
Treball final de màster
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Abstract

This work is an introduction to Malliavin calculus. We start by giving
the definition of an integration by parts formula and how they are re-
lated to the existence of densities of random variables. The central topic
of this work is how using Malliavin calculus we can find integration by
parts formulas. In order to accomplish this objective, there are presented
tools such as the Wiener chaos decomposition, the multiple Wiener-Itô
integral and the fundamental operators which are: the differential opera-
tor, the divergence operator and the generator of the Ornstein–Uhlenbeck
semigroup. These operators are combined to obtain explicit integration
by parts formulas that result in criteria for the existence and regularity
of probability densities. Finally, it is provided an example where there
are obtained conditions for the Malliavin differentiability of a particular
process.
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Introduction

Malliavin calculus is an infinite-dimensional calculus on a Gaussian space, that
is, a stochastic calculus of variations. The initial objective of Malliavin for the
creation of this calculus, was the study of the existence of densities of Wiener
functionals such as solutions of stochastic differential equations. The main ingre-
dient for the study of the properties of the probability law of these functionals,
is the integration by parts formula. The integration by parts formula allows to
obtain criteria for the existence of densities and its regularity. Malliavin calculus
provides the tools for the derivation of integration by parts formulas by means
of the fundamental operators.

Malliavin calculus has been proved useful in the study of many areas of
probability others than the study of regularity of probability laws, such as the
study of stochastic partial differential equations, the extension of Itô ’s formulas
and even it has found applications in finance for the computation of Greeks.

The aim of this work is to study the regularity of probability laws using
Malliavin calculus. In order to achieve this objective we will use integration by
parts formulas, which we will see that are related to the existence of densities
of random variables. For that reason, the central topic of this work is to find
integration by parts formulas using Malliavin calculus.

In Section 1 we introduce the motivation of the work: the integration by
parts formula and some results on the existence and smoothness of probability
densities related with the integration by parts formulas. The results of this
section will be fundamental in Section 5, when we will use Malliavin calculus to
derive integration by parts formulas.

Section 2 deals with Malliavin calculus in the special case where the under-
lying space is finite dimensional. The aim of this section is to “smooth” the
introduction to Malliavin calculus. In this section we introduce the finite di-
mensional version of mainly all concepts that will be used throughout the work.
We also derive an integration by parts formula that allows to give sufficient
conditions for the existence of a density for random vectors in this space. In
this context, the introduced concepts are more intuitive and allows the reader
to be better prepared for the next chapters.

In Section 3 we present some tools that will ease the understanding and
development of the theory. The main tool is the Wiener chaos decomposition,
that is, the decomposition of the space of square integrable random variables
into its projections in the spaces generated by the Hermite polynomials. We
also introduce the Wiener integral with respect to a white noise and define the
multiple Wiener-Itô stochastic integral which result to be related to the Wiener
chaos decomposition.

In Section 4 we study the fundamental operators of Malliavin calculus. These
operators are: the derivative operator D, the adjoint of D or divergence opera-
tor δ and the generator of the Ornstein–Uhlenbeck semigroup L. The derivative
operator extends the classical notion of derivative to the derivative of a random
variable, which result in an infinite dimensional version of the derivative since
our random variables will be functionals of an isonormal Gaussian process. The
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divergence operator is introduced as the adjoint of the derivative operator, then
it is briefly introduced the Skorohod integral which coincides with the diver-
gence operator when the underlying Hilbert space is of the form of an L2 space.
Finally, the generator of the Ornstein–Uhlenbeck semigroup is introduced and
related to the other two operators.

Section 5 deals with the existence and regularity of probability densities by
means of the Malliavin calculus. We use the studied theory in order to obtain
explicit integration by parts formulas in terms of the fundamental operators and
derive sufficient conditions for the existence and regularity of densities.

In Section 6 we use the developed theory to introduce some applications.
We briefly explain the relation of the Skorohod integral with the Itô stochastic
integral and apply the tools of Malliavin calculus to a practical example, inspired
in the solution of the heat equation. In this practical example we give sufficient
conditions for the existence of the Malliavin derivative.
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1 Integration by parts and absolute continuity
of probability laws

The aim of this section is to motivate the introduction of Malliavin calculus used
for proving the existence and smoothnes of densities and for its computation.
This section is based on the first chapter of [3].

Let α = (α1, ..., αn) ∈ Nn be a multiindex and define |α| =
∑n
i=1 αi, then,

for any function ϕ : Rn → R sufficiently smooth, the differential of ϕ of order α
is denoted by

∂αϕ := ∂|α|α1,...,αnϕ =
∂|α|ϕ

∂xα1
1 . . . ∂xαnn

.

By convention, if some αi is zero for any i ∈ {1, ..., n}, the corresponding partial
derivative is not considered, and hence if |α| = 0 then ∂αϕ = ϕ.

Definition 1.1. Let F be a Rn-valued random vector, F = (F1, ..., Fn) and G
be an integrable random variable defined on some probability space (Ω,F , P ).
Let α be a multiindex, then, the pair F , G is said to satisfy an integration by
parts formula of degree α if there exists a random variable Hα(F,G) ∈ L1(Ω)
such that

E[(∂αϕ)(F )G] = E[ϕ(F )Hα(F,G)], (1)

for any ϕ ∈ C∞b (Rn).

The integration by parts formula (1) is recursive in the following sense. If
α = β + γ, β and γ multiindices, then Hα(F,G) = Hγ(F,Hβ(F,G)) almost
surely. Indeed,

E[ϕ(F )Hα(F,G)] = E[(∂αϕ)(F )G]
= E[(∂γϕ)(F )Hβ(F,G)]
= E[ϕ(F )Hγ(F,Hβ(F,G))],

(2)

for all ϕ ∈ C∞b (Rn), whenever there are satisfied the corresponding intermediate
integration by parts formulas.

The connection of this definition with the study of probability laws and
densities is given by the following proposition.

Proposition 1.1. 1. Assume that (1) holds for α = (1, ..., 1) and G = 1.
Then, the probability law of F has a density p(x) with respect to the
Lebesgue measure on Rn. Moreover,

p(x) = E[1(x≤F )H(1,...,1)(F, 1)],

which in particular means that p is continuous.

2. Assume that (1) holds for any multiindex α and G = 1. Then p ∈ C|α|(Rn)
and

∂αp(x) = (−1)|α|E[1(x≤F )Hα+1(F, 1)],

where α+ 1 := (α1 + 1, ..., αn + 1).
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Proof. 1. Let f ∈ C∞0 (Rn) and ϕ(x) =
∫ x1

−∞· · ·
∫ xn
−∞ f(y)dy ∈ C∞b . Then,

applying the integration by parts formula and Fubini’s theorem we obtain

E[f(F )] = E[(∂(1,...,1)ϕ)(F )] = E[ϕ(F )H(1,...,1)(F, 1)]

= E

[(∫ F1

−∞
· · ·
∫ Fn

−∞
f(y)dy

)
H(1,...,1)(F, 1)

]

= E

[(∫
Rn
1(y≤F )f(y)dy

)
H(1,...,1)(F, 1)

]
=

∫
Rn
f(y)E

[
1(y≤F )H(1,...,1)(F, 1)

]
dy.

Now let B be a bounded Borel set of Rn and consider the sequence of func-
tions fn ∈ C∞0 (Rn) converging pointwise to 1B . Since the set is bounded,
we can interchange limit an integral and we will have that

E[1B(F )] = E
[

lim
n→∞

fn(F )
]

= lim
n→∞

E[fn(F )]

= lim
n→∞

∫
Rn
fn(y)E

[
1(y≤F )H(1,...,1)(F, 1)

]
dy

=

∫
Rn

lim
n→∞

fn(y)E
[
1(y≤F )H(1,...,1)(F, 1)

]
dy

=

∫
Rn
1B(y)E

[
1(y≤F )H(1,...,1)(F, 1)

]
dy.

(3)

In particular it is also true for unbounded Borel sets, taking a sequence
{Bn}n of Borel sets such that Bn ⊆ Bn+1 ∀n ∈ N we will be able to
apply the monotone convergence theorem. It happens that since the law
of F is given by P ◦ F−1, we have that P ◦ F−1(B) = P (F ∈ B) =∫
{ω:F (ω)∈B} dP =

∫
Ω
1B(F )dP = E[1B(F )], for all B Borel sets of Rn.

Hence, by (3), the law of F is absolutely continuous with probability den-
sity given by p(x) = E

[
1(x≤F )H(1,...,1)(F, 1)

]
. Let’s see that, in particular,

p(x) is continuous. We will see that both left and right limits exist and
are the same.

• Left limit: Let {xn}n be an increasing sequence converging towards
x. Then, we have that the sets [xn,∞) decrease towards [x,∞) in
such a way that

|1[xn,∞)(F )H(1,...,1)(F, 1)| ≤ |H(1,...,1)(F, 1)| ∈ L1(Ω). (4)

Then, by dominated convergence, we have that p(xn)→ p(x), when
approaching from the left.

• Right limit: Let now {xn}n be a decreasing sequence converging
towards x. In this case we have that the sets [xn,∞) increase to-
wards (x,∞) instead of [x,∞). Nonetheless, as 1[x,∞) = 1{x} +
1(x,∞) and E[1{x}H(1,...,1)(F, 1)] = 0 since P (F = x) = 0, then
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E
[
1(x≤F )H(1,...,1)(F, 1)

]
= E

[
1(x<F )H(1,...,1)(F, 1)

]
. Again, by (4)

we can apply dominated convergence and hence p(xn)→ p(x), when
approaching from the right.

Since both limits are finite and coincide, we have that p is continuous.

2. Since it is valid for any multiindex α, in particular it is valid for the
multiindex (1, ..., 1) and hence it exist a continuous density function p.
We define the weak derivative of p as the L1(Rn) function h satisfying
that ∫

Rn
∂αϕp = (−1)|α|

∫
Rn
ϕh,

for all ϕ ∈ C∞0 (Rn). Let ψβ ∈ C∞b defined for any multiindex β and
satisfying ∂βψβ = f ∈ C∞0 (Rn), that is, it is the β-integral of f . Then,
applying the fact that (1) is satisfied for any α and using Fubini, we obtain

E[f(F )] = E[∂α+1ψα+1(F )] = E[ψα+1(F )Hα+1(F, 1)]

= E

[∫ F1

−∞
· · ·
∫ Fn

−∞
∂(1,...,1)ψα+1(x)dxHα+1(F, 1)

]

= E

[∫
Rn
1(x≤F )ψα(x)dxHα+1(F, 1)

]
=

∫
Rn
ψα(x)E

[
1(x≤F )Hα+1(F, 1)

]
dx.

Since in particular it is also true that

E[f(F )] = E[∂αψα(F )] =

∫
Rn
∂αψα(x)p(x)dx,

we will have that∫
Rn
∂αψα(x)p(x)dx = (−1)|α|

∫
Rn
ψα(x)(−1)|α|E

[
1(x≤F )Hα+1(F, 1)

]
dx,

with ∂αψα = f ∈ C∞0 (Rn). We want this equallity holding for all ψα ∈
C∞0 (Rn), however, for any ψα ∈ C∞0 (Rn) exists an f ∈ C∞0 (Rn) such that
∂αψα = f . Hence, as the equallity holds for any f ∈ C∞0 (Rn) we will have
that the weak derivative of p is h(x) = (−1)|α|E

[
1(x≤F )Hα+1(F, 1)

]
, but

since h is continuous (by the same reason that before), then p ∈ C|α|(Rn)
and it will be its derivative in the usual sense.

There is another proposition that allows to obtain the existence of densities
and its smoothness under weaker assumptions, however, it will be less informa-
tive about the specific form of the density or its derivatives. This is Malliavin’s
criterion on existence of densities.
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Proposition 1.2. 1. Assume that for any multiindex αi such that |αi| = 1
and every function ϕ ∈ C∞0 (Rn), there exist positive constants Ci, not
depending on ϕ such that

|E[(∂αiϕ)(F )]| ≤ Ci||ϕ||∞, (5)

then the law of F has a density.

2. Assume that for any multiindex α and every function ϕ ∈ C∞0 (Rn), there
exist positive constants Cα, not depending on ϕ such that

|E[(∂αϕ)(F )]| ≤ Cα||ϕ||∞, (6)

then the law of F has a C∞ density.

Notice that if an integration by parts formula holds, then (5) also holds.
Indeed,

|E[(∂αϕ)(F )G]| = |E[ϕ(F )Hα(F,G)]| ≤ E[|Hα(F,G)|] ||ϕ||∞,

where E[|Hα(F,G)|] is a positive constant not depending on ϕ.
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2 Finite dimensional Malliavin calculus

In this section we will deal with random vectors defined on a finite dimensional
probability space whose measure is the standard Gaussian measure. This will be
the equivalent of a finite dimensional Malliavin calculus and will put into context
many of the forecoming ideas. This part is mixture of what is in chapter 2 of [3]
and the notes of the BGSMath course of Malliavin Calculus presented by David
Nualart in the academic year 2018-2019. Most of the exposed conditions can
be relaxed as shown in [3], however, we have preferred to focus in explaining a
rough idea of Malliavin calculus in finite dimensions rather than a precise one.

Let (Rm,B(Rm), µm) be our working probability space, where µm is the
standard Gaussian measure µm(dx) = ρ(x)dx, with

ρ(x) = (2π)−
m
2 exp

(
−||x||

2

2

)
.

We will denote by Em the expectation with respect to the measure µm. Let
Ckp (Rm) be the space of functions f : Rm → R, which are k times continu-
ously differentiable and such that the partial derivatives have at most poly-
nomial growth, that is ∃N ≥ 1 and ∃C ∈ R such that ||f (k)(x)|| ≤ C(1 +
||x||N ). Let D be the differential operator defined over C1(Rm) as Df = ∇f =
( ∂f∂x1

, ..., ∂f
∂xm

), the gradient, ∀f ∈ C1(Rm). Now let δ be the adjoint operator of

D in L2(Rm, µm). The adjoint operator must act on functions ϕ : Rm → Rm,
such that δϕ : Rm → R and satisfy the duality relationship

Em[〈Df,ϕ〉] = Em[fδϕ], ∀f ∈ C1
p(Rm), ∀ϕi ∈ C1

p(Rm), i = 1, ...,m,

where 〈·, ·〉 denotes the inner product in Rm. Assume f, ϕi ∈ C1
p(Rm) for i =

1, ...,m, then by integration by parts we obtain

Em[〈Df,ϕ〉] = Em

[
m∑
i=1

∂ifϕ
i

]
=

m∑
i=1

∫
Rm

∂if(x)ϕi(x)µ(dx)

= −
m∑
i=1

∫
Rm

f(x)
(
∂iρ(x)ϕi(x) + ρ(x)∂iϕ

i(x)
)
dx

=

∫
Rm

f(x)

(
m∑
i=1

(
xiϕ

i(x)− ∂iϕi(x)
))

ρ(x)dx.

