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Abstract

In this paper we study the dynamical behavior of the Chebyshev-Halley methods on
the family of degree n polynomials zn + c. We prove that, despite increasing the degree,
it is still possible to draw the parameter space by using the orbit of a single critical point.
For the methods having z = ∞ as an attracting fixed point, we show how the basins of
attraction of the roots become smaller as the value of n grows. We also demonstrate that,
although the convergence order of the Chebyshev-Halley family is 3, there is a member of
order 4 for each value of n.

In the case of quadratic polynomials, we bound the set of parameters which correspond
to iterative methods with stable behaviour other than the basins of attraction of the roots.

1 Introduction

Numerical methods are the main tool used by scientists and engineers for finding solutions of
equations that can not be solved analytically. This encourages mathematicians, not only to
seek new numerical methods, but also to study and improve the methods already known.

For the case of nonlinear equations, it is usual to consider iterative methods with high
order of convergence to approximate the solutions. However, the radii of convergence which
ensure that the solution of the method is correct are small. Accordingly, to improve the
numerical methods and to expand their radii of convergence is one of the challenges to which
mathematicians are faced. An overview of the analysis of different iterative methods can be
found in [1]. In this book, besides studies dealing with the design, convergence, efficiency and
robustness of the methods, we can also find an introduction to dynamical analysis of iterative
methods.

The study of iterative methods from the point of view of dynamical systems gives a new
perspective that allows to carry out a study of the qualitative behavior of such methods,
establishing conditions of stability. It also enables us to study families of methods in terms of
parameters, analyzing which members of the family work better.

The best known iterative method, under the dynamical point of view, is Newton’s scheme
(see [6]). In previous papers the dynamics of other iterative families are investigated: the
Chebyshev-Halley family ([13], [12], [14]), the King’s class [11], the c-family [9] and the (α, c)-
family [8], which includes Chebyshev-Halley and c families. In these papers the dynamical
behaviour of the iterative methods on quadratic polynomials is studied and regions with no
convergence to the roots are found. Different authors have studied other point-to-point iterative
methods for solving nonlinear equations (see [2], [3], [4], [15], [17],... for example).
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For the case of the Chebyshev-Halley type methods, the corresponding fixed point operator
is

G (z) = z −
(

1 +
1

2

Lf (z)

1− αLf (z)

)
f (z)

f ′ (z)
(1)

where

Lf (z) =
f (z) f ′′ (z)

(f ′ (z))2

and α is a complex parameter. This family gives rise to widely known and used numerical
methods for different values of the parameter, such as the Chebyshev’s method for α = 0,
Halley’s scheme for α = 1

2
, super-Halley’s method for α = 1 and Newton’s method when α

tends to ∞.
The aim of this paper is twofold. Firstly, we continue the dynamical study of the Chebyshev-

Halley family applied on quadratic polynomials ([13]). For this case, we bound the set of
parameters corresponding to iterative methods with stable behaviour other than the basins of
attraction of the roots (Theorem 4.1). We also study the values of the parameters for which
the strange fixed points are indifferent (Propositions 5.1 and 5.2). By doing this, we locate
attracting cycles which come from bifurcations of rationally indifferent fixed points as well as
Siegel disks.

Secondly, we study the Chebyshev-Halley methods using the family of degree n polynomials
zn + c. The studies of numerical methods published to the date only consider low degree
polynomials. We prove that, despite increasing the degree, it is still possible to determine the
existence of attractors by using the orbit of a single critical point. In fact, in Section 6 we
found n free critical points, that is, critical points that do not match the roots. We prove that
they are symmetric with respect to the nth-roots of the unity and so are their orbits. Hence,
it is enough to analyze the asymptotic behaviour of one of the n critical orbits to comprehend
the asymptotic behaviour for all of them (Lemma 6.2 ).

We want to remark that the parametrizations used in both studies are different. For the
study of the Chebyshev-Halley family applied on quadratic polynomials, infinity is associated
with one of the roots of the polynomial, so, it is always a superattracting fixed point. For
the general study of the Chebyshev-Halley family applied on n-degree polynomials, although
infinity is a fixed point, it is not always attracting (Proposition 6.1). Moreover, we observe that
when infinity is attracting, the basins of attraction of the roots become smaller as the value of
n grows.

Taking into account these results we draw the parameter spaces of this family of maps. We
show the parameter spaces for n = 2, 3, 4, 5, 10, 100. In all figures, we can see the black disk of
parameters described in Proposition 6.1 for which the strange fixed point z =∞ is attracting.
We can also observe that the bound on the set of parameters with bad numerical behaviour
which we obtain in the case of the quadratic polynomials z2 + c also applies for the zn + c
studied numerically.

We show the dynamical planes for n = 2, 3, 5 and 10 for some values of the parameter α of
the Chebyshev-Halley family. When the value of the parameter is α = n

n−1 , and hence z =∞ is
superattracting (Proposition 6.1), we observe that the basins of attraction of the roots become
smaller when n increases .

