
ALGORITHMIC HOPF
GALOIS THEORY

Marta Salguero Garćıa
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Abstract

Chase and Sweedler introduce Hopf Galois theory, which is a generalization of Galois
theory. The point is to replace the Galois group by a Hopf algebra and the Galois
action (by automorphisms) by an action by endomorphisms called Hopf action. This
pair gives the so-called Hopf Galois structure. In the case of separable field exten-
sions Greither and Pareigis characterize Hopf Galois structures in terms of groups.
This characterization gives a method to determine all Hopf Galois structures of a
given separable extension.

In this thesis we present two algorithms written in the computational algebra
system Magma to compute all Hopf Galois structures of a given separable extension.
Moreover they determine two important properties of the computed Hopf Galois
structures. The first algorithm is based on Greither-Pareigis’ theorem. It is very
efficient but it just reaches degree 11. In order to go further, we develop the second
algorithm, which is based on Byott’s translation theorem. Therefore in this memory
we also detail the proofs of both theorems.
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Chapter 1

Introduction

Galois theory, named after Évariste Galois, provides a connection between field
theory and group theory. Using Galois theory, certain problems in field theory can
be reduced to group theory, which is, in some sense, simpler and better understood.
Galois theory classifies intermediate fields of a Galois field extension L∣K by means
of the subgroups of the group G = Gal(L∣K) of K-automorphisms of L.

The Galois action of G on L induces an action of the group algebra K[G] on
L. Replacing K[G] with a proper algebra we can generalize Galois theory. In the
1960s, Chase and Sweedler define the notion of Hopf Galois structure on a field
extension as a pair (H, ⋅), where H is a Hopf algebra and ⋅ is a Hopf action. They
are considered the fathers of Hopf Galois theory since they elaborated Galois theory
for Hopf Galois field extensions, and they applied it to study inseparable extensions.

The first example of a Hopf algebra was observed in algebraic topology by Heinz
Hopf in 1941. This was the homology of a connected Lie group, which is even a
graded Hopf algebra. Starting with the late sixties, Hopf algebras became a sub-
ject of study from a strictly algebraic point of view, and by the end of the eighties,
research in this field grew fastly by the connections with quantum mechanics (the
so-called quantum groups are in fact noncommutative and noncocommutative Hopf
algebras). Furthermore, Hopf algebras appear in all fields of mathematics: from
number theory (formal groups) to algebraic geometry (affine group schemes), for
instance.

Later on, Greither and Pareigis studied the Hopf Galois theory of separable field
extensions and characterize Hopf Galois structures on a separable extension in terms
of groups. This characterization allows running explicit computations and imple-
mentation in a computational algebra system as Magma. In particular, a Galois
extension with Galois group G is Hopf Galois with Hopf algebra K[G], and this
structure is called the classical Galois structure. In general, a field extension may
admit several Hopf Galois structures.
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Recently a connection between Hopf Galois theory and noncommutative algebra
has been found. In 2005 Rump introduced the notion of braces, a generalization
of Jacobson radical rings, as a tool for investigating solutions of the Yang-Baxter
equation. Roughly speaking, a brace is a set endowed with two group structures
related by a sort of distributivity. The quantum Yang-Baxter equation appeared
in a paper on statistical mechanics by Yang. It is one of the basic equations in
mathematical physics and it laid foundations of the theory of quantum groups.

Moreover, Hopf Galois theory has also applications in number theory in the study
of integral normal basis and ramification. Let L∣K be a Galois extension of number
fields with group G. The Normal Basis Theorem states that there exists an element
z ∈ L such that the set {σ(z) ∶ σ ∈ G} is a K-basis for L (a normal basis). This is
equivalent to L being a free module of rank one over the group algebra K[G]. It
is natural to wonder whether analogous results hold for the corresponding integer
ring extension OL∣OK . By Noether’s theorem, OL is free over OK[G] if and only
if L∣K is at most tamely ramified. To study freeness questions for wildly ramified
extensions, OK[G] is replaced by a proper OK-Hopf algebra H.

In this dissertation, we start reviewing the construction of a Hopf algebra. Firstly
we define algebras as vector spaces endowed with two linear maps satisfying certain
properties that may be presented via commutative diagrams, and coalgebras as their
dual objects formed by reversing the arrows. Then we define bialgebras as vector
spaces which are both algebras and coalgebras such that the two structures satisfy a
compatibility relation. Afterwards, a Hopf algebra is a bialgebra with an additional
linear map satisfying a condition which may be expressed using the algebra and
coalgebra structures. Finally, we use Hopf algebras to define the concept of Hopf
Galois structure on a field extension as a pair made up of a Hopf algebra and a cer-
tain action by endomorphisms, and state the fundamental theorem of Hopf Galois
theory (Chase and Sweedler).

In what follows, we restrict to the case of a separable extension since Greither and
Pareigis stablished a bijection between Hopf Galois structures and certain permu-
tations groups. This characterization allows us to use Magma for obtaining explicit
computations. So first of all, we introduce the concepts and prove the results that
are neeeded to understand the detailed proof of Greither-Pareigis’ theorem. Further-
more, we use it to design our first algorithm, which is based on the small program
developed in my graduate thesis [Sa]. The first algorithm computes all Hopf Galois
structures on a separable extension of given degree and determine two important
properties of those in a very efficient way, but we realized it just reaches degree 11.
The collected data has enormously helped us to understand the behaviour of sepa-
rable extensions and has inspired us to obtain some general results on this subject
which may be found in our papers [C-S1] and [C-S2].
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Therefore in order to overcome the computational problems involving the first
algorithm, we need Byott’s translation theorem, which gives an equivalent condition
to the Hopf Galois character computationally more effective. Hence as previouly,
we both develop its proof with all details and implement it in Magma leading to the
second algorithm, which shares the structure and properties of the first one with
some significant improvements. Moreover, the study of the computational output
has allowed us to obtain new results that can be found in our preprint [C-S3].





Chapter 2

Preliminaries

In this chapter we set the foundations of this thesis. It is essentially a summary of
the first four chapters of my graduate thesis [Sa], which were based on [Un]. The
proofs omitted here may be found in [Sa].

In order to reach to Hopf Galois structures, we need some previous knowledge.
We start defining algebras as vector spaces endowed with two linear maps satisfy-
ing certain properties which may be presented via commutative diagrams. Next we
define coalgebras as co-objects to algebras formed by reversing the arrows in the
diagrams for algebras. Then bialgebras come up as vector spaces which are both
algebras and coalgebras. Afterwards, we construct Hopf algebras as bialgebras with
an additional map. Finally, the point is to replace Galois groups by Hopf algebras
and the Galois action by a ‘Hopf action’ by endomorphisms. This pair gives the
so-called Hopf Galois structures.

Let K be a field and denote ⊗ ∶= ⊗K .

2.1 Algebras and coalgebras

In this section we present the diagram-theoretic definition of an algebra and define
coalgebras as co-objects to algebras. Then we state the main results about duality.

Definition 2.1.1. A K-algebra is a triple (A,mA, λA) consisting of a K-vector
space A and K-linear maps mA ∶ A⊗A→ A and λA ∶K → A that satisfy:

A⊗A⊗A A⊗A

A⊗A A

IA ⊗mA

mAmA ⊗ IA

mA

A⊗A K ⊗A

A⊗K A

IA ⊗ λA

s2

mA

λA ⊗ IA

s1

Associative property Unit property

5
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The map IA ∶ A→ A is the identity map on A, the map s1 ∶K⊗A→ A is defined
by r ⊗ a↦ ra and the map s2 ∶ A⊗K → A is defined by a⊗ r ↦ ra.

The map mA is called multiplication map and λA is called unit map.

The K-algebra A is commutative if mAτ = mA, where τ ∶= τA⊗A denotes the
twist map defined as τ(a⊗ b) = b⊗ a.

Remark 2.1.2. We can recover the usual definition of algebra by writing the prod-
uct as mA(a⊗ b) = ab, for all a, b ∈ A, and unit as λA(1K) = 1A. In the sequel we will
use both notations.

Example 2.1.3. The field K as a vector space over itself is a commutative K-al-
gebra called the trivial algebra:

mK ∶ K ⊗K → K λK ∶ K → K
r ⊗ s ↦ rs r ↦ r

Example 2.1.4. The polynomial ring K[x] is a commutative K-algebra called the
polynomial algebra:

mK[x] ∶ K[x]⊗K[x] → K[x] λK[x] ∶ K → K[x]
xi ⊗ xj ↦ xi+j r ↦ r

Example 2.1.5. Let G be a finite group with identity element 1G. The group ring

K[G] = {∑
g∈G

rgg ∶ rg ∈K} is a K-algebra called the group algebra:

mK[G] ∶ K[G]⊗K[G] → K[G] λK[G] ∶ K → K[G]
x⊗ y ↦ xy r ↦ r1G

Clearly, K[G] is commutative if, and only if, G is abelian.

Example 2.1.6. Let C be a finite set. Then Map(C,K) =∶M is a K-algebra:

mM ∶ M ⊗M → M
f ⊗ g ↦ mM(f ⊗ g)(c) = f(c)g(c)

and

λM ∶ K → M
r ↦ λM(r)(c) = r

Notice that {fc ∶ c ∈ C} is a K-basis, where:

fc ∶ C → K

d ↦ fc(d) =
⎧⎪⎪⎨⎪⎪⎩

1 if d = c
0 otherwise

Hence dimK(Map(C,K)) = ∣C ∣ as a K-vector space.
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Definition 2.1.7. Let A,B be K-algebras. The tensor product of algebras
A⊗B has the structure of a K-algebra with multiplication map given by

mA⊗B ∶ (A⊗B)⊗ (A⊗B) → A⊗B
(a⊗ b)⊗ (c⊗ d) ↦ (mA ⊗mB)(IA ⊗ τ ⊗ IB)(a⊗ (b⊗ c)⊗ d)

that is,

(a⊗ b)(c⊗ d) = ac⊗ bd

and unit map defined as

λA⊗B ∶ K → A⊗B
1K ↦ λA(1K)⊗ λB(1K) = 1A ⊗ 1B

Definition 2.1.8. Let (A,mA, λA) and (B,mB, λB) be K-algebras. A K-algebra
homomorphism from A to B is a K-linear map φ ∶ A → B that preserves the
algebra structure, that is:

φ ○mA =mB ○ (φ⊗ φ) φ ○ λA = λB

A K-algebra homomorphism that is injective and surjective is a K-algebra
isomorphism.

We will now describe objects that are dual (in some sense) to algebras: they are
obtained by reversing the arrows in the structure maps for algebras and are called
coalgebras.

Definition 2.1.9. A K-coalgebra is a triple (C,∆C , εC) consisting of a K-vector
space C and K-linear maps ∆C ∶ C → C ⊗C and εC ∶ C →K that satisfy:

C C ⊗C

C ⊗C C ⊗C ⊗C

∆C

IC ⊗∆C∆C

∆C ⊗ IC

C K ⊗C

C ⊗K C ⊗C

1K ⊗ IC

IC ⊗1K
∆C

εC ⊗ IC

IC ⊗εC

Coassociative property Counit property

The map IC ∶ C → C is the identity map on C and the map 1K ∶ C →K is defined
by c↦ 1K .

The map ∆C is called comultiplication map and εC is called counit map.

The K-coalgebra C is cocommutative if τ∆C = ∆C .
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We will now introduce Sweedler notation to write the image of comultiplication
map. Sweedler notation is a special notation for the operations in a coalgebra. Given
a K-coalgebra C and an element c ∈ C, Sweedler suggests not to make up new
symbols but rather use composed symbols:

∆C(c) =∑
(c)
c(1) ⊗ c(2).

Example 2.1.10. The field K as a vector space over itself is a cocommutative
K-coalgebra called the trivial coalgebra:

∆K ∶ K → K ⊗K εK ∶ K → K
r ↦ r ⊗ 1K r ↦ r

In the next examples of coalgebras, comultiplication and counit maps are defined
on basic elements and extended by linearity to the whole coalgebra.

Example 2.1.11. Let G be a finite group. The group ring K[G] (defined as in
Example 2.1.5) is a cocommutative K-coalgebra called the group coalgebra:

∆K[G] ∶ K[G] → K[G]⊗K[G] εK[G] ∶ K[G] → K
g ↦ g ⊗ g g ↦ 1K

Example 2.1.12. Let K[x] be the K-vector space of polynomials in the indetermi-
nate x with canonical basis {1, x, x2, . . .}. We can endow K[x] with two structures
of cocommutative K-coalgebras: the polynomial coalgebra

∆K[x] ∶ K[x] → K[x]⊗K[x] εK[x] ∶ K[x] → K

xm ↦ xm ⊗ xm xm ↦ 1K

and the so-called divided power coalgebra

∆K[x] ∶ K[x] → K[x]⊗K[x] εK[x] ∶ K[x] → K

xm ↦
n

∑
i=0

(m
i
)xi ⊗ xm−i xm ↦ δ0,m

Definition 2.1.13. Let C,D beK-coalgebras. The tensor product of coalgebras
C ⊗D has the structure of a K-coalgebra with comultiplication map given by

∆C⊗D ∶ C ⊗D → (C ⊗D)⊗ (C ⊗D)
c⊗ d ↦ (IC ⊗ τ ⊗ ID)(∆C ⊗∆D)(c⊗ d)

and counit map defined as

εC⊗D ∶ C ⊗D → K
c⊗ d ↦ (εC ⊗ εD)(c⊗ d) = εC(c)εD(d)

Definition 2.1.14. Let C be a K-coalgebra. A non-zero element c ∈ C for which
∆C(c) = c⊗ c is a grouplike element of C.



9 Chapter 2. Preliminaries

Remark 2.1.15. Let G be a finite group and consider the coalgebra K[G]. By
definition of ∆K[G], it follows that the set of grouplike elements of K[G] is G.

Proposition 2.1.16. If c is a grouplike element of a K-coalgebra C, then εC(c) = 1.

Proposition 2.1.17. Let C be a K-coalgebra and let G(C) denote the set of grou-
plike elements of C. Then G(C) is a linearly independent subset of C.

Definition 2.1.18. Let (C,∆C , εC), (D,∆D, εD) be K-coalgebras. A K-coalgebra
homomorphism from C to D is a K-linear map φ ∶ C → D that preserves the
coalgebra structure, that is:

(φ⊗ φ) ○∆C = ∆D ○ φ εC = εD ○ φ

A K-coalgebra homomorphism that is injective and surjective is a K-coalgebra
isomorphism.

Proposition 2.1.19. Let C be a K-coalgebra. Then the counit map εC ∶ C → K is
a K-coalgebra homomorphism.

Theorem 2.1.20. Let A be a finite dimensional K-vector space. Then A is a
(commutative) K-algebra if and only if A∗ is a (cocommutative) K-coalgebra, where
the structure maps of A∗ are induced from the transpose of the structure maps of A,
and reciprocally.

2.1.1 Modules and comodules

In this section we present the diagram-theoretic definition of a module over an alge-
bra, which is nothing but the structure given by the action of an algebra on a vector
space. Similarly, we define comodules as co-objects to modules over a coalgebra.

Let (A,mA, λA) be a K-algebra.

Definition 2.1.21. A left A-module is a pair (M,µM) consisting of a K-vector
space M and a K-linear action ⋅ ∶= µM ∶ A⊗M →M that satisfies:

A⊗A⊗M A⊗M

A⊗M A

IA ⊗ µM

µMmA ⊗ IM

µM

K ⊗M M

A⊗M

∼

λA ⊗ IM
µM

Associative property Unit property

The map K ⊗M →M is the isomorphism defined by 1K ⊗m↦m.
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1. The associative property is equivalent to: for all a, b ∈ A, m ∈M ,

(ab) ⋅m = a ⋅ (b ⋅m)

2. The action µM is called scalar multiplication and the unit property is equi-
valent to: for all m ∈M ,

m = 1A ⋅m

Let (C,∆C , εC) be a K-coalgebra.

Definition 2.1.22. A left C-comodule is a pair (N,αN) consisting of a K-vector
space N and a K-linear coaction αN ∶ N → C ⊗N that satisfies:

N C ⊗N

C ⊗N C ⊗C ⊗N

αN

∆C ⊗ INαN

IC ⊗αN

N K ⊗N

C ⊗N

∼

αN εC ⊗ IN

Coassociative property Counit property

The map N →K⊗N is the isomorphism defined by n↦ 1K⊗n and the Sweedler
notation for coaction is: for an element n ∈ N ,

αN(n) =∑
(n)
n(0) ⊗ n(1).

