u ∈ L1

loc(Ω) is a solution of
∆u = µ

on Ω in the sense of distributions if for all ϕ ∈ C2
c (Ω) it is satisfied∫

Ω

u(z)∆ϕ(z)dm(z) =

∫
Ω

ϕ(z)dµ(z).

Now we are ready to state a fundamental result describing the average distribu-
tion of Zf .

Theorem 2.5.3. (The Edelman-Kostlan formula) (see [2], p. 24, 25) Assume
that f is a GAF in Ω with zero mean and covariance kernel Kf (z, w), for all z, w ∈ Ω.
Then

E[νf ] =
1

2π
logE[|f(z)|] =

1

4π
∆ logKf (z, z),

where ∆ must be understood in the sense of distributions and E[νf ] is a deterministic
measure called the first intensity.
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Proof. Consider a function ϕ ∈ C2
c (Ω). By Definition 2.5.1 we get∫

Ω

ϕ(z)dνf (z) =

∫
Ω

1

2π
log |f(z)|∆ϕ(z)dm(z),

which implies

E
[∫

Ω

ϕ(z)dνf (z)

]
= E

[∫
Ω

1

2π
log |f(z)|∆ϕ(z)dm(z)

]
.

In order to apply Fubini’s theorem on the RHS of the equation we must verify that:

E
[∫

Ω

∣∣∣∣ 1

2π
log |f(z)|∆ϕ(z)dm(z)

∣∣∣∣] <∞.
Using the linearity of the expectation and taking into account that ∆ϕ is determin-
istic, we have

E
[∫

Ω

∣∣∣∣ 1

2π
log |f(z)|∆ϕ(z)dm(z)

∣∣∣∣] =

∫
Ω

1

2π
E [|log |f(z)||] |∆ϕ(z)|dm(z).

By denoting f̂(z) = f(z)/
√
Kf (z, z), which is a NC(0, 1) random variable, we have:

E [| log |f(z)||] = E

[∣∣∣∣∣log

∣∣∣∣∣ f(z)√
Kf (z, z)

√
Kf (z, z)

∣∣∣∣∣
∣∣∣∣∣
]

= E
[
| log |f̂(z)||

]
+ log

∣∣∣∣√Kf (z, z)

∣∣∣∣
(∗)
=

∫
C
| log |ξ||e

−|ξ|2

π
dm(ξ) +

1

2
log |Kf (z, z)|

(∗∗)
=

∫ +∞

0

2r| log(r)|e−r2dr +
1

2
log |Kf (z, z)|

(∗∗∗)
=

∫ +∞

0

| log(s)|e−sds+
1

2
log |Kf (z, z)| = K1 +

1

2
log |Kf (z, z)|,

where in (∗) we applied the definition of expectation, taking into account that the
density function of a NC(0, 1) random variable is e−|z|

2
/π, for all z ∈ C. The step

(∗∗) follows by a change into polar coordinates and (∗ ∗ ∗) by the change of variable
s = r2. Recall that K1 is a constant value.
Notice that log |Kf (z, z)| is locally integrable for all z ∈ Ω. However we must study
the case when Kf (a, a) = 0, for a ∈ Ω. For this we will show that:

Kf (z, z) = |z − a|2mG(z, z),

where m is a natural number and G is a function such that G(a, a) 6= 0, for those
values a ∈ Ω such that Kf (a, a) = 0.
Indeed, by Definition 2.2.1, we can write

Kf (z, z) =
+∞∑
n=0

en(z)en(z).
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Each element of (en)+∞
n=0 is of the form

en(z) = (z − a)mngn(z),

where mn is the multiplicity of a and gn is a function such that gn(a) 6= 0. Thus,
and by denoting m = minn∈Nmn:

Kf (z, z) =
+∞∑
n=0

|z − a|2mn|gn(z)|2 = |z − a|2m
+∞∑
n=0

|z − a|2mn−2m|gn(z)|2

= |z − a|2mG(z, z),

where G(a, a) 6= 0 since gn(a) 6= 0. Hence log |Kf (z, z)| is locally integrable in a
neighbourhood of a. Therefore

E
[∫

Ω

∣∣∣∣ 1

2π
log |f(z)|∆ϕ(z)dm(z)

∣∣∣∣] <∞,
and we are under conditions of Fubini’s theorem. We get:

E
[∫

Ω

1

2π
log |f(z)|∆ϕ(z)dm(z)

]
=

∫
Ω

1

2π
∆E [log |f(z)|]ϕ(z)dm(z).

Proceeding in a similar way as before we have

E [log |f(z)|] = K2 +
1

2
logKf (z, z),

where K2 is a constant value. Finally, we reach the equality

E
[∫

Ω

ϕ(z)dνf (z)

]
=

∫
Ω

1

4π
∆ logKf (z, z)ϕ(z)dm(z).

By Fubini’s theorem and recalling that ϕ is deterministic, we get that

E
[∫

Ω

ϕ(z)dνf (z)

]
=

∫
Ω

ϕ(z)dE [νf ] .

By Definition 2.5.2 we conclude that the first intensity is, with respect to the
Lebesgue measure:

E [νf ] =
1

4π
∆ logKf (z, z).

2.5.1 First intensity of a C-GAF

We see here that the average number of points of the C-GAF of intensity L > 0 is
L times the Lebesgue measure in C.
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Let fL be a C-GAF with real parameter L > 0. From its covariance kernel expres-
sion, (2.4.3), we have

E[νfL ] =
1

4π
∆ logKfL(z, z) =

1

4π
∆ log

(
eLzw

)
=
L

π

∂

∂z

∂

∂z
(zz) =

L

π
dm(z).

The zero set process of a C-GAF has another property: it is invariant by translations
in C.

Proposition 2.5.4. Let fL be a C-GAF of real parameter L > 0. Its zero point
process is invariant under the transformations

φa(z) = z − a, z, a ∈ C.

Proof. Denote
fa(z) = fL(φa(z)).

This function has covariance kernel

Kfa(z, w) = KfL(φa(z), φa(w)) = eLzw−Lza−Law+L|a|2 . (2.5.1)

Consider the function
TafL(z) = fa(z)eLza−

L
2
|a|2 .

We want to show that
fL(z) = TafL(z)

in distribution. To check this we must ensure that their covariance kernels are equal.
Indeed:

KTafL(z, w) = Kfa(z, w)eLza−L|a|
2+Law (∗)

= eLzw = KfL(z, w),

where in (∗) we used (2.5.1). Since the covariance kernels coincide, the proof is
finished.

Proposition 2.5.5. Let fL be a C-GAF of real parameter L > 0. Then fL and
TafL are isometric.

Proof. We must show that
‖fL‖2

FL = ‖TafL‖2
FL .

Noticing that

‖TafL‖2
FL =

L

π

∫
C
|fL(z − a)|2

∣∣∣eLaz−L2 |a|2∣∣∣2 e−L|z|2dm(z),

doing the change of variable w = z − a and recalling that the Lebesgue measure is
invariant under translations, the equality is simple to verify.

Proposition 2.5.4 implies that the zero set of fa is the same one in distribution
than fL. Indeed, since eLza−

L
2
|a|2 does not vanish anywhere, the property is trivially

accomplished.
Since the first intensity of a C-GAF determines in mean the distribution of its zero
set process, it is also invariant by translations in C.
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2.5.2 First intensity of an S2-GAF

We see here that the average number of points of the S2-GAF in a region is propor-
tional to the area of the region at S2.
Let fL be an S2-GAF of parameter L ∈ N. From its covariance kernel, (2.4.9), we
have

E[νfL ] =
1

4π
∆ logKfL(z, z) =

1

4π
∆ log

[
(1 + |z|2)L

]
=
L

π

dm(z)

(1 + |z|2)2 = Ldm∗(z).

Notice that the Poisson process and the zero set process of an S2-GAF have the
same average number of points (see (1.3.2)).
The zero set process of an S2-GAF is invariant by rotations in S2, which in the
C-chart are seen as certain Möbius transformations.

Proposition 2.5.6. Let fL be an S2-GAF. Its zero point process is invariant under
the Möbius transformations

φa(z) =
z − a
1 + az

, a, z ∈ C. (2.5.2)

Proof. As in the proof of Proposition 2.5.4, consider

fa(z) = fL(φa(z)).

Its covariance kernel is

Kfa(z, w) = KfL(φa(z), φa(w)) =

(
(1 + |a|2)(1 + zw)

(1 + az)(1 + aw)

)L
. (2.5.3)

Consider

TafL(z) =

(
1 + |a|2

(1 + az)2

)−L/2
fa(z).

What we want to prove is
fL(z) = TafL(z)

in distribution. To see this we must check that their covariance kernels coincide.
We have:

KTafL(z, w) = Kfa(z, w)

(
1 + |a|2

(1 + az)2

)−L/2(
1 + |a|2

(1 + aw)2

)−L/2
(∗)
= (1 + zw)L = KfL(z, w),

where in (∗) we applied (2.5.3). Since the covariance kernels are equal, we finally
have the result we desired.

Proposition 2.5.7. Let fL be an S2-GAF of parameter L ∈ N. We have that Ta is
an isometry from PL to PL.
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Proof. The statement is equivalent to proving that

‖fL‖2
PL = ‖TafL‖2

PL .

Using (2.4.7) we have that

(1 + |z|2) |φ′a(z)| = (1 + |a|2)(1 + |z|2)

|1 + az|2
= (1 + |φa(z)|)−1.

Hence, by doing the change of variable w = φa(z) (see (2.5.2)), using (2.4.7) and
applying Corollary 2.4.5, we get:

‖TafL‖2
PL = (L+ 1)

∫
C

|fL(φa(z))|2

(1 + |z|2)L
|1 + az|2L

(1 + |a|2)L
dm∗(z)

= (L+ 1)

∫
C

|fL(φa(z))|2

(1 + |φa(z)|2)L
dm∗(z)

= (L+ 1)

∫
C

|fL(w)|2

(1 + |w|2)L
dm∗(w) = ‖fL‖2

PL .

By Proposition 2.5.6 we get that the zero set point of an S2-GAF fL is the
same than TafL in distribution. Furthermore, the zero set of fL is equal to fa in
distribution. Indeed, if for all a, z ∈ C we had(

1 + |a|2

(1 + az)2

)−L/2
= 0,

we would conclude that |a|2 = −1, which is a contradiction by the definition of
modulus.
Since the first intensity of an S2-GAF determines in mean the distribution of its zero
set process, it is also invariant by the Möbius rotational transformation. Indeed, by
the change of variable w = φa(z) (see (2.5.2)), using (2.4.5) and taking fa as in the
proof of Proposition 2.5.6, we get

E[νfL ] =
L

π

dm(z)

(1 + |φa(z)|2)2 =
L

π

(1− aw)2(1− aw)2(1 + |a|2)2

(1− aw)2(1− aw)2(1 + |a|2)2(1 + |w|2)2
dm(w)

=
L

π

dm(w)

(1 + |w|2)2 = E[νfa ].
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Chapter 3

Fluctuation of the zero set of an
S2-GAF

Here we address the main goal of this project: the study of the fluctuation of an
S2-GAF in Ω. This can be measured in different ways. One possibility is to measure
how the number of zeros in a given region D ⊂⊂ Ω, with ∂D regular, deviates from
its mean (given by the Edelman-Kostlan formula). This deviation can be quantified
as the variance of the random variables counting the number of points on D, i.e.,
νf (D), where f is a GAF in Ω.
We will first give a general formula for the variance of νf (D). Later we shall use
this formula to write the particular case of the S2-GAF fL of parameter L ∈ N and
D a disk in C. From this explicit formula we will deduce the asymptotic behaviour
of the variance of νfL(D) in different ways.
To write this chapter I followed a similar scheme as in [5]. The source [6] was essential
for this chapter. The references [2] and [9] were also helpful for the understanding
of some proofs.