Finally, although the convergence order of the Chebyshev-Halley family is 3, we demonstrate
that there is a member of order 4 for each value of n. (Proposition 6.3).

Let us recall some definitions used in complex dynamics. Given a rational map R : Ĉ→ Ĉ,
where Ĉ denotes the Riemann sphere, the dynamical system given by its iterates is considered.
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The orbit O(w) of a point w ∈ Ĉ is given by the subsequent iterates of w under R(z), i.e.

O(w) = {w, R (w) , R2 (w) , . . . , Rn(w), . . .}.

A point z0 ∈ Ĉ is called fixed if R (z0) = z0. A point z0 is called periodic of period p > 1
if Rp (z0) = z0 and Rk (z0) 6= z0, k < p. A point z0 is pre-periodic if it is not periodic but it is
eventually mapped under iteration of R(z) to a periodic one.

Fixed points can be classified depending on their multiplier λ = R′(z0). A fixed point z0 is
called

• attractor if |λ| < 1 and superattractor if λ = 0;

• repulsor if |λ| > 1;

• indifferent if |λ| = 1.

An indifferent fixed point z0 has multiplier λ = R′(z0) = e2πiθ with θ ∈ [0, 1). Depending
on this θ, an indifferent fixed point is called

• rationally indifferent (or parabolic) if θ = p/q, where p, q ∈ N are coprime numbers;

• irrationally indifferent if θ ∈ R \Q.

The same classification can be used for periodic points of any given period p since they are
fixed points of the map Rp(z). The multiplier λ of a fixed point z0 determines the possible
dynamics which might take place in a small neighbourhood of it (see [18]). Indeed, if z0 is an
attracting (or superattracting) fixed point, then there is an open neighbourhood U of z0 such
that all points in U accumulate under iteration of R(z) in z0, i.e. if w ∈ U then limn→∞R

n(w) =
z0. Similarly, repelling fixed points repel the orbits of the points in a neighbourhood of them
(they are attracting points of R−1(z)).

The dynamics in a neighbourhood of indifferent points is more complicated than the one
around attracting or repelling. It depends strongly on whether the point is rationally or irra-
tionally indifferent. It follows from Leau-Fatou Flower theorem (see [18, Thm. 10.7]) that if a
point z0 is rationally indifferent then z0 lies in the boundary of (at least) q parabolic basins,
open connected domains whose points tend under iteration to z0. Moreover, these parabolic
basins are mapped among themselves with period q (see Figure 2 and Figure 3). On the other
hand, if z0 is an irrational fixed point then there might be an open neighbourhood U of z0 where
the map Oα(z) is conjugate to the rigid rotation Rθ(z) = e2πiθz. In that case, the maximal
such domain U is called Siegel disk (see Figure 4 and Figure 5).

The basin of attraction A(z0) of an attracting point z0 consists of the set of points z ∈ Ĉ
that accumulate on z0 under iteration of R(z), i.e.

A (z0) = {z ∈ Ĉ : Rn (z)→z0 when n→∞}.

Similarly, the basin of attraction A(z0) of a rationally indifferent point z0 consists of the set

of points z ∈ Ĉ that accumulate on z0 under iteration of R(z) but do not fall under iteration
on z0, i.e.

A (z0) = {z ∈ Ĉ : Rn (z) 6= z0 ∀n ∈ N, Rn (z)→z0 when n→∞}.

3



The dynamics of R(z) provides a totally invariant partition of the Riemann sphere. The

Fatou set, F (R), of a rational map R(z) consists of the points z ∈ Ĉ such that the family
of iterates of R(z), {R(z), R2(z), . . . , Rn(z), . . .}, is normal in some open neighbourhood U of
z. Its complement, the Julia set J (R), consists of the points where the dynamics of R(z) is
chaotic. The Fatou set is open and the Julia set is closed. The Julia set either has empty interior
or coincides with Ĉ. The connected components of the Fatou set are called Fatou components
and are mapped among themselves under iteration. The celebrated result of D. Sullivan [20]
states that all Fatou components of a rational map are either periodic or preperiodic. The
Classification Theorem (see e.g. [18]) states that all periodic Fatou components are either
basins of attraction of attracting or parabolic cycles, or simply connected rotation domains
(Siegel disks) or doubly connected rotation domains (Herman rings).

The critical points of a rational map R(z) are defined as the z ∈ Ĉ where R(z) fails to be

injective in any neighborhoud of z or, equivalently, the z ∈ Ĉ such that R′(z) = 0 (see [5], for
example). It is known that all periodic Fatou components are related to critical points (c.f.
[18]). More specifically, the basins of attraction of attracting and rationally indifferent points
contain, at least, a critical point while the orbit of, at least, a critical point accumulates on
each connected component of the boundaries of Siegel disks and Herman rings.