2.2 Bialgebras

In this section, we introduce bialgebras, which are vector spaces that are both alge-
bras and coalgebras such that the algebra operations are coalgebra homomorphisms
or, equivalently, the coalgebra operations are algebra homomorphisms.

Afterwards we show how a bialgebra can act on an algebra and on a coalgebra
endowing them with the structure of module algebra and module coalgebra, resp.
Similarly, we show how a bialgebra B can coact on an algebra and on a coalgebra
giving them the structure of comodule algebra and comodule coalgebra, resp.

Definition 2.2.1. A K-bialgebra is K-vector space B together with K-linear maps
mB, λB, ∆B, εB that satisfy that:

1. (B,mB, λB) is a K-algebra,

2. (B,∆B, εB) is a K-coalgebra,
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3. ∆B and εB are K-algebra homomorphisms (or equivalently, mB and λB are
K-coalgebra homomorphisms).

A K-bialgebra B is commutative if it is a commutative algebra; B is cocom-
mutative if it is a cocommutative coalgebra.

Definition 2.2.2. Let B be a bialgebra. A primitive element of B is an element
b ∈ B such that ∆B(b) = 1⊗ b + b⊗ 1.

Example 2.2.3. The field K as a vector space over itself is a commutative and
cocommutative K-bialgebra (see Examples 2.1.3 and 2.1.10). It is called the trivial
K-bialgebra.

Example 2.2.4. Let G be a finite group. From Example 2.1.5 and Example 2.1.11,
K[G] has the structure of an algebra and a cocommutative coalgebra. It is easy
to check that comultiplication and counit maps are algebra homomorphisms, so
that K[G] is a cocommutative bialgebra. It is called the group bialgebra. It is
commutative if, and only if, G is abelian.

Example 2.2.5. Let K[x] be the K-vector space of polynomials. From Example
2.1.4 we know that K[x] has the structure of a commutative algebra. Moreover,
in Example 2.1.12, we showed that it can be endowed with two structures as a
cocommutative coalgebra, which induce two distinct bialgebra structures that are,
surprisingly, the only bialgebra structures on K[x] up to isomorphism:

� The polynomial coalgebra induces the so-called polynomial bialgebra with
x grouplike, since x is grouplike: ∆K[x](x) = x⊗ x.

� The divided power coalgebra induces the so-called polynomial bialgebra
with x primitive, since x is primitive: ∆K[x](x) = 1⊗ x + x⊗ 1.

Definition 2.2.6. Let B,B′ be K- bialgebras. Since B and B′ are algebras and
coalgebras, B ⊗B′ is an algebra and a coalgebra (Definitions 2.1.7 and 2.1.13). It
is easy to show that ∆B⊗B′ and εB⊗B′ are algebra homomorphisms, and hence the
tensor product of bialgebras B ⊗B′ has the structure of a K-bialgebra.

Definition 2.2.7. Let B,B′ be bialgebras. A K-bialgebra homomorphism from
B to B′ is a K-linear map φ ∶ B → B′ which is both an algebra and a coalgebra
homomorphism. A K-bialgebra homomorphism that is injective and surjective is a
K-bialgebra isomorphism.

Theorem 2.2.8. Let B be a finite dimensional K-vector space. Then B is a K-
bialgebra if and only if B∗ is a K-bialgebra, where the structure maps of B∗ are
induced from the transpose of the structure maps of B, and reciprocally.
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2.2.1 Module algebras and module coalgebras

In this section, we show how a bialgebra B can act on an algebra giving it the
structure of a B-module algebra, and similarly how B can act on a coalgebra.

Let (B,mB, λB,∆B, εB) be a K-bialgebra.

Definition 2.2.9. A left B-module K-algebra is a K-vector space M together
with K-linear maps mM ∶ M ⊗M → M , λM ∶ K → M , and a K-linear action
⋅ ∶= µM ∶ B ⊗M →M that satisfies:

1. (M,µM) is a B-module,

2. (M,mM , λM) is a K-algebra,

3. Any of these three equivalent conditions:

(a) The action of B on M is compatible with the operations of M as an alge-
bra, that is, the following conditions hold or the diagrams commute:

Multiplication: b ⋅ (mn) =∑
(b)

(b(1) ⋅m)(b(2) ⋅ n), ∀ b ∈ B, m,n ∈M

B ⊗M ⊗M B ⊗M M

B ⊗B ⊗M ⊗M B ⊗M ⊗B ⊗M M ⊗M

IB ⊗mM µM

∆B ⊗ IM⊗M

IB ⊗τ ⊗ IM µM ⊗ µM

mM

Unit: b ⋅ 1M = εB(b)1M , ∀ b ∈ B

B ⊗M M

K ⊗M

µM

εB ⊗ IM
∼

(2.1)

(b) the algebra operations mM and λM are B-module homomorphisms:

Multiplication: mM ∶ M ⊗M → M , where M is already a B-module, so
that we have to endow M ⊗M with a B-module structure, ie, we have
to define an action ∗ = µM⊗M of B on M ⊗M such that the diagram
commutes:
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B ⊗M ⊗M M ⊗M

B ⊗B ⊗M ⊗M B ⊗M ⊗B ⊗M

µM⊗M

∆B ⊗ IM⊗M

IB ⊗τ ⊗ IM

µM ⊗ µM

or equivalently, the following condition holds: for every b ∈ B, m,n ∈M ,

b ∗ (m⊗ n) =∑
(b)

(b(1) ⋅m)⊗ (b(2) ⋅ n)

Therefore, multiplication mM satisfies that for every b ∈ B, m,n ∈M ,

mM(µM⊗M(b⊗ (m⊗ n)) = µM(b⊗mM(m⊗ n))

Unit: λM ∶ K → M , where M is already a B-module, so that we have
to endow K with a B-module structure, ie, we have to define an action
µK of B on K, which we denote by juxtaposition, such that the diagram
commutes:

B ⊗K K

B

µK

∼ εB

or equivalently, the following condition holds: for every b ∈ B,

b 1K = εB(b)
Therefore, unit λM satisfies that for every b ∈ B

λM(µK(b⊗ 1K) = µM(b⊗ λM(1K))

(c) the action µM is a K-algebra homomorphism:

Since the action is defined over algebras and is linear, it remains to impose
that it preserves the inner product of M : for every a, b ∈ B, m,n ∈M ,

(ab) ⋅ (mn) = (a ⋅m)(b ⋅ n)

or equivalently, the following diagram commutes:

B ⊗M ⊗B ⊗M B ⊗M

M ⊗M M

mB⊗M

µM ⊗ µM

mM

µM
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Remark 2.2.10. If A is a left K[G]-module K-algebra, then:

σ(ab) = σ(a)σ(b), for every a, b ∈ A, σ ∈ G.

Definition 2.2.11. Let M,M ′ be left B-module K-algebras. A left B-module
K-algebra homomorphism from M to M ′ is a K-linear map φ ∶M →M ′ which
is both an algebra and a left B-module homomorphism.

In a similar way, we define a left module coalgebra (with not so many details).

Definition 2.2.12. A left B-module K-coalgebra is aK-vector spaceM together
with K-linear maps ∆M ∶ M → M ⊗ M , εM ∶ M → K, and a K-linear action
⋅ ∶= µM ∶ B ⊗M →M that satisfies:

1. (M,µM) is a B-module,

2. (M,∆M , εM) is a K-coalgebra,

3. Any of these three equivalent conditions:

(a) The action of B on M is compatible with the operations of M as a coal-
gebra, that is, the following conditions hold or the diagrams commute:

Comultiplication: ∆M(b⋅m) = ∑
(b,m)

(b(1) ⋅m(1))⊗(b(2) ⋅m(2)), ∀ b ∈ B, m ∈M

B ⊗M M M ⊗M

B ⊗B ⊗M ⊗M B ⊗M ⊗B ⊗M

µM ∆M

∆B ⊗∆M

IB ⊗τ ⊗ IM

µM ⊗ µM

Counit: εM(b ⋅m) = εB(b)εM(m), ∀ b ∈ B, m ∈M

B ⊗M K

M

εB⊗M

µM εM

(b) the coalgebra operations ∆M and εM are B-module homomorphisms.

(c) the action µM is a K-coalgebra homomorphism.

Definition 2.2.13. Let M,M ′ be left B-module K-coalgebras. A left B-module
K-coalgebra homomorphism from M to M ′ is a K-linear map φ ∶M →M ′ which
is both a coalgebra and a left B-module homomorphism.
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2.2.2 Comodule algebras and comodule coalgebras

In this section, we show how a bialgebra B can coact on an algebra giving it the
structure of a B-comodule algebra, and similarly how B can coact on a coalgebra.

Let (B,mB, λB,∆B, εB) be a K-bialgebra.

Definition 2.2.14. A left B-comodule K-algebra is a K-vector space N together
with K-linear maps mN ∶ N ⊗ N → N , λN ∶ K → N , and a K-linear coaction
αN ∶ N → B ⊗N that satisfies:

1. (N,αN) is a B-comodule,

2. (N,mN , λN) is a K-algebra,

3. Any of these three equivalent conditions:

(a) The coaction of B on N is compatible with the operations of N as an
algebra, that is, the following conditions hold or the diagrams commute:

Multiplication: αN(mn) = ∑
(m,n)

(m(0)n(0))⊗ (m(1)n(1)), ∀ m,n ∈ N

N ⊗N N B ⊗N

B ⊗N ⊗B ⊗N B ⊗B ⊗N ⊗N

mN αN

αN ⊗ αN

IB ⊗τ ⊗ IN

mB ⊗mN

Unit: αN(1N) = 1B ⊗ 1N

N B ⊗N

K ⊗N

αN

∼ λB ⊗ IN

(b) the algebra operations mN and λN are B-comodule homomorphisms:

Multiplication: mN ∶ N ⊗N → N , where N is already a B-comodule, so
that we have to endow N ⊗N with a B-comodule structure, ie, we have to
define a coaction αN⊗N of B on N ⊗N such that the diagram commutes:
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N ⊗N B ⊗N ⊗N

B ⊗N ⊗B ⊗N B ⊗B ⊗N ⊗N

αN⊗N

αN ⊗ αN

IB ⊗τ ⊗ IN

mB ⊗ IN ⊗ IN

or equivalently, the following condition holds: for every m,n ∈M ,

αN⊗N(m⊗ n) = ∑
(m,n)

(m(0)n(0))⊗m(1) ⊗ n(1)

Therefore, multiplication mN satisfies that for every m,n ∈ N ,

αN(mN(m⊗ n)) = (IB ⊗mN)(αN⊗N(m⊗ n))

Unit: λN ∶ K → N , where N is already a B-comodule, so that we have to
endow K with a B-comodule structure, ie, we have to define a coaction
αK of B on K such that the diagram commutes:

K B ⊗K

B

αK

λB ∼

or equivalently, the following condition holds: for every b ∈ B,

αK(1K) = 1B ⊗ 1K

Therefore, unit λN satisfies that for every b ∈ B

αN(λN(1K)) = (IB ⊗λN)(αK(1K))

(c) the coaction αN is a K-algebra homomorphism:

Since the coaction is defined over algebras and is linear, it remains to
impose that it preserves the inner product of N : for every m,n ∈ N ,

αN(mn) = α(m)α(n)

or equivalently, the following diagram commutes:

B ⊗N ⊗B ⊗N B ⊗N

N ⊗N N

mB⊗N

αN ⊗ αN

mN

αN
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Definition 2.2.15. Let N,N ′ be left B-comodule K-algebras. A left B-comodule
K-algebra homomorphism from N to N ′ is a K-linear map φ ∶ N → N ′ which is
both an algebra and a left B-comodule homomorphism.

In a similar way, we define a left comodule coalgebra (with not so many details).

Definition 2.2.16. A left B-comodule K-coalgebra is a K-vector space N to-
gether with K-linear maps ∆N ∶ N → N ⊗N , εN ∶ N → K, and a K-linear coaction
αN ∶ N → B ⊗N that satisfies:

1. (N,αN) is a B-comodule,

2. (N,∆N , εN) is a K-coalgebra,

3. Any of these three equivalent conditions:

(a) The coaction of B on N is compatible with the operations of N as a coal-
gebra, that is, the following diagrams commute:

Comultiplication:

N N ⊗N B ⊗N ⊗B ⊗N

B ⊗N B ⊗B ⊗N ⊗N

∆N αN ⊗ αN

αN

∆B ⊗∆N

IB ⊗τ ⊗ IN

Counit:

N K

B ⊗N B ⊗K

εN

αKαN

IB ⊗εN

(b) the coalgebra operations ∆N and εN are B-comodule homomorphisms.

(c) the coaction αN is a K-coalgebra homomorphism.

Definition 2.2.17. LetN,N ′ be leftB-comoduleK-coalgebras. A leftB-comodule
K-coalgebra homomorphism from N to N ′ is a K-linear map φ ∶ N → N ′ which
is both a coalgebra and a left B-comodule homomorphism.
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Proposition 2.2.18. Let H be a finite K-Hopf algebra and let S be a K-algebra. If

α ∶ S → S ⊗H∗

s ↦ ∑
(s)
s(0) ⊗ s(1)

is a coaction, then

⋅ ∶ H ⊗ S → S

h⊗ s ↦ ∑
(s)
s(1)(h)s(0)

is an action. Moreover

1. (S, ⋅) is a left H-module K-algebra iff (S,α) is a right H∗-comodule K-algebra.

2. If S is a finite commutative K-algebra which is also a left H-module K-algebra,
then the map

j ∶ S ⊗H → EndK(S)
s⊗ h ↦ j(s⊗ h)(t) ∶= s(h ⋅ t)

is a K-linear isomorphism if and only if the map

γ ∶ S ⊗ S → S ⊗H∗

s⊗ t ↦ mS⊗H∗((s⊗ IH∗)⊗ αS(t)) = (s⊗ IH∗)αS(t) =∑
(t)
st(0) ⊗ t(1)

is a K-linear isomorphism.

Proof. Sketch of the proof. Firstly, one may check that if α is a coaction, then ⋅
satisfies the properties of an action.

1. Moreover, using this fact, one may check that if (S,α) is a right H∗-comodule
K-algebra, then (S, ⋅) satisfies the properties of a left H-module K-algebra.

Now assume (S, ⋅) to be a left H-module K-algebra. Since H is a finite K-Hopf
algebra, then H is a finite K-vector space. Let {h1, . . . , hn} be a K-basis of H
and let {f1, . . . , fn} be its dual basis. Recall it satisfies fi(hj) = δij, for every
i, j ∈ {1, . . . , n}.

Hence, for every h ∈ H, h =
n

∑
i=1

fi(h)hi. Then one may check that the map

defined by

S → S ⊗H∗

s ↦
n

∑
i=1

(hi ⋅ s)⊗ fi

coincides with α.

Finally, it remains to check that if (S, ⋅) is a left H-module K-algebra, then
(S,α) is a right H∗-comodule K-algebra.
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2. It is a consequence of 1: by assumption, S is a left H-module K-algebra, hence
by 1 it is a right H∗-comodule K-algebra with coaction α.

Consider the following diagram:

S ⊗H HomK(S,S)

HomS(S ⊗H∗, S) HomS(S ⊗ S,S)

j

βη

γ∗

where:

� η(s⊗ h)(t⊗ f) = stf(h), ∀ s⊗ h ∈ S ⊗H, t⊗ f ∈ S ⊗H∗;

� β(f)(s⊗ t) = sf(t), ∀ f ∈ EndK(S,S), s⊗ t ∈ S ⊗ S;

� γ∗(f) = f ○ γ, ∀ f ∈ HomS(S ⊗H∗, S).

Let us see that the diagram commutes: indeed, for every s ⊗ h ∈ S ⊗H and
t⊗ u ∈ S ⊗ S,

γ∗(η(s⊗ h))(t⊗ u) = η(s⊗ h)(γ(t⊗ u)) (def γ∗)

= η(s⊗ h)(∑
(u)
tu(0) ⊗ u(1)) (def γ)

= t∑
(u)
η(s⊗ h)(u(0) ⊗ u(1)) (η linear)

= ts∑
(u)
u(0)u(1)(h) (def η)

= ts(h ⋅ u) (by 1)
= tj(s⊗ h)(u) (def j)
= β(j(s⊗ h))(t⊗ u) (def β)

Now observe that both S ⊗ S and S ⊗H∗ are S-modules, with the product
defined by multiplying the left factor. Thus γ is an S-module homomorphism.
Moreover, γ∗ is clearly the dual homomorphism of γ. Hence, γ is an isomor-
phism if and only if γ∗ is an isomorphism ([Bo] II §2.1).