3.1 Variance of a GAF

We are going to compute the variance of a GAF f defined in Ω in a region D ⊂⊂ Ω
with ∂D regular. For simplicity, we are going to denote

νf (D) = I(1D) =

∫
D

dνf = #(Zf ∩D).

In addition, we will use V for the variance. We state the following theorem.

Theorem 3.1.1. Let f be a GAF in Ω and let D ⊂⊂ Ω with ∂D regular. Then

V [νf (D)] = − 1

4π2

∫
∂D

∫
∂D

1

1−K(z, w)

∂

∂z

(
Kf (w, z)
Kf (z, z)

)
∂

∂w

(
Kf (z, w)

Kf (w,w)

)
dzdw,

(3.1.1)
where

K(z, w) =
|Kf (z, w)|2

Kf (z, z)Kf (w,w)
. (3.1.2)

25
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Proof. By definition

V [νf (D)] = E
[
(νf (D)− E [νf (D)])2] .

By Definition 2.5.1 and Theorem 2.5.3 we can state:

νf (D)− E [νf (D)] =

∫
D

(
1

2π
∆ log |f(z)| − 1

2π
∆
√
Kf (z, z)

)
=

∫
D

1

2π
∆ log

(
|f(z)|√
Kf (z, z)

)
(∗)
=

∫
D

1

2π
∆ log |f̂(z)|,

where in (∗) we denote f̂ = f/
√
Kf (z, z) ∼ NC(0, 1). To go further in the calcula-

tions consider the 1-form

ω = − i
π
∂z log |f̂(z)|dz.

Applying the exterior derivative to ω, remembering that d2 = 0 and recalling the
fact that dz ∧ dz = −2idx ∧ dy, we get:

dw = − i
π

∂2

∂z∂z
log |f̂(z)|dz ∧ dz =

i

4π
∆ log |f̂(z)|dz ∧ dz =

1

2π
∆ log |f̂(z)|dx ∧ dy

=
1

2π
∆ log |f̂(z)|dm(z).

By Stokes’ theorem we conclude that∫
D

1

2π
∆ log |f̂(z)| = −

∫
∂D

i

π
∂z log |f̂(z)|dz.

So we have

V [νf (D)] = E
[
(νf (D)− E [νf (D)])2]

= E
[∫

∂D

i

π
∂z log |f̂(z)|dz

∫
∂D

i

π
∂w log |f̂(w)|dw

]
= − 1

π2

∫
∂D

∫
∂D

∂z∂wE
[
log |f̂(z)| log |f̂(w)|

]
dzdw,

where in the last equality we used Fubini’s theorem and the differentiation under
the integral sign. Recall that, if X and Y are two random variables, their covariance
is defined as

Cov [X, Y ] = E [XY ]− E [X]E [Y ] .

Here

Cov
[
log |f̂(z)|, log |f̂(w)|

]
= E

[
log |f̂(z)| log |f̂(w)|

]
− E

[
log |f̂(z)|

]
E
[
log |f̂(w)|

]
.
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Since f̂ ∼ NC(0, 1), E
[
log |f̂(z)|

]
is constant (independent of z). Hence we have

∂z∂wCov
[
log |f̂(z)|, log |f̂(w)|

]
= ∂z∂wE

[
log |f̂(z)| log |f̂(w)|

]
and then we can write

V [νf (D)] = − 1

π2

∫
∂D

∫
∂D

∂z∂wCov
[
log |f̂(z)|, log |f̂(w)|

]
dzdw.

Notice that

E
[
f̂(z)f̂(z)

]
= E

[∣∣∣f̂(z)
∣∣∣2] = E

[
|f(z)|2

Kf (z, z)

]
=
Kf (z, z)

Kf (z, z)
= 1.

Also we get

Θ(z, w) := E
[
f̂(z)f̂(w)

]
=

E
[
f̂(z)f̂(w)

]
√
Kf (z, z)

√
Kf (w,w)

=
Kf (z, w)√

Kf (z, z)
√
Kf (w,w)

.

Lemma 3.1.2 ([2], p. 44-46). Let Z1 and Z2 be complex normal random variables
such that E

[
Z1Z1

]
= E

[
Z2Z2

]
= 1 and E

[
Z1Z2

]
= θ, then

Cov [log |Z1|, log |Z2|] =
+∞∑
j=1

|θ|2j

4j2
=

1

4
Li2
(
|θ|2
)
.

The function

Li2(x) :=
+∞∑
j=1

xj

j2
, x ∈ [0, 1),

is called the dilogarithm.

Applying this lemma in our case:

V [νf (D)] = − 1

4π2

∫
∂D

∫
∂D

∂z∂wLi2
(
|Θ(z, w)|2

)
dzdw.

We shall compute ∂z∂wLi2 (K(z, w)). For simplicity, denote (3.1.2) by K. We have

∂wLi2 (K) = ∂w

+∞∑
j=1

Kj

j2
= ∂w(K)

+∞∑
j=1

Kj−1

j
,

and

∂z∂wLi2 (K) = ∂z

(
∂w(K)

+∞∑
j=1

Kj−1

j

)
(3.1.3)

=
∂2K

∂z∂w

+∞∑
j=1

Kj−1

j
+ ∂w(K)∂z(K)

+∞∑
j=1

j − 1

j
Kj−2. (3.1.4)
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We claim that:
∂2K

∂z∂w
=

1

K

∂K

∂z

∂K

∂w
.

On the one hand

∂K

∂z
=

∂

∂z

(
|Kf (z, w)|2

Kf (z, z)Kf (w,w)

)
=

1

Kf (w,w)

∂

∂z

(
Kf (z, w)Kf (w, z)
Kf (z, z)

)
(3.1.5)

=
Kf (z, w)

Kf (w,w)

∂

∂z

(
Kf (w, z)
Kf (z, z)

)
. (3.1.6)

On the other hand

∂K

∂w
=

∂

∂w

(
|Kf (z, w)|2

Kf (z, z)Kf (w,w)

)
=

1

Kf (z, z)

∂

∂w

(
Kf (z, w)Kf (w, z)
Kf (w,w)

)
(3.1.7)

=
Kf (w, z)
Kf (z, z)

∂

∂w

(
Kf (z, w)

Kf (w,w)

)
. (3.1.8)

All combined

1

K

∂K

∂z

∂K

∂w
=

1

K

Kf (z, w)Kf (w, z)
Kf (w,w)Kf (z, z)

∂

∂z

(
Kf (w, z)
Kf (z, z)

)
∂

∂w

(
Kf (z, w)

Kf (w,w)

)
=

∂2K

∂z∂w
.

Now we can use this identity to finish the computations of ∂z∂wLi2 (K). Going back
to (3.1.3), we have

∂z∂wLi2 (K) =
∂2K

∂z∂w

+∞∑
j=1

Kj−1

j
+ ∂w(K)∂z(K)

+∞∑
j=1

j − 1

j
Kj−2

=
1

K

∂K

∂z

∂K

∂w

+∞∑
j=1

Kj−1

j
+
∂K

∂z

∂K

∂w

+∞∑
j=1

j − 1

j
Kj−2

=
1

K

∂K

∂z

∂K

∂w

(
+∞∑
j=1

Kj−1

)
=

1

K(1−K)

∂K

∂z

∂K

∂w
,

where the last equality follows because |K| ≤ 1 (see Lemma 2.2.3). Hence

V [νf (D)] = − 1

4π2

∫
∂D

∫
∂D

1

K(1−K)

∂K

∂z

∂K

∂w
dzdw.

Using (3.1.5) and (3.1.7), we finish with the expression

V [νf (D)] = − 1

4π2

∫
∂D

∫
∂D

1

1−K
∂

∂z

(
Kf (w, z)
Kf (z, z)

)
∂

∂w

(
Kf (z, w)

Kf (w,w)

)
dzdw,

as we wanted.
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3.2 Fluctuation of the zero set of an S2-GAF

In this section we will use Theorem 3.1.1 to get expressions for disks of the variance
for a C-GAF with real parameter L > 0 and for a S2-GAF with parameter L ∈ N.
We will compare these values with the analogous ones for a Poisson process with
the same average of points. Also we will show that the Bargmann-Fock space of
parameter L = 1 can be seen as the limit of parabolic spaces as L→ +∞.

3.2.1 Variance of a C-GAF

The starting point of our analysis is the explicit formula of the variance for a C-GAF.

Theorem 3.2.1. Let fL be a C-GAF of real parameter L > 0. For a disk D(z0, r) ⊂
C for z0 ∈ C and r > 0 we have:

V [νfL (D(z0, r))] =

√
Lr2

2π

∫ 4Lr2

0

1

ex − 1

√
x√

1− x
4Lr2

dx. (3.2.1)

Proof. The value does not depend on z0 by the invariance of the translations. Then
we can assume that z0 = 0. Denote D := D(0, r).
We apply Theorem 3.1.1 to this case. We know that KfL(z, w) = eLzw. Then, by
(3.1.2), K(z, w) = e−L|z−w|

2
. It is trivial to compute the following:

KfL(z, w)

KfL(w,w)
= eLzw−L|w|

2

,
∂

∂w

(
KfL(z, w)

KfL(w,w)

)
= L(z − w)eLzw−L|w|

2

,

KfL(w, z)

KfL(z, z)
= eLwz−L|z|

2

,
∂

∂z

(
KfL(w, z)

KfL(z, z)

)
= L(w − z)eLwz−L|z|

2

,

1

1−K(z, w)
=

1

1− e−L|z−w|2
.

Hence

V [νf (D)] =
L2

4π2

∫
∂D

∫
∂D

(w − z)2

eL|z−w|2 − 1
dzdw.

Denoting z = reiθ, w = reiφ, for all θ, φ ∈ (0, 2π), we have

(w − z)2 |J (θ, φ)| = r2(e2iθ − 2ei(θ+φ) + e2iφ)

∣∣∣∣−ire−iθ 0
0 −ire−iφ

∣∣∣∣
= −r4(ei(θ−φ) + ei(φ−θ) − 2) = r4

∣∣1− ei(θ−φ)
∣∣2 ,

where J is the Jacobian matrix. Applying the change of variables with respect to
(θ, φ), we get

V [νfL (D)] =
Lr2

4π2

∫ 2π

0

∫ 2π

0

Lr2
∣∣1− ei(θ−φ)

∣∣2
eLr

2|1−ei(θ−φ)|2 − 1
dθdφ

(∗)
=
Lr2

2π

∫ 2π

0

Lr2 |1− eit|2

eLr2|1−eit|
2 − 1

dt,
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where in (∗) we applied the change t = θ−φ. Now, notice that |1− eit|2 = 2−2 cos t.
Using the change of variable

x = 2Lr2(1− cos t), dx = 2Lr2 sin tdt,

where

sin t =
√

1− cos2 t =

√
x

Lr2

√
1− x

4Lr2
,

we have, by using the fact that the integrand is even,

V [νfL(D)] =

√
Lr2

2π

∫ 4Lr2

0

1

ex − 1

√
x√

1− x
4Lr2

dx.