Hence

δϕ(x) =

m∑
i=1

(
xiϕ

i(x)− ∂iϕi(x)
)
,

and δ is the so called divergence operator.
Now we will introduce the third operator playing a role in the Malliavin

calculus. It is the Ornstein–Uhlenbeck operator. It can be defined as a second
order differential operator. Let f ∈ C2(Rm)

Lf(x) =

m∑
i=1

(
∂2
xixif(x)− xi∂xif(x)

)
.
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This operator satisfies the relationship Lf = −δDf , connecting the three men-
tioned operators. That is

δDf(x) =

m∑
i=1

(xi∂if(x)− ∂i∂if(x)) = −Lf(x).

Moreover,
δ(fDg) = −〈Df,Dg〉 − fLg. (7)

The Ornstein–Uhlenbeck operator is the infinitesimal generator of the Orn-
stein–Uhlenbeck semigroup1 {Pt, t ≥ 0}. The Ornstein–Uhlenbeck semigroup is
defined as

Ptf(x) =

∫
Rm

f
(
e−tx+

√
1− e−2ty

)
µ(dy).

Now let’s see how we can derive an integration by parts formula using the
above-mentioned operators. Let F : Rm → Rn be a random vector, F =
(F 1, ..., Fn), and assume that each of the components are C∞p (Rm), then we
define the Malliavin matrix of F as

γF (x) = (〈DF i(x), DF j(x)〉)i,j , 1 ≤ i, j ≤ n.

Consider now ϕ ∈ C∞b (Rn). We will have, using the chain rule, that

∂i(ϕ(F (x))) =

n∑
k=1

(∂kϕ)(F (x))∂iF
k(x),

hence, we can write

〈D(ϕ(F (x))), DF j(x)〉 =

m∑
l=1

n∑
k=1

(∂kϕ)(F (x))∂lF
k(x)∂lF

j

=

n∑
k=1

(∂kϕ)(F (x))〈DF k(x), DF j(x)〉

= ((Dϕ)(F (x))γF (x))j ,

for any j ∈ {1, ..., n}. Now, if we assume that γF is invertible µ-almost every-
where, then

(Dϕ)(F (x)) = D(ϕ(F (x)))(DF (x))T γ−1
F (x),

1The definition of infinitesimal generator of a semigroup and other related concepts can be
found in the appendix.
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where (DF (x))T is the transposed differential matrix of F . This means that

Em[(∂iϕ)(F )] =

n∑
j=1

Em
[
〈D(ϕ(F )), DF j(γ−1

F )j,i〉
]

=

n∑
j=1

Em
[
ϕ(F )δ(DF j(γ−1

F )j,i)
]

= −
n∑
j=1

Em
[
ϕ(F )

(
〈DF j , D((γ−1

F )j,i)〉+ (γ−1
F )j,iLF

j
)]
,

using (7). Which is an integration by parts formula if Hi(F, 1) ∈ L1(Rm, µ),
where

Hi(F, 1) = −
n∑
j=1

δ(DF j(γ−1
F )i,j) = −

n∑
j=1

(
〈DF j , D((γ−1

F )i,j)〉+ (γ−1
F )i,jLF

j
)
.

Notice that γF is symmetric and hence (γ−1
F )i,j = (γ−1

F )j,i.
Finally, the following proposition provides sufficient conditions for the exis-

tence of a density for the random vector F .

Proposition 2.1. Let F ∈ C∞p (Rn) and assume that

1. The matrix γF (x) is invertible µ-almost every x ∈ Rm.

2. det γ−1
F ∈ Lp(Rm, µ), D(det γ−1

F ) ∈ Lq(Rm, µ), for some p, q ∈ (1,∞).

Then the law of F has a density.

Proof. The assumption of invertibility of the matrix was already used for the
derivation of the integration by parts formulas Em[(∂iϕ)(F )] = Em [ϕ(F )Hi(F, 1)].
The second assumption ensures that Hi(F, 1) ∈ L1(Rm, µ). That is, as

Em[|Hi(F, 1)|] ≤
n∑
j=1

(
Em

[
|〈DF j , D((γ−1

F )i,j)〉|
]

+ Em
[
|(γ−1

F )i,jLF
j |
])
,

we just need to see that each of the expected values is finite. Since F ∈ C∞p (Rn)

in particular LF j ∈ Ls(Rm;µm) for any s ≥ 1, then applying Hölder’s inequality
we obtain that

Em
[
|(γ−1

F )i,jLF
j |
]
≤
(
Em

[
|(γ−1

F )i,j |r
]) 1

r
(
Em

[
|LF j |

r
r−1
]) r−1

r ,

for some 1 < r < p. As

(γ−1
F )i,j =

1

det γF
Cj,i = det γ−1

F Cj,i,
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where Cj,i are the cofactors, that is the determinant of the matrix suppressing
the j-th row and i-th column and multiplying by (−1)i+j , we can apply again
Hölder’s inequality and obtain that

Em
[
|(γ−1

F )i,j |r
]
≤
(
Em

[
|det γ−1

F |
rs
]) 1

s
(
Em

[
|Cj,i|

rs
s−1
]) s−1

s <∞,

if 1 < s < p is such that sr = p, since by hypothesis det γ−1
F ∈ Lp(Rm;µm)

and Cj,i is just the finite sum of finite products of terms 〈DF k, DF l〉, 1 ≤
k, l ≤ m, which applying triangular inequality and Hölder inequality we find is
in Ls(Rm;µm) for any s ≥ 1. Similarly, for the other term,

Em
[
|〈DF j , D((γ−1

F )i,j)〉|
]
≤ Em

[
||DF j || ||D((γ−1

F )i,j)||
]
,

which again DF j ∈ Ls(Rm;µm) for any s ≥ 1 and we can apply Hölder inequal-
ity. Moreover, since

D((γ−1
F )i,j) = D

(
det γ−1

F Cj,i
)

= D
(
det γ−1

F

)
Cj,i + det γ−1

F DCj,i,

we can apply Hölder inequality with the desired exponents since Cj,i, DCj,i ∈
Ls(Rm;µm) for any s ≥ 1.

Once Hi(F, 1) has been shown to belong to L1(Rm, µ), then, we have an
integration by parts formula, and since ϕ ∈ C∞b (Rn) we will have

Em[(∂iϕ)(F )] ≤ Ci||ϕ||∞,

where Ci :=
∑n
j=1Em

[
|〈DF j , D((γ−1

F )i,j)〉|+ |(γ−1
F )i,jLF

j |
]
. Finally, using

proposition 1.2 the proof is concluded.
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3 Hermite polynomials, multiple integrals and
Chaos expansion

This section is an instrumental one. We will introduce some tools that will
ease the understanding and development of the theory. In this section we have
mainly followed [2].

First of all, we will introduce the idea of an isonormal Gaussian process, that
generalizes the idea of the Brownian motion.

Let H be a real separable Hilbert space with scalar product 〈·, ·〉H .

Definition 3.1. We say that a stochastic process W = {W (h), h ∈ H} defined
in a complete probability space (Ω,F , P ) is an isonormal Gaussian process if W
is a centered Gaussian family of random variables such that E[W (h)W (g)] =
〈h, g〉H ∀h, g ∈ H.

It can be seen that the Wiener-Itô integral, W (h) =
∫
h(t)dWt, is an isonor-

mal Gaussian process, since it is a Gaussian process and by the isometry prop-
erty, E[W (h)W (g)] = E[

∫
h(t)dWt

∫
g(t)dWt] = E[

∫
h(t)g(t)dt] = 〈h, g〉H .

3.1 Hemite Polynomials

We will introduce the Hermite polynomials and some basic properties since they
will be used thoughout the work. The Hermite polynomials can be defined in
several ways, however, we have opted to follow the definition of [2].

Definition 3.2. The nth Hermite polynomial is defined by,

Hn(x) =
(−1)n

n!
e
x2

2
dn

dxn
(e−

x2

2 ), n ≥ 1,

and H0(x) = 1.

An important property of these polynomials is

∞∑
n=0

tnHn(x) = exp

(
tx− t2

2

)
. (8)

It can be seen by considering f(y) = exp

(
−y

2

2

)
and expanding f(x−t) around

x, that is,

exp

(
− (x− t)2

2

)
= f(x− t) =

∞∑
n=0

f (n)(x)

n!
(−t)n

=

∞∑
n=0

(−1)n
tn

n!

dn

dxn
(e−

x2

2 ) = e−
x2

2

∞∑
n=0

tnHn(x),

14



since by definition of the Hermite polynomials: dn

dxn (e−
x2

2 ) = (−1)nn!Hn(x)e−
x2

2 .

The result follows multiplying both sides by e
x2

2 . From this result, we have

H ′n(x) = Hn−1(x), (9)

(n+ 1)Hn+1(x) = xHn(x)−Hn−1(x), (10)

Hn(−x) = (−1)nHn(x), (11)

where n ≥ 1. Let F (x, t) = exp(tx − t2

2 ), then (9) follows from the fact that
∂
∂xF = tF , which means

∞∑
n=0

tnH ′n(x) =

∞∑
n=0

tn+1Hn(x).

The identity (10) follows from ∂
∂tF = (x− t)F , that is

∞∑
n=0

ntn−1Hn(x) = x

∞∑
n=0

tnHn(x)−
∞∑
n=0

tn+1Hn(x),

and (11) from F (−x, t) = F (x,−t), which implies

∞∑
n=0

tnHn(−x) =

∞∑
n=0

(−1)ntnHn(x).

The three properties follow from equalling terms of the series.

Additional properties are that H2k+1(0) = 0 and H2k(0) = (−1)k

2kk!
, and that

the highest order term of Hn(x) is xn

n! .
The Hermite polynomials can be extended to the infinite dimensional case.

Let Λ be the set of all sequences (a1, a2, ...), ai ∈ N, i ≥ 1 where only a finite
number of ai is different from zero. For any multiindex a ∈ Λ, the generalized
Hermite polynomial Ha(x) with x ∈ RN is defined by

Ha(x) =

∞∏
i=1

Hai(xi).

Now let’s see some results that will be useful in the context of Malliavin
calculus.

Lemma 3.1. Let X,Y be two random variables with joint Gaussian distribu-
tion, such that E[X] = E[Y ] = 0 and E[X2] = E[Y 2] = 1. Then, for all
n,m ≥ 0 we have

E[Hn(X)Hm(Y )] =

{
0 if n 6= m.
1
n! (E[XY ])n if n = m.

15



Proof. We have for all s, t ∈ R,

E

[
exp

(
sX − s2

2

)
exp

(
tY − t2

2

)]
= E [exp (sX + tY )] exp

(
−1

2
(s2 + t2)

)
= exp (stE [XY ]) ,

(12)

where we have used that the expectation of the exponential of a Gaussian

random variable Z ∼ N(µ, σ2) is E[exp(Z)] = exp
(
µ+ σ2

2

)
, and since in

our case Z = sX + tY , it means that µ = 0 and σ2 = E[(sX + tY )2] =
E[s2X2 + t2Y 2 + 2stXY ] = s2 + t2 + 2stE[XY ].

Taking now the partial derivative ∂n+m

∂sn∂tm in both sides of (12) and evaluating
at s = t = 0, we obtain

∂n+m

∂sn∂tm

∣∣∣∣
s=t=0

E

[
exp

(
sX − s2

2

)
exp

(
tY − t2

2

)]
= E[n!m!Hn(X)Hm(Y )],

by using (8). On the right-hand side of (12), we obtain

∂n+m

∂sn∂tm

∣∣∣∣
s=t=0

exp (stE [XY ])

=
∂n+m

∂sn∂tm

∣∣∣∣
s=t=0

( ∞∑
i=0

(stE [XY ])i

i!

)

=

 ∞∑
i=max{n,m}

n!si−nm!ti−m

i!
(E [XY ])i


s=t=0

=

{
0 if n 6= m.
n!(E[XY ])n if n = m.

Let now G be the σ-field generated by the random variables {W (h), h ∈ H}.
We present without proof the following technical lemma.

Lemma 3.2. The random variables {eW (h), h ∈ H} form a total subset of
L2(Ω,G, P ).

For references of the proof see [2].

3.2 Chaos expansion

The Hermite polynomials are instrumental tools for proving the chaos expansion.
In this section we will see that we would be able to decompose random variables
of L2(Ω) into its projections in the spaces generated by the Hermite polynomials.
Throughout this section we will consider G to be the σ-field generated by the
random variables {W (h), h ∈ H}.
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Definition 3.3. For each n ≥ 0 we denote by Hn the Wiener chaos of order
n, defined by the closed linear subspace of L2(Ω,F , P ) generated by the ran-
dom variables {Hn(W (h)), h ∈ H, ||h||H = 1} whenever n ≥ 1, and the set of
constants when n = 0.

We notice that H1 is the set of zero-mean Gaussian random variables given
by {W (h), h ∈ H}. Moreover, by Lemma 3.1 the spaces Hn and Hm are or-
thogonal whenever n 6= m. We will see in fact, that the Wiener chaos not only
are orthogonal, but also generate a whole space of interest.

Theorem 3.1. The space L2(Ω,G, P ) can be decomposed into the infinite sum
of orthogonal Wiener chaos Hn:

L2(Ω,G, P ) = ⊕∞n=0Hn.

Proof. We already know that the Wiener chaos are orthogonal and, moreover,
since Hn ⊂ L2(Ω,G, P ) for all n ≥ 0 then ⊕∞n=0Hn ⊆ L2(Ω,G, P ). We just need
to prove that for any random variable of L2(Ω,G, P ) exists a non-zero projection
over some Wiener chaos. Let’s assume that this is not the case, that is, that
exists X ∈ L2(Ω,G, P ) such that is orthogonal to Hn for any n. That means
that E[XHn(W (h))] = 0 for all n and for all h ∈ H with ||h||H = 1. Since
xn can be expressed as a linear combination of Hermite polynomials, we have
in fact that E[XW (h)n] = 0 for all n ≥ 0, which implies that in fact it should
be orthogonal to the set {eW (h)}, but by Lemma 3.2 this is a total subset of
L2(Ω,G, P ) which means that X = 0.

For any infinite multiindex a ∈ Λ, let’s define

Φa =
√
a!

∞∏
i=1

Hai(W (ei)), (13)

where {ei, i ≥ 1} is an orthonormal basis of H.

Proposition 3.1. The family of random variables {Φa, a ∈ Λ} form a complete
orthonormal system in L2(Ω,G, P ).

Proof. Let’s first see that it is an orthonormal system. Let a, b ∈ Λ, then

E[ΦaΦb] =
√
a!
√
b!