Finally, one can check that η and β are ismorphisms. Then by the commuta-
tivity of the diagram, j is an isomorphism if and only if γ∗ is an isomorphism.
Therefore, by the previous reasoning, we conclude that j is an isomorphism if
and only if γ is an isomorphism.
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2.3 Hopf algebras

In this section, we introduce the notion of Hopf algebra, which are bialgebras with
an additional map called coinverse. Moreover we state that coinverse is an algebra
and a coalgebra anti-homomorphism. Next we set the main result about duality.
And finally we do the scalar extension of a Hopf algebra.

Definition 2.3.1. A K-Hopf algebra is a K-bialgebra H = (H,mH , λH ,∆H , εH)
together with a K-linear map σH ∶H →H such that the diagram commutes:

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

∆H

IH ⊗ σH

mH

εH λH

∆H

σH ⊗ IH
mH

The map σH is called the coinverse or antipode.

A K-Hopf algebra H is commutative if it is a commutative algebra and is
cocommutative if it is a cocommutative coalgebra.

Example 2.3.2. The field K is a commutative and cocommutative K-Hopf algebra,
called trivial Hopf algebra, with coinverse map the identity map on K.

Example 2.3.3. Let G be a finite group. From Example 2.2.4, K[G] has the
structure of a cocommutative bialgebra. Moreover it is a cocommutative K-Hopf
algebra, called the group Hopf algebra, with coinverse map:

σK[G] ∶ K[G] → K[G]
g → g−1

It is commutative if, and only if, G is abelian.

Example 2.3.4. Let K[x] be the polynomial bialgebra with x primitive (Example
2.2.5), which is commutative and cocommutative. Moreover, K[x] is a commutative
and cocommutative K-Hopf algebra, called the polynomial Hopf algebra, with
coinverse map:

σK[x] ∶ K[x] → K[x]
xi → (−x)i

Remark 2.3.5. The polynomial bialgebra with x grouplike (Example 2.2.5) can
not be endowed with the structure of a K-Hopf algebra.
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In many ways, the group ring K[G] of Example 2.3.3 is the canonical example
that is generalized to the concept of Hopf algebra.

Proposition 2.3.6. Let H be a K-Hopf algebra with coinverse map σH . Then the
coinverse is an algebra and a coalgebra antihomomorphism, that is to say:

1. mH(σH ⊗ σH)τ = σHmH , so that σH(ab) = σH(b)σH(a), for all a, b ∈H;

2. σHλH = λH , so that σH(1H) = 1H ;

3. τ(σH ⊗ σH)∆H = ∆HσH ;

4. εHσH = εH .

Corollary 2.3.7. Let H be a K-Hopf algebra with coinverse map σH . If H is either
commutative or cocommutative, then σH has order 2 (ie, σ2

H = IH).

Definition 2.3.8. Let H,H ′ be K-Hopf algebras. Since H and H ′ are bialgebras,
H ⊗H ′ is a bialgebra (Definition 2.2.6). Therefore, the tensor product of Hopf
algebrasH⊗H ′ has the structure of a K-Hopf algebra with coinverse map defined as

σH⊗H′ ∶ H ⊗H ′ → H ⊗H ′

a⊗ b ↦ (σH ⊗ σH′)(a⊗ b) = σH(a)⊗ σH′(b)

Definition 2.3.9. Let H and H ′ be K-Hopf algebras with coinverse maps σH and
σH′ (resp.). A K-Hopf algebra homomorphism from H to H ′ is a K-linear map
φ ∶H →H ′ that is a K-bialgebra homomorphism and verifies φ ○σH = σH′ ○φ. A K-
Hopf algebra homomorphism that is injective and surjective is a K-Hopf algebra
isomorphism.

Theorem 2.3.10. Let H be a finite dimensional K-vector space. Then H is a
K-Hopf algebra if, and only if, H∗ is a K-Hopf algebra.

Remark 2.3.11. Let H be a K-Hopf algebra. As stated in Remark, page 11 [Ch1],
a K-linear map f ∶ H → K is a K-algebra homomorphism if and only if f ∈ H∗ =
HomK(H,K) is grouplike.

Proposition 2.3.12. Let H be a K-Hopf algebra. The set of grouplike elements of
H is a subgroup of the multiplicative group of the units of H.

Proof. It may be found in Proposition 1.6 [Ch1].

Now, we do the scalar extension of a Hopf algebra, which will be useful later on.

Remark 2.3.13. Let L∣K be a field extension and let V be a vector space over K.
Since L is a K-vector space too, V ⊗KL is clearly a K-vector space. Moreover, V ⊗KL
is an L-vector space with scalar multiplication defined as λ(v ⊗K r) = v ⊗K λr, for
all λ ∈ L, v ⊗K r ∈ V ⊗K L. Therefore, if f ∶ V1 → V2 is a K-linear map, then
f ⊗ IL ∶ V1 ⊗K L→ V2 ⊗K L is an L-linear map.
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Proposition 2.3.14. Let H be a K-Hopf algebra and let L be a field extension of
K. Then the scalar extension L⊗K H of H is an L-Hopf algebra.

We close this section with an example: the dual Hopf algebra of the group ring.

Proposition 2.3.15. Let G be a finite group. There exists a K-Hopf algebra iso-
morphism between K[G]∗ and O(G) ∶=KG = {f ∶ G→K}.

Proof. Sketch of the proof. We start considering O(G) with basis {eg ∶ g ∈ G}, where
eg(h) ∶= δg,h. Recall that O(G) is a K-vector space with operations defined from
those of K. The structure maps of O(G) as a Hopf algebra are defined as:

1. mO(G) ∶ O(G)⊗O(G)→ O(G), mO(G)(eg ⊗ eh) = δg,heg;

2. λO(G) ∶K → O(G), λO(G)(r) = ∑
g∈G

reg;

3. ∆O(G) ∶ O(G)→ O(G)⊗O(G), ∆O(G)(eg) = ∑
uv=g

eu ⊗ ev;

4. εO(G) ∶ O(G)→K ≅K∗, εO(G)(eg) = δg,1G ;

5. σO(G) ∶ O(G)→ O(G), σO(G)(eg) = eg−1 .

Now we consider the K-Hopf algebra K[G] (Example 2.3.3). Its canonical basis
is B = {g ∶ g ∈ G}. We consider its linear dual K[G]∗ = HomK(K[G],K). The dual
basis of B is {ωg ∶ ωg(h) = δg,h, for g ∈ G}. The map sending eg to ωg is a K-vector
space isomorphism from O(G) onto K[G]∗. Hence, it remains to show that:

m∗
K[G](ωg) = ∆O(G)(eg) λ∗

K[G](ωg) = εO(G)(eg)

∆∗
K[G](ωg ⊗ ωh) =mO(G)(eg ⊗ eh) ε∗

K[G] = λO(G)

σ∗
K[G](ωg) = σO(G)(eg)

2.4 Hopf Galois structures

In this section, we see how we move from Galois theory to Hopf Galois theory, whose
fathers are Chase and Sweedler [Ch-Sw]. There are two results that leads us to de-
fine Hopf Galois structures and to give the fundamental theorem of Hopf Galois
theory. Finally we highlight important facts about Hopf Galois structures.

Let L be a finite field extension of K. Let AutKL denote the group of field
automorphisms of L that fix K elementwise and let G be a subgroup of AutKL.
Recall that K[G] is a K-Hopf algebra (Example 2.3.3).
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Observe L is a left K[G]-module with scalar multiplication given by

(∑
g∈G

agg) ⋅ x = ∑
g∈G

agg(x), for all ag ∈K, x ∈ L.

Proposition 2.4.1. Let L∣K be a finite extension and let G be a subgroup of AutKL.
Then L is a left K[G]-module algebra.

Proposition 2.4.2. Let L∣K be a finite extension and let G be a subgroup of AutKL.
The following K-linear map is a bijection if and only if L is Galois with group G:

j ∶ L⊗K K[G] → EndKL
x⊗ g ↦ j(x⊗ g) ∶ L → L

y ↦ j(x⊗ g)(y) = x(g ⋅ y)

The previous results motivate the notion of Hopf Galois structure by replacing
K[G] by any K-Hopf algebra.

Definition 2.4.3. Let L∣K be a finite field extension. A Hopf Galois structure
on L∣K is a pair (H, ⋅), where H is a finite cocommutative K-Hopf algebra and ⋅ is
an action called Hopf action, such that the following two conditions are satisfied:

1. L is a left H-module K-algebra,

2. j ∶ L⊗K H → EndKL, j(x⊗ h)(y) = x(h ⋅ y), is a K-linear isomorphism.

In this case, we say that L∣K is (H, ⋅)-Galois, or just H-Galois. Moreover, we say
that a finite field extension is a Hopf Galois extension if it admits some Hopf
Galois structure.

Remark 2.4.4. If L∣K is a Hopf Galois extension of degree n, then the K-Hopf
algebra H has dimension n: indeed, since j is an isomorphism,

dimK(L⊗K H) = dimK(EndK L)⇒ n dimKH = n2 ⇒ dimKH = n.

Remark 2.4.5. Proposition 2.2.18 gives an equivalence definition of Hopf Galois
structure.

Definition 2.4.6. We say that two Hopf Galois structures are isomorphic if
the algebras are isomorphic and this isomorphism is compatible with both actions.

The fundamental theorem of Hopf Galois theory (see Th 5.1 [Ch-Sw]) in
its general form says:

Theorem 2.4.7 (Chase-Sweedler). Let (H, ⋅) be a Hopf Galois structure on the field
extension L∣K. For a sub-K-Hopf algebra H ′ of H, we define

LH
′ ∶= {x ∈ L ∶ h ⋅ x = εH(h)x, ∀ h ∈H ′}.
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Then LH
′

is a subfield of L containing K, and the map

FH ∶ {H ′ ⊆H sub-Hopf algebra} → {E field ∶K ⊆ E ⊆ L}
H ′ ↦ LH

′

is injective and inclusion-reversing.

Observe the fundamental theorem of Galois theory is stronger than this one since
it gives a bijective correspondence, whereas the Hopf Galois theorem just gives an
injection.

In order to close this section, let us notice some important facts. First of all,
Hopf Galois theory is indeed a generalization of classical Galois theory: every Galois
extension L∣K with Galois group G is Hopf Galois because K[G] together with the
following action is a Hopf Galois structure on L∣K:

(∑λgg)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈K[G]

⋅ x®
∈L

=∑λgg(x)

But the reciprocal is not true: there are Hopf Galois extensions which are not
Galois. For instance: every separable extension of degree 3 or 4 is Hopf Galois.

Finally, whereas a Galois extension determines the Galois group (it is unique),
a Hopf Galois extension may have several Hopf Galois structures which are not
isomorphic. That is why it is interesting to count them. Unfortunately, the explicit
computation of Hopf Galois structures is, in general, very hard. But in the separable
case there is a characterization of Hopf Galois structures in terms of groups that
allows us to use Magma in order to compute them and determine two important
properties of those. We will carefully develop this in the next chapter.
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Greither-Pareigis’ theorem

From this chapter on, we will restrict to the case of a separable finite field extension,
since under this assumption, there is a characterization of the Hopf Galois character
in terms of groups. The fathers of this so-called separable Hopf Galois theory are
Greither and Pareigis [G-P]. The proofs of all the results presented here have been
enlarged with all details.

3.1 Review on group theory

Let G be a group.

Definition 3.1.1. A subgroup H of G is normal in G if for every g ∈ G, gH =Hg.

Definition 3.1.2. Let S ⊆ G be a subset. We define the following subgroups of G:

� The normalizer of S in G as

NormG(S) = {g ∈ G ∶ gS = Sg}.

� The centralizer of S in G as

CentG(S) = {g ∈ G ∶ gs = sg, ∀ s ∈ S}.

Definition 3.1.3. Let H and N be subgroups of G. We say that N is normalized
by H (or that H normalizes N) if for every h ∈H and n ∈ N , hnh−1 ∈ N .

Remark 3.1.4. Equivalently, N is normalized by H if H ⊆ NormG(N).

Definition 3.1.5. Let S be G-set. We define the stabilizer of an element s ∈ S
in G as

StabG(s) = {g ∈ G ∶ g ⋅ s = s}.

Definition 3.1.6. A subgroup N of Sn is transitive if the action of N on {1, . . . , n}
is transitive, that is, for every i, j ∈ {1, . . . , n}, there exists m ∈ N such that m(i) = j.
N is also called transitive group of degree n.

25
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Definition 3.1.7. Let X be a finite set. For a subgroup N of Perm(X) any two of
the following conditions imply the third one:

� ∣N ∣ = ∣X ∣,

� N is transitive,

� For every x ∈X, StabN(x) is trivial.

We say N is regular if it satisfies any two of the previous conditions.

Remark 3.1.8. Equivalently, N is regular if it is transitive and the m of Definition
3.1.6 is unique.

Thus we have the following characterizaion of regular subgroups.

Proposition 3.1.9. A subgroup N of Perm(X) is regular if and only if there exists
x ∈X (hence for all x ∈X) such that the following map is bijective:

N → X
η ↦ η(x)

3.2 Framework

Let L∣K be a finite separable field extension of degree g and let L̃ be its normal
closure. Let G = Gal(L̃∣K) = AutKL̃ and G′ = Gal(L̃∣L). By the primitive element
theorem, there exists α ∈ L such that L =K(α). Let f = irr(α,K) (it has degree g)
and denote {α ∶= α1, . . . , αg} its roots, so that L̃ =K(α1, . . . , αg).

�

�
G

L̃ =K(α1, . . . , αg)

L =K(α)

K

G′

g

L̃ normal closure of L∣K

G = Gal(L̃∣K), G′ = Gal(L̃∣L)

G/G′ left cosets, ∣G/G′∣ = g

It is easy to check that the action of G on G/G′ is equivalent to the Galois action
of G on {α1, . . . , αg}. Therefore, since the Galois action is transitive and faithful,
G is embedded into Sg as a transitive group via the following injective group homo-
morphism:

λG ∶ G ↪ Sg ≅ Perm(G/G′)
σ ↦ [τ ↦ στ]
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Hence we can identify G with its image by λG. Notice that changing λG(G) by a
conjugated subgroup in Sg is equivalent to renumerate the roots {α1, . . . , αg}. Thus
λG(G) is determined modulo conjugation.

Notice that λ is a left action, but we can also consider the right one, which is an
injective group homomorphism as well:

λG ∶ G ↪ Perm(G/G′) ρG ∶ G ↪ Perm(G/G′)
σ ↦ σ ⋅ σ ↦ ⋅ σ−1

3.3 Galois descent

Now we consider objects over a field K. The theory of forms states when they be-
come isomorphic by scalar extension to a field E. Afterwards we study the inverse
problem: when an E-morphism descends to K.

The first part of this section is a summary of Section 5.1 of my graduate thesis
[Sa] and it is based on [Se]. We introduce 1-cocycles, which lead us to define the
first cohomology set for the nonabelian case. Then we classify algebra forms.

Let A, G be groups such that A is a left G-module.

Definition 3.3.1. A 1-cocycle of G into A is a map p ∶ G→ A, σ ↦ pσ, such that

pστ = pσ(σpτ).

Let C1(G,A) denote the set of 1-cocycles of G into A.

Remark 3.3.2. If the G-action on A is trivial, a 1-cocycle of G into A is a group
morphism.

Definition 3.3.3. The first cohomology set of G with values in A, H1(G,A),
is defined as the quotient of C1(G,A) by the equivalence relation ∼ defined as

p ∼ q⇔ there exists a ∈ A such that qσ = a−1 pσ σ(a).

Now let E∣K be a finite Galois extension with group G and let H be a K algebra.
Recall that G acts on E ⊗H via the left factor. If σ ∈ G, then we also denote by σ
the K-algebra automorphism:

E ⊗H → E ⊗H
λ⊗ h ↦ σ(λ)⊗ h

Moreover, if H1,H2 are K-algebras and f ∶ E ⊗H1 → E ⊗H2 is an E-algebra
morphism, we denote by fσ the E-algebra morphism σ○f ○σ−1, that is, the morphism
making commutative the following diagram:
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E ⊗H1 E ⊗H2

E ⊗H1 E ⊗H2

f

σσ

fσ

Definition 3.3.4. We say that a K algebra H ′ is an E∣K-form of H if there is an
E-linear isomorphism E ⊗H ≅ E ⊗H ′.