The Fatou set for Newton’s method on quadratic polynomials consists of the two basins of
attraction of the superattracting fixed points, corresponding to the roots, while the Julia set
consists of a straight line which separates these basins of attraction. However, as it can be
seen in [13], the Julia set for Chebyshev-Halley’s method applied on quadratic polynomials is
more complicated than for Newton’s method. A remarkable set, called Cat set, appears in the
parameter space associated to the family. Previous results on this family are given in Section 2.

The rest of the paper is organized as follows. In Section 3 we analyze the critical points
and name them depending on their moduli in order to avoid problems with the choice of the
determination of the square root. We also show that the orbits of the critical points are not
independent. Afterwards, we use these critical points to plot the parameter space of the family.

In Section 4 we prove that the Cat set is bounded. This property guarantees that, if the
value of the parameter is big enough, then the behaviour of the associated numerical method is
suitable, that is, the orbit of almost any initial condition converges to one of the roots. Although
a similar result can be seen in [10], they provide no estimation of how large the bound is, which
is a drawback when analysing the validity of a numerical experiment. In Theorem 4.1 we prove
that the numerical methods coming from this family are suitable for |α| > 8.57.

In Section 5 we study the boundary of the Cat set. We show how rationally indifferent fixed
points and Siegel disks appear for parameters in the boundary of two given components.

In Section 6 we provide numerical studies of the behaviour of the Chebyshev-Halley methods
on the family of degree n polynomials zn + c. First we analyse the stability of the fixed point
z = ∞. We continue justifying that it is enough to analyse the orbit of one critical point to
determine the existence of any stable behaviour other than the basins of attractions of the roots.
Afterwards, we show that, fixed n ≥ 2, there exists a unique parameter for which the method
has order of convergence 4. Finally, we provide numerical examples of parameter spaces and
dynamical planes for different values of the parameters.
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2 Previous results on Chebyshev-Halley family

The study of the dynamics of the operator (1) when it is applied on the quadratic polynomials
p (z) = z2 + c, c ∈ C, began in [13]. For these polynomials, the operator becomes the one-
parametric rational function

Oα (z) = z3
z − 2 (α− 1)

1− 2 (α− 1) z
(2)

after applying the conjugacy map h (z) =
z − i

√
c

z + i
√
c
.

The fixed points of this operator are z = 0, z = ∞, z = 1 and s1,2 = (−3 + 2α ±√
5− 12α + 4α2)/2. The points z = 0 and z = ∞ correspond to the roots of the polynomial

and are superattractors. The stability of the other fixed points (called strange fixed points) is
established in the following results.

Proposition 2.1 ([13]). The fixed point z = 1 satisfies the following statements:

1. If
∣∣α− 13

6

∣∣ < 1
3
, then z = 1 is an attractor and, in particular, it is a superattractor for

α = 2.

2. If
∣∣α− 13

6

∣∣ = 1
3
, then z = 1 is an indifferent point.

3. If
∣∣α− 13

6

∣∣ > 1
3
, then z = 1 is a repulsive fixed point.

Proposition 2.2 ([13]). The fixed points z = si, i = 1, 2, satisfy the following statements:

i) If |α− 3| < 1
2
, then s1 and s2 are attracting fixed points. In particular, for α = 3, s1 and

s2 are superattractors.

ii) If |α− 3| = 1
2
, then s1 and s2 are indifferent points. In particular, for α = 5

2
, s1 = s2 = 1.

iii) If |α− 3| > 1
2
, then s1 and s2 are repulsive fixed points.

On the other hand, the derivative of this operator,

O′α (z) = 2z2
3 (1− α) + 2z (3− 4α + 2α2) + 3z2 (1− α)

(1− 2 (α− 1) z)2
, (3)

allows us to calculate the critical points of Oα(z). The equation O′α (z) = 0 provides z = 0,
z =∞ and

z =
3− 4α + 2α2 ±

√
−6α + 19α2 − 16α3 + 4α4

3 (α− 1)
, (4)

which are denoted by c+ and c−, respectively. The orbits of the free critical points control
the existence of Fatou components other than the basins of attraction of z = 0 and z = ∞
(c.f. [18]).

The study of the parameter space enables us to analyse the dynamics of the rational function
associated to an iterative method. Each point of the parameter space is associated to a complex
value of α, i.e. to a member of the family. Moreover, every value of α belonging to the same
connected component of the parameter space gives rise to subsets of schemes of family with
similar dynamical behaviour.
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3 Critical points and the parameter space

In this section we describe the positions of the critical points as well as the dynamical relation
that their orbits posses. Critical points are crucial to analyze the parameter space since every
periodic connected component of the Fatou set has at least a critical point related to it (c.f.
[18]). In particular, all basins of attraction contain at least a critical point whose orbit converges
to the attracting (or rationally indifferent) periodic orbit. The critical points of the operator
Oα(z), i.e. the zeros of O′α(z), are given in Equation (4) and denoted by c+ and c−,

c± =
3− 4α + 2α2 ±

√
−6α + 19α2 − 16α3 + 4α4

3 (α− 1)
.