∞∏
i=1

E [Hai(W (ei))Hbi(W (ei))] =

{
1 if a = b
0 if a 6= b

,

by Lemma 3.1.
Let’s see now that it spans L2(Ω,G, P ). Let P0

n the space of random variables
of the form p(W (h1), ...,W (hk)) where k ≥ 1, h1, ..., hk ∈ H, and p is a real
valued polynomial of k variables with degree at most n. Let now Pn be the
L2-closure of P0

n.
We have that ⊕ni=1Hi ⊆ Pn. Let’s see that in fact ⊕ni=1Hi = Pn, that is, we

have to see that Pn ⊆ ⊕ni=1Hi. That means that for any X ∈ Pn, X ∈ ⊕ni=1Hi

17



and hence, since Wiener chaos of different order are orthogonal, it would mean
that E[XHm(W (h))] = 0 for all m > n and all h ∈ H, ||h||H = 1. In fact
it is only necessary to prove that for X of the form p(W (h1), ...,W (hk)), a
polynomial of degree less or equal than n.

As for any h ∈ H it is possible to rewrite X = p(W (h1), ...,W (hk)) as
q(W (e′1), ...,W (e′j),W (h)), another polynomial of degree less or equal than n,
and {e′1, ..., e′j , h} an orthonormal family in H (by using Gram-Schmidt or-
thogonalization method), we will have that W (e′1), ...,W (e′j), W (h) are inde-
pendent Gaussian variables. Then, it only remains to check that the terms
E[W (h)rHm(W (h))] = 0 for all r ≤ n < m. But since xr can be expressed as
a linear combination of Hermite polynomials of degree less or equal than r it
follows immediately that E[W (h)rHm(W (h))] = 0.

The proof is concluded noticing that the random variables {Φa, a ∈ Λ, |a| =
n} belong to Pn and that we can express any of the e′i and h with the ba-
sis {ei, i ≥ 1}. That is, we can approximate q(W (e′1), ...,W (e′j),W (h)) with
polynomials in W (ei).

As L2(Ω,G, P ) = ⊕∞n=0Hn, then the family of random variables {Φa, a ∈ Λ}
also span L2(Ω,G, P ).

3.3 Multiple Wiener-Itô integrals

In this section we will consider an important case, when the Hilbert space H
is an L2 space is of the form L2(T,B, µ), where (T,B) is a measurable space
and µ is a σ-finite measure without atoms, that is, it does not exist any A ∈ B,
µ(A) <∞ such that if B ∈ B, B ⊆ A then either µ(B) = 0 or µ(B) = µ(A).

Let’s first introduce the notion of white noise.

Definition 3.4. A white noise based on µ is a random set function W on the
sets A ∈ B, such that µ(A) <∞, satisfying

(i) W (A) follows a distribution N(0, µ(A)),

(ii) if A,B ∈ B are disjoint, then W (A) and W (B) are independent.

As simple functions are dense in L2, we can characterize the isonormal Gaus-
sian process W by the family of random variables {W (A), A ∈ B, µ(A) < ∞},
where W (A) := W (1A). Let’s see that indeed this process defines a white
noise based on µ. Each of the random variables W (A) follows a distribu-
tion N(0, µ(A)). Moreover, if A,B ∈ B are disjoint, then E[W (A)W (B)] =
〈1A,1B〉 = 0 and since it is a Gaussian process, W (A) and W (B) are indepen-
dent.

Wiener integral with respect to W

We want to define the wiener integral with respect to the white noise W .
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Step 1 Let’s consider simple functions, that is, functions of the form

hn =

n∑
i=1

ai1Ai , (14)

Ai ∈ B pairwise disjoint. Then, the Wiener integral is defined as∫
T
hndW =

∑n
i=1 aiW (Ai), based on the white noise.

Step 2 Let h be any element of L2(T ) and let (hn)n be a sequence of simple
functions of the form (14) converging to h in L2(T ). Then, we will define
the Wiener integral of h,

∫
t
hdW , as the L2(Ω)-limit of the sequence of

Gaussian random variables
(∫
T
hndW

)
n
.

Hence, the random variable W (h), h ∈ L2(T ), coincides with the Wiener
stochastic integral

∫
T
hdW that we have just defined.

In the case where T = [0, 1] and µ is the Lebesgue measure on [0, 1], then
we can consider W (t) = W ([0, t)), t ∈ [0, 1]. Considering a continuous version
of B = {W (t), t ∈ [0, 1]}, we will have that B coincides with the standard

Brownian motion. Moreover, W (h) coincides with
∫ 1

0
h(s)dBs, the stochastic

integral with respect to the Brownian motion.

Multiple Wiener integrals

Let m ≥ 1 fixed, we denote by Em ⊂ L2(Tm,Bm, µm) the set of elementary
functions of the form

f(t1, ..., tm) =

n∑
i1,...,im=1

ai1...im1Ai1×···×Aim (t1, ..., tm), (15)

where A1, ..., An are pairwise-disjoint sets belonging to B0 = {A ∈ B : µ(A) <
∞} and the coefficients are zero whenever two indices are equal, that is, f
vanishes on the diagonal. For a function f ∈ Em of the form (15), the multiple
Wiener-Itô integral is defined as

Im(f) =

n∑
i1,...,im=1

ai1...imW (Ai1) · · ·W (Aim).

The following properties hold:

(i) Im is linear,

(ii) Im(f) = Im(f̃), where f̃(t1, ..., tm) = 1
m!

∑
σ f(tσ(1), ..., tσ(m)), with σ run-

ning over all permutations of {1, ...,m}, is the so called symmetrization of
f ,

(iii) E[Im(f)Iq(g)] =

{
m!〈f̃ , g̃〉L2(Tm) if m = q,
0 if m 6= q.
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We are not giving the proof of these properties, but they can be found in
reference [2].

In order to define the stochastic integral in L2(Tm), it has to be seen that
Em is dense in L2(Tm). Since we know that the set of finite linear combination
of indicator functions is dense in L2(Tm), it suffice to show that it can be
approximated the indicator function of any set A = A1 × · · · × Am, Ai ∈ B0,
1 ≤ i ≤ m, by functions of Em. Since µ is non-atomic, for any ε > 0 we can
obtain a system of pairwise-disjoint sets {B1, ..., Bn} ⊂ B0, such that µ(Bi) < ε
∀i ∈ {1, ..., n} and satisfying that each Ak can be expressed as the disjoint union
of some of the Bj . Then we have that

1A =

n∑
i1,...,im=1

εi1...im1Bi1×···×Bim ,

with εi1...im is either 0 or 1. Now we can divide the sum over two index sets, the
index set I, which is the set of mples (i1, ..., im) with pairwise different indices
ik, and the index set J , which is composed of the remaining mples. We can
define then the elementary function

1B =
∑

(i1,...,im)∈I

εi1...im1Bi1×···×Bim ∈ Em.

We will have then

||1A − 1B ||L2(Tm) =
∑

(i1,...,im)∈J

εi1...imµ(Bi1) · · ·µ(Bim)

≤
(
m

2

) n∑
i=1

µ(Bi)
2

(
n∑
i=1

µ(Bi)

)m−2

≤
(
m

2

)
εαm−1,

where α = µ (
⋃m
i=1Ai). In the first inequality, we have made groups of pairwise

equal indices, since at least a pair of indices has to be repeated, and extend
the remaining set over all indices. In the second inequality we have used that
µ(Bi) < ε ∀i ∈ {1, ..., n} and that

∑n
i=1 µ(Bi) = α, since the Bi sets are pairwise

disjoints and such that each Aj can be expressed as a disjoint union of some
Bk. This means that Em is dense in L2(Tm).

From property (iii), we obtain that E[Im(f)2] = m!||f̃ ||2L2(Tm) ≤ m!||f ||2L2(Tm),
by triangular inequality. Hence, using a density argument and this previous
fact, the operator Im can be extended to a linear and continuous operator
Im : L2(Tm)→ L2(Ω,F , P ) satisfying the three mentioned properties. We will
write Im(f) =

∫
Tm

f(t1, ..., tm)W (dt1) · · ·W (dtm).
Now, we will introduce the contraction of indices, that will be used for

multiplication of multiple integrals.

Definition 3.5. Let f ∈ L2(T p), g ∈ L2(T q) be symmetric functions, for any
1 ≤ r ≤ min(p, q), the contraction of r indices of f and g, denoted by f ⊗r g, is
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defined by

(f ⊗r g)(t1, ..., tp+q−2r)

=

∫
T r
f(t1, ..., tp−r, s1, ..., sr)g(tp−r+1, ..., tp+q−2r, s1, ..., sr)µ(ds1) · · ·µ(dsr).

Notice that f ⊗r g ∈ L2(T p+q−2r) and that although f and g are symmet-
ric, the contraction is not necessarily symmetric. We will denote by f⊗̃rg the
symmetrization of f ⊗r g.

Proposition 3.2. Let f ∈ L2(T p), g ∈ L2(T q) be symmetric functions, then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗r g). (16)

Corollary 3.1. Let f ∈ L2(T p) be a symmetric functions and g ∈ L2(T ), then

Ip(f)I1(g) = Ip+1(f ⊗ g) + pIp−1(f ⊗1 g). (17)

Here we identify the contraction of r = 0 indices ⊗0 with the tensor product
⊗. These propositions are introduced here without proof, the reader can find
the proof at [2] in Proposition 1.1.3 and 1.1.2 respectively.

Let’s see, that in fact, there is a relationship between the multiple integral
and the Hermite polynomials.

Proposition 3.3. Let Hm(x) be the m-th Hermite polynomial, and let h ∈ H =
L2(T ) be an element of norm one. Then

m!Hm(W (h)) =

∫
Tm

h(t1) · · ·h(tm)W (dt1) · · ·W (dtm).

Hence, the multiple integral Im maps L2(Tm) onto the Wiener chaos Hm.

Proof. Let’s proceed by induction. For m = 1 it is trivial. Assume that it holds
up to m− 1 and let h⊗m(t1, ..., tm) = h(t1) · · ·h(tm). The identity (17) yields

Im(h⊗m) = Im−1(h⊗(m−1))I1(h)− (m− 1)Im−2

(
h⊗(m−2)

∫
T

h(s)µ(ds)

)
= (m− 1)!Hm−1(W (h))W (h)− (m− 1)(m− 2)!Hm−2(W (h)) = m!Hm(W (h)),

where we have used that h is of norm one and the recursiveness of the Hermite
polynomials (10).

We have that the multiple integral satisfies E[Im(f)2] = m!||f ||2L2(Tm) for

all symmetric function f . Since the set of symmetric functions, say L2
S(Tm),

is a closed subspace of L2(Tm), we have that Im(L2
S(Tm)) is a closed subspace

of L2(Ω,G, P ) such that Hm ⊆ Im(L2
S(Tm)) as we have just seen. As the

multiple integrals of any order are orthogonal, it means that in particular they
are orthogonal to any Wiener chaos of order different of m, and since these span
L2(Ω,G, P ) it means that in fact Hm = Im(L2

S(Tm)).
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Proposition 3.4. Any square integrable random variable F ∈ L2(Ω,G, P ) can
be expanded into a series of multiple stochastic integrals

F =

∞∑
n=0

In(fn), (18)

where f0 = E[F ] and I0 is the identity map. Furthermore, we can assume that
the functions fn are symmetric and, in this case, uniquely determined by F .

Proof. From Theorem 3.1 and Proposition 3.3 it is immediate that exist such
fn satisfying (18). The uniqueness in the case of symmetric functions fn follows
from property (iii) of the multiple integral.
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4 The fundamental operators of Malliavin cal-
culus: Ornstein–Uhlenbeck, derivative, diver-
genge

In this section we will present the main theory of this thesis, we will introduce
the fundamental operators of Malliavin calculus. The framework of this section
will be W = {W (h), h ∈ H} an isonormal Gaussian process associated with the
Hilbert space H and the underlying probability space (Ω,F , P ), where in this
case F will be the σ-field generated by W .

4.1 The derivative operator

The derivative operator extends the classical definition of derivative to the
derivative of a random variable. In fact, it will be the infinite-dimensional ver-
sion, since our random variables will be functionals of an isonormal Gaussian
process.

Let S denote the class of smooth random variables such that any random
variable F ∈ S has the form

F = f(W (h1), ...,W (hn)), (19)

where f ∈ C∞p (Rn), h1, ..., hn ∈ H and n ≥ 1.
Now let’s proceed with the definition of derivative in this particular class of

random variables.

Definition 4.1. The derivative of a smooth random variable F ∈ S of the form
(19), is the H-valued random variable given by

DF =

n∑
i=1

∂if(W (h1), ...,W (hn))hi. (20)

We will interpret then, 〈DF, h〉H as the directional derivative along the di-
rection h.

Lemma 4.1. Let F ∈ S and h ∈ H, then

E[〈DF, h〉H ] = E[FW (h)]. (21)

Proof. We can assume that ||h||H = 1 and that there exist orthonormal elements
of H, e1, ..., en such that h = e1 and F = f(W (e1), ...,W (en)), f ∈ C∞p (Rn). Let

φ(x) = (2π)−
n
2 exp

(
− 1

2

∑n
i=1 x

2
i

)
, the density of a multidimensional standard

Gaussian distribution. Then

E[〈DF, h〉H ] = E

[
n∑
i=1

∂if(W (e1), ...,W (en))〈ei, e1〉

]

= E[∂1f(W (e1), ...,W (en))] =

∫
Rn
∂1f(x)φ(x)dx

=

∫
Rn
f(x)φ(x)x1dx = E[FW (h)],
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where we have performed an integration by parts in the 4-th equality.

We can extend this lemma to a more general one.

Lemma 4.2. Let F,G ∈ S and let h ∈ H, then

E[G〈DF, h〉H ] = E[−F 〈DG,h〉H + FGW (h)]. (22)

Proof. Since FG is also a smooth random variable, we can apply the previous
lemma to FG and we will obtain that

E[FGW (h)] = E[〈D(FG), h〉H ] = E[G〈DF, h〉H ] + E[F 〈DG,h〉H ],

because on S, D satisfies the chain rule2 (it can be easily checked using the
definition).

This, in fact, implies the following important result allowing us to extend
the derivative.

Proposition 4.1. The operator D : S ⊂ Lp(Ω)→ Lp(Ω;H) is closable for any
p ≥ 1.

Proof. Let’s suppose that (Fn)n is a sequence of smooth random variables con-
verging to zero in Lp(Ω) and (DFn)n is the sequence of its derivatives that
is convergent to some value η in Lp(Ω;H). In order to prove that the opera-
tor D is closable from Lp(Ω) to Lp(Ω;H), we have to show that under these
assumptions, η = 0, ω-a.s..

By Lemma 4.2, and since η ∈ Lp(Ω;H), we will have that for any G ∈ Sb
such that GW (h) is bounded:

E[G〈η, h〉H ] = lim
N→∞

E[G〈DFN , h〉H ]

= lim
N→∞

E[−FN 〈DG,h〉H + FNGW (h)] = 0,

since the random variables 〈DG,h〉H andGW (h) have been chosen to be bounded,
then, we can apply Hölder inequality if necessary and as FN converges to zero in
Lp the result follows. Since the result is true for any G, by density, 〈η, h〉H = 0
for any h ∈ H, which means that η = 0.