Let SH(E∣K) denote the set of K-isomorphism classes of forms of H.

Theorem 3.3.5. The set SH(E∣K) of E∣K-forms of algebras is in bijection with
the set H1(G,AutE(E ⊗H)) of 1-cocycles from G into AutE(E ⊗H).

Remark 3.3.6. If H ′ is an E∣K-form of H, φ ∶ E⊗H ′ ∼→ E⊗H, the above bijection
sends H ′ to the class of the 1-cocycle given by

σ z→ pσ ∶= φ ○ σ ○ φ−1 ○ σ−1 = φ ○ φ−σ

From now on, we consider the Galois descent problem. It is based on [G-P].

Definition 3.3.7. Let Ai,Bi be K-algebras such that Bi is an E∣K-form of Ai,
φi ∶ E⊗Bi

∼→ E⊗Ai, for every i ∈ {1,2}. An E-algebra morphism f ∶ E⊗A1 → E⊗A2

is called descendable if there exists a (unique) morphism g ∶ B1 → B2 so that the
following diagram commutes:

E ⊗B1 E ⊗B2

E ⊗A1 E ⊗A2

IE ⊗g

φ2φ1

f

that is, for every λ ∈ E, b ∈ B1,

f(φ1(λ⊗ b)) = φ2(λ⊗ g(b)).

Lemma 3.3.8. In the previous notation, let p(i) be the associated cocycles to Bi.
Then f is descendable if and only if

f ○ p(1)σ = p(2)σ ○ fσ, ∀ σ ∈ G.

Proof. The proof is omitted in [G-P]. Assume f is descendable and let us check that

f ○ p(1)σ = p(2)σ ○ f , for every σ ∈ G. Since f is descendable, by definition, there exists
a morphism g ∶ B1 → B2 such that

f ○ φ1 = φ2 ○ (IE ⊗g)
that is,

φ−1
2 ○ f ○ φ1 = IE ⊗g (3.1)



29 Chapter 3. Greither-Pareigis’ theorem

Moreover, since G acts via the left factor, we have that for every σ ∈ G,

(IE ⊗g) ○ σ = σ ○ (IE ⊗g) (3.2)

Indeed, for every λ⊗ b ∈ E ⊗B1,

- On the one hand,

(IE ⊗g)(σ(λ⊗ b)) = (IE ⊗g)(σ(λ)⊗ b) = σ(λ)⊗ g(b)

- On the other hand,

σ((IE ⊗g)(λ⊗ b)) = σ(λ⊗ g(b)) = σ(λ)⊗ g(b)

Now if we combine both identities (3.1) and (3.2), we obtain for every σ ∈ G:

φ−1
2 ○ f ○ φ1 ○ σ = σ ○ φ−1

2 ○ f ○ φ1 (3.3)

which is equivalent to the following:

φ−1
2 ○ f ○ φ1 ○ σ = σ ○ φ−1

2 ○ f ○ φ1

⇔ f ○ φ1 ○ σ = φ2 ○ σ ○ φ−1
2 ○ f ○ φ1

⇔ f ○ φ1 ○ σ ○ φ−1
1 = φ2 ○ σ ○ φ−1

2 ○ f
⇔ f ○ (φ1 ○ σ ○ φ−1

1 ○ σ−1) = (φ2 ○ σ ○ φ−1
2 ○ σ−1) ○ (σ ○ f ○ σ−1)

⇔ f ○ p(1)σ = p(2)σ ○ fσ

Reciprocally, assume f ○ p(1)σ = p(2)σ ○ fσ holds for every σ ∈ G, and let us see that
f is descendable. By the last computation, the assumption is equivalent to (3.3).
Now let us define

g̃ ∶ E ⊗B1 → E ⊗B2

as

g̃ = φ−1
2 ○ f ○ φ1.

Hence by (3.3) g̃ satisfies the following identity for every σ ∈ G:

g̃ ○ σ = σ ○ g̃ (3.4)

Thus g̃ maps G-invariant elements to G-invariant elements: if x is G-invariant
(ie, σ(x) = x, ∀ σ ∈ G), then g̃(x) is also G-invariant: for every σ ∈ G,

σ(g̃(x)) =
(3.4)

g̃(σ(x)) =
(x G−inv)

g̃(x)

Finally, since G = AutK(E), the G-invariant elements in E ⊗ Bi are those of
K ⊗ Bi ≅ Bi, hence g̃ restricts to a g ∶ B1 → B2 such that g̃ = IE ⊗g, that is, f is
descendable.
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3.4 Some auxiliary G-algebras

In this section, we state some previous results that are necessary to prove Greither-
Pareigis’ theorem. It is based on chapter 2, section 6 [Ch1] and the proofs of the
results presented here have been enlarged with all details.

We start generalizing the notion of Hopf Galois structure to rings.

Definition 3.4.1. Let E be a field and S be a finite E-algebra. A Hopf Galois
structure on S∣E is a pair (H, ⋅), where H is a finite cocommutative E-Hopf algebra
and ⋅ is an action called Hopf action, such that the two conditions of the Definition
2.4.3 are satisfied.

Now assume we are under the assumptions of Section 3.2. We see that if we have
a Hopf Galois structure (H, ⋅) on L∣K, then by tensoring with L̃ over K we obtain
another Hopf Galois structure.

Proposition 3.4.2 (Base change). If (H, ⋅) is a Hopf Galois structure on a finite
field extension L∣K, then (L̃⊗H,∗) is a Hopf Galois structure on (L̃⊗L)∣L̃, where
the action ∗ is defined as follows:

∗ ∶ (L̃⊗H)⊗L̃ (L̃⊗L) → L̃⊗L
(s̃⊗ h)⊗ (t̃⊗ x) ↦ (s̃t̃)⊗ (h ⋅ x)

Proof. Sketch of the proof, which is omitted in [Ch1]. Recall that, by Proposition
2.3.14, L̃⊗H is an L̃-Hopf algebra. One may check three things:

1. L̃⊗L is a finite L̃-vector space: if one takes a K-basis {e1, . . . , eg} of L, then
{1L̃ ⊗ e1, . . . ,1L̃ ⊗ eg} is an L̃-basis of L̃⊗L.

2. By tensoring with L̃ the commutative diagrams giving that L is a left H-
module K-algebra (see Definition 2.2.9) we obtain the commutative diagrams
giving that L̃⊗L is a left L̃⊗H-module L̃-algebra.

3. ̃ ∶ (L̃⊗L)⊗L̃ (L̃⊗H)→ EndL̃(L̃⊗L) is an L̃-linear isomorphism.

Since L∣K is H-Galois by assumption, we have the K-linear isomorphism:

j ∶ L⊗H → EndK(L)
x⊗ h ↦ j(x⊗ h)(y) = x(h ⋅ y)

By tensoring with L̃, we obtain the following L̃-linear isomorphism (see [Bo]
II §3.6):

L̃⊗L⊗H L̃⊗jÐ→ L̃⊗EndK(L).

Now it remains to show that L̃⊗ j = ̃, that is:

L̃⊗L⊗H ≅ (L̃⊗L)⊗L̃ (L̃⊗H) and L̃⊗EndK(L) ≅ EndL̃(L̃⊗L).
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The first one is clear. Let us check L̃ ⊗ EndK(L) ≅ EndL̃(L̃ ⊗ L). As noticed
before, if {e1, . . . , eg} is a K-basis of L, then {1L̃⊗e1, . . . ,1L̃⊗eg} is an L̃-basis
of L̃⊗L. Moreover, a K-basis of EndK(L) is {ϕij ∶ i, j ∈ {1, . . . , g}}, where:

ϕij ∶ L Ð→ L
ei z→ ej
ek z→ 0 if k ≠ i

Similarly we define an L̃-basis {ψij ∶ i, j ∈ {1, . . . , g}} of EndL̃(L̃⊗L), so that
there is the following isomorphism:

L̃⊗EndK(L) → EndL̃(L̃⊗L)
1L̃ ⊗ ϕij ↦ ψij

Remark 3.4.3. One can recover the action of H on L by identifying H and L with
the fixed rings (L̃⊗H)G and (L̃⊗L)G resp., where G acts via its action on L̃:

� H identifies with the K-Hopf subalgebra (L̃⊗H)G (of L̃⊗H):

(L̃⊗H)G = L̃G ⊗H =K ⊗K H ≅H.

� L identifies with the K-subalgebra (L̃⊗L)G (of L̃⊗L):

(L̃⊗L)G = L̃G ⊗L =K ⊗K L ≅ L.

Moreover, if ∗ is a Hopf action of L̃⊗H on L̃⊗L, then ⋅ is a Hopf action of H on L.

This proposition leads to Greither-Pareigis’ classification of Hopf Galois struc-
tures on L∣K: the strategy is to classify those Hopf Galois structures on (L̃⊗L)∣L̃
fixing L̃ on which G acts, and then take the ring of invariants under the G-action.
This strategy is facilitated by the special form of L̃ ⊗ L, and hence L̃ ⊗H, which
permits a complete description of Galois structures on (L̃⊗L)∣L̃.

Proposition 3.4.4. The map

γ ∶ L̃⊗L → Map(G/G′, L̃)
l̃ ⊗ l ↦ γ(l̃ ⊗ l)(σ̄) = l̃σ(l)

is a L̃-algebra, G-module isomorphism, where G acts on Map(G/G′, L̃) as follows:

G ×Map(G/G′, L̃) → Map(G/G′, L̃)
(τ, f) ↦ (τ ⋅ f)(σ̄) = τ(f(τ−1σ))

and G and L̃ act on L̃⊗L via the left factor.
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Proof. It is based on the proof given in Lemma 1.2 [G-P]. Set M ∶= Map(G/G′, L̃).

Claim 1: φ ∶ L̃⊗L→Map(G/G′, L̃), defined as follows, is a K-linear isomorphism.

We have the following K-linear isomorphisms:

L̃⊗L = L̃⊗K(α) (Primitive Element Th)
λ⊗ s ↦ λ⊗ P (α) (for some P ∈K[x])

≅ L̃⊗ K[x]
(irr(α,K))

(Isomorphism Th)

↦ λ⊗ P (x)

≅ L̃[x]
(irr(α,K))

(by (1) below)

↦ λP (x)

= L̃[x]

(
g

∏
i=1

(x − αi))

⎛
⎜
⎝

L̃ normal closure of
L∣K, hence irr(α,K)

splits completely

⎞
⎟
⎠

↦ λP (x)

≅
g

∏
i=1

L̃[x]
(x − αi)

⎛
⎜
⎝

Chinese Remainder Th
L∣K separable, thus

(x − αi) pairwise prime

⎞
⎟
⎠

↦ (λP (x) mod (x − αi))gi=1

≅
g

∏
i=1

L̃ (by (2) below)

↦ (λσ(P (α)))
σ̄∈G/G′

≅ Map(G/G′, L̃) (Example 2.1.6)

↦ ∑
σ̄∈G/G′

λσ(P (α))eσ ({eσ}σ∈G/G′ L̃-basis

of Map(G/G′, L̃) )

where:

(1) On the one hand, by tensoring with L̃ the projection π ∶K[x]↠K[x]/(irr(α,K)),
we obtain another surjective morphism:
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ϕ ∶= IL̃⊗π ∶ L̃⊗K[x] ↠ L̃⊗ K[x]
(irr(α,K))

λ⊗ P ↦ λ⊗ π(P )

where Ker(ϕ) = (irr(α,K)).

On the other hand, we have the following K-linear isomorphism:

f ∶ L̃[x] → L̃⊗K[x]
xj ↦ 1L̃ ⊗ xj

∑
j

λjx
j ↦ ∑

j

λj(1L̃ ⊗ xj) =∑
j

λj ⊗ xj

Therefore, ϕ ∶= ϕ ○ f ∶ L̃[x] → L̃ ⊗K[x]/(irr(α,K)) is surjective since f is an
isomorphism and Ker(ϕ) ≅ Ker(ϕ), thus we apply the Isomorphism theorem;

(2) For every i ∈ {1, . . . , g}, the morphism fi ∶ L̃[x] → L̃, defined by fi(P ) = P (αi),
is surjective (given β ∈ L̃, the constant polynomial P (x) ∶= β ∈ L̃[x] satisfies
P (αi) = β) and Ker(fi) = (x − αi), so that we apply the Isom. theorem and get

L̃[x]
(x − αi)

Ð→ L̃

P z→ P (αi)

so that:

g

∏
i=1

L̃[x]
(x − αi)

Ð→
g

∏
i=1

L̃

(P (x) mod (x − αi))gi=1 z→ (P (αi))gi=1

Now it remains to check that

(P (αi))
g

i=1
= (σ(P (α)))

σ̄∈G/G′

Indeed, observe the Galois action induces a surjective map:

G → {roots of irr(α,K)}
σ ↦ σ(α)

Moreover, for σ, τ ∈ G, we have

σ(α) = τ(α)⇔ (τ−1σ)(α) = α⇔ τ−1σ ∈ AutK(α)(L̃) = G′⇔ σ ∈ τG′ = τ .

so that the previous map is bijective if we corestrict it to left cosets G/G′:

G/G′ → {roots of irr(α,K)}
σ ↦ σ(α)
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Therefore, for every P ∈K[x] and σ ∈ G = AutK(L):
(P (αi))

g

i=1
= (P (σ(α)))

σ̄∈G/G′
= (σ(P (α)))

σ̄∈G/G′

Claim 2: The previous K-linear isomorphism φ is precisely γ.

By definition of γ, for every τ ∈ G/G′, λ⊗ P (α) ∈ L̃⊗L,

γ(λ⊗ P (α))(τ) = λτ(P (α))
so that it remains to check that, for every τ ∈ G/G′:

( ∑
σ∈G/G′

λσ(P (α))eg)(τ) = λτ(P (α)).

Indeed, by L̃-linearity and by definition of {eσ}σ∈G/G′ ,

( ∑
σ∈G/G′

λσ(P (α))eg)(τ) = λ ∑
σ∈G/G′

σ(P (α))eg(τ) = λτ(P (α)).

Claim 3: γ is an L̃-algebra, G-module isomorphism.

Since we have proved that γ is a K-linear isomorphism, it remains to see that it
is an L̃-algebra, G-module homomorphism.

� L̃-algebra homomorphism: γ is L̃-linear by definition.

Now let us check that γ preserves multiplication: indeed, for every σ ∈ G/G′,
l̃ ⊗ l, m̃⊗m ∈ L̃⊗L:

γ((l̃ ⊗ l)(m̃⊗m))(σ) = γ((l̃m̃)⊗ (lm))(σ) (Ex 2.1.7)
= l̃m̃ σ(lm) (def γ)
= l̃m̃ σ(l)σ(m) (σ ∈ G = AutK L)
= (l̃σ(l))(m̃σ(m)) (commut. of L̃)
= γ(l̃ ⊗ l)(σ) γ(m̃⊗m)(σ) (def γ)
= (γ(l̃ ⊗ l) γ(m̃⊗m))(σ) (def mult. in M)

� G-module homomorphism: we have to check that the action is compatible
with γ. Indeed, for every τ ∈ G, l̃ ⊗ l ∈ L̃⊗L, σ ∈ G/G′:

(τ ⋅ γ(l̃ ⊗ l))(σ) = τ(γ(l̃ ⊗ l)(τ−1σ)) (def ⋅)
= τ(l̃ (τ−1σ)(l)) (def γ)
= τ(l̃) σ(l) (τ ∈ G = AutK L)
= γ((τ(l̃))⊗ l)(σ) (def γ)
= γ(τ(l̃ ⊗ l))(σ) (G↻ L̃⊗L)
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Remark 3.4.5. The action of G on the L̃-basis {eσ ∶ σ ∈ G/G′} of Map(G/G′, L̃)
is given by

τ(eσ) = eτσ =
(def λ)

eλ(τ)(σ)

so that it corresponds to the action of G on X given by the left translation map
λ ∶ G↪ Perm(G/G′).