3.2.2 Variance of an S2-GAF

Let us give the variance expression for an S2-GAF.

Theorem 3.2.2. Let fL be an S2-GAF of parameter L ∈ N. For a chordal disk
Dch(z0, ρ̃) ⊂ C for z0 ∈ C and ρ̃ > 0 we have:

V [νfL (Dch(z0, ρ̃))] =
L2

2π

ρ̃
√

4− ρ̃2

4

∫ ρ̃2(4−ρ̃2)
4

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− 4
ρ̃2(4−ρ̃2)

x
dx,

(3.2.2)

Proof. The value does not depend on z0 by the invariance of the rotations. Then
we can assume z0 = 0. By i) of Remark 2.4.3, we have that, if z ∈ Dch(0, ρ̃):

|z| ≤ ρ̃√
4− ρ̃2

= ρ̂.

We shall apply Theorem 3.1.1 to the case in D := D(0, ρ̂). Since fL is an S2-GAF,
it is easy to verify that

K(z, w) =
|1 + zw|2L

(1 + |z|2)L(1 + |w|2)L
.

By straightforward computations we get

KfL(z, w)

KfL(w,w)
=

(1 + zw)L

(1 + |w|2)L
,

∂

∂w

(
KfL(z, w)

KfL(w,w)

)
= L(z − w)

(1 + zw)L−1

(1 + |w|2)L+1
,

KfL(w, z)

KfL(z, z)
=

(1 + wz)L

(1 + |z|2)L
,

∂

∂z

(
KfL(w, z)

KfL(z, z)

)
= −L(z − w)

(1 + wz)L−1

(1 + |z|2)L+1
,

1

1−K(z, w)
=

(1 + |z|2)L(1 + |w|2)L

(1 + |z|2)L(1 + |w|2)L − |1 + zw|2L
.
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Thus

V [νfL (Dch(0, ρ̃))] =

=
L2

4π2

∫
∂D

∫
∂D

|1 + zw|2L−2(z − w)2dzdw

(1 + |z|2)L+1(1 + |w|2)L+1 − |1 + zw|2L(1 + |z|2)(1 + |w|2)
.

Fixing ρ̂ > 0 of the disk D and denoting z = ρ̂eiθ, w = ρ̂eiφ, for all θ, φ ∈ (0, 2π),
we have

(z − w)2 |J (θ, φ)| = ρ̂2(e2iθ − 2ei(θ+φ) + e2iφ)

∣∣∣∣−iρ̂e−iθ 0
0 −iρ̂e−iφ

∣∣∣∣
= −ρ̂4(ei(θ−φ) + ei(φ−θ) − 2) = ρ̂4

∣∣1− ei(θ−φ)
∣∣2 ,

where J stands for the Jacobian matrix. By trivial calculations and applying the
change of variable t = θ − φ, we get now

V [νfL (Dch(0, ρ̃))] =
L2ρ̂4

4π2

∫ 2π

0

∫ 2π

0

∣∣1 + ρ̂2ei(θ−φ)
∣∣2L−2 ∣∣1− ei(θ−φ)

∣∣2
(1 + ρ̂2)2L+2 − |1 + ρ̂2ei(θ−φ)|2L (1 + ρ̂2)2

dθdφ

=
L2

2π

ρ̂4

(1 + ρ̂2)2

∫ 2π

0

|1 + ρ̂2eit|2L

(1 + ρ̂2)2L − |1 + ρ̂2eit|2L
|1− eit|2

|1 + ρ̂2eit|2
dt.

Notice that∣∣1 + ρ̂2eit
∣∣2 = (1 + ρ̂2)2

[
1− 2ρ̂2

(1 + ρ̂2)2
(1− cos t)

]
,
∣∣1− eit∣∣2 = 2− 2 cos t.

By using these expressions and that the integrand is even we have

V [νfL (Dch(0, ρ̃))] =

=
2L2

π

ρ̂4

(1 + ρ̂2)4

∫ π

0

[
1− 2ρ̂2

(1+ρ̂2)2
(1− cos t)

]L
1−

[
1− 2ρ̂2

(1+ρ̂2)2
(1− cos t)

]L 1− cos t

1− 2ρ̂2

(1+ρ̂2)2
(1− cos t)

dt.

If we use the change of variable

x =
2ρ̂2

(1 + ρ̂2)2
(1− cos t), dx =

2ρ̂2

(1 + ρ̂2)2
sin tdt,

where

sin t =
√

1− cos2 t =
1 + ρ̂2

ρ̂

√
x

√
1− (1 + ρ̂2)2

4ρ̂2
x,

we have

V [νfL (Dch(0, ρ̃))] =
L2

2π

ρ̂

1 + ρ̂2

∫ 4ρ̂2

(1+ρ̂2)2

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− (1+ρ̂2)2

4ρ̂2
x
dx

=
L2

2π

ρ̃
√

4− ρ̃2

4

∫ ρ̃2(4−ρ̃2)
4

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− 4
ρ̃2(4−ρ̃2)

x
dx.
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We are going to use a simplified version of (3.2.2), which is just the variance by
applying the change of variable ρ̃ = 2ρ:

V [νfL (Dch(0, 2ρ))] =
L2

2π
ρ
√

1− ρ2

∫ 4ρ2(1−ρ2)

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− x
4ρ2(1−ρ2)

dx.

(3.2.3)
We are going to use this formula to study the asymptotic behaviour of the zero set
of an S2-GAF.

3.2.3 Asymptotics as L→ +∞
Our first case of asymtotic behaviour is when the degree of the polynomial of an
S2-GAF, L ∈ N, tends to infinite. This can be translated as increasing the average
number of points in a chordal disk Dch(z0, 2ρ), z0 ∈ C, which is L times the surface
of the chordal disk. In physical models where the points represent gas particles this
is called the transition to the liquid phase.
We want to show the next:

Proposition 3.2.3. Let fL be an S2-GAF of intensity L ∈ N. Consider a chordal
disk Dch(z0, 2ρ), with z0 ∈ C. Then

V [νfL (Dch(z0, 2ρ))] =

( √
L

4
√
π
ζ(3/2)ρ

√
1− ρ2

)
(1 + o(1)), as L→ +∞,

where ζ stands for the Riemann’s zeta function and o(1) is a term tending to 0 as
L→ +∞.

Remark 3.2.4. Recall that the variance of the Poisson process was of order L (see
(1.3.3)). However, the variance of the zero set points of an S2-GAF is of order

√
L.

In this sense, the process ZfL is more rigid than the Poisson process as L→ +∞.

Proof. By invariance, we can choose z0 = 0. By denoting Dch := Dch(0, 2ρ) and
τ = 4ρ2(1− ρ2) ∈ (0, 1), we get from (3.2.3):

V [νfL (Dch)] =
L2

4π

√
τ

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− x/τ
dx. (3.2.4)

We want to isolate the leading term as L→ +∞. Specifically, we want to show that
this expression can be rewritten as

V [νfL (Dch)] =

(
L2

4π

√
τ

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
dx

)
(1 + o(1)), L→ +∞.

Denote

AL =

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− x/τ
dx, ÃL =

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
dx.
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By (3.2.4), the variance can be expressed as

V [νfL (Dch)] =
L2

4π

√
τÃL

(
1 +

AL − ÃL
ÃL

)
.

In order to get the result, we have to consider

lim
L→+∞

AL − ÃL
ÃL

= lim
L→+∞

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x

(
1√

1− x/τ
− 1

)
dx∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
dx

= 0, (3.2.5)

and ensure that the order of AL− ÃL is bigger than the order of ÃL. The following
lemma addresses this:

Lemma 3.2.5. It is satisfied that:

1. ÃL = O(L−3/2).

2. AL − ÃL = O(L−5/2).

Using Lemma 3.2.5, we verify (3.2.5) and we can write

V [νfL (Dch)] =

(
L2

π

√
τ

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
dx

)
(1 + o(1)).

Noticing that the mass of the integral is concentrated around zero, the integral from
0 to 1 is of the same order. Now, using the geometric series for (1 − x)L since
|1 − x| < 1, the fact that a power series converges uniformly over compact sets in
the interval of convergence and using the definition of Beta function (2.3.3), we have
that the variance is

V [νfL (Dch)] =

(
L2

4π

√
τ

∫ 1

0

+∞∑
k=1

(1− x)kL−1
√
xdx

)
(1 + o(1))

=

(
L2

4π

√
τ

+∞∑
k=1

∫ 1

0

(1− x)kL−1
√
xdx

)
(1 + o(1))

=

(
L2

4π

√
τ

+∞∑
k=1

B(3/2, kL)

)
(1 + o(1))

=

(
L2

8
√
π

√
τ

+∞∑
k=1

Γ(kL)

Γ(kL+ 3/2)

)
(1 + o(1)).

By the asymtotics of Γ, (2.3.2), we conclude

V [νfL (Dch)] =

(
L2

8
√
π

√
τ

+∞∑
k=1

(kL)−3/2

)
(1 + o(1)) =

( √
L

8
√
π
ζ(3/2)

√
τ

)
(1 + o(1)).
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Proof of Lemma 3.2.5. 1. Notice that ÃL is equivalent to

ÃL =

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
dx =

∫ 1

0

(1− x)L

1− (1− x)L

√
x

1− x
dx−

∫ 1

τ

(1− x)L

1− (1− x)L

√
x

1− x
dx

=

(∫ 1

0

(1− x)L

1− (1− x)L

√
x

1− x
dx

)1−

∫ 1

τ

(1− x)L

1− (1− x)L

√
x

1− x
dx∫ 1

0

(1− x)L

1− (1− x)L

√
x

1− x
dx


=

(∫ 1

0

(1− x)L

1− (1− x)L

√
x

1− x
dx

)(
1− J1

J2

)
,

where

J1 :=

∫ 1

τ

(1− x)L

1− (1− x)L

√
x

1− x
dx

and

J2 :=

∫ 1

0

(1− x)L

1− (1− x)L

√
x

1− x
dx.

Let us check that the order of the numerator J1 is bigger than the order of the
denominator J2. On the one hand, since |1 − x| < 1 and using that a power
series converges uniformly over compact sets in the interval of convergence, we
have, by the Beta function (2.3.3),

J2 =
+∞∑
k=1

∫ 1

0

(1− x)Lk−1
√
xdx =

+∞∑
k=1

B(3/2, Lk) =
+∞∑
k=1

Γ(3/2)Γ(Lk)

Γ(Lk + 3/2)

=

√
π

2

+∞∑
k=1

Γ(Lk)

Γ(Lk + 3/2)
.

By the asymptotics of Γ given in (2.3.2), we get that

J2 =

√
π

2

+∞∑
k=1

Γ(Lk)

Γ(Lk + 3/2)
'
√
π

2

+∞∑
k=1

(Lk)−3/2 =

√
π

2
ζ(3/2)L−3/2.