It is not immediate to see that the class of random variables G ∈ Sb satisfying
that GW (h) is bounded, is dense in Lp(Ω). Let’s see that indeed it is the case.
As Sb is dense in Lp(Ω), it suffices to show that our class of random variables
is dense in Sb. Let F be any random variable in Sb, then, it exists a sequence
of smooth random variables

GN =

{
F if |FW (h)| < N,
0 if |FW (h)| > N + 1,

2A more general statement about the chain rule can be found in Proposition 4.4.
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taking a smooth decreasing towards zero when N ≤ |FW (h)| ≤ N + 1. Clearly
each GNW (h) is bounded and such that

E[|F −GN |p] ≤ E[1{|FW (h)|>N}|F |p] ≤ P ({|FW (h)| > N})||F ||p∞ −−−−→
N→∞

0,

using Hölder’s inequality, the fact that F is bounded and by Markov’s inequality

P ({|FW (h)| > N}) ≤ E[|FW (h)|]
N

≤
(
E[|F |2]

) 1
2
(
E[|W (h)|2]

) 1
2

N
−−−−→
N→∞

0,

since both F and W (h) have finite moments of any order, in particular finite
second order moments.

Let D1,p be the closure of S with respect to the seminorm

||F ||1,p = (E[|F |p] + E[||DF ||pH ])
1
p .

By Proposition 4.1, D1,p is the domain of the closure of the operator D, that
we will denote again by D. The k-th derivative operator Dk can be defined in a
recursive way, such that if F ∈ S, then DkF is an H⊗k-valued random variable.
Considering now the seminorms

||F ||k,p =

(
E[|F |p] +

k∑
i=1

E[||DiF ||pH⊗i ]

) 1
p

,

for any 1 ≤ p < ∞, 1 ≤ k < ∞ and F ∈ S, the operator Dk : S ⊂ Lp(Ω) →
Lp(Ω;H⊗k) is closable for any p ≥ 1. We will denote the domain of the closed
extension of Dk (that we will just denote by the same symbol), Dk,p which
will be the closure of S with respect to the seminorm || · ||k,p. It happens that
||F ||k,p ≤ ||F ||k′,p′ for any F whenever k ≤ k′ and p ≤ p′. That means in

particular that Dk′,p′ ⊂ Dk,p if k ≤ k′ and p ≤ p′.
Given an element h ∈ H, the operator Dh : S ⊂ Lp(Ω) → Lp(Ω) can be

defined as DhF = 〈DF, h〉H . This operator is also closable for all p ≥ 1 and its
domain will be denoted by Dh,p.

Now, we will characterize the differential operator in D1,2 using the Wiener
chaos introduced previously.

Proposition 4.2. Let F ∈ L2(Ω) with Wiener chaos expansion F =
∑∞
n=0 JnF ,

where JnF denotes the projection of F into the nth Wiener chaos. Then,
F ∈ D1,2 if and only if

∞∑
n=1

n||JnF ||22 <∞.

In this case,
D(JnF ) = Jn−1(DF ), ∀n ≥ 1,

and hence

E[||DF ||2H ] =

∞∑
n=1

n||JnF ||22.
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Proof. Considering a random variable φa of the form (13), that is

Φa =
√
a!

∞∏
i=1

Hai(W (ei)),

we can compute its derivative just using the definition, which yields

D(Φa) =
√
a!

∞∑
j=1

∞∏
i=1,i6=j

Hai(W (ei))Haj−1(W (ej))ej ,

since H ′aj = Haj−1 if aj ≥ 1 and zero otherwise. If |a| = n then D(Φa) ∈ Hn−1,
the Wiener chaos of order n− 1. In this case

E[||D(Φa)||2H ] = E

a!

∞∑
j=1

∞∏
i=1,i6=j

H2
ai(W (ei))H

2
aj−1(W (ej))


= a!

∞∑
j=1

∞∏
i=1,i6=j

E[H2
ai(W (ei))]E[H2

aj−1(W (ej))]

=

∞∑
j=1

a!∏∞
i=1,i6=j ai!(aj − 1)!

=

∞∑
j=1

aj = |a| = n.

As by Proposition 3.1, {Φa, a ∈ Λ} form a complete orthonormal system, the
result follows.

By iteration we have the following proposition.

Proposition 4.3. Let F ∈ L2(Ω) with Wiener chaos expansion F =
∑∞
n=0 JnF .

Then F ∈ Dk,2 if and only if

∞∑
n=1

nk||JnF ||22 <∞.

In this case,
Dk(JnF ) = Jn−k(DkF ), ∀n ≥ k,

and hence

E[||DkF ||2H⊗k ] =

∞∑
n=k

n!

(n− k)!
||JnF ||22.

Notice, that although we are denoting the projection into the Wiener chaos of
order n as Jn(·) for both the variable and the derivatives, they are projecting into
different spaces, since the random variable is of L2(Ω) and the k-th derivative
of L2(Ω;H⊗k).

In the following statement we introduce a chain rule for the derivative oper-
ator.
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Proposition 4.4 (Chain rule). Let ϕ : Rm → R be a continuously differentiable
function with bounded partial derivatives and let F = (F 1, ..., Fm) be a random
vector such that its components belong to D1,p. Then, ϕ(F ) ∈ D1,p, and

D(ϕ(F )) =

m∑
i=1

∂iϕ(F )DF i.

For the proof of this proposition it is only necessary to consider that F i ∈ S,
in which case it is easily obtained from the usual chain rule for real-valued
functions, then the result follows by density. The chain rule can be extended to
Lipschitz functions.

Proposition 4.5 (Extended chain rule). Let ϕ : Rm → R be a globally Lipschitz
and let F = (F 1, ..., Fm) be a random vector such that its components belong
to D1,2. Then, ϕ(F ) ∈ D1,2, and there exists a bounded random vector G =
G1, ..., Gm) such that

D(ϕ(F )) =

m∑
i=1

GiDF
i.

It can be obtained for any p if considering different assumptions.

Proposition 4.6. Let ϕ : Rm → R be a globally Lipschitz and let F =
(F 1, ..., Fm) be a random vector such that its components belong to D1,p, p > 1.
Then, if the law of F is absolutely continuous with respect to the Lebesgue mea-
sure on Rm, ϕ(F ) ∈ D1,p, and

D(ϕ(F )) =

m∑
i=1

∂iϕ(F )DF i.

The proofs of these results can be found in [2] and [1] respectively. The chain
rule can be iterated to obtain the Leibniz’s rule. For instance, letting F ∈ Dk,p,
ϕ ∈ C∞p (R)

Dk(ϕ(F )) =

k∑
l=1

∑
Pl

clϕ
(l)(F )

l∏
i=1

D|pi|F, (23)

where Pl is the set of partitions of {1, ..., k} consisting of l disjoint sets p1, ..., pl,
l = 1, ..., k, |pi| is the cardinality of pi and cl are positive constants.

4.2 The divergence operator

In this section we will introduce the divergence operator, which will be defined
as the adjoint operator of the derivative operator. We will consider then, the
derivative operator D defined on the dense subset of L2(Ω), D1,2.

Definition 4.2. We denote by δ the adjoint operator of the operator D, and we
call it the divergence operator. That is, δ is an unbounded operator on L2(Ω;H)
with values in L2(Ω) such that:
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1. The domain of delta, Dom δ, is the set of H-valued square integrable
random variables u ∈ L2(Ω;H) such that

|E[〈DF, u〉H ]| ≤ c||F ||2,

for all F ∈ D1,2, and where c is a constant depending on u.

2. If u ∈ Dom δ, then δ(u) is the element of L2(Ω) characterized by

E[Fδ(u)] = E[〈DF, u〉H ], (24)

for any F ∈ D1,2.

We will refer to (24) as the duality property. We can observe, that if we
consider F = 1, as DF = 0, by the duality property E[δ(u)] = 0 for all u ∈
Dom δ. We can also notice that the divergence operator is linear, again, using
the duality property.

Let SH ⊂ L2(Ω;H) be the class of smooth elementary elements of the form

u =

n∑
j=1

Fjhj , Fj ∈ S, hj ∈ H. (25)

Given any u ∈ SH of the form (25), using Lemma 4.2, we obtain

E[〈DF, u〉H ] =

n∑
j=1

E[〈DF,Fjhj〉H ] =

n∑
j=1

E[Fj〈DF, hj〉H ]

=

n∑
j=1

E[−F 〈DFj , hj〉H + FFjW (hj)]

= E

F
 n∑
j=1

FjW (hj)− 〈DFj , hj〉H

 ,
for any F ∈ S. In particular |E[〈DF, u〉H ]| ≤ c||F ||2, using Hölder’s inequality.
Since S is dense in L2(Ω), we will have that u ∈ Dom δ and

δ(u) =

n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj , hj〉H . (26)

Notice that if n = 1, then u = Fh and if F = 1, then we have the divergence
operator of the H-valued element u = h is δ(h) = W (h).

Proposition 4.7. Let u ∈ SH , then

Dh(δ(u)) = 〈u, h〉H + δ(Dhu).
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Proof. Assuming u of the form (25), by (26) we have

Dh(δ(u)) =

n∑
j=1

(DhFj)W (hj) +

n∑
j=1

Fj〈hj , h〉H −
n∑
j=1

Dh(DhjFj).

We have that
∑n
j=1 Fj〈hj , h〉H = 〈u, h〉H , then, if we show that Dh(DhjFj) =

Dhj (DhFj), by (26) we will see that the remaining terms are δ(Dhu) and the
proof will be concluded. Let Fj = fj(W (hj1), ...,W (hjm)), then we will have
DFj =

∑m
i=1 ∂ifj(W (h1), ...,W (hm))hi and hence

Dh(DhjFj) =

m∑
k=1

m∑
i=1

∂2

∂i∂k
fj(W (h1), ...,W (hm))〈hi, hj〉H〈hk, h〉H =

=

m∑
i=1

m∑
k=1

∂2

∂k∂i
fj(W (h1), ...,W (hm))〈hk, h〉H〈hi, hj〉H = Dhj (DhFj).

Let’s denote by Dk,p(H) the domain of the closed extension of Dk : SH ⊂
Lp(Ω;H) → Lp(Ω;H ⊗H⊗k) with respect to the semi-norm || · ||k,p,H defined
by

||u||k,p,H =

(
E[||u||pH ] +

k∑
i=1

E[||Diu||pH⊗H⊗i ]

) 1
p

,

for any 1 ≤ p <∞, 1 ≤ k <∞ and u ∈ SH .

Proposition 4.8. If u ∈ D1,2(H), then u ∈ Dom δ. Moreover, if u, v ∈
D1,2(H), then

E[δ(u)δ(v)] = E[〈u, v〉H ] + E[Tr(Du ◦Dv)], (27)

where Tr(Du◦Dv) =
∑∞
i,j=1Dej 〈u, ei〉HDei〈v, ej〉H , with (ej , i ≥ 1) a complete

orthonormal system in H.

Proof. Let’s assume that u, v ∈ SH , then, using the duality property (24) and
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(26)

E[δ(u)δ(v)] = E[〈D(δ(u)), v〉H ] = E

[ ∞∑
i=1

〈v, ei〉HDei(δ(u))

]

= E

[ ∞∑
i=1

〈v, ei〉H(〈u, ei〉H + δ(Deiu))

]

= E [〈u, v〉H ] +

∞∑
i=1

E [〈v, ei〉Hδ(Deiu)]

= E [〈u, v〉H ] +

∞∑
i=1

E [〈D〈v, ei〉H , Deiu〉H ]

= E [〈u, v〉H ] + E

 ∞∑
i=1

∞∑
j=1

〈Dejv, ei〉H〈Deiu, ej〉H


= E[〈u, v〉H ] + E[Tr(Du ◦Dv)].

Hence,
E[δ(u)2] ≤ E[||u||2H ] + E[||Du||2H⊗H ] = ||u||21,2,H . (28)

Since it is valid for any u, v ∈ SH , by density we will obtain that it is also true
for any u, v ∈ D1,2, then (28) implies that D1,2 ⊆ Dom δ and (27) also holds.

Proposition 4.9. Let F ∈ D1,2 and u ∈ Dom δ such that Fu ∈ L2(Ω;H). If
Fδ(u)− 〈DF, u〉H ∈ L2(Ω), then Fu ∈ Dom δ and

δ(Fu) = Fδ(u)− 〈DF, u〉H . (29)

Proof. Let F ∈ S, u ∈ SH . Then, for any G ∈ S

E[Gδ(Fu)] = E[〈DG,Fu〉H ] = E[〈D(FG)−GDF, u〉H ]

= E[G(Fδ(u)− 〈DF, u〉H)],

where we have used the duality relationship (24). As the sets S,SH are dense,
the result holds.

Although the divergence operator has been defined as an operator from
L2(Ω;H) into L2(Ω), in fact it can be consider acting in elements of Lp(Ω;H).

Proposition 4.10. The operator δ is continuous from D1,p into Lp(Ω) for all
p > 1.

The following proposition give a similar bound as (28) for the Lp norm of
the divergence operator.

Proposition 4.11. Let u be an element of D1,p(H), p > 1. Then we have

||δ(u)||p ≤ cp
(
||E[u]||H + ||Du||Lp(Ω;H⊗H)

)
.

The details of these proofs can be found in the section of Sobolev spaces and
equivalence of norms of reference [2].
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4.2.1 The Skorohod integral

In this section we will work under the same assumptions than in Section 3.3,
that is, assuming the special case when H is an L2 space of the form L2(T,B, µ),
where (T,B) is a measurable space and µ is a σ-finite measure without atoms.

In this case, the elements of Dom δ ⊂ L2(T × Ω) are square integrable
processes and δ(u) coincides with the so called Skorohod stochastic integral of u.

The Skorohod integral will be denoted by

δ(u) =

∫
T

utδWt.

Consider the decomposition of u ∈ L2(T × Ω) in its Wiener chaos in terms
of the multiple Wiener-Itô integrals

u(t) =

∞∑
n=0

In(fn(·, t)), (30)

with fn ∈ L2(Tn+1) symmetric functions in the first n variables, for all n ≥ 1.

Proposition 4.12. Let u ∈ L2(T ×Ω) with decomposition in its Wiener chaos
given by (30). Then, u ∈ Dom δ if and only if the series

δ(u) =

∞∑
n=0

In+1(fn)

converges in L2(Ω).