We want to emphasize that, since we are working with complex numbers, we need to choose
a branch of the square root. We have two possible solutions for the square root given by a+ bi
and −a− bi, where a, b ∈ R. As usual, if a 6= 0 we choose the value of the square root so that
the real part is positive. If a = 0 we choose the value so that the imaginary part is positive.
The value of the square root changes when −6α+ 19α2− 16α3 + 4α4 is a real negative number.
If we write α = x+ iy, it can be shown that this change on the determination takes place along
the hyperbola (x− 1)2 − y2 = 5

8
.

The changes on the determination of the critical points are an inconvenient when trying to
study the dynamics of these maps because of the unboundedness of the hyperbolas. To avoid
this problem we can use the property that c+ = 1/c− and choose the one with greater modulus.
On the other hand, it can be shown that |c+| = |c−| = 1 on the circle (x − 1)2 + y2 = 1

2
and

the segments [0, 1/2], [3/2, 2]. Hence, it makes sense to rename the critical point as follows. We
denote by c2 the critical point with modulus greater or equal than 1 and by c1 the other critical
point, i.e., c2 = c+ if |c+| ≥ |c−| and c2 = c− otherwise. This definition of the critical points
will be necessary for studying the boundedness of parameters with bad dynamical behaviour
in the next section.

As the following lemma shows, the dynamics of both critical points are not independent,
being that the map 1/z conjugates Oα(z) with itself.

Lemma 3.1. Let I(z) = 1/z. Then, fixed any α ∈ C and z ∈ Ĉ, z 6= 0, we have that

Oα ◦ I(z) = I ◦Oα(z).

Proof.

Oα ◦ I(z) =

(
1

z

)3
1

z
− 2 (α− 1)

1− 2 (α− 1)
1

z

· z
z

=

(
1

z

)3
1− 2 (α− 1) z

z − 2 (α− 1)
=

1

z3 z−2(α−1)
1−2(α−1)z

= I ◦Oα(z).

The importance of this lemma comes from the fact that it ties the dynamics of all pairs of
points v and w such that v = 1/w. Indeed, it follows from the lemma that Oα(v) = Oα(I(w)) =
I(Oα(w)) = 1/Oα(w). Iterating the argument we have that On

α(v) = 1/On
α(w), for all n ∈ N.

In particular, we can apply this property to the critical points since c2 = 1/c1 (c+ = 1/c−).
We can conclude that if one critical orbit converges to z = 0 then the other one converges to
z =∞. This implies that it is enough to analyze the asymptotic behaviour of one of the critical
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orbits, i.e. the orbits of the critical points, to study the existence of any attractor other than
the basins of attraction of the roots.

Once we have fixed the notation for the critical points and established the symmetry given
by 1/z we can analyse the parameter plane. In Figure 1 we plot a representation of it for
Re(α) ∈ (−0.4, 4.6) and Im(α) ∈ (−2, 2). To do so, we use a C program. We create a grid of
1500× 1200 points and associate a parameter to each point of the grid. We iterate the critical
point c+ up to 150 times. If after fewer than 150 iterations the point w is close enough to z = 0
or z = ∞ (|w| < 10−4 or |w| > 104) then we conclude that the critical orbit converges to one
of the attractors which come from the roots of the polynomial and plot the parameter using a
scaling from pallid blue to green to yellow and to red depending on the number of iterates taken
before escaping. In this way we may observe level curves in the red region that delimit the sets
of parameters which fall into the neighbourhoods of z = 0 and z = ∞ given by z such that
|z| < 10−4 or |z| > 104, respectively, in m iterates. If after 150 iterates the orbit has not escaped
to z = 0 or z = ∞ then we plot the parameter in black. Black parameters are those ones for
which we may have attractors that do not correspond to the roots and other dynamics which are
not good for the convergence of the numerical method. We want to point out that if instead of
10−4 and 104 we had used other tolerances tolε and tol∞ such that tolε 6= 1/tol∞ then we could
observe the hyperbola where the definition of the square root changes in the representation of
the parameter space. Indeed, we would observe this hyperbola as a discontinuity in the level
curves which tell us how fast the critical point converges to z = 0 or z =∞ given a parameter
α. Since we take symmetric tolerances, these discontinuities can not be observed due to the
symmetry in the dynamical plane explained in Lemma 3.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1: Parameter space of the family Oα(z).

In Figure 1 we observe the boundedness locus in the parameter space, called the Cat set. It
corresponds to the set of parameters α such that the critical orbits do not converge to z = 0
or z = ∞. The Cat set contains two big disks corresponding to the α values for which the
fixed points z = 1 (the head,

∣∣α− 13
6

∣∣ < 1
3
) and s1 and s2 (the body, |α− 3| < 1

2
) become
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attracting. In that case, the critical points belong to the basins of attraction of the strange
fixed points. The intersection point of the boundaries of the head and the body of the Cat set
corresponds to α = 5

2
. The boundary of the Cat set is exactly the set of parameters for which

the dynamics changes abruptly under small changes of α, i.e. it is the bifurcation locus of the
family of Chebyshev-Halley acting on the polynomials z2 + c (see [13]).