Then J2 = O(L−3/2). On the other hand

J1 =

∫ 1

τ

(1− x)L

1− (1− x)L

√
x

1− x
dx ≤

∫ 1

τ

(1− τ)L−1

1− (1− τ)L
dx =

(1− τ)L

1− (1− τ)L
.

Hence J1 = O
(
(1− τ)L

)
. Thus limL→+∞ J1/J2 = 0 and

ÃL =

(∫ 1

0

(1− x)L

1− (1− x)L

√
x

1− x
dx

)
(1 + o(1)) .
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As we did for J2, we obtain, as L→ +∞,∫ 1

0

(1− x)L

1− (1− x)L

√
x

1− x
dx =

+∞∑
k=1

∫ 1

0

(1− x)Lk−1
√
xdx =

√
π

2

+∞∑
k=1

Γ(Lk)

Γ(Lk + 3/2)

=

(√
π

2

+∞∑
k=1

(Lk)−3/2

)
(1 + o(1))

=

(√
π

2
ζ(3/2)L−3/2

)
(1 + o(1)) 6= 0.

2. We have that

AL − ÃL =

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x

(
1√

1− x/τ
− 1

)
dx.

Notice that the integrand takes high values as x approaches to 0. For this
reason we are going to split the integral into two:

AL − ÃL =

∫ τ/2

0

(1− x)L

1− (1− x)L

√
x

1− x

(
1√

1− x/τ
− 1

)
dx

+

∫ τ

τ/2

(1− x)L

1− (1− x)L

√
x

1− x

(
1√

1− x/τ
− 1

)
dx =: J3 + J4.

Let us focus on J3. Developing (1− x/τ)−1/2 by Taylor at zero we have that,
for x ≤ τ/2:

(1− x/τ)−1/2 = 1 +
x

2τ
+O(x2) ≤ 1 +

x

τ
.

Thus (1− x/τ)−1/2 − 1 ≤ x/τ . Therefore

J3 ≤
∫ τ/2

0

(1− x)L

1− (1− x)L

√
x

1− x
x

τ
dx =

1

τ

∫ τ/2

0

(1− x)L−1

1− (1− x)L
x3/2dx.

Recall that the mass of the integral is concentrated around zero, so the integral
from 0 to 1 is of the same order. Using again the uniform convergence of a
power series over compact sets of the interval of convergence:

J3 ≤
1

τ

+∞∑
k=1

∫ 1

0

(1− x)kL−1 x3/2dx =
1

τ

+∞∑
k=1

B (5/2, kL) =
1

τ

+∞∑
k=1

Γ(5/2)Γ(kL)

Γ(kL+ 5/2)

=
3
√
π

4τ

+∞∑
k=1

Γ(kL)

Γ(kL+ 5/2)
.

By using again the asymotitcs of Γ given in (2.3.2) we have that

J3 ≤
3
√
π

4τ

+∞∑
k=1

Γ(kL)

Γ(kL+ 5/2)
' 3
√
π

4τ

+∞∑
k=1

(kL)−5/2 =
3
√
π

4τ
ζ(5/2)L−5/2.
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Thus J3 = O(L−5/2). With this we conclude that limL→+∞ J3/ÃL = 0. For J4

we have that

J4 =

∫ τ

τ/2

(1− x)L

1− (1− x)L

√
x

1− x

(
1√

1− x/τ
− 1

)
dx

≤
∫ τ

τ/2

(1− τ/2)L

1− (1− τ/2)L

√
τ

1− τ/2
dx√

1− x/τ
.

By the change of variable y = x/τ :

J4 ≤
(1− τ/2)L

1− (1− τ/2)L
τ 3/2

1− τ/2

∫ 1

1/2

dy√
1− y

=
(1− τ/2)L

1− (1− τ/2)L

√
2τ 3/2

1− τ/2
.

Therefore J4 = O
(
(1− τ/2)L

)
. This tends to zero much faster than any power

of L as L→ +∞. Then limL→+∞ J4/ÃL = 0.

3.2.4 Asymptotics as ρ→ 0

Here we are going to study the case when ρ→ 0 and L is fixed. In such a case it is
intuitive that the variance of an S2-GAF tends to zero as ρ does, but here we also
see how fast it goes to zero.
We want to show the following:

Proposition 3.2.6. Let fL be an S2-GAF of intensity L ∈ N. Consider a chordal
disk Dch(z0, 2ρ), with z0 ∈ C. Then

V [νfL (Dch(z0, 2ρ))] = Lρ2(1 + o(1)) as ρ→ 0.

Remark 3.2.7. The Poisson process and the zero set process of an S2-GAF have
the same speed of convergence.

Proof. By invariance, we can choose z0 = 0. Denote Dch := Dch(0, 2ρ). We start
from the expression (3.2.4), which is

V [νfL (Dch)] =
L2

4π

√
τ

∫ τ

0

(1− x)L

1− (1− x)L

√
x

1− x
1√

1− x/τ
dx,

where τ = 4ρ2(1−ρ2). Notice that, since τ → 0, the Taylor series at a neighbourhood
of zero guarantees us that

(1− x)L = eL log(1−x) = e−Lx(1 + o(1))

and

1− (1− x)L = (1− e−Lx)(1 + o(1)) = Lx(1 + o(1)).
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Thus, noticing that the integral takes high values near of zero and making the change
of variable t = x/τ :

V [νfL (Dch)] =

(
L2

4π

√
τ

∫ τ

0

e−Lx

Lx

√
x

1− x
1√

1− x/τ
dx

)
(1 + o(1))

=

(
L

4π

√
τ

∫ τ

0

e−Lx
dx

√
x
√

1− x/τ

)
(1 + o(1))

=

(
L

4π

√
τ

∫ 1

0

e−Lτt
τ√

tτ
√

1− t
dt

)
(1 + o(1))

=

(
L

4π
τ

∫ 1

0

e−Lτt
dt√

t
√

1− t

)
(1 + o(1)).

Denote

F (τ) :=

∫ 1

0

e−Lτt
dt√

t
√

1− t
.

We have that

F (τ) =
+∞∑
k=0

(−1)kLk

k!

(∫ 1

0

tk−1/2 dt√
1− t

)
τ k =

+∞∑
k=0

(−1)kLk

k!

Γ(k + 1/2)Γ(1/2)

Γ(k + 1)
τ k

=
√
π

+∞∑
k=0

(−1)kLk

(k!)2
Γ(k + 1/2)τ k =

√
πΓ(1/2)− L

√
πΓ(3/2)τ + ...

= π − Lπ

2
τ + ...

Hence, as ρ→ 0:

V [νfL(Dch)] =

[
L

4π
τ(π − Lπ

2
τ + ...)

]
(1 + o(1))

=
(
Lρ2(1− ρ2)

)
(1 + o(1)) = Lρ2(1 + o(1)).

3.2.5 F1 as the limit of PL as L→ +∞
There is a result stating that F1 can be understood as a limit space of PL as L →
+∞. More concretely:

Lemma 3.2.8. Given a GAF fC
1 ∈ F1 and a constant M > 0, there is L0 ∈ N such

that for all L ≥ L0, there exist GAFs fS2
L ∈ PL such that∫

{|z|≤M/
√
L}

∣∣∣fC
1 (
√
Lz)− fS2

L (z)
∣∣∣2 e−L|z|2dm(z) .

1

L

∥∥fC
1

∥∥2

F1

and ∫
{|z|>M/

√
L}

∣∣∣fS2
L (z)

∣∣∣2
π(1 + |z|2)L+2

dm(z) .
1

L

∥∥fC
1

∥∥2

F1
.
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A deeper explanation can be found in [7], p. 32.
In accordance with Lemma 3.2.8, we are going to see whether the limit as L→ +∞
of the variance of the random variables of the zero point process of an S2-GAF fS2

L

of parameter L ∈ N in Dch(z0, 2r/
√
L), with z0 ∈ C, is the variance of a C-GAF fC

1

of parameter L = 1.

Proposition 3.2.9. The limit of the variance of an S2-GAF as L→ +∞ coincides
with the variance of a C-GAF of parameter L = 1, that is,

lim
L→+∞

V
[
ν
fS

2
L

(
Dch(z0, 2r/

√
L)
)]

= V
[
νfC1 (D(z0, r))

]
, z0 ∈ C.

Proof. By invariance, we can choose z0 = 0. Denote Dch := Dch(0, 2r/
√
L) and

D := D(0, r). Choosing ρ = r/
√
L, using the new expression of τ in (3.2.4) and

applying the change of variable y = (L2x)/(4r2(L− r2)), we have that

V
[
ν
fS

2
L

(Dch)
]

=
L2

4π

√
4r2(L− r2)

L2

∫ 4r2(L−r2)
L2

0

(1− x)L

1− (1− x)L

√
x

1− x
dx√

1− L2x
4r2(L−r2)

=
4

π

r4(L− r2)2

L2

∫ 1

0

(
1− 4r2(L−r2)

L2 y
)L−1

1−
(

1− 4r2(L−r2)
L2 y

)Ly1/2(1− y)−1/2dy.

Denote

gL,r(y) =

(
1− 4r2(L−r2)

L2 y
)L−1

1−
(

1− 4r2(L−r2)
L2 y

)L ,
which is a decreasing function with respect to L, bounded below by 0 and

lim
L→+∞

gL,r(y) =
1

e4r2y − 1
.

By Monotone Convergence Theorem we get that

lim
L→+∞

∫ 1

0

gL,r(y)dy =

∫ 1

0

lim
L→+∞

gL,r(y)dy =

∫ 1

0

dy

e4r2y − 1
.

Notice that

lim
L→+∞

r4(L− r2)2

L2
= r4.

Since both limits exist:

lim
L→+∞

V
[
ν
fS

2
L

(Dch)
]

=
4

π
lim

L→+∞

(
r4(L− r2)2

L2

∫ 1

0

gL,r(y)y1/2(1− y)−1/2dy

)
=

4

π

(
lim

L→+∞

r4(L− r2)2

L2

)(
lim

L→+∞

∫ 1

0

gL,r(y)y1/2(1− y)−1/2dy

)
=

4

π
r4

∫ 1

0

y1/2(1− y)−1/2

e4r2y − 1
dy.
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Now, let us compute the variance of a C-GAF for L = 1. Due to (3.2.1), we can
write:

V
[
νfC1 (D)

]
=

r

2π

∫ 4r2

0

1

ex − 1

√
x√

1− x
4r2

dx.

Applying the change of variable y = x/(4r2):

V
[
νfC1 (D)

]
=

4

π
r4

∫ 1

0

y1/2(1− y)−1/2

e4r2y − 1
dy,

and the result follows.

3.3 Variance of an S2-GAF via linear statistics

In this section we study the fluctuations of an S2-GAF fL of parameter L ∈ N
through linear statistics, that is, for all test-functions ϕ ∈ C2

c (Ω), where Ω ⊆ C,

IL(ϕ) =

∫
Ω

ϕdνfL .

We have the following theorem:

Theorem 3.3.1 ([2], p. 42-44). Consider a linear statistic IL(ϕ), where ϕ ∈ C2
c (Ω)

and Ω ⊆ C. Then

V [IL(ϕ)] =
ζ(3)

32L
‖∆∗ϕ‖2

L2(Ω,m∗) +O
(

logL

L2

)
,

as L→ +∞, where ∆∗ := (1 + |z|2)2∆.