From this previous proposition we can see that Dom δ consists of processes
of L2(T × Ω) satisfying

E[δ(u)2] =

∞∑
n=0

(n+ 1)!||f̃n||L2(Tn+1) <∞,

where

f̃n(t1, ..., tn, t) =
1

n+ 1

(
fn(t1, ..., tn, t) +

n∑
i=1

fn(t1, ..., ti−1, t, ti+1, ..., tn, ti)

)
,

(since in this case fn is symmetric on the first n variables).
Let L1,2 denote the space D1,2(L2(T )). This space is the set of processes

u ∈ L2(T × Ω) such that ut ∈ D1,2 for almost all t. Let F ∈ D1,2, we denote
DtF := DF (t) by identifying L2(Ω;L2(T )) with L2(T × Ω). Then, if u ∈ L1,2,
E[
∫
T

∫
T

(Dsut)
2µ(ds)µ(dt)] <∞. In fact L1,2 is a Hilbert space with the norm

||u||21,2,L2(T ) = ||u||2L2(T×Ω) + ||Du||2L2(T 2×Ω).

By Proposition 4.8, L1,2 ⊂ Dom δ and for u, v ∈ L1,2, (27) says

E[δ(u)δ(v)] =

∫
T

E[utvt]µ(dt) +

∫
T

∫
T

E[DsutDtvs]µ(ds)µ(dt).
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The equivalent of Equation (26), that is, the Skorohod integral of an el-
ementary process of the form u(t) =

∑n
i=1 Fihi(t), Fi ∈ S and hi ∈ L2(T )

is ∫
T

utδWt =

n∑
i=1

Fi

∫
T

hi(t)dWt −
n∑
i=1

∫
T

DtFihi(t)µ(dt).

That is, this kind of integral does not factorize the non Hilbert-valued ran-
dom variables out of the integral, but incorporates an extra term related with
the derivative operator. The Malliavin derivative of the Skorohod integral is
given by the following proposition.

Proposition 4.13. Let u ∈ L1,2. Assume that for almost all t ∈ T , the pro-
cess {Dtus, s ∈ T} belongs to Dom δ and there is a version of the process
{
∫
T
DtusdWs, t ∈ T} which is in L2(T × Ω). Then δ(u) ∈ D1,2 and

Dt(δ(u)) = ut +

∫
T

DtusδWs.

4.3 The Ornstein–Uhlenbeck operator

In this section we will introduce the Ornstein–Uhlenbeck operator. We will deal
with concepts such as semigroup of operators and infinitesimal generator of the
semigroup, which are defined in the appendix.

Definition 4.3. The Ornstein–Uhlenbeck semigroup is the one-parameter semi-
group {Pt, t ≥ 0} of contraction operators in L2(Ω) defined by

Pt(F ) =

∞∑
n=0

e−ntJnF, (31)

for any F ∈ L2(Ω).

The Ornstein–Uhlenbeck semigroup can be introduced analogously as it was
introduced in Section 2, concerning finite dimensional Malliavin calculus. Let
W ′ = {W ′(h), h ∈ H} be an independent copy of W , and assume that W,W ′

are defined in the product probability space (Ω×Ω′,F ⊗F ′, P ×P ′), then, the
process Z = {Z(h), h ∈ H} defined by

Z(h) = e−tW (h) +
√

1− e−2tW ′(h), h ∈ H,

is a Gaussian process with the same covariance that W . Indeed,

E[Z(h1)Z(h2)] = e−2t〈h1, h2〉H + (1− e−2t)〈h1, h2〉H = 〈h1, h2〉H .

Now, given a random variable F ∈ L2(Ω), let ψF be a measurable mapping
from RH to R, determined P ◦W−1-a.s. by ψF = F ◦W . Then, ψF (Z(ω, ω′)) =
ψF (e−tW (ω) +

√
1− e−2tW ′(ω′)) is well defined P × P ′-a.s.
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Proposition 4.14 (Mehler’s formula). Let W ′ be an independent copy of the
isonormal Gaussian process W = {W (h), h ∈ H}. Then, for any t ≥ 0 and any
F ∈ L2(Ω), we have

Pt(F ) = E′[ψF (e−tW +
√

1− e−2tW ′)],

where E′ denotes the expectation with respect to P ′.

Proof. Let P̃t denote the operator such that P̃t(F ) = E′[ψF (e−tW+
√

1− e−2tW ′)].
In order to show that Pt defined as (31) is equal to P̃t, let’s show that for each
t both Pt and P̃t are linear contraction operators on L2(Ω) that coincide in a
dense set.

It is immediate from the definition, that Pt is a linear contraction operator
on L2(Ω). Let’s see then, that P̃t is also a linear contraction operator on L2(Ω).

E[|P̃t(F )|2] = E[|E′[ψF (e−tW +
√

1− e−2tW ′)]|2]

≤ E[E′[|ψF (e−tW +
√

1− e−2tW ′)|2]] = E[|F 2|],

where it has been used Jensen inequality and the fact that e−tW+
√

1− e−2tW ′

and W have the same law.
As by Lemma 3.2, the random variables of the form F = exp(W (h)− 1

2 ||h||
2
H),

h ∈ H are dense in L2(Ω), it suffices to show that both linear contraction
operators coincide for these random variables. We will have

F = exp

(
W (h)− 1

2
||h||2H

)
=

∞∑
n=0

||h||nHHn
(
W (h)

||h||H

)

by (8). It is immediate to see that JnF = ||h||nHHn
(
W (h)
||h||H

)
and hence

Pt(F ) =

∞∑
n=0

e−nt||h||nHHn
(
W (h)

||h||H

)
.

On the other hand, since F = ψF ◦W , it is clear that ψF (·) = exp( · −
1
2 ||h||

2
H). Therefore

P̃t(F ) = E′
[
ψF

(
e−tW (h) +

√
1− e−2tW ′(h)

)]
= E′

[
exp

(
e−tW (h) +

√
1− e−2tW ′(h)− 1

2
||h||2H

)]
= exp

(
e−tW (h)− 1

2
||h||2H

)
E′
[
exp

(√
1− e−2tW ′(h)

)]
= exp

(
e−tW (h)− 1

2
e−2t||h||2H

)
=

∞∑
n=0

e−nt||h||nHHn
(
W (h)

||h||H

)
,

where in the last equality we have used again (8). This proves that in fact both
operators are the same on L2(Ω).
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The operators Pt are non-negative, that is if F ≥ 0 then Pt(F ) ≥ 0, which
can be seen from the Mehler’s formula, and also symmetric:

E[GPt(F )] = E[FPt(G)] =

∞∑
n=0

e−ntE[Jn(F )Jn(G)].

Now, let’s introduce what will be the infinitesimal generator of the Orn-
stein–Uhlenbeck semigroup.

Definition 4.4. We define the operator L as

LF =

∞∑
n=0

−nJnF,

whenever the series converges in L2(Ω). Then, the domain of this operator is

Dom L =

{
F ∈ L2(Ω) :

∞∑
n=0

n2||JnF ||22 <∞

}
.

In particular, from the characterization of D1,2 by Proposition 4.2, we can
see that Dom L ⊂ D1,2.

Proposition 4.15. The operator L is the infinitesimal generator of the Orn-
stein–Uhlenbeck semigroup {Pt, t ≥ 0}.

Proof. We have to show that F ∈ Dom L if and only if limt→0
1
t (PtF−F ) exists

in L2(Ω) and in this case LF = limt→0
1
t (PtF − F ).

Let’s assume that F ∈ Dom L, then

lim
t→0

E

[∣∣∣∣1t (PtF − F )

∣∣∣∣2
]

= lim
t→0

E

∣∣∣∣∣1t
∞∑
n=0

(e−nt − 1)JnF

∣∣∣∣∣
2


= lim
t→0

∞∑
n=0

∣∣∣∣1t (e−nt − 1)

∣∣∣∣2 ||JnF ||22 ≤ ∞∑
n=0

n2||JnF ||22 <∞,

since
∣∣ 1
t (e
−nt − 1)

∣∣ ≤ n and F ∈ Dom L, which means that limt→0
1
t (PtF − F )

exists in L2(Ω). Let’s see now that it coincides with LF .

lim
t→0

1

t
(PtF − F ) = lim

t→0

1

t

∞∑
n=0

(e−nt − 1)JnF

=

∞∑
n=0

lim
t→0

1

t
(e−nt − 1)JnF =

∞∑
n=0

−nJnF = LF,

where we have used bounded convergence and the fact that limt→0
1
nt (e

−nt−1) =
d
dt (e

−nt)
∣∣
nt=0

.
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Let’s show the converse now, let’s assume that limt→0
1
t (PtF − F ) = G in

L2(Ω). Then

JnG = lim
t→0

1

t
(PtJnF − JnF ) = −nJnF,

using the same argument as before, which implies that indeed F ∈ Dom L and
G = LF .

Let’s introduce a proposition that relates the three operators that were in-
troduced.

Proposition 4.16. Let F ∈ L2(Ω). F ∈ Dom L if and only if F ∈ D1,2 and
DF ∈ Dom δ. In this case δDF = −LF .

Proof. Let’s assume first that F ∈ Dom L, using Proposition 4.3 we see that
in particular Dom L ⊂ D2,2, which means that F ∈ D2,2 ⊂ D1,2 and DF ∈
D1,2(H) ⊂ Dom δ. In this case, let G ∈ S, using the duality property and
Proposition 4.2 we obtain that

E[Gδ(DF )] = E[〈DG,DF 〉H ] =

∞∑
n=0

nE[JnGJnF ]

= E

[
G

∞∑
n=0

nJnF

]
= E[G(−LF )],

(32)

which by density means δ(DF ) = −LF . For the converse, since F ∈ D1,2 and
DF ∈ Dom δ, we can apply directly (32) and hence F ∈ Dom L.

The following result shows the behaviour of L as a second order differential
operator on sufficiently smooth random variables.

Proposition 4.17. Let F ∈ S of the form (19), then F ∈ Dom L and

LF =

n∑
i,j=1

∂2f

∂xi∂xj
(W (h1), ...,W (hn))〈hi, hj〉H

−
n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn))W (hi).
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Proof. By Proposition 4.16, LF = −δDF , hence

LF = −δ

(
n∑
i=1

∂if(W (h1), ...,W (hn))hi

)

= −
n∑
i=1

δ (∂if(W (h1), ...,W (hn))hi)

= −
n∑
i=1

∂if(W (h1), ...,W (hn))W (hi)

+

n∑
i,j=1

∂2f

∂xi∂xj
(W (h1), ...,W (hn))〈hi, hj〉H ,

by applying the definition of the divergence operator to a smooth random pro-
cess, i.e. (26).

Proposition 4.18. Let F = (F 1, ..., Fm) be a random vector such that F i ∈
D2,4, i ∈ {1, ...,m}. Let ϕ ∈ C2(Rm) with bounded first and second partial
derivatives. Then ϕ(F ) ∈ Dom L, and

L(ϕ(F )) =

m∑
i,j=1

(∂i∂jϕ)(F )〈DF i, DF j〉H +

m∑
i=1

(∂iϕ)(F )LF i.

Proof. Applying the chain rule and Proposition 4.16

L(ϕ(F )) = −δ(D(ϕ(F ))) = −δ(
m∑
i=1

(∂iϕ)(F )DF i) = −
m∑
i=1

δ((∂iϕ)(F )DF i)

= −
m∑
i=1

(
(∂iϕ)(F )δ(DF i)− 〈D((∂iϕ)(F )), DF i〉H

)
=

m∑
i=1

(∂iϕ)(F )LF i +
m∑
j=1

(∂i∂jϕ)(F )〈DF j , DF i〉H

 ,

where we have used Proposition 4.9 in order to obtain δ((∂iϕ)(F )DF i).

To conclude with the Ornstein–Uhlenbeck operator, we think is worth to
mention, although we do not prove it, the hypercontractivity property of Pt.

Theorem 4.1. Let p ≥ 1 and t > 0, and set q(t) = e2t(p− 1) + 1 > p. Suppose
that F ∈ Lp(Ω). Then

||Pt(F )||q(t) ≤ ||F ||p.

The proof of this theorem can be found in referece [2].

36



4.4 Local property of the operators

In this section it is commented the local properties of the operators D and δ.

Definition 4.5. An operator O defined on some space of random variables is
said to be local on A ∈ F if for any random variable F such that F = 0 a.s. on
A, then O(F ) = 0 a.s. on A.

Proposition 4.19. The derivative operator D is local on D1,1.

Proposition 4.20. The divergence operator δ is local on D1,2(H).

This local property allows to localize the domains of the operators D and
δ. That is, it can be defined the set of random variables D1,p

loc such that there
exists an increasing sequence Ωn ⊂ Ω converging almost surely to Ω and a
sequence Fn ∈ D1,p, n ≥ 1 satisfying that Fn = F a.s. on Ωn. If F ∈ D1,p

loc ,
then DF = DFn on Ωn. The local property allows to ensure that this is
well defined, since the random variable F − Fn = 0 a.s. on Ωn and hence
0 = D(F − Fn) = DF −DFn a.s. on Ωn , which means that DF = DFn a.s.
on Ωn.

4.5 Malliavin calculus in Hilbert spaces

Throughout the previous sections we have already worked with Hilbert space
valued random variables, without caring much about it. In this section, we are
going to justify a little bit what we have done already. This section will ease
the understanding of some of the computations of the next section. We have
followed references [2] and [1].

Let V be a Hilbert space. For any p ≥ 1, we denote by Lp(Ω;V ) =
Lp(Ω,F , P ;V ) the set of V -valued random variables X, being F-measurable
and such that E[||X||pV ] < ∞, where (Ω,F , P ) is the underlying probability
space and that in our case, F = σ(W ), with W = {W (h), h ∈ H}. Notice
that L2(Ω;V ) will be also a Hilbert space with inner product 〈X,Y 〉L2(Ω;V ) =
E[〈X,Y 〉V ].

Let denote by SV the space of V -valued smooth random variables of the form∑n
i=1 Fivi, with Fi ∈ S and vi ∈ V . Then, the k-th Malliavin derivative of any

F ∈ SV is given by the H⊗k⊗V -valued random variable DkF =
∑n
i=1D

kFi⊗vi.
In this case, as with the real-valued random variables it can be seen that the
operator Dk : SV ⊂ Lp(Ω;V ) → Lp(Ω;H⊗k ⊗ V ) is closable. Then we can
extend the domain of the operator to the closure of SV with respect to the
norm || · ||k,p,V given by

||F ||k,p,V =

(
E[||F ||pV ] +

k∑
i=1

E[||DiF ||pH⊗i⊗V ]

) 1
p

.

We denote by Dk,p(V ) to this domain. We will denote

D∞(V ) :=
⋂
p≥1

⋂
k≥1

Dk,p(V ).
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Notice that if V = R we will simply denote Dk,p(R) = Dk,p and D∞(R) =
D∞. Observe that D is continuous from Dk,p(V ) into Dk−1,p(H ⊗ V ) and as a
consequence D is continuous from D∞(V ) into D∞(H ⊗ V ). Now we are going
to introduce another extension of the chain rule for smooth random vectors.