Indeed, for every τ ∈ G and σ, ρ ∈ G/G′,

(τ(eσ))(ρ) = τ(eσ(τ−1ρ)) (G↻Map(G/G′, L̃))
= τ( δ

σ,τ−1ρ

²
∈{0,1}⊂K

) (def eσ)

= δ
σ,τ−1ρ

(τ ∈ G = AutK L̃)
= δτσ,ρ (σ = τ−1ρ⇔ τσ = ρ)
= eτσ(ρ) (def eσ)

Remark 3.4.6. Let X be a finite set, E a field and for x ∈X, let

ux ∶ X → E
y ↦ δx,y

Then {ux ∶ x ∈ X} is an E-basis of the E-algebra M ∶= Map(X,E) and is a set
of primitive pairwise orthogonal idempotents of Map(X,E). Indeed,

- Idempotents: for every x, y ∈X, u2
x = ux:

u2
x(y) = (uxux)(y)

= ux(y) ux(y) (def mult. in M)
= (ux(y))2

= δ2
x,y (def ux)

= δx,y (E field)
= ux(y) (def ux)

- Pairwise orthogonal: for every x,x′, y ∈X such that x ≠ x′, uxux′ = 0:

(uxux′)(y) = ux(y) ux′(y) (def mult. in M)
= δx,y δx′,y (def ux)
= 0 (x ≠ x′)

- Primitive: recall that a non-zero idempotent is said to be primitive if it cannot be
written as a sum of non-zero orthogonal idempotents.

First of all, observe that every idempotent of M maps any element to 0 or 1: for
every f ∈M idempotent and every y ∈X,

f 2(y) = f(y) ⇒
(E field)

f(y) ∈ {0,1}.
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Finally let us see that {ux ∶ x ∈ X} are primitive: for every f, g ∈ M orthogonal
idempotents, if ux = f + g, then for every y ∈X,

δx,y = ux(y) = f(y) + g(y) =
⎧⎪⎪⎨⎪⎪⎩

1(= 1 + 0 or 0 + 1) if x = y
0(= 0 + 0) if x ≠ y

Hence f = 0 or g = 0.

Lemma 3.4.7. If B is a basis of pairwise orthogonal idempotents, then any other
idempotent is a sum of elements of B.

The next result describes the Hopf Galois structures on such ”split” algebras
Map(X,E). In order to prove it, we need a previous lemma:

Lemma 3.4.8. Let X be a finite set of cardinality n. If H is a cocommutative
E-Hopf algebra such that Map(X,E)∣E is H-Galois, then there is an E-algebra
isomorphism:

E ⊕ n2
. . .⊕E ≅H∗ ⊕ n. . .⊕H∗

where H∗ = HomE(H,E) is the dual E-Hopf algebra.

Proof. The proof is omitted in [Ch1]. The following are E-algebra isomorphisms:

E ⊕ n2
. . .⊕E ≅ Map(X ×X,E) (by (1) below)

≅ Map(X,E)⊗E Map(X,E) (by (2) below)
≅ Map(X,E)⊗E H∗ (by (3) below)
≅ H∗ ⊕ n. . .⊕H∗ (by (4) below)

where:

(1) Let Y be a finite set. It is already known that the following is an E-linear
isomorphism:

Map(Y,E) ≅ E ⊕ ∣Y ∣. . .⊕E.

Since the product in Map(Y,E) is componentwise, it follows that it is moreover
an E-algebra isomorphism. Hence we take Y =X ×X.

(2) Indeed, by using (1) above and the distributivity of ⊗ with respect to ⊕:

Map(X,E)⊗E Map(X,E) ≅ (E ⊕ n. . .⊕E)⊗E (E ⊕ n. . .⊕E)
≅ (E ⊗E E)⊕ n2

. . .⊕ (E ⊗E E)
≅ E ⊕ n2

. . .⊕E
≅ Map(X ⊗X,E)
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(3) By assumption, Map(X,E)∣E is H-Galois, so that by Definition 2.4.3 we have
the following E-linear isomorphism:

j ∶ Map(X,E)⊗E H → EndE(Map(X,E))

By Proposition 2.2.18 (2) (with S = Map(X,E)), it yields the E-linear isomor-
phism:

γ ∶ Map(X,E)⊗E Map(X,E)→Map(X,E)⊗E H∗

It remains to check that γ is an E-algebra homomorphism in this particular
case, which follows from the whole Proposition 2.2.18.

(4) Indeed, by using (1) above and the distributivity of ⊗ with respect to ⊕:

Map(X,E)⊗E H∗ ≅ (E ⊕ n. . .⊕E)⊗E H∗

≅ (E ⊗E H∗)⊕ n. . .⊕ (E ⊗E H∗)
≅ H∗ ⊕ n. . .⊕H∗

Corollary 3.4.9. In the previous notation, there is an E-algebra isomorphism:

H∗ ≅ E ⊕ n. . .⊕E.

Proof. Sketch of the proof, which is omitted in [Ch1]. Recall the following definitions
(see [La] XVII): let R be a ring.

1. An R-module is simple if it has no proper submodules.

2. An R-module is semisimple if it is a direct sum of simple submodules.

3. The ring R is semisimple if it is simple as an R-module.

Notice that if we consider the ring R as an R-module, its submodules are its
ideals. Therefore a ring is simple if and only if it has no proper ideals. In particular,
every field is a simple ring.

By [La] XVII, §2, Proposition 2.2, we know that every submodule of a semisim-
ple module is semisimple. More precisely, the proof shows that if M = ⊕i∈IMi, with
Mi simple submodules, and N is a submodule of M , then there exists J ⊆ I such
that N = ⊕i∈JMi.

It remains to check that the isomorphism follows from applying both the previous
observation and result to Lemma 3.4.8.
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Theorem 3.4.10. Let X be a finite set and let E be a field. If H is a finite cocommu-
tative E-Hopf algebra such that Map(X,E)∣E is H-Galois, then H is a group ring
E[N] for some group N of the same cardinality as X. Moreover, N may be identified
as a subgroup of Perm(X), where the action of N on X is defined by uη(x) = η(ux),
for every η ∈ N , x ∈ X. Hence N is a regular subgroup of Perm(X). Conversely, if
N is a regular subgroup of Perm(X), then Map(X,E)∣E is E[N]-Galois.

Proof. It is based on the proof given in Th. 6.3 [Ch1]. Set n ∶= ∣X ∣, M ∶= Map(X,E).
Assume M ∣E is H-Galois. By Corollary 3.4.9, there is an E-algebra isomorphism:

H∗ ≅ E ⊕ n. . .⊕E. (3.5)

Thus for every i ∈ {1, . . . , n}, let us define the i-th coordinate function:

ηi ∶ H∗ → E
(e1, . . . , en) ↦ ei

Then N ∶= {ηi ∶ i ∈ {1, . . . , n}} is clearly a basis of HomE(H∗,E) =H∗∗. Since H
is finite (by assumption), H∗∗ ≅ H so that N is a basis of H. Moreover, for every
i ∈ {1, . . . , n}, ηi is clearly an E-algebra isomorphism, hence by Remark 2.3.11, it is
grouplike in H∗∗ ≅H.

All in all, since N is a basis of H and it is made up of grouplike elements, then N
consists of all grouplike elements in H (N = G(H) by Proposition 2.1.17). Therefore
by Proposition 2.3.12, N is a group, so that H is the group ring H = E[N]:

E[N] = {∑ληη ∶ η ∈ N, λη ∈ E} = {
n

∑
i=1

λiηi ∶ ηi ∈ N} =H (3.6)

since it is easy to check that the Hopf algebra structure is preserved (by using the
definition of the structure maps of a Hopf algebra and that ηi is grouplike).

Claim 1: N acts as a group of permutations of X.

By Remark 3.4.6, let B = {ux ∶ x ∈ X} be the basis of primitive pairwise ortho-
gonal idempotents of Map(X,E), where ux(y) = δx,y, for every x, y ∈X.

Now, the idea is the following: since Map(X,E)∣E is H-Galois (by assumption)
and we have seen that H = E[N], we have the Hopf action

E[N] ×Map(X,E)→Map(X,E)
that restricted to N yields an action

N ×Map(X,E)→Map(X,E)
Now we will check that we can also restrict to B to obtain the following action:

N × B → B
(η, ux) ↦ η(ux) = uy for some y ∈X
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so that since B is indexed by X, it may be seen as the action

N ×X → X
(η, x) ↦ η(x) = y ⇔ η(ux) = uy for some y ∈X

that is equivalent to say that N acts as a group of permutations of X. Hence it
remains to show is that the action N ↻ Map(X,E) induces the action N ↻ B
described previously.

Recall that since M ∣E is H-Galois (by assumption), by definition M is an E[N]-
module E-algebra. Moreover, let us notice the following facts:

(a) For every x ∈X and η ∈ N , η(ux) is idempotent:

η(ux) = η(uxux) (ux idempotent)
= η(ux)η(ux) (Rem 2.2.10)

(b) The set {η(ux) ∶ x ∈X} are pairwise orthogonal: for every x ≠ y ∈X,

η(ux)η(uy) = η(uxuy) (Rem 2.2.10)
= η(0) (B pairwise orthog)
= 0 (M E[N]-module)

(c) For every x ∈X and η ∈ N , η(ux) ≠ 0:

0 ≠ ux (B basis of M)
= 1N(ux) (def action N ↻M)

= (η−1η)(ux) (N = G(H) mult subg
see Prop 2.3.12

)

= η−1(η(ux)) (def action N ↻M)

Since the action of N on Map(X,E) is the scalar product of Map(X,E) as an
E[N]-module, we obtain:

η−1(η ⋅ ux) ≠ 0 ⇒ η(ux) ≠ 0.

(d) 1M = ∑
x∈X

ux: since 1M ∶X → E maps any element of X to 1E, take y ∈X:

(∑
x∈X

ux)(y) = ∑
x∈X

ux(y) = ∑
x∈X

δx,y = δy,y = 1E.

(e) η(1M) = 1M :

η(1M) =
(2.1)

εe(η)1M =
( Prop

2.1.16
)

1E1M = 1M .
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Therefore, we obtain:

∑
x∈X

ux =
(d)

1M =
(c)
η(1M) =

(d)
η(∑

x∈X
ux) = ∑

x∈X
η(ux).

Now by (a), every η(ux) ∈M is idempotent, where B is a basis of M , so that by
Lemma 3.4.7 every η(ux) is a sum of elements of B. Hence by (b), the elements of B
appearing in the decomposition of one η(ux) do not appear in the decomposition of
the remaining ones (otherwise, if we multiply them, the repeated element will remain
and the product will not be zero). Thus by (c), there is at least one summand in
each decomposition. Finally, since ∣B∣ = ∣X ∣, there is exactly one summand in each
decomposition, so that we conclude:

∀ x ∈X, ∃ y ∈X such that η(ux) = uy (3.7)

and therefore
{ux ∶ x ∈X} = {η(ux) ∶ x ∈X}. (3.8)

Claim 2: N is a regular subgroup of Perm(X).

By definition of regular, we will check that:

� ∣N ∣ = ∣X ∣ = n:

n = dimE(E ⊕ n. . .⊕E) =
(3.5)

dimEH∗ =
(H finite)

dimEH =
(3.6)

dimE E[N] = ∣N ∣.

� N acts transitively on X, that is, for every x, y ∈ X, there exists η ∈ N such
that η(x) = y.

By reduction to absurdity: assume N does not act transitively on X, so that
there exists x ∈X such that for every y ∈X, η(x) ≠ y. Hence we define

Nux ∶= {η(ux) ∶ η ∈ N} =
(3.8)

{uy ∶ y ∈X} ⊊ B, where Y ⊊X. (3.9)

Moreover, by assumption Map(X,E)∣E is (H, ⋅)-Galois, so by definition there
is an E-linear isomorphism:

j ∶ Map(X,E)⊗E H → EndE(Map(X,E))
s⊗ h ↦ j(s⊗ h)(t) = s(h ⋅ t)

The contradiction will come by seeing that j is not surjective. Indeed, since B is
a basis of Map(X,E) andN is a basis ofH = E[N] (3.6), then Map(X,E)⊗EH
have basis {uz ⊗ η ∶ z ∈X, η ∈ N}, so that for every ξ ∈ Map(X,E)⊗E E,

ξ = ∑
η∈N
∑
z∈X

λz,η uz ⊗ η.
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Therefore,

j(∑
η∈N
∑
z∈X

λz,η uz ⊗ η)(ux) = ∑
η∈N
∑
z∈X

λz,η j(uz ⊗ η)(ux) (j linear)

= ∑
η∈N
∑
z∈X

λz,η uz η(ux) (def j)

= ∑
η∈N

λy,η uy (by (1) below)

∈ < {uy ∶ y ∈ Y } > (def < ⋅ >)
∉ Map(X,E) (3.9)

where (1) holds since for the fixed x ∈X, there exists y ∈X such that η(ux) = uy
(3.7), so that since elements of B are pairwise orthogonal, we get:

uz η(ux) = uzuy =
⎧⎪⎪⎨⎪⎪⎩

uy if z = y
0 if z ≠ y

Finally, since we can always define an endomorphism by sending the basis B
to any set of vectors, we can find out an endomorphism that sends ux out of
< {uy ∶ y ∈ Y } >, so that j is not surjective.

Conversely, assume N is a regular subgroup of Perm(X) and let us see that
M ∣E is E[N]-Galois. First of all, we define the Hopf action. Since N ≤ Perm(X)
is regular, then N acts on X, so that N also acts on B = {ux ∶ x ∈ X} by acting on
the indexes. Hence we define the Hopf action as follows:

µ ∶ E[N] ×Map(X,E) → Map(X,E)
(η, ux) ↦ η(ux) = uη(x)

Now we need to see that Map(X,E)∣E is (E[N], µ)-Galois by checking the two
conditions of the definition:

� j ∶ Map(X,E)⊗E E[N]→ EndE(Map(X,E)) is an E-linear isomorphism.

Notice that both dimensions are equal:

– On the one hand,

dimE Map(X,E) = dimE E ∣X ∣ = dimE En = n.

On the other hand, since N is a regular subgroup of Perm(X), then
∣N ∣ = ∣X ∣, so that:

dimE E[N] = ∣N ∣ = ∣X ∣ = n.
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All in all, we obtain:

dimE(Map(X,E)⊗E E[N]) = dimE Map(X,E) ⋅ dimE E[N] = n2.

– Moreover, it holds that:

dimE EndE(Map(X,E)) = (dimE Map(X,E))2 = n2.

Thus it remains to show that j is surjective: one may take a basis of EndE(M)
and check that every element of the basis belongs to the image of j.

� Map(X,E) is a left E[N]-module E-algebra: we need to check the three
conditions of the definition:

– Map(X,E) is an E-algebra (see Definition 2.1.6);

– Map(X,E) is an E[N]-module (since we have defined the action µ of
E[N] on Map(X,E));

– It is easy to check that both diagrams of Definition 2.2.9 (a) commute.

3.5 Greither-Pareigis’ theorem

In this section we finally prove Greither-Pareigis’ theorem. We also introduce the
definition of the type of a Hopf Galois structure and that of an almost classically
Galois structure. In order to close it, we state two important properties of Hopf
Galois structures.

We wish to apply this description of Hopf Galois structures (see Theorem 3.4.10)
on Map(X,E)∣E to obtain information of Hopf Galois structures on field extensions.

Proposition 3.5.1. Let L∣K be an (H, ⋅)-Galois extension with normal closure L̃,
let G = Gal(L̃∣K), G′ = Gal(L̃∣L) and X = G/G′. The Hopf action of L̃⊗H on L̃⊗L
obtained by base change:

ϕ ∶ (L̃⊗H)⊗L̃ (L̃⊗L) → L̃⊗L
(s̃⊗ h)⊗ (t̃⊗ x) ↦ (s̃t̃)⊗ (h ⋅ x)

is equivalent to an action

ψ ∶ L̃[N]⊗L̃ Map(X, L̃)→Map(X, L̃)
of L̃[N] on Map(X, L̃), which corresponds to a regular embedding of some group N
of order ∣X ∣ into Perm(X) with the property that if λ ∶ G ↪ Perm(X) is the left
translation, then λ(G) normalizes the image of N in Perm(X).

Proof. It is based on the argumentation given in pages 50-51 [Ch1].