Remark 3.3.2. ∆∗ is called the invariant Laplacian, and it is invariant in the sense

∆∗ (u ◦ φa) = ∆∗u ◦ φa, u ∈ C2
c (C),

where φa is the transformation defined in (2.5.2).

Proof. By definition

V [IL(ϕ)] = E
[
(IL(ϕ)− E [IL(ϕ)])2] ,

where

IL(ϕ) =
1

2π

∫
Ω

ϕ(z)∆ log |fL(z)|

and by the Edelman-Kostlan formula (see Theorem 2.5.3)

E [IL(ϕ)] =
1

2π

∫
Ω

ϕ(z)∆ log
√
KfL(z, z).
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Letting f̂L ∼ NC(0, 1) we get

IL(ϕ)− E [IL(ϕ)] =
1

2π

∫
Ω

ϕ(z)∆ log
|fL(z)|√
KfL(z, z)

=
1

2π

∫
Ω

ϕ(z)∆ log |f̂L(z)|

=
1

2π

∫
Ω

∆ϕ(z) log |f̂L(z)|.

Thus

V [IL(ϕ)] =
1

4π2
E
[∫

Ω

∆ϕ(z) log |f̂L(z)|dm(z)

∫
Ω

∆ϕ(w) log |f̂L(w)|dm(w)

]
=

1

4π2

∫
Ω

∫
Ω

∆ϕ(z)∆ϕ(w)E
[
log |f̂L(z)| log |f̂L(w)|

]
dm(z)dm(w).

Since f̂L ∼ NC(0, 1), we have that E
[
log |f̂L(z)|

]
is constant (independent of z).

Therefore:

∂z∂wCov
[
log |f̂L(z)|, log |f̂L(w)|

]
= ∂z∂wE

[
log |f̂L(z)| log |f̂L(w)|

]
,

and hence

V [IL(ϕ)] =
1

4π2

∫
Ω

∫
Ω

∆ϕ(z)∆ϕ(w)Cov
[
log |f̂L(z)|, log |f̂L(w)|

]
dm(z)dm(w)

=
1

4

∫
Ω

∫
Ω

∆∗ϕ(z)∆∗ϕ(w)Cov
[
log |f̂L(z)|, log |f̂L(w)|

]
dm∗(z)dm∗(w).

For simplicity, denote κL(z, w) = Cov
[
log |f̂L(z)|, log |f̂L(w)|

]
. To estimate the

integrals we will separate the points that are close and far from the diagonal due to:

Lemma 3.3.3. For all x ∈ [0, 1], the next estimate holds:

x

4
≤

+∞∑
j=1

xj

4j2
≤ x

2
.

By using Lemma 3.3.3, we get the estimates

(1 + |φw(z)|2)−L

4
≤ κL(z, w) ≤ (1 + |φw(z)|2)−L

2
. (3.3.1)

Hence, for a value CL, that we are going to specify later, we can write:

Ω2 = Ω× Ω = {(z, w) : κL(z, w) ≤ CL} ∪ {(z, w) : κL(z, w) > CL}.

So, the points (z, w) ∈ Ω2 such that κL(z, w) > CL are those near the diagonal.
Otherwise, the points (z, w) ∈ Ω2 such that κL(z, w) ≤ CL are those far from the
diagonal. We will see that the variance above is only relevant near the diagonal,
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and its principal term will be ‖∆∗ϕ‖2
L2(Ω,m∗).

We have

V [IL(ϕ)] =
1

4

∫
Ω

∫
Ω

∆∗ϕ(z)∆∗ϕ(w)κL(z, w)dm∗(z)dm∗(w)

=
1

4

[∫
{(z,w) : κL(z,w)≤CL}

∆∗ϕ(z)∆∗ϕ(w)κL(z, w)dm∗(z)dm∗(w)

+

∫
{(z,w) : κL(z,w)>CL}

∆∗ϕ(z)∆∗ϕ(w)κL(z, w)dm∗(z)dm∗(w)

]
=

1

4

[∫
{(z,w) : κL(z,w)≤CL}

∆∗ϕ(z)∆∗ϕ(w)κL(z, w)dm∗(z)dm∗(w)

+

∫
{(z,w) : κL(z,w)>CL}

(∆∗ϕ(w)−∆∗ϕ(z)) ∆∗ϕ(z)κL(z, w)dm∗(z)dm∗(w)

+

∫
{(z,w) : κL(z,w)>CL}

(∆∗ϕ(z))2 κL(z, w)dm∗(z)dm∗(w)

]
.

Let us name the integrals as:

I1 :=

∫
{(z,w) : κL(z,w)≤CL}

∆∗ϕ(z)∆∗ϕ(w)κL(z, w)dm∗(z)dm∗(w),

I2 :=

∫
{(z,w) : κL(z,w)>CL}

(∆∗ϕ(w)−∆∗ϕ(z)) ∆∗ϕ(z)κL(z, w)dm∗(z)dm∗(w)

and

I3 :=

∫
{(z,w) : κL(z,w)>CL}

(∆∗ϕ(z))2 κL(z, w)dm∗(z)dm∗(w).

The bound for I1 is straightforward. Indeed:

|I1| ≤
∫
{(z,w) : κL(z,w)≤CL}

|∆∗ϕ(z)| |∆∗ϕ(w)|κL(z, w)dm∗(z)dm∗(w)

≤ CL

∫
{(z,w): κL(z,w)≤CL}

|∆∗ϕ(z)| |∆∗ϕ(w)| dm∗(z)dm∗(w)

≤ CL

∫
Ω

|∆∗ϕ(z)| dm∗(z)

∫
Ω

|∆∗ϕ(w)| dm∗(w) = CL ‖∆∗ϕ‖2
L1(Ω,m∗) .

For I2, since ϕ ∈ C2
c (Ω), ∆∗ϕ is uniformly continuous in supp ϕ. Hence it exists ε(t)

with limt→1 ε(t) = 0 such that, for all z, w ∈ Ω and taking φw as in (2.5.2) we have

|∆∗ϕ(w)−∆∗ϕ(z)| ≤ ε
(
(1 + |φw(z)|2)−1

)
.

Observe that, from (2.4.6),

(1 + |φw(z)|2)−L =

[
1−

(
dch(z, w)

2

)2
]L

= |ΘL(z, w)|2 ,
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recalling that

ΘL(z, w) :=
KfL(z, w)√

KfL(z, z)
√
KfL(w,w)

.

For (z, w) ∈ Ω2 such that κL(z, w) > CL, we get that

(2CL)1/L < (1 + |φw(z)|2)−1,

and therefore, since the function ε(t) is decreasing,

ε
(
(2CL)1/L

)
> ε

(
(1 + |φw(z)|2)−1

)
.

Thus, by denoting Ωκ,ϕ = {(z, w) : κL(z, w) > CL} ∩ (supp ϕ× supp ϕ):

|I2| ≤
∫

Ωκ,ϕ

|∆∗ϕ(w)−∆∗ϕ(z)| |∆∗ϕ(z)|κL(z, w)dm∗(z)dm∗(w)

≤ 1

2

∫
Ωκ,ϕ

ε
(
(1 + |φw(z)|2)−1

)
|∆∗ϕ(z)|(1 + |φw(z)|2)−Ldm∗(z)dm∗(w)

≤
ε
(
(2CL)1/L

)
2

∫
Ωκ,ϕ

|∆∗ϕ(z)|(1 + |φw(z)|2)−Ldm∗(z)dm∗(w)

(∗)
=
ε
(
(2CL)1/L

)
2

∫
supp ϕ

|∆∗ϕ(z)|dm∗(z)

∫
{w∈Ω : κL(0,w)>CL}

(1 + |w|2)−Ldm∗(w)

=
ε
(
(2CL)1/L

)
2

‖∆∗ϕ‖L1(Ω,m∗)

∫
{w∈Ω : κL(0,w)>CL}

(1 + |w|2)−Ldm∗(w),

where in (∗) we just applied the invariance of the measure dm∗. Since ε(t) . |1− t|
for all t in a neighbourhood of 1, we obtain by choosing CL = 1/(2L2) and applying
Taylor in a neighbourhood of 1/L ' 0 (as L→ +∞):

ε
(
(2CL)1/L

)
. 1− (2CL)1/L = 1− L−2/L ' logL

L
.

Hence

|I2| .
logL

L

‖∆∗ϕ‖L1(Ω,m∗)

2

∫
{w∈Ω : κL(0,w)>CL}

(1 + |w|2)−Ldm∗(w).

For I3 notice that, by using again the invariance of dm∗:

I3 = ‖∆∗ϕ‖2
L2(Ω,m∗)

∫
{w∈Ω : κL(0,w)>CL}

(1 + |w|2)−Ldm∗(w).

By the fact that limL→+∞C
1/L
L = 1 we can write that I2 = o(I3) and

V [IL(ϕ)] = I3

[
1 +O

(
logL

L

)]
+O(CL).
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We must compute

Jw :=

∫
{w∈Ω : κL(0,w)>CL}

(1+|w|2)−Ldm∗(w) =

∫
{w∈Ω : κL(0,w)>CL}

|ΘL(0, w)|2dm∗(w).

By the definition of ΘL and using Lemma 3.1.2 we have

Jw =

∫
{w∈Ω : κL(0,w)>CL}

+∞∑
j=1

(1 + |w|2)−jL

4j2
dm∗(w)

=
+∞∑
j=1

1

4j2

∫
{w∈Ω : κL(0,w)>CL}

(1 + |w|2)−jLdm∗(w).

From (3.3.1),

{|w|2 < (4CL)−1/L − 1} ⊂ {κL(0, w) > CL} ⊂ {|w|2 < (2CL)−1/L − 1}.

From here we see that

{κL(0, w) > CL} =

=
{
|w|2 < (2CL)−1/L − 1

}
\ (
{
|w|2 < (2CL)−1/L − 1

}
∩ {κL(0, w) ≤ CL}).

Therefore

Jw =
+∞∑
j=1

1

4j2

[∫
{|w|2<(2CL)−1/L−1}

(1 + |w|2)−jLdm∗(w)

−
∫
{|w|2<(2CL)−1/L−1}∩{κL(0,w)≤CL}

(1 + |w|2)−jLdm∗(w)

]
.

The negative sum is negligible. More precisely:

Lemma 3.3.4. It is satisfied that

+∞∑
j=1

1

4j2

∫
{|w|2<(2CL)−1/L−1}∩{κL(0,w)≤CL}

(1 + |w|2)−jLdm∗(w) = O
(

logL

L3

)
.

By Lemma 3.3.4 we get

Jw =
+∞∑
j=1

1

4j2

∫
{|w|2<(2CL)−1/L−1}

(1 + |w|2)−jLdm∗(w) +O
(

logL

L3

)
.

By denoting

Ij =

∫
{|w|2<(2CL)−1/L−1}

(1 + |w|2)−jLdm∗(w),
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calling rL = (2CL)−1/L − 1 and changing into polar coordinates

Ij =

∫
{|w|2<rL}

(1 + |w|2)−jLdm∗(w) =

∫ √rL
0

(1 + r2)−jL−2rdr

=
1

2

∫ rL

0

(1 + t)−jL−2dt =
1

2(1 + jL)

[
1− (1 + rL)−jL−1

]
.