Proposition 4.21. Suppose F = (F 1, ..., Fm) is a random vector such that
F i ∈ D∞ and ϕ ∈ C∞p (Rm). Then, ϕ(F ) ∈ D∞, and

D(ϕ(F )) =

m∑
i=1

(∂iϕ)(F )DF i.

We will introduce a proposition in order to compute the derivative of the
scalar product of derivatives, that will be useful as a tool for the proofs of next
section. If V , W are Hilbert spaces, each of them with inner product 〈·, ·〉V
and 〈·, ·〉W , then we can define the inner product in V ⊗ W as 〈·, ·〉V⊗W =
〈·, ·〉V 〈·, ·〉W .

Proposition 4.22. Let F,G ∈ D2,2, then for any h ∈ H

Dh (〈DF,DG〉H) = 〈D2F,DG⊗ h〉H⊗H + 〈DF ⊗ h,D2G〉H⊗H .

Proof. Let F,G ∈ S and let’s assume that there exist orthonormal elements
of H, e1, ..., en such that F = f(W (e1), ...,W (en)), G = g(W (e1), ...,W (en)),
f, g ∈ C∞p (Rn). Then

〈DF,DG〉H =

n∑
i=1

∂f

∂xi
(W∗)

∂g

∂xi
(W∗)〈ei, ei〉H ,

where we have denoted by W∗ = (W (e1), ...,W (en)). Hence

Dh (〈DF,DG〉H)

=

n∑
i=1

n∑
j=1

(
∂2f

∂xi∂xj
(W∗)

∂g

∂xi
(W∗) +

∂f

∂xi
(W∗)

∂2g

∂xi∂xj
(W∗)

)
〈ei, ei〉H〈ej , h〉H

=

n∑
i=1

n∑
j=1

〈
∂2f

∂xi∂xj
(W∗)ei ⊗ ej ,

∂g

∂xi
(W∗)ei ⊗ h

〉
H⊗H

+

n∑
i=1

n∑
j=1

〈
∂f

∂xi
(W∗)ei ⊗ h,

∂2g

∂xi∂xj
(W∗)ei ⊗ ej

〉
H⊗H

= 〈D2F,DG⊗ h〉H⊗H + 〈DF ⊗ h,D2G〉H⊗H .

Since S is dense in D2,2 we can extend the result to any F,G ∈ D2,2.

Corollary 4.1. Let F,G ∈ D∞, then 〈DF,DG〉H ∈ D∞.

Proof. We can prove it recursively applying Proposition 4.22 to the scalar prod-
uct 〈·, ·〉H⊗k .
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5 Criteria for existence and regularity of densi-
ties

In this section, mainly based on [3] and [2], we will apply Malliavin calculus in
order to obtain explicit integration by parts formulas and then by means of the
propositions of Section 1, derive criteria for the existence of densities, as well as
for the regularity of these densities.

5.1 Existence of densities.

First of all, we will introduce the simpler case, the case of just a random variable.

Proposition 5.1. Let F ∈ D1,2 and assume that DF
||DF ||2H

∈ Dom δ, then, the

law of F is absolutely continuous. Moreover, its density is given by

p(x) = E

[
1(F≥x)δ

(
DF

||DF ||2H

)]
, (33)

hence, it is continuous and bounded.

Proof. This proof relies on Proposition 1.1, we just need to show that

E[ϕ′(F )] = E

[
ϕ(F )δ

(
DF

||DF ||2H

)]
,

for any ϕ ∈ C∞b (R). That is, that F and G = 1 satisfy an integration by

parts formula of degree 1 with H1(F, 1) = δ
(

DF
||DF ||2H

)
, since by assumption

DF
||DF ||2H

∈ Dom δ.

Applying the chain rule, we obtain that D(ϕ(F )) = ϕ′(F )DF , hence

〈D(ϕ(F )), DF 〉H = 〈ϕ′(F )DF,DF 〉H = ϕ′(F )||DF ||2H ,

which means that

ϕ′(F ) =

〈
D(ϕ(F )),

DF

||DF ||2H

〉
H

.

Using the duality property, it leads to the desired integration by parts formula.

When F is a random vector instead, we have to consider a more involved
analysis.

Definition 5.1. Let F : Ω → Rn be a random vector, F = (F 1, ..., Fn), and
assume that each of the components are in D1,2, then, we define the Malliavin
matrix of F as the n× n matrix

γF (x) = (〈DF i(x), DF j(x)〉H)i,j , 1 ≤ i, j ≤ n.
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Whenever there is no possible confusion we will drop the subindex and we
will denote the Malliavin matrix of F simply by γ.

Proposition 5.2. Let F : Ω → Rn be a random vector with components F i ∈
D1,2, i ∈ {1, ..., n}. Assume that:

1. The Malliavin matrix, γ, is invertible a.s.,

2. For every i, j ∈ {1, ..., n} , the random variables (γ−1)i,jDF
j ∈ Dom δ.

Then, for any ϕ ∈ C∞b (Rn)

E[∂iϕ(F )] = E[ϕ(F )Hi(F, 1)],

with Hi(F, 1) =
∑n
l=1 δ

(
(γ−1)i,lDF

l
)
. Thereby, the law of F is absolutely con-

tinuous.

Proof. For any given ϕ ∈ C∞b (Rn), using the chain rule 4.4 we obtain that
D(ϕ(F )) =

∑n
k=1 ∂kϕ(F )DF k. Hence

〈D(ϕ(F )), DF l〉H =

n∑
k=1

∂kϕ(F )〈DF k, DF l〉H =

n∑
k=1

∂kϕ(F )γk,l,

for l ∈ {1, ..., n}. As this form a linear system with matrix γ, we can invert this,
since it is invertible a.s., and obtain

∂kϕ(F ) =

n∑
l=1

〈
D(ϕ(F )), (γ−1)k,lDF

l
〉
H
,

for any k ∈ {1, ..., n}, a.s.. Notice that γ is symmetric and (γ−1)k,l = (γ−1)l,k.
Now, taking expectations and applying the duality property

E[∂kϕ(F )] =

n∑
l=1

E
[〈
D(ϕ(F )), (γ−1)k,lDF

l
〉
H

]
=

n∑
l=1

E
[
ϕ(F )δ

(
(γ−1)k,lDF

l
)]
,

for any k ∈ {1, ..., n}, satisfying the first part of the proposition. By assumption
2) δ

(
(γ−1)k,lDF

l
)
∈ L2(Ω) ⊂ L1(Ω) for any k, l ∈ {1, ..., n} and hence

|E[∂kϕ(F )]| ≤ ||ϕ||∞
n∑
l=1

∣∣E [δ ((γ−1)k,lDF
l
)]∣∣ .

Now, the existence of the density for the random vector F follows applying
Proposition 1.2.

Corollary 5.1. Let F : Ω→ Rn be a random vector, F = (F 1, ..., Fn). Assume
that its Malliavin matrix γ is invertible a.s. and for any i, j ∈ {1, ..., n}, F i ∈
Dom L, (γ−1)i,j ∈ D1,2, (γ−1)i,jDF

j ∈ L2(Ω;H), (γ−1)i,jδ(DF
j) ∈ L2(Ω) and

〈D(γ−1)i,j , DF
j〉H ∈ L2(Ω). Then, for any ϕ ∈ C∞b (Rn)

E[∂iϕ(F )] = E[ϕ(F )Hi(F, 1)],

with Hi(F, 1) = −
∑n
l=1

(
〈DF l, D(γ−1)i,l〉H + (γ−1)i,lLF

l
)
. And the law of F

is absolutely continuous.
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Proof. Following the exact same steps as in the previous proof, we can get to

E[∂kϕ(F )] =

n∑
l=1

E
[
ϕ(F )δ

(
(γ−1)k,lDF

l
)]
.

As DF ∈ Dom δ and (γ−1)i,j ∈ D1,2 such that (γ−1)i,jDF
j ∈ L2(Ω;H) for all

i, j ∈ {1, ..., n} by hypothesis, then, we can apply Proposition 4.9 and obtain
that δ

(
(γ−1)k,lDF

l
)

= −
(
〈DF l, D(γ−1)k,l〉H + (γ−1)k,lLF

l
)
, concluding the

proof.

The next theorem is the main result of this section and provides sufficient
conditions for the existence of a density which are more natural than the ones
provided by Proposition 5.2.

Theorem 5.1. Let F : Ω→ Rn be a random vector satisfying:

1. F i ∈ D2,2 for any i ∈ {1, ..., n},

2. The Malliavin matrix, γ, is invertible almost surely.

Then, the law of F has a density with respect to the Lebesgue measure on Rn.

Proof. We propose the solution to the linear system of equations as in the proof
of Proposition 5.2:

∂iϕ(F ) =

n∑
l=1

〈
D(ϕ(F )), (γ−1)i,lDF

l
〉
H
, (34)

for a given ϕ ∈ C∞b (Rn) and any i ∈ {1, ..., n}, a.s.. Since γ−1 may not have
moments, we need to apply a localizing argument if we want to take expectations
on both sides of the previous expression. Consider, for any natural number
N ≥ 1, a non-negative function ψN ∈ C∞0 (L(Rn,Rn)) such that

• ψN (σ) = 1, if σ ∈ CN ,

• ψN (σ) = 0, if σ /∈ CN+1,

where σ ∈ L(Rn,Rn) and

CN =

{
σ ∈ L(Rn,Rn) : |σi,j | ≤ N for all i, j = 1, ..., n and |detσ| ≥ 1

N

}
.

As

(γ−1)i,j =
1

det γ
Cj,i = det γ−1Cj,i, (35)

with Cj,i being the cofactors, we easily see that

|ψN (γ)(γ−1
F )i,j | ≤ ψN (γ)(N + 1)(n− 1)!(N + 1)n−1,
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hence, we will have that E[|ψN (γ)(γ−1
F )i,j |] < ∞. Then, we can multiply the

expression (34) on both sides by ψN (γ) and take expectations to obtain

E[ψN (γ)∂iϕ(F )] =

n∑
l=1

E
[〈
D(ϕ(F )), ψN (γ)(γ−1)i,lDF

l
〉
H

]
. (36)

Let’s see that ψN (γ)(γ−1)i,lDF
l ∈ D1,2(H). We have to show that ψN (γ)(γ−1)i,lDF

l ∈
L2(Ω;H) and D

(
ψN (γ)(γ−1)i,lDF

l
)
∈ L2(Ω;H ⊗H). For the first one

E
[
ψ2
N (γ)(γ−1)2

i,l||DF l||2H
]
≤
(
(N + 1)(n− 1)!(N + 1)n−1

)2
E
[
ψ2
N (γ)||DF l||2H

]
≤
(
(N + 1)(n− 1)!(N + 1)n−1

)2
(N + 1),

since in particular ||DF l||2H = γl,l, which means that ψ2
N (γ)||DF l||2H < N + 1.

For the second one, using the derivative of the product we obtain that

D
(
ψN (γ)(γ−1)i,lDF

l
)

= D
(
ψN (γ)(γ−1)i,l

)
DF l + ψN (γ)(γ−1)i,lD

2F l

= D (ψN (γ)) (γ−1)i,lDF
l + ψN (γ)D

(
(γ−1)i,l

)
DF l + ψN (γ)(γ−1)i,lD

2F l.

Let’s see that each of this summands belong to L2(Ω;H ⊗ H). For the last
summand

E
[
ψN (γ)2(γ−1)2

i,l||D2F l||2H⊗H
]

≤
(
(N + 1)(n− 1)!(N + 1)n−1

)2
E
[
||D2F l||2H⊗H

]
<∞,

since in particular F ∈ D2,2. For ψN (γ)D
(
(γ−1)i,l

)
DF l, let’s develop the

derivative of the Malliavin matrix:

D
(
(γ−1)i,l

)
= D

(
1

det γ
Cl,i

)
= D

(
1

det γ

)
Cl,i +

1

det γ
D (Cl,i)

= − 1

(det γ)2
D(det γ) +

1

det γ
D (Cl,i) .

We have that det γ is a linear combination of elements of the form γi1,j1 · · · γin,jn
and Cl,i is a linear combination of elements of the form γi′1,j′1 · · · γi′n−1,j

′
n−1

,
then, we will have that their derivative will be linear combinations of elements
of the form γi1,j1 · · ·D(γik,jk) · · · γin,jn and γi′1,j′1 · · ·D(γi′s,j′s) · · · γi′n−1,j

′
n−1

, re-

spectively with k = 1, ..., n, s = 1, ..., n − 1. Once multiplied by ψN (γ) we
will only need to have bounds for elements of the form ψN (γ)D(γi,j), that is
ψN (γ)D

(
(γ−1)i,l

)
DF l ∈ L2(Ω;H ⊗ H) if ψN (γ)D(γp,q)DF

l ∈ L2(Ω;H ⊗ H)
for any p, q. Since D(γp,q) = D(〈DF p, DF q〉H), from Proposition 4.22, we have
that

||D(γp,q)||H ≤ ||D2F p||H⊗H ||DF q||H + ||DF p||H ||D2F q||H⊗H ,

and therefore

E[||ψN (γ)D(γp,q)DF
l||2H⊗H ]

≤ 2E
[
|ψN (γ)|2

(
||D2F p||2H⊗Hγqq + γpp||D2F q||2H⊗H

)
||DF l||2H

]
≤ CE[||D2F p||2H⊗H + ||D2F q||2H⊗H ] <∞,
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where C is a constant, and this is finite since the elements of γ are bounded due
to ψN (γ) and F l ∈ D2,2 for all l.

Finally, for D (ψN (γ)) (γ−1)i,lDF
l, since ψN ∈ C∞0 (L(Rn,Rn)) we can apply

the chain rule and get

D (ψN (γ)) =

n∑
i,j=1

∂i,jψN (γ)D(γi,j),

where ∂i,j denotes the partial derivative with respect to the component σi,j .
See that D (ψN (γ)) (γ−1)i,lDF

l ∈ L2(Ω;H ⊗ H) reduces to see that elements
of the form ∂p,qψN (γ)D(γp,q)(γ

−1)i,lDF
l, but since ∂p,qψN (γ) is also smooth

with compact support, we can apply the same argument as with the previous
component and see that it is also in L2(Ω;H ⊗H).

As ψN (γ)(γ−1)i,lDF
l ∈ D1,2(H) has been shown, then ψN (γ)(γ−1)i,lDF

l ∈
Dom δ, see Proposition 4.8. As a consequence, we can apply the duality property
to (36) and obtain

|E[ψN (γ)∂iϕ(F )]| =

∣∣∣∣∣
n∑
l=1

E
[
ϕ(F )δ

(
ψN (γ)(γ−1)i,lDF

l
)]∣∣∣∣∣

≤ E

[∣∣∣∣∣
n∑
l=1

δ
(
ψN (γ)(γ−1)i,lDF

l
)∣∣∣∣∣
]
||ϕ||∞,

where E
[∣∣∑n

l=1 δ
(
ψN (γ)(γ−1)i,lDF

l
)∣∣] = Ci is a constant not depending on ϕ.