4 The Cat set is bounded

The goal of this section is to give an explicit bound for the Cat set. Recall that it corresponds
to the parameters α for which the free critical points c1 and c2 do not converge under iteration
to the superattracting fixed points z = 0 and z = ∞, which correspond to the zeros of the
quadratic polynomial. Hence, it consists of the parameters α for which there might be stable
behaviour other than the basins of attraction of the roots and there might be an open set of
initial conditions where the numerical algorithm fails.

The main result of the section is the following theorem. It tells us that the Cat set is
bounded and provides a criterion which guarantees the stability of the numerical algorithm.

Theorem 4.1. If |α| > 8.57 then the critical point c2 belongs to A(∞). Consequently, if
|α| > 8.57 then α does not belong to the Cat set.

It follows from the theorem that if |α| > 8.57 then α does not belong to the Cat set.
However, we want to remark that numerical experiments show that this bound is not sharp
(c.f. Figure 1). On the other hand, these numerical experiments rely on the bound since it tells
us how far we need to look for to find all bad dynamical behaviour.

Along this section it will be convenient to work with the parameter a = 2(α−1) instead of α
in order to simplify calculus. The proof of Theorem 4.1 will follow directly from Proposition 4.6,
where we prove the result for the parameter a. With this change of parameters the maps Oα(z)
(Equation (2)) can be written as

Oa(z) = z3
z − a
1− az

, (5)

and the new formula for the critical points is

c± := c±(a) :=
1

3a

(
2 + a2 ±

√
(a2 − 4)(a2 − 1)

)
. (6)

Recall from Section 3 that we denote c2 = c+ and c1 = c− if |c+| ≥ |c−|. Otherwise we
denote c2 = c− and c1 = c+.

We want to point out that the fact that the Cat set is bounded had already been proven in
[10]. In the preliminaries they study the family Ga,b(z) = bz3(z − a)/1 − az), which coincides
with the family Oa(z) for b = 1. It follows from their work that, fixed b = 1, there exists a
constant M such that if |a| > M then c2 belongs in A(∞). However, they provide no estimation
of how large this constant M may be. We provide this estimation in Proposition 4.6. Before
proving it we introduce some auxiliary results.

Lemma 4.2. For any two complex numbers u and v such that |v| 6= 0, then either |u+ v| > |u|
or |u− v| > |u|.
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Proof. Let u = x1 + y1i and v = x2 + y2i . If |u+ v| ≤ |u| then, by developing both moduli,
|v|2 ≤ −2 (x1x2 + y1y2). This inequality allows us to write 2 |v|2 + |u|2 ≤ |u− v|2 . Then,
|u|2 < |u− v|2 and we obtain that |u− v| > |u|.

Next result follows directly from the previous lemma since c2 is taken to be the critical point
with greater modulus.

Corollary 4.3. The critical point c2 satisfies |c2| > |a2 + 2|/3|a|.

The following equalities are used in the proof of Proposition 4.6.

Lemma 4.4. The following statements are satisfied:

1. c22 =
2 (a2 + 2) c2

3a
− 1.

2.
c2 − a
1− ac2

= 3c1 −
4

a
.

Proof. The first statement is easily proved:

c2± =

(
a2 + 2±

√
(a2 − 1) (a2 − 4)

)2
9a2

=

=
2 (a2 + 2)

(
a2 + 2±

√
(a2 − 1) (a2 − 4)

)
9a2

− 1 =
2 (a2 + 2) c±

3a
− 1.

To prove the second statement we have:

c+ − a
1− ac+

=

a2 + 2 +
√

(a2 − 1) (a2 − 4)

3a
− a

1− a
a2 + 2 +

√
(a2 − 1) (a2 − 4)

3a

=

=
a2 + 2 +

√
(a2 − 1) (a2 − 4)− 3a2

3a− a
(
a2 + 2 +

√
(a2 − 1) (a2 − 4)

) =
2 (1− a2) +

√
(a2 − 1) (a2 − 4)

a
(

1− a2 −
√

(a2 − 1) (a2 − 4)
) =

=

(
2 (1− a2) +

√
(a2 − 1) (a2 − 4)

)(
1− a2 +

√
(a2 − 1) (a2 − 4)

)
a
(
(1− a2)2 − (a2 − 1) (a2 − 4)

) =

=
2 (1− a2)2 + 3 (1− a2)

√
(a2 − 1) (a2 − 4) + (a2 − 1) (a2 − 4)

3a (a2 − 1)
=

=
3 (a2 − 1) (a2 − 2)− 3 (a2 − 1)

√
(a2 − 1) (a2 − 4)

3a (a2 − 1)
=

=
a2 − 2−

√
(a2 − 1) (a2 − 4)

a
= 3c− −

4

a
.