On the one hand, by definition of Map(X, L̃), let B = {uσ ∶ σ ∈X} be its canonical
basis. Then by Proposition 3.4.4, there is a G-module isomorphism:
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γ ∶ L̃⊗L → Map(X, L̃)
l̃ ⊗ l ↦ γ(l̃ ⊗ l)(σ) = l̃σ(l)

where G acts on B as follows (see Remark 3.4.5):

G × B → B
(τ, uσ) ↦ τ(uσ) = uτσ = uλ(τ)(σ)

(3.10)

On the other hand, by Theorem 3.4.10, there is a regular subgroup N of Perm(X)
so that L̃⊗H = L̃[N] and the action on N on B is:

η(uσ) = uη(σ) (3.11)

Hence the action ϕ becomes isomorphic to an action

ψ ∶ L̃[N]⊗L̃ Map(X, L̃) → Map(X, L̃)
η ⊗ uσ ↦ ψ(η ⊗ uσ) = η(uσ)

(3.12)

Now it remains to show that this action is as stated in the proposition.

Claim 1: G acts on N .

Indeed, since G = AutK(L̃), G acts on L̃, hence G also acts on L̃ ⊗H via the
left factor and it preserves the Hopf algebra structure (because the Hopf algebra
structure of L̃⊗H is obtained by scalar extension). Moreover, since L̃⊗H = L̃[N]
as Hopf algebras, G acts on L̃[N] preserving the Hopf algebra structure.

Recall that the set of grouplike elements of L̃[N] is N (see Remark 2.1.15).
Furthermore, G maps grouplike elements to grouplike elements: for every η ∈ N
(hence it is grouplike), let us check that σ(η) is also grouplike for every σ ∈ G:

∆L̃[N](σ(η)) = σ(∆L̃[N](η)) (G preserves struct.)
= σ(η ⊗ η) (def ∆L̃[N])
= σ(η)⊗ σ(η) (G↻H ⇒ G↻H ⊗H)

Thus we conclude that G acts on N , as desired.

Claim 2: The previous action of G on N is via conjugation by λ.

First of all, let us see ϕ is G-equivariant, that is, for every σ ∈ G and every
A ∈ (L̃⊗H)⊗L̃ (L̃⊗L):

σ(ϕ(A)) = ϕ(σ(A))
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Indeed, since G = AutK(L̃) acts on L̃, G acts on L̃⊗L and on (L̃⊗H)⊗L̃ (L̃⊗L)
via the left factor, so that if A = (s̃⊗ h)⊗ (t̃⊗ x),

σ(ϕ(A)) = σ(ϕ((s̃⊗ h)⊗ (t̃⊗ x))) (def A)
= σ((s̃t̃)⊗ (h ⋅ x)) (def ϕ)
= σ(s̃t̃)⊗ (h ⋅ x) (G↻ L̃⊗L)
= (σ(s̃)σ(t̃))⊗ (h ⋅ x) (σ morphism)
= ϕ((σ(s̃)⊗ h)⊗ (σ(t̃)⊗ x)) (def ϕ)
= ϕ(σ((s̃⊗ h)⊗ (t̃⊗ x))) (G↻ (L̃⊗H)⊗L̃ (L̃⊗L))
= ϕ(σ(A)) (def A)

Therefore ψ is G-equivariant as well, hence it follows that for every τ ∈ G, η ∈ N
and uσ ∈ B:

τ(η)(τ(uσ)) = τ(η(uσ)) (3.13)

Indeed,

τ(η)(τ(uσ)) = ψ(τ(η)⊗ τ(uσ)) (3.12)
= ψ(τ(η ⊗ uσ)) (G↻ N × B)
= τ(ψ(η ⊗ uσ)) (ψ G − equiv)
= τ(η(uσ)) (3.12)

Finally, let us see that the action of G on N is via conjugation by λ: for every
τ ∈ G, η ∈ N and uσ ∈ B,

τ(η)(τ(uσ)) =
(3.13)

τ(η(uσ)) =
(3.11)

τ(uη(σ)) =
(3.10)

uλ(τ)(η(σ))

∥
τ(η)(τ(uσ)) =

(3.10)
τ(η)(uλ(τ)(σ)) =

(3.11)
uτ(η)(λ(τ)(σ))

All in all, we have obtained:

τ(η)(λ(τ)(σ)) = λ(τ)(η(σ)) = (λ(τ) ○ η)(σ)

that is, if we define ρ ∶= λ(τ)(σ) (and so σ = λ(τ−1)(ρ)), we get:

τ(η)(ρ) = (λ(τ) ○ η ○ λ(τ−1))(ρ)

Hence we conclude that the action of τ ∈ G on η ∈ N is via conjugation by
λ(τ) ∈ Perm(X):

τ(η) = λ(τ) ○ η ○ λ(τ−1)
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The theorem of Greither and Pareigis asserts that the above proposition has a
converse, namely: given N ⊆ Perm(X) normalized by λ(G), there is a unique Hopf
Galois structure on L∣K which yields N .

Proposition 3.5.2. Let L∣K be a separable field extension with normal closure L̃,
let G = Gal(L̃∣K), G′ = Gal(L̃∣L) and X = G/G′. If N is a regular subgroup of
Perm(X) normalized by λ(G), then L∣K is H-Galois, where H is a L̃∣K-form of
K[N].

Proof. Let N ≤ Perm(X) be regular and normalized by λ(G). Let B = {uσ ∶ σ ∈ X}
be the canonical L̃-basis of M ∶= Map(X, L̃). Then by Theorem 3.4.10, Map(X, L̃)∣L̃
is L̃[N]-Galois, so that the Hopf action is defined on the basis as:

µ ∶ L̃[N]⊗L̃ Map(X, L̃) → Map(X, L̃)
η ⊗ uσ ↦ η(uσ) = uη(σ)

Since N is normalized by λ(G), then for every σ ∈ G, there is a bijection:

pσ ∶ N → N
η ↦ λ(σ)ηλ(σ−1)

that yields the following group morphism:

G → Aut(N)
σ ↦ pσ

Indeed, for every σ, τ ∈ G and η ∈ N ,

(pσ ○ pτ)(η) = pσ(λ(τ)ηλ(τ−1)) (def pτ)
= λ(σ) λ(τ) η λ(τ−1) λ(σ−1) (def pσ)
= λ(στ) η λ(τ−1σ−1) (λ group morp)
= λ(στ) η λ((στ)−1) ((f ○ g)−1 = g−1 ○ f−1)
= pστ(η) (def pστ)

Notice that, for every σ ∈ G, pσ ∈ Aut(N) ≅ Aut(L̃[N]) (where an automorphism
of N is extended to an automorphism of L̃[N] seeing L̃[N] as a Hopf algebra). Con-
sider L̃[N] and Aut(L̃[N]) as trivial G-modules, so that by Remark 3.3.2, pσ is a
1-cocycle from G into Aut(L̃[N]).

Furthermore define µσ ∶= σ ○µ ○ σ−1, and let us check that the following diagram
commutes:

L̃[N]⊗L̃ Map(X, L̃) Map(X, L̃)

L̃[N]⊗L̃ Map(X, L̃) Map(X, L̃)

µσ

IMpσ ⊗ IM

µ
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Recall that G acts trivially on N and G acts on Map(X, L̃) as in Remark 3.4.5:

G ×Map(X, L̃) → Map(X, L̃)
(τ, uσ) ↦ uτσ = uλ(τ)(σ)

Indeed, let us see that the identity µσ = µ ○ (pσ ⊗ IM) holds.

µσ(η ⊗ uρ) = (σ ○ µ ○ σ−1)(η ⊗ uρ) (def µσ)
= (σ ○ µ)(η ⊗ u

σ−1ρ
) (G↻ N ⊗M)

= σ(u
η(σ−1ρ)) (def µ)

= u
σ η(σ−1ρ) (G↻ B)

= uσ ηλ(σ−1)(ρ) (def λ)
= u(λ(σ)ηλ(σ−1))(ρ) (def λ)
= µ(λ(σ)ηλ(σ−1)⊗ uρ) (def µ)
= µ(pσ ⊗ IM)(η ⊗ uρ) (def pσ)

Now we have the following L̃-algebra isomorphisms:

Map(X, L̃) ≅ L̃⊗L
(by Prop 3.4.4)

L̃[N] ≅ L̃⊗K[N]

Hence the previous commutative diagram induces the commutative diagram:

(L̃⊗K[N])⊗L̃ (L̃⊗L) L̃⊗L

(L̃⊗K[N])⊗L̃ (L̃⊗L) L̃⊗L

µ̃σ

IL̃⊗Lp̃σ ⊗ IL̃⊗L

µ̃

where µ̃ is a Hopf action since µ is so.

Therefore we can apply Galois descent theory to this situation. In the left part
of the diagram we have the 1-cocycle p̃σ from G into Aut(L̃ ⊗K[N]), and in the
right part, the trivial 1-cocycle.

Then by Theorem 3.3.5, they correspond to L̃∣K-forms of algebras. Clearly, in
the right part of the diagram, the L̃∣K-form of L is L. Let H be the L̃∣K-form of
K[N] defined by the 1-cocycle p̃σ.

Thus by Lemma 3.3.8, µ̃ is descendable, so that by definition, there exists a
unique K-linear map which, is also a Hopf action:

µ0 ∶H ⊗L→ L

Finally, by Remark 3.4.3, µ0 defines an (H,µ0)-Galois structure on L∣K.
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Remark 3.5.3. As shown in Section 5.2 [Sa], this theorem allows to obtain explicitly
the Hopf Galois structure corresponding to a subgroup N . More precisely, by Galois
descent we recover:

� The Hopf algebra H corresponding to a regular subgroup N of Sg norma-
lized by λ(G) is the Hopf subalgebra L̃[N]G of the group algebra L̃[N] fixed
under the action of G, where G acts on L̃ by K-automorphisms and on N by
conjugation via λ: for every σ ∈ G, η ∈ N ,

σ( ∑
xη∈L̃

xηη) = ∑
xη∈L̃

σ(xη) λ(σ)ηλ(σ)−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈N

,

� The Hopf action is induced by η ↦ η−1(1̄G), for every η ∈ N , where we
identify Sg with Perm(G/G′), that is, the K-linear map

ψ ∶ L̃[N] → EndKL̃
η ∈ N ↦ σ such that η−1(1̄G) = σ
r ∈ L̃ ↦ [f ↦ rf]

induces by restriction to H the Hopf action ψH ∶H → EndK L.

Finally we can state Greither-Pareigis’ theorem as follows:

Theorem 3.5.4 (Greither-Pareigis). Let L∣K be a separable field extension with
normal closure L̃, let G = Gal(L̃∣K), G′ = Gal(L̃∣L) and X = G/G′. There is a
bijection between regular subgroups N of Perm(X) normalized by λ(G) and Hopf
Galois structures on L∣K.

Moreover, the K-Hopf algebra H is a L̃∣K-form of K[N]:

L̃⊗H ≅ L̃⊗K[N] ≅ L̃[N].

Definition 3.5.5. Let L∣K be (H, ⋅)-Galois with the corresponding group N . The
isomorphism class of N is called the type of the Hopf Galois structure (H, ⋅). More-
over, if Cent(N) ⊆ λ(G), we say say that (H, ⋅) is almost classically Galois.

Remark 3.5.6. Almost classically Galois structures receive this name since Th. 5.2
[G-P] proves that in such a case the Galois correspondence is bijective.

Finally, we close this chapter with two important properties of Hopf Galois struc-
tures, which will be very useful afterwards to determine whether the Galois corres-
pondence is bijective and to give a partition of Hopf algebras in isomorphism classes,
respectively. We need the previous definitions:
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Definition 3.5.7. Let G and N be subgroups of the symmetric group Sg such that
N is normalized by G.

� A subgroup M of N is G-stable if M is also normalized by G.

� Two subgroups N1,N2 of Sg are G-isomorphic if there is a G-isomophism,
that is, there exists an isomorphism F between N1 and N2 satisfying that for
every σ ∈ G,

F (σn1σ−1) = σF (n1)σ−1.

Corollary 3.5.8. Under the notation of Remark 3.5.3, the following properties hold:

� Property 1: There is a bijection between the set of K-sub-Hopf algebras of

H = L̃[N]G and the set of G-stable subroups of N .

� Property 2: Two Hopf algebras H1 = L̃[N1]G and H2 = L̃[N2]G are isomorphic
if and only if N1 and N2 are G-isomorphic subgroups of Sg.

It is a direct consequence of Greither-Pareigis’ theorem and the proof may be
found in Proposition 2.2 [C-R-V].



Chapter 4

Byott’s theorem

This chapter is based on chapter 2, section 7 [Ch1] and the proofs of the results
presented here have been enlarged with all details.

One difficulty with Greither-Pareigis criterion is that, applied directly, we need
to find out which regular subgroups of Perm(G/G′) are normalized by G, and for
n much above 4, Perm(G/G′) has a large number of regular subgroups. Thus it is
useful to reverse the relationship between G and N .

4.1 Problem statement

In this section suppose L∣K is Galois with group G and [L ∶K] = g. We seek regular
subgroups N of Perm(G) normalized by G. If N is a subgroup of Perm(G), N acts
on G by permutations, and moreover if N is regular, there is a bijection:

b ∶ N → G
η ↦ η ⋅ eG = η(eG)

where eG is the identity element of G. Indeed,

- Injective: given η1, η2 ∈ N ,

b(η1) = b(η2) ⇒ η1 ⋅ eG = η2 ⋅ eG (def b)
⇒ η1 ⋅ eG = σ and η2 ⋅ eG = σ (σ ∶= ηi ⋅ eG ∈ G)
⇒ η1 = η2 (N reg; Rem 3.1.8)

- Bijective: Since N is regular, ∣N ∣ = ∣G∣ = g.

The previous bijection induces the following isomorphism:

ϕ ∶ Perm(G) → Perm(N)
π ↦ b−1 ○ π ○ b

49
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Indeed,

- Group morphism: given π1, π2 ∈ Perm(G),

ϕ(π1) ○ ϕ(π2) = (b−1 ○ π1 ○ b) ○ (b−1 ○ π2 ○ b) (def ϕ)
= b−1 ○ (π1 ○ π2) ○ b (b−1 ○ b = IN)
= ϕ(π1 ○ π2) (def ϕ)

- Injective: given π1, π2 ∈ Perm(G),

ϕ(π1) = ϕ(π2) ⇒ ∀ η ∈ N, b−1(π1b(η)) = b−1(π2b(η)) (def ϕ)
⇒ ∀ η ∈ N, π1(b(η)) = π2(b(η)) (b bij)
⇒ ∀ σ ∈ G, π1(σ) = π2(σ) (b(N) = G)
⇒ π1 = π2

- Bijective: Since N is regular, ∣N ∣ = ∣G∣, so that ∣Perm(G)∣ = ∣Perm(N)∣.

Now, let us notice that under ϕ:

� N is mapped to λN(N) in Perm(N): for every µ, η ∈ N ,

ϕ(µ)(η) = b−1(µ(b(η))) (def ϕ)
= b−1(µ(η ⋅ eG)) (def b)
= b−1(µ ⋅ (η ⋅ eG)) (N ↻ G by perm)
= b−1((µη) ⋅ eG) (def action)
= µη (def b)
= λN(µ)(η) (def λN)

so that λN = ϕ∣N .

� λG(G) is mapped to some group G0 ≅ G in Perm(N):

λG ∶ G ↪ Perm(G) ϕ→
∼

Perm(N)
G ↦ λG(G) ↦ G0 ≅ G

Hence, since λG(G) normalizesN in Perm(G), G0 normalizes λN(N) in Perm(N):

ϕ ∶ Perm(G) ∼→ Perm(N)
λG(G) ↦ G0 ≅ G

norma-
lizes

××Ö ⇒ ××Ö
norma-

lizes

N ↦ λN(N)
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By this translation, we shall see that to find regular subgroups N ′ ≅ N of
Perm(G) normalized by λG(G) becomes a question of finding regular embeddings of
G into the normalizer Hol(N) of λN(N) in Perm(N), and Hol(N), the holomorph
of N , is far smaller than Perm(G) and easy to describe.

4.2 Holomorph

Definition 4.2.1. Let N be a group. The holomorph of N is the normalizer of
λN(N) in Perm(N):

Hol(N) = NormPerm(N)(λN(N)) = {π ∈ Perm(N) ∶ π normalizes λN(N)}.

Proposition 4.2.2. Hol(N) = ρ(N) ⋊Aut(N), where ρ ∶= ρN .

Proof. It is based on the proof given in Prop 7.2, page 56 [Ch1]. Firstly, we check
that ρ(N) ⋅ Aut(N) ⊆ Hol(N). View Aut(N) ⊆ Perm(N) in the obvious way and
λ(N), ρ(N)↪ Perm(N), where λ ∶= λN .

Claim 1: Aut(N) normalizes λ(N).