We reach the expression:

Jw =
1

8

+∞∑
j=1

1

j2(1 + jL)

[
1− (1 + rL)−jL−1

]
+O

(
logL

L3

)
.

Notice that

1

j2(1 + jL)
≤ 1

j2
and

1

j2(1 + jL)(1 + rL)jL+1
≤ 1

j2
.

So we can separate Jw into two sums because both sums are convergent:

Jw =
1

8

[
+∞∑
j=1

1

j2(1 + jL)
−

+∞∑
j=1

(1 + rL)−jL−1

j2(1 + jL)

]
+O

(
logL

L3

)
.

Again, the negative sum is negligible. That is:

Lemma 3.3.5. It is satisfied that

+∞∑
j=1

(1 + rL)−jL−1

j2(1 + jL)
= O

(
logL

L2

)
.

By Lemma 3.3.5, we can state that

Jw =
1

8

+∞∑
j=1

1

j2(1 + jL)
+O

(
logL

L2

)
.

We have that limL→+∞(jL)/(1 + jL) = 1, uniformly in j ≥ 1. Thus

Jw =
1

8

+∞∑
j=1

1

j3L
+O

(
logL

L2

)
=
ζ(3)

8L
+O

(
logL

L2

)
.

Hence, as L→ +∞, and recalling that I1 = O(L−2) for such a chosen CL, we finally
have

V [IL(ϕ)] =
ζ(3)

32L
‖∆∗ϕ‖2

L2(Ω,m∗) +O
(

logL

L2

)
.

Let us show the three lemmas stated along the proof of Theorem 3.3.1.
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Proof of Lemma 3.3.3. For all x ∈ [0, 1] we must see that

x

4
≤

+∞∑
j=1

xj

4j2
≤ x

2
.

The left bound is clear, since it is the j = 1 term of the sum. For the right bound
denote

F (x) = x− 1

2

+∞∑
j=1

xj

j2
.

We want to see that F (x) ≥ 0 for all x ∈ [0, 1]. By computing the derivative we
have

F ′(x) = 1− 1

2x

+∞∑
j=1

xj

j
= 1− 1

2x
log(1 + x),

and notice that F ′(x) ≥ 0 since log(1 + x) ≤ 2x by Taylor for x ≥ 0. Then the
upper bound holds.

Proof of Lemma 3.3.4. We want to show that

S =
+∞∑
j=1

1

4j2

∫
{|w|2<(2CL)−1/L−1}∩{κL(0,w)≤CL}

(1 + |w|2)−jLdm∗(w) = O
(

logL

L3

)
.

We have

S ≤
+∞∑
j=1

1

4j2

∫
{(2CL)1/L≤(1+|w|2)−1≤(4CL)1/L}

(1 + |w|2)−jLdm∗(w)

=
1

8π

+∞∑
j=1

1

j2

∫
{(2CL)1/L≤(1+|w|2)−1≤(4CL)1/L}

(1 + |w|2)−jL−2dm(w)

≤ (4CL)1+2/L

8π
m
({

(4CL)−1/L − 1 ≤ |w|2 ≤ (2CL)−1/L − 1
}) +∞∑

j=1

1

j2

≤ π

48
(4CL)1+2/L

[
(2CL)−1/L − 1

]
=

π

48

(
2

L2

)1+2/L (
L2/L − 1

)
=

π

24

1

L2
22/LL−4/L

(
L2/L − 1

)
.

By Taylor series of exp (x) around 0, we have:

22/L = e
2
L

log 2 = 1− 2

L
log 2 +O

(
1

L2

)
= 1 +O

(
1

L

)
,

L−4/L = e−
4
L

logL = 1− 4

L
logL+O

(
log2 L

L2

)
= 1 +O

(
logL

L

)
,

L2/L − 1 = e
2
L

logL − 1 =
2

L
logL+O

(
log2 L

L2

)
= O

(
logL

L

)
.
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Therefore,

S ≤ π

24

1

L2

(
1 +O

(
1

L

))(
1 +O

(
logL

L

))(
O
(

logL

L

))
= O

(
logL

L3

)
.

Proof of Lemma 3.3.5. We have to see that

S =
+∞∑
j=1

(1 + rL)−jL−1

j2(1 + jL)
= O

(
logL

L2

)
.

Recall that rL = (2CL)−1/L− 1. By direct computation we get that (1 + rL)−jL−1 =

L−2j− 2
L . Since L → +∞, we obtain 1 + jL ' jL and L−2/L = −2 logL/L +

O(log2 L/L2) ≤ O(logL/L). Thus

S =
+∞∑
j=1

L−2j− 2
L

j2(1 + jL)
≤

(
+∞∑
j=1

1

j3L

)
O
(

logL

L

)
= O

(
logL

L2

)
.



Chapter 4

Large deviations and the Hole
probability of an S2-GAF

In this chapter we are going to develop another point of view to understand the
fluctuation of a process generated by the zero set of an S2-GAF. For the first section
of this chapter, consider a test-function ϕ ∈ C2

c (C), an S2-GAF fL of parameter
L ∈ N and the linear statistic

IL(ϕ) =

∫
C
ϕdνfL .

As seen before, its mean is

E[IL(ϕ)] = E
[∫

C
ϕdνfL

]
=

∫
C
ϕdE[νfL ] = L

∫
C
ϕdm∗.

We study how much IL deviates from its mean E [IL(ϕ)] by a fraction of this same
mean. In particular, we will see that such deviation happens with very small prob-
ability.
The second part of this chapter is a consequence of this study. We estimate the
probability that there is a hole, that is, a disk without any zeros of fL.
We are going to prove all the results of this chapter in terms of the chordal distance.
This chapter is strongly based on [6]. Also [4] was helpful to write these pages.

4.1 Large deviations

We begin stating the main theorem.

Theorem 4.1.1 (Large deviations). For all ϕ ∈ C2
c (C) and for all δ > 0, there exist

constants c = c(ϕ, δ) > 0 and L0 = L0(ϕ, δ) ∈ N such that for all L ≥ L0

P [|IL(ϕ)− E [IL(ϕ)]| > δE [IL(ϕ)]] ≤ e−cL
2

.

Notice that this can be rewritten as

P
[∣∣∣∣ IL(ϕ)

E [IL(ϕ)]
− 1

∣∣∣∣ > δ

]
≤ e−cL

2

.

47
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To prove Theorem 4.1.1 we need a sequence of results.

Proof of Theorem 4.1.1. Consider ϕ ∈ C2
c (C). By the definition of distributional

derivative we have

IL(ϕ)− E[IL(ϕ)] =
1

2π

∫
C
ϕ∆ log |f̂L| =

1

4π

∫
supp ϕ

(∆ϕ) log |f̂L|2,

where f̂L = fL/
√
KfL(z, z) ∼ NC(0, 1). Hence

|IL(ϕ)− E[IL(ϕ)]| ≤ ‖∆ϕ‖∞
∫

supp ϕ

∣∣∣log |f̂L(z)|2
∣∣∣ (1 + |z|2)2dm∗(z)

≤ sup
z∈supp ϕ

[
(1 + |z|2)2

]
‖∆ϕ‖∞

∫
supp ϕ

∣∣∣log |f̂L(z)|2
∣∣∣ dm∗(z)

= Cϕ

∫
supp ϕ

∣∣∣log |f̂L(z)|2
∣∣∣ dm∗(z),

where Cϕ is a constant that depends on ϕ. Now we have to see that this integral is

small. This is not strange because log |f̂L|2 has values near to zero since |f̂L|2 has
mean one.

Lemma 4.1.2. For all regular compact set K ⊂ C and for all δ > 0 there is a
constant c = c(K, δ) such that

P
[∫

K

∣∣∣log |f̂L(z)|2
∣∣∣ dm∗(z) > δL

]
≤ e−cL

2

.

To show this we need another lemma that controls the average of
∣∣∣log |f̂L(z)|2

∣∣∣
over disks.

Lemma 4.1.3. There is a constant c > 0 such that for all Dch := Dch(z0, ρ) ⊂ C,
with z0 ∈ C,

P
[

1

m∗(Dch)

∫
Dch

∣∣∣log |f̂L(w)|2
∣∣∣ dm∗(w) > 5L

]
≤ e−cL

2

.

Let us see how Lemma 4.1.2 is implied by Lemma 4.1.3.

Proof of Lemma 4.1.2. Since K is a compact set, we can use a minimal covering
consisting on a finite number of open disks Dj := Dch(zj, ε), for all j = 1, ..., N ,
such that all the disks have the same invariant volume, say m∗(Dj) = v. We will
choose v later on.
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By Lemma 4.1.3, outside an exceptional set of probabilityN exp (−cL2) ≤ exp (−c′L2):∫
K

∣∣∣log |f̂L(w)|2
∣∣∣ dm∗(w) ≤

∫
⋃N
j=1Dj

∣∣∣log |f̂L(w)|2
∣∣∣ dm∗(w)

≤
N∑
j=1

∫
Dj

∣∣∣log |f̂L(w)|2
∣∣∣ dm∗(w)

≤
N∑
j=1

5Lm∗(Dj) = 5NLv.

By choosing v = δ/(5N), we conclude that∫
K

∣∣∣log |f̂L(w)|2
∣∣∣ dm∗(w) ≤ δL.

Now we shall show Lemma 4.1.3. For this we need more estimates.

Lemma 4.1.4. For all ρ < 1 and δ > 0 there exist c = c(ρ, δ) > 0 and L0 =
L0(ρ, δ) ∈ N such that for all L ≥ L0 and z0 ∈ C:

(a) P
[
maxz∈Dch(z0,ρ) log |f̂L(z)|2 < −δL

]
≤ e−cL

2
,

(b) P
[
maxz∈Dch(z0,ρ) log |f̂L(z)|2 > δL

]
≤ e−ce

Lδ/2
.

Combining both estimates, we get

P
[

max
z∈Dch(z0,ρ)

∣∣∣log |f̂L(z)|2
∣∣∣ > δL

]
≤ e−cL

2

.

Proof. We know that the distribution of ZfL is invariant by translations, hence we
can choose z0 = 0. By i) of Remark 2.4.3, the condition z ∈ Dch(0, ρ) is equivalent
to

|z| ≤ ρ̂ :=
ρ√

4− ρ2
.

(a) Consider the event

E1 :=

{
max
|z|≤ρ̂

log |f̂L(z)|2 < −δL
}
.

Under this event E1:

log |f̂L(z)|2 = log |fL(z)|2 − L log(1 + |z|2) < −δL

and therefore, for |z| ≤ ρ̂:

log |fL(z)|2 < L
(
log(1 + |z|2)− δ

)
≤ L

(
log(1 + ρ̂2)− δ

)
.
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Since log(1 + |z|2) is subharmonic in C, we can use the Maximum principle to
state:

E1 ⊂
{

max
|z|=ρ̂

log |fL(z)|2 ≤ L
(
log(1 + ρ̂2)− δ

)}
.

Thus

P [E1] ≤ P
[
max
|z|=ρ̂

log |fL(z)|
L

≤ 1

2

(
log(1 + ρ̂2)− δ

)]
= P

[
max
|z|=ρ̂

log |fL(z)|
L

≤
(

1

2
− δ̃
)

log(1 + ρ̂2)

]
,

where δ̃ = δ/ [2 log(1 + ρ̂2)]. To continue we need another lemma.