Similarly,
c− − a
1− ac−

= 3c+ −
4

a
.
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Next proposition is the main result used in the proof of Proposition 4.6 (and Theorem 4.1).
It gives us a lower bound depending on |a| which guarantees that a point z belongs to A(∞).
We want to point out that by using Lemma 3.1 we can also obtain a bound which guarantees
that a point z ∈ A(0). Indeed, it follows from this lemma that if a point z ∈ A(∞) then
1/z ∈ A(0).

Proposition 4.5. If |z| > λ (|a|+ 1), where λ > 1, then z ∈ A(∞).

Proof. As |z| > λ (|a|+ 1) and λ > 1 we have

|z − a| ≥ ||z| − |a|| = |z| − |a| > λ(|a|+ 1)− |a| > λ(|a|+ 1)− λ|a| = λ

and
|1− az| < 1 + |az| < |z|+ |a||z| = |z|(1 + |a|) < |z|2.

Then,

|Oa (z)| = |z|3
∣∣∣∣ z − a1− az

∣∣∣∣ > |z|3 λ

|z|2
= λ|z|.

Now assume that |z| > λ(|a| + 1). Then, |Oa(z)| > λ|z| and |On
a (z)| > λn|z|, where λ > 1

and n ∈ N. We can conclude that if |Oa(z)| > λ(|a| + 1) then On
a (z) → ∞ as n → ∞ and

z ∈ A(∞).

From these results we calculate a bound that assures that c2 belongs to A(∞).

Proposition 4.6. For |a| > 15.133 the critical point c2 is in the basin of attraction of ∞.

Proof. It follows from Lemma 4.5 that, if |Oa(c2)| > λ(|a|+1) for some λ > 1, then c2 ∈ A(∞).
Notice that it suffices to prove |Oa(c2)| > |a|+ 1 in order to apply this lemma. In the following,
we show that if |a| > 15.133 then |Oa(c2)| > |a|+ 1.

We first provide an alternative expression for |Oa (c2)| using the equalities introduced in
Lemma 4.4.

|Oa (c2)| = |c2|3
∣∣∣∣ c2 − a1− ac2

∣∣∣∣ = |c2|3
∣∣∣∣3c1 − 4

a

∣∣∣∣ = |c2|
∣∣∣∣3c2 − 4c22

a

∣∣∣∣ =

= |c2|
∣∣∣∣3c2 − 4

a

(
2 (a2 + 2) c2

3a
− 1

)∣∣∣∣ =
1

3 |a|2
|c2|
∣∣c2 (a2 − 16

)
+ 12a

∣∣ =

=
1

3|a|2
∣∣c22 (a2 − 16

)
+ 12ac2

∣∣ =
1

3 |a|2

∣∣∣∣(2 (a2 + 2) c2
3a

− 1

)(
a2 − 16

)
+ 12ac2

∣∣∣∣ =

=
1

9

|2c2a4 − 3a3 + 8c2a
2 + 48a− 64c2|

|a|3
=

1

9

|2 (a4 + 4a2 − 32) c2 − 3a (a2 − 16)|
|a|3

.

The modulus of the numerator verifies∣∣2 (a4 + 4a2 − 32
)
c2 − 3a

(
a2 − 16

)∣∣ > ∣∣2 |a4 + 4a2 − 32| |c2| − 3 |a| |a2 − 16|
∣∣ .

Moreover, we have the equality∣∣2 |a4 + 4a2 − 32| |c2| − 3 |a| |a2 − 16|
∣∣ = 2

∣∣a4 + 4a2 − 32
∣∣ |c2| − 3 |a|

∣∣a2 − 16
∣∣

if c2 satisfies

10



|c2| >
3 |a| |a2 − 16|

2 |a4 + 4a2 − 32|
. (7)

To obtain the parameters for which the previous holds we use the intermediate inequality

|c2| >
3 |a|

(
|a|2 + 16

)
2
(
|a|4 − 4 |a|2 − 32

) > 3 |a| |a2 − 16|
2 |a4 + 4a2 − 32|

. (8)

By definition of c2 we have |c2| ≥ 1. Moreover, the inequality

1 >
3 |a|

(
|a|2 + 16

)
2
(
|a|4 − 4 |a|2 − 32

)
is satisfied for |a| > 4.23. Therefore, then first inequality in (8) holds for |a| > 4.23.

Similarly, to prove the second inequality in (8), we observe that |a|4 > 4|a|2 + 32 is satisfied
for |a| > 2

√
2. M oreover, 4|a|2 + 32 > |4a2 − 32| and then

|a4 + 4a2 − 32| > |a|4 − |4a2 − 32| > |a|4 − 4|a|2 − 32. (9)

We conclude that the inequality (7) is satisfied for |a| > 4.23. Up to here we have proven
that, for |a| > 4.23, we have the inequality

|Oa(c2)| >
2 |a4 + 4a2 − 32| |c2| − 3 |a| |a2 − 16|

9|a|3
.