Then, by Proposition 1.2, [ψN (γ)P ] ◦F−1 is absolutely continuous with respect
to the Lebesgue measure on Rm. Since by hypothesis |γi,j | <∞ and |det γ| > 0
a.s., then limN→∞ ψN (γ) = 1 and hence for any Borel set B ∈ B(Rm) with zero
Lebesgue measure we have P (F−1(B)) = 0, which means that F has a density.

In fact, there is a much weaker condition in order to obtain the existence of
densities. The following result is a weaker version of the previous theorem.

Theorem 5.2. Let F : Ω→ Rn be a random vector satisfying:

1. F i ∈ D1,p
loc for any i ∈ {1, ..., n}, p > 1,

2. The Malliavin matrix, γ, is invertible almost surely.

Then, the law of F has a density with respect to the Lebesgue measure on Rn.

The proof of this theorem is not presented in this work since it requires a
little bit more involved techniques. However, a proof of this theorem can be
found in reference [2].
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5.2 Smoothness of densities.

Now we want to use the second part of the propositions of Section 1 in order
to obtain sufficient conditions for the smoothness of the densities of random
vectors. First, we will introduce a couple of lemmas, whose proofs can be found
in [2] and that will help us with the proof of the result.

Lemma 5.1. Let (Fn)n be a sequence of random variables converging to F in
Lp(Ω) for some p > 1. Suppose that supn ||Fn||s,p < ∞ for some s. Then,
F ∈ Ds,p.

Lemma 5.2. Let F ∈ D1,2 be a random variable such that E[|F |−2] < ∞.
Then, P (F > 0) is either 0 or 1.

Now we will expose sufficient conditions for the smoothness of densities of a
random vector.

Proposition 5.3. Let F : Ω→ Rn be a random vector satisfying:

1. F i ∈ D∞, for any i ∈ {1, ..., n},

2. The Malliavin matrix of F , γ, is invertible almost surely and

det γ−1 ∈
⋂

p∈[1,∞)

Lp(Ω). (37)

Then the law of F has an infinitely differentiable density with respect to the
Lebesgue measure on Rn.

Proof. First of all, let’s see that (γ−1
i,j ) ∈ D∞ for all i, j ∈ {1, ..., n}. Let ϕN be

defined as ϕN (x) =
(
x+ 1

N

)−1
for x ≥ 0 and N ≥ 1. As either P (det γ > 0)

is zero or one by Lemma 5.2, we will assume that det γ > 0. Let now YN =(
det γ + 1

N

)−1
, N ≥ 1. As ϕN can be extended to a function in C∞p (R) and

det γ ∈ D∞ (deduced from Corollary 4.1), then, by an iteration of the chain
rule, we have that YN ∈ D∞, for any N ≥ 1. We have that YN converges to
det γ−1 in Lp(Ω) for any p ≥ 1, by (37). Then, due to Lemma 5.1, det γ−1

belong to D∞ if the sequence (YN )N has uniformly bounded derivatives of any
order in Lp(Ω) for any p. Applying Leibniz’s rule, (23), we can see that the
derivatives are uniformly bounded. Indeed,

Dk(ϕN (det γ)) =

k∑
l=1

∑
Pl

clϕ
(l)
N (det γ)

l∏
i=1

D|pi| det γ,

are uniformly bounded since det γ ∈ D∞ and

|ϕ(l)
N (det γ)| = l!

(
(det γ) +

1

N

)−(l+1)

= l! (YN )
(l+1)

,

and the Lp norm of YN is bounded by the Lp norm of det γ−1 for any p,N ≥ 1.
From the expression of the inverse of γ, (35), it can be seen that all the entries
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of γ−1 belong to D∞. This is because both det γ−1 and F i belong to D∞, for
any i ∈ {1, ..., n}.

Now, as in the proof of Proposition 5.2, we can obtain that for any ϕ ∈
C∞b (Rn)

∂iϕ(F ) =

n∑
l=1

〈
D(ϕ(F )), (γ−1)i,lDF

l
〉
H
.

Multiplying both sides by a given G ∈ D∞ and taking expectations we obtain

E [∂iϕ(F )G] =

n∑
l=1

E
[〈
D(ϕ(F )), G(γ−1)i,lDF

l
〉
H

]
.

We have that G(γ−1)i,lDF
l ∈ D∞, since each of the factors belong to D∞, then,

we can apply the duality property and obtain

E [∂iϕ(F )G] = E [ϕ(F )Hi(F,G)] , (38)

with Hi(F,G) =
∑n
l=1 δ

(
G(γ−1)i,lDF

l
)
, for all i ∈ {1, ..., n}. It can be shown

using an extension of Proposition 4.7 and iterating, that Hi ∈ D∞. Moreover,
we can generalize (38) for any multiindex α using induction over |α|. The
expression was given for |α| = 1, now let’s assume that is true for |α| = r − 1.
Given β a multiindex such that |β| = r, we can express β = α+ i, where α and
i are multiindex such that |α| = r − 1 and |i| = 1. Then, by recursion

E[(∂βϕ)(F )G] = E[(∂iϕ)(F )Hα(F,G)] = E[ϕ(F )Hi(F,Hα(F,G))],

and we can define the D∞ random variable Hβ(F,G) equal to Hi(F,Hα(F,G))
almost surely, where Hi(F,Hα(F,G)) =

∑n
l=1 δ

(
Hα(F,G)(γ−1)i,lDF

l
)
.

Taking G = 1 we obtain that for any multiindex α and every function ϕ ∈
C∞0 (Rn)

E[(∂αϕ)(F )] = E[ϕ(F )Hα(F, 1)].

In particular
|E[(∂αϕ)(F )]| ≤ Cα||ϕ||∞,

where Cα := E[Hα(F, 1)] is a constant not depending on ϕ. Applying Proposi-
tion 1.2 we finally show that the law of F has a C∞ density.
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6 Applications

In this section we will introduce some applications of the theory developed
before, we will briefly explain the relation of the Skorohod integral with the Itô
stochastic integral and finally we will present a practical example.

6.1 Density of random variables

We will start considering sufficient conditions for a random variable F ∈ L2(Ω)
in order to satisfy conditions of Proposition 5.1, which in addition provide of
another expression for the density of the random variable.

Proposition 6.1. Let F be a random variable belonging to D2,4 such that
E[||DF ||−8

H ] <∞, then DF
||DF ||2H

∈ Dom δ and

δ

(
DF

||DF ||2H

)
= − LF

||DF ||2H
− 2
〈DF ⊗DF,D2F 〉H⊗H

||DF ||4H
. (39)

Proof. Let’s see that indeed DF
||DF ||2H

∈ D1,2(H). First of all, applying Cauchy-

Schwarz inequality

E

[∣∣∣∣∣∣∣∣ DF

||DF ||2H

∣∣∣∣∣∣∣∣2
H

]
≤ E

[
||DF ||4H

] 1
2 E

[
||DF ||−8

H

] 1
2 <∞,

by hypothesis. Now we have to see that D
(

DF
||DF ||2H

)
∈ L2(Ω;H⊗H). Applying

the chain rule

D

(
DF

||DF ||2H

)
=

D2F

||DF ||2H
− D(〈DF,DF 〉H)

||DF ||4H
DF,

and now applying Proposition 4.22, we obtain that∣∣∣∣∣∣∣∣D(〈DF,DF 〉H)

||DF ||4H
DF

∣∣∣∣∣∣∣∣
H⊗H

≤ 2
||D2F ||H⊗H
||DF ||2H

.

Hence, ∣∣∣∣∣∣∣∣D( DF

||DF ||2H

)∣∣∣∣∣∣∣∣
H⊗H

≤ 3
||D2F ||H⊗H
||DF ||2H

. (40)

Finally, using (40) and applying Cauchy-Schwarz inequality

E

[∣∣∣∣∣∣∣∣D( DF

||DF ||2H

)∣∣∣∣∣∣∣∣2
H⊗H

]
≤ 9E

[
||D2F ||4H⊗H

] 1
2 E

[
||DF ||−8

H

] 1
2 <∞,

since both factors on the right-hand side are finite by hypothesis. Therefore
DF
||DF ||2H

∈ D1,2(H) ⊂ Dom δ. In order to show (39) we will use Proposition 4.9,

that says that given G ∈ D1,2 and u ∈ Dom δ, then δ(Gu) = Gδ(u)−〈DG,u〉H .
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Let’s consider Gε = (||DF ||H+ε)−2 and u = DF . u ∈ Dom δ since in particular
DF ∈ D1,2(H) ⊂ Dom δ and Gε ∈ D1,2 because

||D((||DF ||H + ε)−2)||H = ||D(〈DF,DF 〉H)||H(||DF ||H + ε)−4

≤ 2||D2F ||H⊗H ||DF ||H(||DF ||H + ε)−4,

by virtue of Proposition 4.22. Now, since (||DF ||H +ε)−1 is bounded by 1/ε, we
can apply Cauchy-Schwarz inequality and see that Gε belongs to D1,2. Hence

δ

(
DF

(||DF ||H + ε)2

)
=

δDF

(||DF ||H + ε)2
− Du(〈DF,DF 〉H)

(||DF ||H + ε)4

= − LF

(||DF ||H + ε)2
− 2
〈D2F,DF ⊗DF 〉H⊗H

(||DF ||H + ε)4
,

where we have used Proposition 4.22 and that δDF = −LF . Making ε tend to
zero, we obtain the desired result.

The result of this proposition, combined with Proposition 5.1, states that
the density of such a random variable F is

p(x) = E

[
−1(F≥x)

(
LF

||DF ||2H
+ 2
〈DF ⊗DF,D2F 〉H⊗H

||DF ||4H

)]
.

From Theorem 5.2, conditions for the existence of density for a random
variable F can be considered to be F ∈ D1,p, p > 1, and ||DF ||H > 0 almost
surely. Under stronger conditions, the next proposition bounds the density of
the random variable.

Proposition 6.2. Let q, α, β be three positive real numbers such that 1
q+ 1

α+ 1
β =

1. Let F be a random variable belonging to D2,α satisfying that E[||DF ||−2β
H ] <

∞. Then the density of F , p(x), has the following upper bound

p(x) ≤ c1,α,β(P (|F | > |x|))
1
q

(
E[||DF ||−1

H ] + ||D2F ||Lα(Ω;H⊗H)

∣∣∣∣||DF ||−2
H

∣∣∣∣
β

)
.

(41)

Proof. From Theorem 5.2, we obtain that F has a density. Moreover, we can
see that

p(x) = E

[
1(F≥x)δ

(
DF

||DF ||2H

)]
, (42)

still holds when F ∈ D1,p1 and DF
||DF ||2H

∈ D1,p2(H), with p1, p2 > 1. Let’s

check that those hypothesis are satisfied. As F ∈ D2,α, we will have that
F ∈ D1,p1 for any p1 ≤ α. In order to see that DF

||DF ||2H
∈ Lp2(Ω;H) it is

required that E[||DF ||−p2H ] < ∞, that will hold for any p2 ≤ 2β. We will have

that if E
[(
||D2F ||H⊗H
||DF ||2H

)p2]
<∞, then using (40), D

(
DF
||DF ||2H

)
∈ Lp2(Ω;H⊗H).

Applying Hölder’s inequality with 1
q1

+ 1
q2

= 1

E

[(
||D2F ||H⊗H
||DF ||2H

)p2]
≤ E

[
||D2F ||q1·p2H⊗H

] 1
q1 E

[
||DF ||−2q2·p2

H

] 1
q2
.
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Then E
[
||D2F ||q1·p2H⊗H

]
will be finite if q1 ·p2 ≤ α and E

[
||DF ||−2q2·p2

H

]
will be fi-

nite if q2 ·p2 ≤ β. Combining the obtained inequalities we can see that F ∈ D1,p1

and DF
||DF ||2H

∈ D1,p2(H) for 1 < p1 ≤ α and 1 < p2 ≤ min

(
2β,
(

1
α + 1

β

)−1
)

and indeed (42) holds.
Applying Hölder’s inequality to (42) with 1

p + 1
q = 1 it is obtained that

p(x) ≤ (P (F > x))
1
q

∣∣∣∣∣∣∣∣δ( DF

||DF ||2H

)∣∣∣∣∣∣∣∣
p

, (43)

since the law of F is absolutely continuous and then P (F ≥ x) = P (F > x).
Moreover, as 1(F≥x) = 1− 1(F<x),

p(x) = E

[
δ

(
DF

||DF ||2H

)]
− E

[
1(F<x)δ

(
DF

||DF ||2H

)]
= −E

[
1(F<x)δ

(
DF

||DF ||2H

)]
,

(44)

since E
[
δ
(

DF
||DF ||2H

)]
= 0. Applying again Hölder’s inequality to the absolute

value of (44), we obtain that

p(x) ≤ (P (F < x))
1
q

∣∣∣∣∣∣∣∣δ( DF

||DF ||2H

)∣∣∣∣∣∣∣∣
p

. (45)

Putting together (43) and (45) we obtain,

p(x) ≤ (P (|F | > |x|))
1
q

∣∣∣∣∣∣∣∣δ( DF

||DF ||2H

)∣∣∣∣∣∣∣∣
p

. (46)

Using Proposition 4.11, we obtain that∣∣∣∣∣∣∣∣δ( DF

||DF ||2H

)∣∣∣∣∣∣∣∣
p

≤ cp

(∣∣∣∣∣∣∣∣E [ DF

||DF ||2H

]∣∣∣∣∣∣∣∣
H

+

∣∣∣∣∣∣∣∣D( DF

||DF ||2H

)∣∣∣∣∣∣∣∣
Lp(Ω;H⊗H)

)
.

(47)
Finally, combining the equations (46), (47) and (40), the proof is concluded.

6.2 The Itô integral as a particular case of the Skorohod
integral

In the same setting as in Section 3.3 and Section 4.2.1, let’s assume H =
L2(T,B, µ). If A ∈ B, let FA be the σ-field generated by the {W (B), B ⊂
A,B ∈ B}.

Proposition 6.3. Assume F ∈ D1,2 and let A ∈ B. Then the conditional
expectation E[F |FA] also belongs to D1,2, and

Dt(E[F |FA]) = E[DtF |FA]1A(t),

a.e. in T × Ω.
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Corollary 6.1. Let A ∈ B and suppose that F ∈ D1,2 is FA-measurable. Then,
DtF is zero almost everywhere in Ac × Ω.

Lemma 6.1. Let A ∈ B, and let F be a square integrable random variable that
is measurable with respect to the σ-field FAc . Then the process F1A is Skorohod
integrable and

δ(F1A) = FW (A).

Proof. Assuming F ∈ D1,2 and applying Corollary 6.1 to (29) from Proposition
4.9

δ(F1A) = FW (A)−
∫
T

DtF1A(t)µ(dt) = FW (A).