Lemma 4.1.5. For all δ ∈ (0, 1/2) and r > 0 there exist c = c(r, δ) and
L0 = L0(r, δ) ∈ N such that for all L ≥ L0:

P
[
max
|z|=r

log |fL(z)|
L

≤
(

1

2
− δ
)

log(1 + r2)

]
≤ e−cL

2

.

Proof. Under such event we have

max
|z|=r
|fL(z)| ≤ (1 + r2)L( 1

2
−δ).

We shall see that this forces some coefficients of the series of fL to be small,
something that can happen only with probability exp (−cL2).
Since

fL(z) =
L∑
n=0

f
(n)
L (0)

n!
zn =

L∑
n=0

ξn

(
L
n

)1/2

zn,

where (ξn)Ln=0 is a sequence of i.i.d. NC(0, 1) random variables, we have

ξn =

(
L
n

)−1/2
f

(n)
L (0)

n!
,

for all n ∈ N. Cauchy estimates yield

|ξn| ≤
(
L
n

)−1/2
1

rn
max
|z|=r
|fL(z)| ≤

(
L
n

)−1/2
1

rn
(1 + r2)L( 1

2
−δ).

Taking squares:

|ξn|2 ≤
(1 + r2)L(1−δ)(

L
n

)
r2n

,
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where δ stands for the old δ2.
This event happens with low probability. Assume that n ∈ N takes high
values, that is, n/L ≥ ε for some ε > 0 with n ≤ L. By Stirling’s formula:

n! ∼
√

2πn
(n
e

)n
as n→ +∞. Hence(

L
n

)
∼ 1√

L− n

(
L

L− n

)L−n(
L

n

)n
.

Therefore, and using L− n ≤ L, we get

|ξn|2 ≤
(1 + r2)L(1−δ)(

L
n

)
r2n

.
√
L

(1 + r2)L(1−δ)

r2n

(
L− n
L

)L−n (n
L

)n

= exp

[
1

2
logL+ L(1− δ) log(1 + r2)− n log r2 + (L− n) log

(
1− n

L

)
+ n log

(n
L

)]
.

Denote

Φ(t) =
1

2
logL+L(1−δ) log(1+r2)−t log r2+(L−t) log

(
1− t

L

)
+t log

(
t

L

)
.

We have that |ξn|2 ≤ exp Φ(n). Let us study the behaviour of Φ(t), for all
t ∈ [1, L]. We have that

Φ(L) =
1

2
logL+ L(1− δ) log(1 + r2)− L log r2

and

Φ′(t) = log

[
t

L

1

r2
(
1− t

L

)] > 0.

Define

Φ̃(s) = Φ(sL) =
1

2
logL+L(1−δ) log(1+r2)−sL log r2+L(1−s) log (1− s)+sL log (s) .

Since
Φ̃′(s) = −L log r2 − L log(1− s) + L log s,

we have that Φ̃′(α) = 0 at α = r2/(1 + r2). In this minimum,

Φ̃(α) =
1

2
logL− δL log(1 + r2),

where the negative term is the dominant one as L→ +∞. So, for L ∈ N large
enough and taking s ∈ [(1− δ/2)α, (1 + δ/2)α], we have

Φ̃(s) ≤ −δ
2
L log(1 + r2).
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With this, for t ∈ Ir,L,δ := [(1− δ/2)Lα, (1 + δ/2)Lα], we have

Φ(t) ≤ −δ
2
L log(1 + r2).

In particular, for all n ∈ Ir,L,δ,

|ξn|2 ≤ eΦ(n) ≤ e−
δ
2
L log(1+r2).

Denote N = #{n ∈ N : n ∈ Ir,L,δ}. Note that N ' δLα. Thus

P
[
max
|z|=r

log |fL(z)|
L

≤
(

1

2
− δ
)

log(1 + r2)

]
≤

∏
n∈Ir,L,δ

P
[
|ξn|2 ≤ e−

δ
2
L log(1+r2)

]
=
(
P
[
|ξn|2 ≤ e−

δ
2
L log(1+r2)

])N
.

Using the Taylor development of 1− exp(−x) around zero we get(
1− e−e

− δ
2L log(1+r2)

)N
≤ e−

δ
2
NL log(1+r2) = e−cL

2

,

for some c that depends on r and δ, specifically

c =
δ2

2

r2

1 + r2
log(1 + r2).

Applying Lemma 4.1.5, we finish the proof of section (a).

(b) Consider the event

E2 :=

{
max
|z|≤ρ̂

log |f̂L(z)|2 > δL

}
=

{
max
|z|≤ρ̂

[
log |fL(z)|2 − L log(1 + |z|2)

]
> δL

}
.

To estimate the probability of E2 we will control the coefficients of the series
of fL. Let C > 0 be a constant such that Cδ < 1. From the definition of
S2-GAF (2.4.8) we have that

|fL(z)| ≤
[CδL]∑
n=0

|ξn|
(
L
n

)1/2

|z|n +
L∑

n=[CδL]+1

|ξn|
(
L
n

)1/2

|z|n =: S1 + S2.

Let us estimate both parts separately.
For S1 we use Cauchy-Schwarz inequality:

S1 ≤

[CδL]∑
n=0

|ξn|2
1/2[CδL]∑

n=0

(
L
n

)
|z|2n

1/2

≤

[CδL]∑
n=0

|ξn|2
1/2(

L∑
n=0

(
L
n

)
|z|2n

)1/2

=

[CδL]∑
n=0

|ξn|2
1/2

(1 + |z|2)L/2.
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For S2 we have, using that |z| ≤ ρ̂:

S2 ≤
L∑

n=[CδL]+1

|ξn|
(
L
n

)1/2

ρ̂n.

In the proof of Lemma 4.1.2 we chose disks with very small radii. So, for
convenience of the actual proof, we can select ρ2 < 2 so that ρ̂ < 1. Hence we
can consider β > 0 such that ρ̂ = exp (−β). Also take γ ∈ (0, β) and ε > 0
such that 0 < γ < γ + ε < β. Define the event

A := {|ξn| ≤ eγn : n > [CδL]} .

Applying again the Stirling’s formula we get(
L
n

)1/2

.
LL/2

nn/2(L− n)(L−n)/2
.

Therefore

S2 ≤
L∑

[CδL]+1

e(γ−β)n

(
L
n

)1/2

≤
L∑

[CδL]+1

e(γ−β)n LL/2

nn/2(L− n)(L−n)/2
.

Lemma 4.1.6. For a given ε > 0 there is D > 0 large enough such that for
all n > [CδL]:

LL

nn(L− n)(L−n)
≤ Deεn.

Proof. Notice that

LL

nn(L− n)(L−n)
= eL logL−n logn−(L−n) log(L−n).

Hence, we have to check whether for some ε > 0 there is D > 0 large enough
such that for all n > [CδL]:

L logL− n log n− (L− n) log(L− n) ≤ εn+ logD.

Define
Φε(t) := L logL− t log t− (L− t) log(L− t)− εt

for all t ∈ [[CδL] + 1, L]. We want to see that

Φε(t) ≤ logD.

By taking t = Ls we define the rescaling of Φε:

Φ̃ε(s) := Φε(Ls) = L logL− Ls log(Ls)− (L− Ls) log(L− Ls)− εLs
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for all s ∈ (α, 1]. Since

Φ̃′ε(s) = L log(1− s)− L log s− Lε = L

[
log

(
1− s
s

)
− ε
]
,

we see that Φ̃′ε(s) < 0 if 1/(1 + exp(ε)) ≤ s. So, choosing α = 1/(1 + exp(ε)),
Φ̃ε is a decreasing function. Clearly, the maximum is at sε = 1/(1 + exp(ε)).
Therefore, for all s ∈ (sε, 1]:

Φ̃ε(s) ≤ Cε,L := Φ̃ε(sε).

Thus,
Φε(t) ≤ Cε,L

if t/L ≥ sε, i.e., if t ≥ sεL.

Taking D appropriately as in Lemma 4.1.6 and since 0 < γ < γ + ε < β, we
get

S2 .
L∑

n=[CδL]+1

e−[β−(γ+ε)]n ≤
+∞∑
n=0

e−[β−(γ+ε)]n =
1

1− e−[β−(γ+ε)]
.

Let us show that A happens with high probability. Indeed,

P[A] =
L∏

n=[CδL]+1

P
[
|ξn|2 ≤ e2γn

]
=

L∏
n=[CδL]+1

(
1− e−e2γn

)
.

Using the fact that log(1− x) ' −x for x ' 0, we write

logP[A] =
L∑

n=[CδL]+1

log
(

1− e−e2γn
)
' −

L∑
n=[CδL]+1

e−e
2γn

.

There is a constant L0 = L0(ρ, δ) ∈ N such that for all L ≥ L0 and n > [CδL]:

−e−e2γn ≥ −e−eγCδL .

Thus

logP[A] ≥ −
L∑

n=[CδL]+1

e−e
γCδL ' −e−eγCδL ,

and this implies that

P[A] ≥ e−e
−eγCδL

.

What we get after all is, under A,

|f(z)| ≤

[CδL]∑
n=0

|ξn|2
1/2

(1 + |z|2)L/2 +
1

1− e−[β−(γ+ε)]
.
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The condition in E2, that is |fL(z)|2/(1 + |z|2)L > eδL, implies

[CδL]∑
n=0

|ξn|2 ≥
[
(1 + |z|2)−L/2

(
|fL(z)| −

(
1− e−[β−(γ+ε)]

)−1
)]2

=

[
|fL(z)|

(1 + |z|2)L/2
− (1 + |z|2)−L/2

(
1− e−[β−(γ+ε)]

)−1
]2

>
[
eδL/2 − (1 + |z|2)−L/2

(
1− e−[β−(γ+ε)]

)−1
]2

> eδL.

Hence

P [E2 ∩ A] ≤ P

[CδL]∑
n=0

|ξn|2 ≥ eδL

 ≤ [CδL]∑
n=0

P
[
|ξn|2 ≥ eδL

]
=

[CδL]∑
n=0

e−e
δL

. e−e
δL/2

.

Finally

P [E2] =
P [E2 ∩ A]

P [A]
≤ e−e

δL/2

ee
−eγCδL ≤ e−ce

Lδ/2

,

for a suitable c > 0.

We have to show Lemma 4.1.3. However, we need a result that estimates the
average of log |f̂L(z0)|2, for z0 ∈ C.

Lemma 4.1.7. Let Dz0
ch := Dch(z0, ρ) be a disk with z0 ∈ C and ρ > 0. Then

log |f̂L(z0)|2 ≤ 1

m∗(Dz0
ch)

∫
D
z0
ch

log |f̂L(w)|2dm∗(w) + Lε(ρ̂, z0),

where, by i) of Remark 2.4.3,

ρ̂ :=
ρ√

4− ρ2

and

ε(ρ̂, z0) :=


1− log(1 + ρ̂2)

ρ̂2
, if |z0ρ̂| < 1,(

1− log(1 + ρ̂2)

ρ̂2

)
− 1

m∗(D0
ch)

∫ ρ̂

1/|z0|
log |z0r|2

2r

(1 + r2)2
dr, if |z0ρ̂| > 1.