As we want to show that |Oa(c2)| > |a|+ 1 we have to prove the inequality

2
∣∣a4 + 4a2 − 32

∣∣ |c2| − 3 |a|
∣∣a2 − 16

∣∣ > 9
∣∣a3∣∣ (|a|+ 1),

or equivalently

|c2| >
9 |a|3 (|a|+ 1) + 3 |a| |a2 − 16|

2 |a4 + 4a2 − 32|
. (10)

To simplify computations we divide the previous inequality into the following

|c2| > 5, (11)

9 |a|3 (|a|+ 1) + 3 |a| |a2 − 16|
2 |a4 + 4a2 − 32|

< 5, (12)

and determine in which range of parameters they are both satisfied. We begin with Equa-
tion (12). We have

9 |a|3 (|a|+ 1) + 3 |a|
∣∣a2 − 16

∣∣ < 9 |a|4 + 12 |a|3 + 48 |a| <

< 10
(
|a|4 − 4 |a|2 − 32

)
< 10

∣∣a4 + 4a2 − 32
∣∣ ,

where the third inequality corresponds to Equation(9) and is verified for |a| > 2
√

2 and the
second inequality

9 |a|4 + 12 |a|3 + 48 |a| < 10
(
|a|4 − 4 |a|2 − 32

)
is verified if

|a|4 − 12 |a|3 − 40 |a|2 − 48 |a| − 320 > 0,

11



which holds for |a| > 14.98.
For Equation (11), it follows from Corollary 4.3 that

|c2| >
|a2 + 2|

3 |a|
and we have |a2 + 2| > |a2| − 2 > 15 |a| if |a| > 15.133. Hence, |c2| > 5 if |a| > 15.133. Then,
the proposition is satisfied for |a| > 15.133.

From this result, Theorem 4.1 is proved using that α = a/2 + 1. Therefore, we can assure
that, for |α| > 8.57, the Fatou set of the operator (2) is the union of the basins of attraction of
0 and ∞, that is, almost every initial condition yields to one of the roots of the polynomial.

5 The boundaries of the head and the body of the Cat

In this section we analyse the dynamics of the map Oα(z) on the boundaries given in Proposi-
tion 2.1 and Proposition 2.2, respectively, i.e. for values of parameters α such that

∣∣α− 13
6

∣∣ = 1
3

and |α− 3| = 1
2
. For these parameters we have indifferent fixed points, i.e. points z0 ∈ Ĉ such

that Oα(z0) = z0 and |O′α(z0)| = 1.
The following proposition tells us that the point z = 1 takes all multipliers in S1 for α in

the circle of parameters of center 13/6 and radius 1/3.

Proposition 5.1. The fixed point z = 1 has multiplier e2πiρ if and only if α = 13
6

+ 1−2e2πiρ
3(e2πiρ−2) .

Proof. From O′α(z) we know that z = 1 is an indifferent fixed point for all values of α belonging
to the boundary of the head, αθ = 13

6
+ 1

3
eiθ, θ ∈ [0, 2π):

O′αθ (1) =
2eiθ + 1

2 + eiθ
and

∣∣O′αθ (1)
∣∣ = 1.

The multiplierO′αθ (1) restricted to the boundary of the head takes all values in the unit circle
exactly once. Indeed, if we parametrize the unit circle by e2πiρ with ρ ∈ [0, 1), the fixed point
z = 1 has multiplier e2πiρ when Oαθ(1) = e2πiρ, that implies α = 13/6+(1−2e2πiρ)/(3(e2πiρ−2)),
where (1− 2e2πiρ)/(e2πiρ − 2) = eiθ ∈ S1.

Analogously, z = s1, s2 are indifferent fixed points for all values of α belonging to the
boundary of the body.

Proposition 5.2. The fixed points z = s1, s2 have multiplier e2πiρ if and only α = 3+eπi(2ρ+1)/2.

Proof. The fixed points s1 and s2 are indifferent on the boundary of the body, that is for
αθ = 3 + 1

2
eiθ, θ ∈ [0, 2π):

O′αθ (s1) = O′αθ (s2) = −eiθ and
∣∣O′αθ (s1)

∣∣ =
∣∣O′αθ (s2)

∣∣ = 1.

The multiplier O′αθ (s1,2) restricted to the boundary of the head takes all values in the unit circle
exactly once. The points s1 and s2 have multiplier e2πiρ, with ρ ∈ [0, 1), when O′αθ (s1,2) = e2πiρ.