Given γ ∈ Aut(N), we want to see γλ(N) = λ(N)γ (in Perm(N)). Indeed, for
every η, µ ∈ N :

( γ
®
λ(η)
±

∈Perm(N)

)(µ) = γ(λ(η)(µ)) (def ○)

= γ(ηµ) (def λ)
= γ(η)γ(µ) (γ group morp)
= λ(γ(η))γ(µ) (def λ)
= (λ(γ(η))

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
γ
®

∈Perm(N)

)(µ) (def ○)

so that:

γλ(η) = λ(γ(η))γ, ∀ µ ∈ N ⇒ γλ(N) = λ(N)γ, as desired.

Claim 2: ρ(N) centralizes λ(N). In particular, ρ(N) normalizes λ(N).

Given η, µ ∈ N , we want to see ρ(η)λ(µ) = λ(µ)ρ(η). Indeed, for every m ∈ N :

(ρ(η)λ(µ))(m) = ρ(η)(λ(µ)(m)) (def ○)
= ρ(η)(µm) (def λ)
= µmη (def ρ)
= λ(µ)(mη) (def λ)
= λ(µ)(ρ(η)(m)) (def ρ)
= (λ(µ)ρ(η))(m) (def ○)
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Therefore, claims 1 and 2 show that both Aut(N) and ρ(N) are subgroups of
Hol(N). Now, let us show that the product is a subgroup as well.

Claim 3: Aut(N) normalizes ρ(N).

Given γ ∈ Aut(N), we want to see that γρ(N) = ρ(N)γ (in Perm(N)). Indeed,
for every η, µ ∈ N :

(γ ○ ρ(η))(µ) = γ(ρ(η)(µ)) (def ○)
= γ(µη−1) (def ρ)
= γ(µ)γ(η−1) (ρ group morp)
= γ(µ)(γ(η))−1 (γ group morp)
= (ρ(γ(η))γ(µ) (def ρ)
= (ρ(γ(η)) ○ γ)(µ) (def ○)

so that:

γρ(η) = ρ(γ(η))γ, ∀ µ ∈ N ⇒ γρ(N) = ρ(N)γ, as desired.

Therefore, it follows that ρ(N) ⋅ Aut(N) is a subgroup of Perm(N) which is
contained in Hol(N). Indeed, for every η, η′ ∈ ρ(N) and σ,σ′ ∈ Aut(N):

(η ⋅ σ)(η′ ⋅ σ′) = η (ση′σ−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈ρ(N) [Claim 3]

(σσ′) = (ηση′σ−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈ρ(N)

(σσ′)
²
∈Aut(N)

(4.1)

Conversely, we check that Hol(N) ⊆ ρ(N) ⋅Aut(N). Let π ∈ Hol(N) and let us
see that π ∈ ρ(N) ⋅Aut(N). If π ∈ Hol(N), then for every η ∈ N , πλ(η)π−1 ∈ λ(N).
Hence for every η ∈ N , there exists γ(η) ∈ N determined by

πλ(η)π−1 = λ(γ(η)) (4.2)

Since λ is injective, this γ(η) is unique, so that the map γ ∶ N → N can easily
be seen to be an automorphism of N . For any η ∈ N :

π(η) = π(ηeN) (def eN)
= π(λ(η)eN) (def λ)
= (πλ(η))(eN) (def ○)
= (λ(γ(η))π)(eN) (by (4.2))
= λ(γ(η))(π(eN)) (def ○)
= γ(η)π(eN) (def λ)
= ρ(π(eN)−1)(γ(η)) (def ρ)
= (ρ(π(eN)−1) ○ γ)(η) (def ○)

Hence π = ρ(π(eN)−1) ○ γ ∈ ρ(N) ⋅Aut(N).
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Finally, it remains to show that Hol(N) = ρ(N) ⋊Aut(N).

On the one hand, since every automorphism is in particular a group morphism,
it maps the identity element to itself. Thus Aut(N) fixes eN . On the other hand,
since the action of ρ is by (right) translation, only the identity leaves fixed elements,
so that ρ(N) is a regular subgroup of Perm(N). Hence the stabilizer of any element
of N in ρ(N) is trivial:

∀ η ∈ N, Stabρ(N)(η) = {ρ(µ) ∈ ρ(N) ∶ ηρ(µ) = η} = {ρ(eN)}.

Therefore, Aut(N)∩ ρ(N) = {IN}, so that every element in Hol(N) is a product
of an element of ρ(N) and an element of Aut(N) in a unique way. Moreover, since
Aut(N) normalizes ρ(N), the formula of the product (4.1) leads to conclude that
the product is, indeed, a semidirect product.

4.3 Byott’s theorem and formula

Here is Byott’s translation theorem, from [By]. Recall that to count Hopf Galois
structures on L∣K with normal closure L̃ and G = Gal(L̃∣K), G′ = Gal(L̃∣L), we seek
regular subgroups of Perm(G/G′) normalized by λG(G).

Theorem 4.3.1 (Byott). Let G′ ≤ G be finite groups, let X = G/G′ be the left cosets
of G′ in G and let N be an abstract group of order X. Then there is a bijection
between the following sets:

N = {α ∶ N ↪ Perm(X) monomorphism s.t. α(N) is regular}
G = {β ∶ G↪ Perm(N) monomorphism s.t. β(G′) = StabPerm(N)(eN)}

Under this bijection, if α,α′ ∈ N correspond to β, β′ ∈ G, respectively, then:

(i) α(N) = α′(N) iff β(G) and β′(G) are conjugate by an element of Aut(N);

(ii) α(N) is normalized by λG(G) ⊆ Perm(X) iff β(G) is contained in Hol(N).

Call a monomorphism α ∶ N ↪ Perm(X) such that α(N) is regular, a regular
embedding.

Proof. It is based on the proof given in Th 7.3, page 57 [Ch1]. Let α ∈ N , that is,
α(N) is a regular subgroup of Perm(X). Therefore, by reasoning as in Section 4.1,
α induces a bijection:

a ∶ N → X
η ↦ α(η)(e)

where e is the left coset in X = G/G′ of eG.

Observe that by definition of a:

a(eN) = α(eN)(e) = IPerm(X)(e) = e (4.3)
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Again, by reasoning as in Section 4.1, the map a in turn yields an isomorphism:

C(a) ∶ Perm(N) → Perm(X)
π ↦ a ○ π ○ a−1

Let λG ∶ G→ Perm(X), λN ∶ N → Perm(N) be the left translation maps. Then

C(a)−1 ○ λG ∶ G→ Perm(N)
is an embedding, since it is the composition of an embedding and an isomorphism.
We show that it is in G: it remains to show that

(C(a)−1 ○ λG)(G′) = StabPerm(N)(eN).

Indeed, for every σ ∈ G,

(C(a)−1 ○ λG)(σ)(eN) = eN ⇔ (C(a)−1(λG(σ)))(eN) = eN (def ○)
⇔ a−1(λG(σ)(a(eN))) = eN (def C(a))
⇔ λG(σ)(a(eN)) = a(eN) (a ○ a−1 = IX)
⇔ λG(σ)(e) = e (by (4.3))
⇔ σe = e (def λG)
⇔ σ = eGG′ (def e)
⇔ σ ∈ G′

so that C(a)−1 ○ λG ∈ G, as desired.

The bijection we seek from N to G is the following:

Φ ∶ N → G
α ↦ C(a)−1 ○ λG

Claim 1: C(a)−1 ○ α = λN , so that α = C(a) ○ λN .

Indeed, for every η, µ ∈ N ,

(C(a)−1 ○ α)(η)(µ) = (C(a)−1(α(η)))(µ) (def ○)
= (a−1 ○ α(η))(a(µ)) (def C(a))
= (a−1 ○ α(η))(α(µ)(e)) (def a)
= a−1((α(η)α(µ))(e)) (def ○)
= a−1(α(ηµ)(e)) (α group morp)
= a−1(a(ηµ)) (def a)
= ηµ (a−1 ○ a = IN)
= λN(η)(µ) (def λN)

so that C(a)−1 ○ α = λN , as desired.
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Now, we define the inverse Ψ of Φ. If β ∶ G→ Perm(N) is in G, then by definition
β(G′) = StabPerm(N)(eN). Thus β yields a bijection:

b ∶ X → N
σ ↦ β(σ)(eN)

Indeed,

- Well-defined: given σ, τ ∈X,

b(σ) = b(τ) ⇔ β(σ)(eN) = β(τ)(eN) (def b)
⇔ (β(τ)−1 ○ β(σ))(eN) = (β(τ)−1 ○ β(τ))(eN) (by (1) below)
⇔ (β(τ)−1 ○ β(σ))(eN) = eN (by (2) below)
⇔ (β(τ−1) ○ β(σ))(eN) = eN (by (3) below)
⇔ β(τ−1σ)(eN) = eN (by (4) below)
⇔ τ−1σ ∈ G′ (β ∈ G, def G)
⇔ σ ∈ τG′ (τ−1 ○ τ = eG)
⇔ σ = τ (τ = τG′)

where:

(1) β(τ) ∈ Perm(N),
(2) β(τ)−1 ○ β(τ) = IN ,

(3) β(τ)−1 = β(τ−1),
(4) β is a group morphism.

- Bijective: injectivity follows from the previous computation and since ∣X ∣ = ∣N ∣
holds by assumption, it is bijective.

Observe that by definition of b:

b(e) = β(eG)(eN) = IPerm(N)(eN) = eN (4.4)

Hence, by reasoning as in Section 4.1, the map b induces an isomorphism:

C(b) ∶ Perm(X) → Perm(N)
π ↦ b ○ π ○ b−1

Then C(b)−1 ○λN ∶ N → Perm(X) is a regular embedding, since it is the compo-
sition of a regular embedding and an isomorphism. Thus it is in N .

The bijection we seek from G to N is the following:

Ψ ∶ G → N
β ↦ C(b)−1 ○ λN

Claim 2: C(b)−1 ○ β = λG, so that β = C(b) ○ λG.
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Indeed, for every σ ∈ G, τ ∈X,

(C(b)−1 ○ β)(σ)(τ) = (C(b)−1(β(σ)))(τ) (def ○)
= (b−1 ○ β(σ))(b(τ)) (def C(b))
= (b−1 ○ β(σ))(β(τ)(eN)) (def b)
= b−1((β(σ)β(τ))(eN)) (def ○)
= b−1(β(στ)(eN)) (β group morp)
= b−1(b(στ)) (def b)
= στ (b−1 ○ b = IX)
= λG(σ)(τ) (def λG)

Claim 3: Ψ and Φ are inverse maps.

� Ψ ○Φ = IN : for a given α ∈ N , let β ∶= Φ(α) = C(a)−1 ○ λG. Then b = a−1: for
every σ ∈X,

b(σ) = β(σ)(eN) (def b)
= (C(a)−1(λG(σ)))(eN) (def β)
= (a−1 ○ λG(σ))(a(eN)) (def C(a))
= (a−1 ○ λG(σ))(e) (by (4.3))
= a−1(λG(σ)(e)) (def ○)
= a−1(σe) (def λG)
= a−1(σ) (def e)

Therefore, it follows that Ψ ○Φ = IN :

Ψ(Φ(α)) = Ψ(β) (def β)
= C(b)−1 ○ λN (def Ψ)
= C(b−1) ○ λN (C(b)−1 = C(b−1))
= C(a) ○ λN (b = a−1)
= α (by Claim 1)

� Φ ○ Ψ = IG: for a given β ∈ G, let α ∶= Ψ(β) = C(b)−1 ○ λN . Then a = b−1: for
every η ∈ N ,

a(η) = α(η)(e) (def a)
= (C(b)−1(λN(η)))(e) (def α)
= (b−1 ○ λN(η))(b(e)) (def C(b))
= (b−1 ○ λN(η))(eN) (by (4.4))
= b−1(λN(η)(eN)) (def ○)
= b−1(ηeN) (def λN)
= b−1(η) (def eN)
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Therefore, it follows that Φ ○Ψ = IG:

Φ(Ψ(β)) = Φ(α) (def α)
= C(a)−1 ○ λG (def Φ)
= C(a−1) ○ λG (C(a)−1 = C(a−1))
= C(b) ○ λG (a = b−1)
= β (by Claim 2)

Now, let us prove (i). We have to see that α(N) = α′(N) if and only if β(G)
and β′(G) are conjugate by an element of Aut(N).

Notice that by definition of N ,

α(N) = α′(N) ⇔ γ ∶= α−1 ○ α′ ∈ Aut(N ⇔ α′ = α ○ γ.

We have seen that every α ∈ N yields a β = Φ(α) = C(a)−1 ○ λG ∈ G. So if we
replace α by α′ = αγ, with γ ∈ Aut(N), we obtain:

C(aγ)−1 = C(γ)−1C(a)−1 ∶ Perm(X)→ Perm(N) (4.5)

where since γ ∈ Aut(N), then C(γ) is defined as:

C(γ) ∶ Perm(N) → Perm(N)
π ↦ γ ○ π ○ γ−1

Indeed, for every π ∈ Perm(X),
C(aγ)−1(π) = (aγ)−1 ○ π ○ (aγ) (def C(aγ))

= γ−1 ○ (a−1πa) ○ γ ((f ○ g)−1 ∶= g−1 ○ f−1)
= C(γ)−1(a−1πa) (def C(γ))
= C(γ)−1(C(a)−1(π)) (def C(a))
= (C(γ)−1C(a)−1)(π) (def ○)

Thus β and β′ are embeddings which are conjugate by an element in Aut(N):
β′ = Φ(α′) (by construction)

= Φ(αγ) (def α′)
= C(aγ)−1 ○ λG (def Φ)
= C(γ)−1 ○C(a)−1 ○ λG (by (4.5))
= C(γ)−1 ○ β (def β)

Finally, let us prove (ii). Let α(N) be normalized by λG(G) ⊆ Perm(X) and let

us see that β(G) ⊆ Hol(N), that is, β(G) normalizes λN(N) ⊆ Perm(N):

β(σ)λN(η)β(σ−1) ∈ λN(N).
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Indeed, if α(N) is normalized by λG(G), then for every σ ∈ G, η ∈ N ,

λG(σ)α(η)λG(σ−1) ∈ α(N) ⊆ Perm(X).

Mapping to Perm(N) via C(a)−1, we have:

C(a)−1(λG(σ)α(η)λG(σ−1)) ∈ C(a)−1(α(N)) ⊆ Perm(N).

Observe that for every σ ∈ G, η ∈ N ,

C(a)−1(λG(σ)α(η)λG(σ−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈C(a)−1(α(N))

=
(1)

C(a)−1(λG(σ)) C(a)−1(α(η)) C(a)−1(λG(σ−1))

=
(2)

C(a)−1(λG(σ)) λN(η) C(a)−1(λG(σ−1))
=
(3)

β(σ) λN(η) β(σ−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈C(a)−1(α(N))

where:

(1) C(a)−1 is a group morphism,

(2) by Claim 1,

(3) def β.

Hence, by the previous computation and β = Φ(α) = C(a)−1 ○ λG, we conclude
that β(G) normalizes λN(N):

β(σ)λN(η)β(σ−1) ∈ C(a)−1(α(N)) = λN(N).

Conversely, let β(G) be such that it normalizes λN(N) ⊆ Perm(N) and let us
see that α(N) is normalized by λG(G), that is:

λG(σ)α(η)λG(σ−1) ∈ α(N).

Indeed, if β(G) normalizes λN(N), then by definition, for every σ ∈ G, η ∈ N ,

β(σ)λN(η)β(σ−1) ∈ λN(N) ⊆ Perm(N).

Mapping to Perm(X) via C(b)−1, we have:

C(b)−1(β(σ)λN(η)β(σ−1)) ∈ C(b)−1(λN(N)) ⊆ Perm(X).

Observe that for every σ ∈ G, η ∈ N ,

C(b)−1(β(σ)λN(η)β(σ−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈C(b)−1(λN (N))

=
(1)

C(b)−1(β(σ)) C(b)−1(λN(η)) C(b)−1(β(σ−1))

=
(2)

C(b)−1(β(σ) α(η) C(b)−1(β(σ−1)
=
(3)

λG(σ) α(η)λG(σ−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈C(b)−1(λN (N))
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where:

(1) C(a)−1 is a group morphism,

(2) def α,

(3) by Claim 2.

Hence, by the previous computation and α = Ψ(β) = C(b)−1 ○ λN , we conclude
that α(N) is normalized by λG(G):

λG(σ)α(η)λG(σ−1) ∈ C(b)−1(λN(N)) = α(N).