The general case follows approximating F ∈ L2(Ω) by Fn ∈ D1,2 random vari-
ables and using the fact that δ is closed.

Now let’s see that the Skorohod integral coincides with the Itô integral in
a particular class of random variables. Consider now H = L2([0, T ]) and µ
the Lebesgue measure on [0, T ]. Let’s consider the case of a one dimensional
Brownian motion. Let W = {Wt, 0 ≤ t ≤ T} be a Brownian motion. Let Ft
denote the σ-field generated by {Ws, 0 ≤ s ≤ t}. We will denote by L2

a the
closed subspace of L2([0, T ]× Ω) formed by the adapted processes, that is, the
processes u = {ut, 0 ≤ t ≤ T} such that ut is Ft-measurable.

Proposition 6.4. L2
a ⊂ Dom δ, and the divergence operator restricted to L2

a

coincides with the Itô integral, that is δ(u) =
∫ T

0
utdWt.

Proof. Let u be an elementary adapted process of the form

ut =

n∑
i=1

Fi1(ti,ti+1](t), (48)

where F i are Fti -measurable square integrable random variables and 0 ≤ t1 <
... < tn ≤ T . From Lemma 6.1 u is Skorohod integrable and

δ(u) =

n∑
i=1

FiW ((ti, ti+1]) =

n∑
i=1

Fi(W (ti+1)−W (ti)),

which is the Itô integral of u. For a general process u ∈ L2
a the Itô integral of u

is defined as the L2(Ω) limit of the Itô integral of elementary adapted processes
un such that converge to u in L2(T ×Ω). Since we will have a sequence of δ(un)
converging in L2(Ω) and δ is closed, then u ∈ Dom δ and δ(u) coincides with
the Itô integral of u.

6.3 Practical example: the solution of the Heat equation

In this section we will apply the developed theory in order to find conditions
for the differentiability (in the Malliavin sense) of a stochastic process. The
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stochastic process that we will consider, is motivated by the solution of the
stochastic heat equation

∂

∂t
v(t, x)− ∂2

∂x2
v(t, x) = f(v(t, x))Ẇ (t, x),

v(0, x) = 0,

(49)

where (t, x) ∈ [0, T ] × R. The solution of this stochastic partial differential
equation is the stochastic process

v(t, x) =

∫ t

0

∫
R

1√
4π(t− s)

exp

(
−|x− y|

2

4(t− s)

)
f(v(s, y))W (ds, dy), (50)

t ∈ [0, T ], x ∈ R.

Definition of the stochastic process

Let W = {W (t, x), (t, x) ∈ [0, T ] × R} be a space-time white noise and let u =
{u(t, x), (t, x) ∈ [0, T ] × R} be a stochastic process. Let’s define the stochastic
process of interest F = {F (t, x), (t, x) ∈ [0, T ]× R} as

F (t, x) =

∫ t

0

∫
R

1√
4π(t− s)

exp

(
−|x− y|

2

4(t− s)

)
u(s, y)W (ds, dy), (51)

t ∈ [0, T ], x ∈ R.
As it has been mentioned, the motivation for this example comes from the

solution of the Heat equation (50). In this case the, integrand is adapted since
it does only depend on past time values. The next definition is the formal
definition of an adapted process.

Definition 6.1. Let’s denote, for each t ∈ [0, T ], Ft the σ-field generated by
the random variables {W (s, x), s ∈ [0, t], x ∈ R} and the P -null sets. We say
that a stochastic process {u(t, x), (t, x) ∈ [0, T ] × R)} is adapted if for all (t, x)
the random variable u(t, x) is Ft-measurable.

From now on we will consider that u is adapted.

Integrability conditions

By an extension of Itô ’s theory on stochastic integration, F (t, x) is a well defined
random variable in L2(Ω) if and only if

||F (t, x)||L2(Ω) = E

∫ t

0

∫
R

(
1√

4π(t− s)
exp

[
−|x− y|

2

4(t− s)

])2

u2(s, y)dyds

 <∞,
(52)

for all t ∈ [0, T ] and x ∈ R.
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We want then to find conditions on u ensuring (52). In order to obtain these
conditions, let’s re-express (52) as∫ t

0

1√
8π(t− s)

∫
R
G(t− s, x− y)E

[
u2(s, y)

]
dyds <∞, (53)

where G is the Gaussian Kernel

G(t, x) :=
1√
2πt

exp

(
−|x|

2

2t

)
.

If we look at the spatial integral of (53), we notice that in fact, it is the convolu-
tion of f(t, x) := E

[
u2(t, x)

]
with the Gaussian Kernel G(t− s, x). Informally,

the Gaussian Kernel will smooth the function f(t, x) in the x variable.
In order to fulfill condition (53), the first thing that has to be satisfied is

that E
[
u2(t, x)

]
<∞ almost every (t, x) ∈ [0, T ]×R. Let us give two different

type of conditions ensuring (53).

Condition 1

Let’s consider u satisfying

sup
t∈[0,T ],
x∈R

E[u2(t, x)] ≤M,

being M a positive constant. In this case we would have

||F (t, x)||L2(Ω) ≤M
∫ t

0

1√
8π(t− s)

∫
R
G(t− s, x− y)dyds

= M

∫ t

0

ds√
8π(t− s)

=
M√
2π
t
1
2 <∞,

and (52) is satisfied.

Condition 2

Let’s consider now u satisfying E[u2(t, x)] ≤ P (t, x), where P is a polynomial
function. We will have that the spatial integral in (53) would be bounded by∫

R
G(t− s, x− y)P (s, y)dy = E[P (s, Z)],

where Z is a random variable such that Z ∼ N(x, t − s). Then, E[P (s, Z)] =
Qt(s, x), where Qt is another polynomial with coefficients depending on t.
Hence,

||F ||L2(Ω) ≤
∫ t

0

Qt(s, x)√
8π(t− s)

<∞,

for any polynomial Qt.

51



Differentiability conditions

Let’s consider H = L2([0, T ] × R) and W the space-time white noise. Let
vt,x = {vt,x(s, y), (t, x) ∈ [0, T ]× R} be the stochastic process defined by

vt,x(s, y) = G(2(t− s), x− y)1[0,t](s)u(s, y). (54)

Then, we can express our random variable as

F (t, x) =

∫ T

0

∫
R
vt,x(s, y)W (ds, dy).

By (52) we will have that v ∈ L2([0, T ] × R × Ω) under the above mentioned
conditions of u. We can consider that this stochastic integral is the Skorohod
integral and hence F (t, x) = δ(vt,x). Then, in order to obtain the differentiabil-
ity of F (t, x) we would like to apply Proposition 4.13. For doing that we need
to prove the following conditions:

(a) vt,x ∈ L1,2,

(b) the process {Dr,zv
t,x(s, y), (s, y) ∈ [0, T × R]} ∈ Dom δ a.e. in [0, T ]× R,

(c) there is a version of the process{∫ T

0

∫
R
Dr,zv

t,x(s, y)W (ds, dy), (r, z) ∈ [0, T ]× R

}
,

which is in L2([0, T ]× R× Ω).

Let’s check (a). We have already seen under what conditions vt,x ∈ L2([0, T ]×
R× Ω), now we have to see when Dvt,x ∈ L2(([0, T ]× R)2 × Ω). We have that

Dr,zv
t,x(s, y) = G(2(t− s), x− y)1[0,t](s)Dr,zu(s, y),

since G and 1[0,t] are functions of the Hilbert space. Then, we would have that
Dvt,x ∈ L2(([0, T ]× R)2 × Ω) if

E

[∫ t

0

∫
R

∫ T

0

∫
R

(G(2(t− s), x− y))2(Dr,zu(s, y))2dzdrdyds

]
<∞. (55)

In this case we can consider the same bounds as in condition 1 and condition 2
but on

E[||Du(s, y)||2H ] =

∫ T

0

∫
R
E[(Dr,zu(s, y))2]dzdr,

since we can derive that the expression∫ t

0

1√
8π(t− s)

∫
R
G(t− s, x− y)E[||Du(s, y)||2H ]dyds <∞, (56)
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which is equivalent to (53). Notice, that in particular, u must be in L1,2.
For (b) we need to show that Dr,zv

t,x ∈ Dom δ. A sufficient condition is
considering Dr,zv

t,x ∈ D1,2(L2([0, T ] × R)). That is, we need that vt,x ∈ D2,2.
The only thing left to see is that D2vt,x ∈ L2(([0, T ]×R)3×Ω). With the same
procedure that before we obtain that we need∫ t

0

1√
8π(t− s)

∫
R
G(t− s, x− y)E[||D2u(s, y)||2H⊗H ]dyds <∞, (57)

where

E[||D2u(s, y)||2H⊗H ] =

∫ T

0

∫
R

∫ T

0

∫
R
E[(Dτ,θDr,zu(s, y))2]dzdrdθdτ.

Again, condition 1 and condition 2 applied to E[||D2u(s, y)||2H⊗H ] will work
because of the form of (57).

We have that (c) is just a technical condition since Dr,zv
t,x may not belong

to Dom δ for a subset of null measure of [0, T ]× R and then δ(Dr,zv
t,x) is not

defined in that set. However, it is possible to change the process in that null set
in order to fulfill (c) without extra conditions.

Now that we have checked the hypothesis, we can apply Proposition 4.13
and obtain that F (t, x) ∈ D1,2 and

Dr,zF (t, x) = Dr,z(δ(v
t,x)) = vt,x(r, z) +

∫ T

0

∫
R
Dr,zv

t,x(s, y)W (ds, dy).

Notice that that if r > t, then Dr,zF (t, x) = 0. That is, vt,x(r, z) = 0 because
of the term 1[0,t](r) and∫ T

0

∫
R
Dr,zv

t,x(s, y)W (ds, dy) =

∫ t

0

∫
R
G(2(t−s), x−y)Dr,zu(s, y)W (ds, dy) = 0,

because Dr,zu(s, y) = 0 when r > s from the adaptability of u and Corollary
6.1.
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Conclusions

In this work I have learned the basics of Malliavin calculus. In the study of
this theory I have also became familiar with some useful techniques such as the
localizing argument. I have found particularly enriching to redo some of the
proofs with a little bit more of detail. For instance, in the proof of Proposition
5.1 I have dealt with the derivative of the inverse of the Malliavin matrix, which
at first was hard, but turned out to provide a good insight of how the derivative
operator works. I have also been able to see another type of stochastic integral
which work with non-adapted processes, that is, the Skorohod integral.

When the project proposal was discussed, the section of applications was
thought to be a little bit more extensive. We had in mind to be able to go
a little bit further in the practical example. We would like to have obtained
sufficient conditions for the existence of densities of the proposed process and
also to have obtained some bounds for the probability density. However, I didn’t
have enough time to do that part properly and we decided to close the topic of
applications with the differentiability conditions.

One of the possible continuations of this work is to use Malliavin calculus
to study stochastic partial differential equations. That is, continue the what
has been started in Section 6 but studying the solutions of stochastic partial
differential equations in a rigorous way and apply Malliavin calculus in order to
study the existence and regularity of probability densities of these solutions.
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A Appendix

There are some concepts of Functional Analysis that will be applied throughout
the work which are not directly related with the objectives and that will be
presented in this annex for sake of completeness. The definitions and results of
this appendix can be found in [4].

Operators

Definition A.1. The graph G(T ) of a linear operator T on Dom T ⊂ X into
Y is the set {(x, Tx);x ∈ Dom T} in the product space X × Y . Let X,Y be
topological vector spaces, then T is called a a closed linear operator when the
graph G(T ) constitutes a closed linear subspace of X × Y .

Definition A.2. A linear operator T on Dom T ⊂ X into Y is said to be
closable or pre-closed if the closure in X × Y of the graph G(T ) is the graph of
a linear operator, say S, on Dom S ⊂ X into Y .

Proposition A.1. If X,Y are quasi-normed linear spaces, then T is closable
if and only if, (xn)n ⊂ Dom T is a sequence such that limn→∞ xn = 0 and such
that limn→∞ Txn = y, then y = 0.

Definition A.3. Let V,W be Hilbert spaces with respective inner products
〈·, ·〉V and 〈·, ·〉W , and let T be a linear operator defined on Dom T ⊂ V into
W . The adjoint operator of T is T ∗ defined on Dom T ∗ ⊂W into V satisfying

〈Tv,w〉W = 〈v, T ∗w〉V , v ∈ V,w ∈W,

where
Dom T ∗ = {w ∈W : ∀v ∈ Dom T, |〈Tv,w〉W | ≤ c||v||V } .

Definition A.4. Let H be a Hilbert space, we say that a sequence {ϕn}n≥1 ⊂
H converges to ϕ ∈ H in the weak topology, if and only if for all ψ ∈ H,

〈ϕn, ψ〉H −−−−→
n→∞

〈ϕ,ψ〉H .

Semigroups

Definition A.5. The one-parameter family of operators {Tt, t ≥ 0} is said to
satisfy the semi-group property if

TtTs = Tt+s, t, s > 0, T0 = I.

Definition A.6. The infinitesimal generator of the one-parameter family of
operators {Tt, t ≥ 0} is defined as

A := lim
t→0

1

t
(Tt − I).
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Definitions of spaces and notations

Definition of spaces

C∞p (Rn) set of smooth functions f : Rn → R such that f and all its partial
derivatives are bounded by polynomial growth.

C∞b (Rn) set of smooth functions f : Rn → R such that f and all its partial
derivatives are bounded (in particular C∞b (Rn) ⊂ C∞p (Rn)).

C∞0 (Rn) set of smooth functions f : Rn → R such that f has compact
support (in particular all partial derivatives have compact support
and hence are bounded, that is C∞0 (Rn) ⊂ C∞b (Rn)).

Ckp (Rn) set of k times differentiable functions f : Rn → R such that f and
its partial derivatives are bounded by polynomial growth.

S set of Gaussian funcionals f(W (h1), ...,W (hn)), f ∈ C∞p (Rn),
h1, ..., hn ∈ H.

Sb set of Gaussian funcionals f(W (h1), ...,W (hn)), f ∈ C∞b (Rn),
h1, ..., hn ∈ H.

S0 set of Gaussian funcionals f(W (h1), ...,W (hn)), f ∈ C∞0 (Rn),
h1, ..., hn ∈ H.

P set of Gaussian funcionals f(W (h1), ...,W (hn)), f is a polynomial,
h1, ..., hn ∈ H.

SH space of H-valued smooth random variables of the form∑n
i=1 Fihi, with Fi ∈ S and hi ∈ H.

Notation

Let Λ be the set of all sequences (a1, a2, ...), ai ∈ N, i ≥ 1 where only a finite
number of ai is different from zero. Then, if a ∈ Λ, we denote a! =

∏∞
i=1 ai! and

|a| =
∑∞
i=1 ai.

Let F ∈ L2(Ω). We denote by JnF the projection of F into the nth Wiener
chaos. Then, we write F =

∑n
n=0 JnF .
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