For any case, ε(ρ̂, z0) ≤ 1.

Remark 4.1.8. The function ε can be written in terms of ρ and the integral is
computable, but we do not need that. We will need only the inequality of ε.
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Proof. By the subharmonicity of log |f̂L|2, we have

log |f̂L(z0)|2 = log |fL(z0)|2 − L logKfL(z0, z0) = log |fL(z0)|2 − L log(1 + |z0|2)

≤ 1

m∗(Dz0
ch)

∫
D
z0
ch

log |fL(w)|2dm∗(w)− L log(1 + |z0|2)

=
1

m∗(Dz0
ch)

∫
D
z0
ch

log |f̂L(w)|2dm∗(w)

+ L

[
1

m∗(Dz0
ch)

∫
D
z0
ch

log(1 + |w|2)dm∗(w)− log(1 + |z0|2)

]
.

Name

I :=

∫
D
z0
ch

log(1 + |w|2)dm∗(w).

By (2.4.5), we get

I =

∫
D0
ch

log(1 + |φz0(w)|2)dm∗(w) =

∫
D0
ch

log

[
(1 + |z0|2)(1 + |w|2)

|1 + z0w|2

]
dm∗(w)

=

∫
D0
ch

log(1 + |z0|2)dm∗(w) +

∫
D0
ch

log(1 + |w|2)dm∗(w)−
∫
D0
ch

log |1 + z0w|2dm∗(w).

Since m∗(Dz0
ch) = m∗(D0

ch) and using the new expression of I, we have

log |f̂L(z0)|2 =
1

m∗(Dz0
ch)

∫
D
z0
ch

log |f̂L(w)|2dm∗(w)

+ L

[
1

m∗(D0
ch)

∫
D0
ch

log(1 + |w|2)dm∗(w)− 1

m∗(D0
ch)

∫
D0
ch

log |1 + z0w|2dm∗(w)

]
.

Using a polar coordinate change of variables,∫
D0
ch

log |1 + z0w|2dm∗(w) =
1

π

∫ ρ̂

0

(∫ 2π

0

log |1 + z0re
iθ|2dθ

)
r

(1 + r2)2
dr.

Let us study the integral in θ by distinguishing cases:

• If |z0ρ̂| < 1, the harmonicity of the integrand implies∫ 2π

0

log |1 + z0re
iθ|2dθ = 2π log(1) = 0.

• If |z0ρ̂| > 1, by using the previous case and the change of variable ψ = −θ we
can conclude that∫ 2π

0

log |1 + z0re
iθ|2dθ =

∫ 2π

0

log |z0r|2dθ +

∫ 2π

0

log |1 + (z0r)
−1e−iθ|2dθ

= 2π log |z0r|2 +

∫ 2π

0

log |1 + (z0r)
−1e−iψ|2dψ

= 2π log |z0r|2.
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Thus, if |z0ρ̂| > 1:∫
D0
ch

log |1 + z0w|2dm∗(w) =
1

π

∫ ρ̂

1/|z0|

(∫ 2π

0

log |1 + z0re
iθ|2dθ

)
r

(1 + r2)2
dr

=

∫ ρ̂

1/|z0|
log |z0r|2

2r

(1 + r2)2
dr.

By using another change into polar coordinates, the change of variable t = 1 + r2

and integration by parts with u = log t, dv = dt/t2, we have∫
D0
ch

log(1 + |w|2)dm∗(w) =

∫ ρ̂

0

log(1 + r2)
2r

(1 + r2)2
dr =

∫ 1+ρ̂2

1

log t

t2
dt

= − log t

t

∣∣∣∣∣
t=1+ρ̂2

t=1

+

∫ 1+ρ̂2

1

dt

t2
=
ρ̂2 − log(1 + ρ̂2)

1 + ρ̂2

= m∗(D0
ch)

(
1− log(1 + ρ̂2)

ρ̂2

)
.

Hence the expression of ε(ρ̂, z0) follows and it is trivial that ε(ρ̂, z0) ≤ 1 for all ρ̂ > 0
and z0 ∈ C.

Proof of Lemma 4.1.3. Using section (a) of Lemma 4.1.4, outside of an exceptional
set of probability exp (−cL2), there exists λ ∈ Dch := Dch(z0, ρ) ⊂ C such that

log |f̂L(λ)|2 > −Lm∗(Dch).

By Lemma 4.1.7,

−Lm∗(Dch) <
1

m∗(Dch)

∫
Dch

log |f̂L(w)|2dm∗(w) + L,

which implies

0 <
1

m∗(Dch)

∫
Dch

log |f̂L(w)|2dm∗(w) + 2L.

Separating the logarithm into the positive and negative part:

1

m∗(Dch)

∫
Dch

log− |f̂L(w)|2dm∗(w) ≤ 1

m∗(Dch)

∫
Dch

log+ |f̂L(w)|2dm∗(w) + 2L.

Adding the positive part of the logarithm,

1

m∗(Dch)

∫
Dch

∣∣∣log |f̂L(w)|2
∣∣∣ dm∗(w) ≤ 2

m∗(Dch)

∫
Dch

log+ |f̂L(w)|2dm∗(w) + 2L.

By Lemma 4.1.4, outside an exceptional set of probability exp (−cL2) we conclude

1

m∗(Dch)

∫
Dch

∣∣∣log |f̂L(w)|2
∣∣∣ dm∗(w) ≤ 2 max

w∈Dch
log+ |f̂L(w)|2 + 2L

≤ 3Lm∗(Dch) + 2L ≤ 5L.
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By applying Lemma 4.1.3, the proof of Theorem 4.1.1 is finished.

A direct consequence of Theorem 4.1.1, useful to show the Hole probability
theorem, is the following.

Corollary 4.1.9. Let U be a bounded open set in C. For all δ ∈ (0, 1) there are
constants c = c(U, δ) > 0 and L0 = L0(U, δ) ∈ N such that for all L ≥ L0

P
[∣∣∣∣ IL(1U)

E [IL(1U)]
− 1

∣∣∣∣ > δ

]
= P

[∣∣∣∣ νfL(U)

Lm∗(U)
− 1

∣∣∣∣ > δ

]
≤ e−cL

2

.

Proof. Consider test-functions ϕ1, ϕ2 ∈ C2
c (C) such that 0 ≤ ϕ1 ≤ 1U ≤ ϕ2 ≤ 1,∫

C
ϕ1dm

∗ ≥ m∗(U)(1− δ)

and ∫
C
ϕ2dm

∗ ≤ m∗(U)(1 + δ).

By Theorem 4.1.1 we have, outside an exceptional set of probability exp(−cL2):

νfL(U) =

∫
U

dνfL ≤
∫
C
ϕ2dνfL ≤ (1 + δ)E

[∫
C
ϕ2dνfL

]
= (1 + δ)

∫
C
ϕ2dE[νfL ]

= L(1 + δ)

∫
C
ϕ2dm

∗ ≤ L(1 + δ)2m∗(U).

Analogously, outside an exceptional set of probability exp (−cL2), we get:

νfL(U) ≥ L(1− δ)2m∗(U).

Thus:
νfL(U)

Lm∗(U)
− 1 ≤ 2δ + δ2 ≤ 3δ.

Also
νfL(U)

Lm∗(U)
− 1 ≥ −2δ + δ ≥ −3δ.

4.2 Hole probability

In the last section of the project we focus on the Hole probability.

Theorem 4.2.1. For a given ρ > 0, there exist C1 = C1(ρ) > 0, C2 = C2(ρ) > 0
and L0 ∈ N such that, for all L ≥ L0 and for all z0 ∈ C,

e−C1L2 ≤ P [ZfL ∩Dch(z0, ρ) = ∅] ≤ e−C2L2

,

where ZfL is the zero set of the S2-GAF fL.
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Proof. Upper bound. Since

{νfL(Dch(z0, ρ)) = 0} ⊂
{∣∣∣∣ νfL(Dch(z0, ρ))

Lm∗(Dch(z0, ρ))
− 1

∣∣∣∣ > δ

}
,

for all δ < 1, Corollary 4.1.9 gives us the upper bound.
Lower bound. By the invariance we can assume that z0 = 0. Denote Dch :=
Dch(0, ρ). We are going to choose two events that force fL to have ZfL ∩Dch = ∅.
Clearly

|fL(z)| ≥ |ξ0| −

∣∣∣∣∣
L∑
n=1

ξn

(
L
n

)1/2

zn

∣∣∣∣∣ .
The first event is

E1 := {|ξ0| ≥ 1}.
By i) of Proposition 2.1.2, E1 has probability

P [E1] = P
[
|ξ0|2 ≥ 1

]
= e−1.

By i) of Remark 2.4.3, take

ρ̂ :=
ρ√

4− ρ2
.

For the second term we use the Cauchy-Schwarz inequality for |z| ≤ ρ̂:∣∣∣∣∣
L∑
n=1

ξn

(
L
n

)1/2

zn

∣∣∣∣∣ ≤
L∑
n=1

|ξn|
(
L
n

)1/2

ρ̂n ≤

(
L∑
n=1

|ξn|2
)1/2( L∑

n=1

(
L
n

)
ρ̂2n

)1/2

≤

(
L∑
n=1

|ξn|2
)1/2

(1 + ρ̂2)L/2.

Choosing the second event as

E2 :=

{
|ξn|2 ≤

1

16L(1 + ρ̂2)L
, n = 1, ..., L

}
,

we see that, under E2: ∣∣∣∣∣
L∑
n=1

ξn

(
L
n

)1/2

zn

∣∣∣∣∣ ≤ 1

4
.

Knowing that 1− exp(−x) ≥ x/2 for x ≤ 1, we get

P [E2] =
L∏
n=1

P
[
|ξn|2 ≤

1

16L(1 + ρ̂2)L

]
=

[
1− exp

(
− 1

16L(1 + ρ̂2)L

)]L
≥
(

1

32L(1 + ρ̂2)L

)L
= e−L

2 log[32L(1+ρ̂2)] = e−CL
2

,

where C = C(ρ̂, L) := log[32L(1 + ρ̂2)].
All combined, under the event E1 ∩ E2 we have that fL(z) ≥ 3/4 > 0 and

P [E1 ∩ E2] = P [E1]P [E2] ≥ e−1e−CL
2 ≥ e−C1L2

,

for a suitable C1 = C1(ρ) > 0.
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60


	Abstract
	Acknowledgments
	Introduction
	Gaussian analytic functions
	First intensity and the Edelman-Kostlan formula
	Fluctuations of the parabolic GAF

	Preliminaries
	Complex Gaussian distribution
	Gaussian analytic functions
	The Gamma function
	Lg
	Lg
	The Riemann sphere Lg
	Lg

	Distribution, intensity and invariance of the zero set of a GAF
	First intensity of a Lg-GAF
	First intensity of an Lg-GAF


	Fluctuation of the zero set of an Lg-GAF
	Variance of a GAF
	Fluctuation of the zero set of an Lg-GAF
	Variance of a Lg-GAF
	Variance of an Lg-GAF
	Asymptotics as Lg
	Asymptotics as Lg
	Lg

	Variance of an Lg-GAF via linear statistics

	Large deviations and the Hole probability of an Lg-GAF
	Large deviations
	Hole probability