As a corollary to the preceding theorem, Byott obtains the following formula
to count Hopf Galois structures.

Corollary 4.3.2. Let L∣K be a separable field extension of degree g, L̃ its Galois
closure, G = Gal(L̃∣K) and G′ = Gal(L̃∣L). Let N be an abstract group of order g.
The number a(N,L∣K) of Hopf Galois structures of type N on L∣K is given by the
following formula:

a(N,L∣K) = ∣Aut(G,G′)∣
∣Aut(N)∣ b(N,G,G′)

where Aut(G,G′) denotes the group of automorphisms of G taking G′ to G′, Aut(N)
denotes the group of automorphisms of N and b(N,G,G′) denotes the number of
subgroups G∗ of Hol(N) such that there is an isomorphism from G to G∗ taking G′

to the stabilizer of eN in G∗.

Proof. It is based on the proof given in Prop 1, page 3219 [By]. By the previous
theorem, there is a bijection between the following sets:

N0 = {α ∶ N ↪ Perm(X) s.t. α(N) regular and normalized by λG(G)}
G0 = {β ∶ G↪ Hol(N) ⊆ Perm(N) s.t. β(G′) = Stabβ(G)(eN)}

Now, if α ∈ N0, then α(N) is one of the subgroups N ′ that gives a Hopf Galois
structure counted by a(N,L∣K). In fact, all such N ′ arise this way, and α,α′ ∈ N0

give the same group N ′ if and only if α−1 ○ α′ ∈ Aut(N). Thus

∣N0∣ = ∣Aut(N)∣ a(N,L∣K).

A similar reasoning shows that ∣G0∣ = ∣Aut(G,G′)∣ b(N,G,G′). Since there is a
bijection between N0 and G0, that finishes the proof.





Chapter 5

Algorithms

In this thesis we present two algorithms I have designed written in the computa-
tional algebra system Magma that give all Hopf Galois structures on separable field
extensions of degree up to eleven and thirty-one, respectively, and two important
properties of those. The code as well as outputs and tables for each degree may be
found in our web page [C-S4].

In what follows, let L∣K, g, L̃, G and G′ be as in Section 3.2. We know there is
a monomorphism λG ∶ G→ Perm(G/G′) that identifies G with λG(G), where λG(G)
is a transitive subgroup of Perm(G/G′) ≅ Sg which is determined up to conjugacy,
that is, a transitive group of degree g. Furthermore, if we enumerate the left cosets
G/G′ starting with the one containing eG, then λG(G′) is equal to the stabilizer of
1 in G. Therefore the Hopf Galois character of L∣K depends only on G and λG by
Greither-Paregis’ theorem.

These transitive groups have been classified in [Hu] up to g = 31 and are included
in the database of Magma. We shall denote by gTk the k-th transitive group of
degree g given by Magma as TransitiveGroup(g,k). Notice that if ∣gTk∣ = g, then
gTk is a regular group. Moreover, if two regular subgroups of Sg are isomorphic,
they are conjugate.

5.1 Code structure

Both algorithms share a common code structure, which consists of two functions:

� Main function: HopfGalois(g). It computes all the information needed and
prints nothing.

1. Computation of two previous parameters;

2. Determination of Hopf Galois structures;

3. Property 1: determine if the Galois correspondence is bijective;

4. Property 2: give a partition of Hopf algebras in isomorphism classes.
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� Descriptive function: HGdescription(g). It computes nothing important
and prints everything with different levels of detail.

There are two main differences between the first and the second algorithm:

1. There is an auxiliary funtion in the second algorithm that determines several
sets of automorphisms which are not necessary in the first one.

2. Determination of Hopf Galois structures is performed via Greither-Pareigis’
theorem in the first algorithm and via Byott’s theorem in the second.

5.2 First algorithm

Input: The degree g of a separable field extension.

Step 1 Given a transitive group G of degree g and a type of regular subgroups N
of Perm(G/G′) ≅ Sg, run over the conjugacy class of N in Sg and determine
whetherN is normalized byG. In the affirmative case, check if the centralizer
of N in Sg is contained in G. If so, the Hopf Galois structure determined by
N is almost classically Galois.

Step 2 For each transitive group G of degree g and G′ = StabG(eG), determine the
number interfields(G) of subgroups of G containing G′, that is, by the
fundamental theorem of classical Galois theory, the number of intermediate
fields of the extension L∣K.

Step 3 For each pair (G,N) determined in Step 1, compute the number subGst(N)
of G-stable subgroups of N , ie, subgroups of N normalized by G. That is
to say, compute the cardinality of the image of the map FH in Theorem
2.4.7 for the Hopf Galois structure given by N . Check if this number equals
interfields(G), that is, if the Galois correspondence is bijective.

Step 4 For each pair (G,N1), (G,N2), with N1 ≅ N2 and subGst(N1) = subGst(N2),
check if N1 and N2 are G-isomorphic, ie, if the corresponding Hopf algebras
are isomorphic. We obtain the set of all isomorphisms by composing the
isomorphism from N1 to N2 given by Magma with each automorphism of
N2. We use that for a regular subgroup N of Sg, the automorphism group of
N is isomorphic to the stabilizer of 1 in the holomorph of N . We run over
this set of isomorphisms and check for each element if it is a G-isomorphism
until the answer is affirmative or the set is exhausted.

Output: All regular subgroups N of Sg giving a Hopf Galois structure, hence it
determines explicitly all of them up to degree 11. In the vector which collects such
N ’s we have added a numbering variable in order to identify each of them with an
integer number. This numeration is respected all allong the program so that, once
the N ′s have been computed in Step 1, we can easily know the properties of the
corresponding Hopf Galois structure by searching the assigned number. This greatly
simplifies the reading and interpretation of results.
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5.3 Second algorithm

The function Automorphisms

Given a pair of integers (g, k), this function returns the group Aut(G) of auto-
morphisms of the group G = gTk and the group Aut(G,G′) of automorphisms of G
sending G′ to itself. In order to obtain the latter, the function uses the permuta-
tion representation of Aut(G) to obtain a group P of permutations isomorphic to
Aut(G). It then computes the set stabims of images of G′ under Aut(G) and the
action of the generators of Aut(G) on this set. This gives the embedding act of P
into Sym(stabims) and then the preimage of the stabilizer of 1 in Sym(stabims) is
a subgroup Q of P corresponding to Aut(G,G′) by the permutation representation.

The main function

Input: The degree g of a separable field extension.

Step 0 We order each regular subgroup N of Sg so that nj(1) = j, for j ∈ {1, . . . , g},
and compute its embedding λN(N) in Sg.

Step 1 Given a transitive group G of degree g and a type of regular subgroups N
of Sg, we determine the subgroups G∗ of H ∶= Hol(N) which are isomorphic
to G and transitive and such that the stabilizer of 1 in G∗ is isomorphic to
the stabilizer G′ of 1 in G.

Step 2 For each G∗ obtained in Step 1, we look for an isomorphism from G∗ to G
sending Stab(G∗,1) to G′. Let f be the isomorphism from G∗ to G provided
by Magma. If ∣G∣ = g, then G′ is trivial and f will do. Otherwise, we compare
f(Stab(G∗,1)) to the images of G′ by all automorphisms of G. If, for some
a ∈ AutG, we have f(Stab(G∗,1)) = a(G′), then h ∶= f ○ a−1 is the wanted
isomorphism. Then β = h−1 is the embedding β as in Byott’s Theorem 4.3.1.

Step 3 We order T ∶= G/G′ so that tj(1) = j, for j ∈ {1, . . . , g}.

Step 4 For each pair (G∗, h) obtained in Step 2, we compute the whole set of iso-
morphisms from G∗ to G sending Stab(G∗,1) to G′ by composing h with
each element in Aut(G,G′). We obtain then all β’s from G to Hol(N) as
in Byott’s Theorem. For each such β we determine the corresponding α(N)
as in the proof of Byott’s Theorem. Moreover, we compute λG(G) for those
G′s for which there is such a β.

Output: All regular subgroups of Sg isomorphic to N and normalized by λG(G),
which correspond with all Hopf Galois structures on a separable field extension up
to degree 31.
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The functions regarding properties

We further determine those Hopf Galois structures for which the Galois corre-
spondence is bijective and partition the set of Hopf Galois structures of a given
type in Hopf algebra isomorphism classes with an optimized version of the first al-
gorithm. We will not describe them with many details since they have already been
explained in the previous section and they are essentially the same but with some
optimizations.

Previously we compute the embedding λG(G) in Sg induced by the action of G
by left translation on the set T of left cosets of G modulo G′ accordingly with the
ordering of T in Step 3. Taking into account [C-S1] Proposition 6, we know that
an almost classically Galois structure lies alone in its isomorphism class. Hence,
we put these apart when performing the partition in Hopf algebra isomorphism
classes. Furthermore we determine the Hopf Galois structures for which the Galois
correspondence is bijective in a more effective way.

5.4 Main computational and theoretical results

We present a compendium of the computational results of the first and second
algorithm in Tables 5.1 and 5.2, respectively. In them, we give for every degree g:

- The two previous parameters, which are: the total number of transitive groups of
degree g and the number Max of those whose order does not exceed the order of
the holomorphs of all regular subgroups of Sg (ie, the groups of order exactly g).
We can ensure that over Max there are no Hopf Galois structures since this just
happens whenever G is embedded in Hol(N) (see the proof of Corollary 4.3.2);

- The number of possible types of Hopf Galois structures;

- The total number of Hopf Galois structures and the number of almost classically
Galois ones;

- The number of Hopf Galois structures with bijective Galois correspondence and
the number of those which are not almost classically Galois;

- The number of Hopf algebra isomorphism classes in which the Hopf Galois struc-
tures are partitioned (which correspond to G-isomorphism classes of the corres-
ponding regular groups N) and the number of those for Galois extensions (ie,
when G′ = Gal(L̃∣L) is trivial);

- And finally, the execution time in seconds and the memory used in megabytes
(except for g = 16 which could not be computed at once).

We highlight the richness of the results obtained for extensions of degree 8, 16,
24 and 27.
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Table 5.1: Main results of the first algorithm

Degree Transitive Groups Types HG struct. BC G-iso Execution Memory
Total Max Total a-c Total not a-c Total Galois time (s) used (MB)

2 1 1 1 1 1 1 0 1 1 ≈ 1 ≈ 10
3 2 2 1 2 2 2 0 2 1 ≈ 1 ≈ 10
4 5 5 2 10 6 7 1 10 6 ≈ 1 ≈ 11
5 5 3 1 3 3 3 0 3 1 ≈ 1 ≈ 11
6 16 10 2 15 7 9 2 13 6 ≈ 2 ≈ 11
7 7 4 1 4 4 4 0 4 1 ≈ 1 ≈ 11
8 50 48 5 348 74 147 73 262 111 ≈ 17 ≈ 40
9 34 26 2 38 26 28 2 33 8 ≈ 10 ≈ 16
10 45 21 2 27 11 17 6 23 6 ≈ 160 ≈ 45
11 8 4 1 4 4 4 0 4 1 ≈ 90 ≈ 160



5.4.
M

ain
com

p
u
tation

al
an

d
th

eoretical
resu

lts
66

Table 5.2: Main results of the second algorithm

Degree Transitive Groups Types HG struct. BC G-iso Execution Memory
Total Max Total a-c Total not a-c Total Galois time (s) used (MB)

12 301 129 5 249 56 81 25 165 48 ≈ 18 ≈ 31
13 9 6 1 6 6 6 0 6 1 ≈ 1 ≈ 18
14 63 25 2 32 14 19 5 26 6 ≈ 2 ≈ 22
15 104 11 1 8 8 8 0 8 1 ≈ 1 ≈ 22
16 1954 1906 14 49913 2636 9331 6695 26769 6717 – –
17 10 5 1 5 5 5 0 5 1 ≈ 1 ≈ 30
18 983 528 5 881 123 253 130 525 79 ≈ 206 ≈ 113
19 8 6 1 6 6 6 0 6 1 ≈ 1 ≈ 26
20 1117 170 5 434 79 156 77 266 55 ≈ 57 ≈ 48
21 164 26 2 78 22 46 24 42 8 ≈ 5 ≈ 26
22 59 18 2 36 14 19 5 26 6 ≈ 5 ≈ 26
23 7 4 1 4 4 4 0 4 1 ≈ 1 ≈ 18
24 25000 9738 15 14908 844 2682 1838 8353 1896 ≈ 9730 ≈ 1327
25 211 90 2 106 70 74 4 82 12 ≈ 32 ≈ 175
26 96 37 2 58 22 35 13 46 6 ≈ 12 ≈ 27
27 2392 1547 5 6699 766 1100 334 2030 547 ≈ 5375 ≈ 500
28 1854 214 4 388 84 143 59 256 40 ≈ 63 ≈ 33
29 8 6 1 6 6 6 0 6 1 ≈ 1 ≈ 22
30 5712 483 4 479 99 197 98 373 36 ≈ 113 ≈ 40
31 12 8 1 8 8 8 0 8 1 ≈ 1 ≈ 22
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Finally, we summarize the main theoretical results we have obtained from the
collected data. For more details, one may read our three papers [C-S1], [C-S2] and
[C-S3].

� First algorithm: notice that all integer numbers g ∈ {2, . . . ,11}, except g = 8,
are of one of the forms p, p2 or 2p, with p prime.

– The prime case has been considered by Byott [By], Childs [Ch2] and
Pareigis [Pa].

– We have classified Hopf Galois structures in the cases 2p and p2 [C-S1].
In the case p2, we prove that a separable extension may have only one
type of Hopf Galois structures (either cyclic Cp2 or product of cyclics
Cp×Cp) and determine those of cyclic type. In the case 2p, we determine
all Hopf Galois structures.

– We also have a property for almost classical structures: they live alone
in their Hopf algebra isomorphism class.

� Second algorithm: notice that integer numbers g ∈ {12, . . . ,31} are of the
form p, 2p, p2, p3, 2p2, 4p... with p an odd prime.

– The cases p, 2p, p2 have already been studied.

– We have classified Hopf Galois structures in the case p3, and more gener-
ally the case pn in [C-S2]. We prove that if a separable field extension of
odd prime power degree has a Hopf Galois structure of cyclic type, then
it has no other of noncyclic type, and give a more precise description of
those of cyclic type.

In the case p3, there are five types: three Abelian ones (Cp3 , Cp2 × Cp,
Cp×Cp×Cp) and two non Abelian (the Heisenberg group Hp and the group
Gp defined in Section 3.2 in [C-S2]). Moreover, we give the possible sets
of Hopf Galois structure types and determine exactly the number of those
of cyclic type.

There were some previous results by Zenouz (Galois case) in [Ze] and
Kohl (radical extensions) in [Ko1].

– We have also classified those of the case 2p2, and more generally the
case 2pn in [C-S3]. For separable field extensions of degree 2pn, we prove
that the occurrence of some type of Hopf Galois structure may either
imply or exclude the occurrence of some other type. In particular, for a
separable field extensions of degree 2p2, we determine exactly the possible
sets of Hopf Galois structure types.

Now, we are working on counting Hopf Galois structures for Galois ex-
tensions of degree 2p2.

– The case 4p has been studied by Kohl (Galois case) in [Ko2].

– And there is still a lot of work to do.
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5.5 Conclusions

Thanks to this computational approach, we have been able to:

1. Obtain explicit computations: our algorithms compute explicitly all Hopf
Galois structures on a separable extension of a given degree and determine
two important properties.

2. Develop intuition: the obtained results provide a very natural way of de-
veloping intuition about this topic since we can ‘touch’ the objects we are
studying.

3. Prove new theoretical results: we can observe patterns hidden in tables
that allow us to obtain new results.

Although the second algorithm goes further in terms of computations, it is worth
pointing out the importance of the first one as a:

� Precursor: it has been very useful to have the full skeleton of the code
together with the properties and the descriptive function. It has involved a
great time and effort saving.

� Reference: it has been absolutely necessary in order to have something right
to compare the new results with.

Moreover, the first algorithm is still relevant now since it is the best one for
computing degree 8 with a very significant difference, both in terms of execution
time and memory used. This happens because there are some groups of order 8 with
many automorphisms (for instance, C2 × C2 × C2) and the first algorithm does not
take them into account (Greither-Pareigis’s theorem cares about regular subgroups)
but the second does (Byott’s theorem needs Hol(N) = ρ(N) ⋊Aut(N)).
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