It implies α = 3 + eπi(2ρ+1)/2.
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The dynamics of the operators for parameters in these two circles can be very different
depending on whether the indifferent fixed points are rational or irrational. We will first
describe the rational case. It follows from the discussion at the beginning of the section that,
given any rational number p/q ∈ [0, 1) with p, q ∈ N coprime, there exists a unique parameter α
in the boundary of the head and a unique parameter α in the boundary of the body of the cat set
for which the corresponding fixed points have multiplier e2πip/q. It follows from the Leau-Fatou
flower theorem (see [18]) that the corresponding rationally indifferent fixed point have q-cycles
of parabolic basins of points which are attracted under iteration to the fixed point. It is also
known that each of these cycles of parabolic components contains at least one critical point. In
Figure 2 we plot the dynamical plane of the parameter α = 13/6 + (1− 2e2πi/3)/(3(e2πi/3 − 2)
on the boundary of the head. For this parameter, the fixed point z = 1 is rationally indifferent
with multiplier e2πi1/3. We also plot the orbits of the critical points c2 (white) and c1 (red).
They belong to two different cycles of parabolic basins of period 3. However, the convergence
to the fixed point is very slow and numerically it is very difficult to distinguish the different
parabolic basins. In Figure 3 we plot the dynamical plane for α = 3 + eπi(2/3+1)/2. In this
case, the fixed points s1 and s2 (plotted as blue circles) have multiplier e2πi1/3. Each of the
rationally indifferent fixed points has a unique cycle of parabolic basins of period 3. We also
plot the orbits of the critical points c2 (white) and c1 (red) and observe how the convergence to
the fixed point is very slow. The figures are done using a C program similar to the one used for
the parameter space. In this case we create a grid of points in the dynamical plane and iterate
them. If the orbit of a point converges to z = 0 (|w| < 10−4) in fewer than 150 iterates we plot
the point in black. If it converges to infinity (|w| > 104) in fewer than 150 iterates we use the
scaling from pallid blue to pallid green to pallid yellow and to red which was already used in
the parameter space. Otherwise we assume that the orbit converges to a parabolic point and
use the corresponding colours.

Given any irrational number ρ ∈ [0, 1) ∩ (R \Q), there exists a unique parameter in the
boundary of the head and a unique parameter in the boundary of the body for which the
corresponding fixed points have multiplier e2πiρ. These fixed points may be the center of Siegel
disks. C. L. Siegel [19] proved that if the irrational number ρ is diophantine then any irrational
fixed point with multiplier e2πiρ is the center of a Siegel disk (this condition was improved later
by A. D. Bryuno [7] for a bigger set of irrational numbers). In Figure 4 and Figure 5 we show
the Siegel disks obtained when picking parameters in the boundary of the head and the body
of the Cat set for which the corresponding fixed points have multiplier e2πiρ with ρ equal to the
golden number (1 +

√
5)/2, which is diophantine. The pictures are done using a modification

of the C program used for the parabolic case. We draw the boundaries of the Siegel disks by
plotting 4000 points of the orbit of the critical points (it is known that the orbit of at least a
critical point accumulates on the boundary of a Siegel disk, c.f. [18]). We also plot 4000 points
of the orbits of some points inside the Siegel disks to show how Siegel disks are foliated with
invariant curves.

We finish the section with some comments about the decorations of the head and the body
of the Cat set. They are surrounded with ‘bulbs’ in a similar way than the main Cardioid of the
Mandelbrot set is. These bulbs contain parameters which yield to the appearance of attracting
cycles. In the paper [12], the bulbs involving attracting cycles of period 2 are obtained. The
parameters where the bulbs are joined with the head and the body of the Cat set are bifurcation
points. They correspond to the parameters with rationally indifferent fixed points described in
Proposition 5.1 and Proposition 5.2. If the joining parameter is such that there is a rationally
indifferent fixed point of multiplier e2πip/q with p, q ∈ N coprime, then the corresponding bulb
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Figure 2: Dynamical plane of Oα(z) for α = 13/6 + (1 − 2e2πi/3)/(3(e2πi/3 − 2). For this parameter
the fixed point z = 1 has multiplier e2πi/3. The figures have 900× 900 points.
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Figure 3: Dynamical plane of Oα(z) for α = 3 + eπi(2/3+1)/2. For this parameter the strange fixed
points have multiplier −eπi(2/3+1) = e2πi/3. The upper figure has 1800 × 900 points. The bottom
figures have 900× 900 points.
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Figure 4: Dynamical plane of Oα(z) for α = 13/6 + (1 − 2eπi(1+
√
5))/(3(eπi(1+

√
5) − 2). The fixed

point z = 1 has multiplier e2πiθ, where θ = (1 +
√

5)/2. The figures have 900× 900 points.
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Figure 5: Dynamical plane of Oα(z) for α = 3 + eπi
√
5/2. The strange fixed points have multiplier

−eπi
√
5 = e2πiθ, where θ = (1 +

√
5)/2. The upper figure has 1800 × 900 points. The bottom figures

have 900× 900 points.
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is an open set of parameters for which there is an attracting cycle of period q (see Figure 6).
Moreover, the value p can be used to describe the rotation within the points of the cycle.

3.2 3.25 3.3 3.35 3.4

−0.6

−0.55

−0.5

−0.45

−0.4

1 2 3 4 5

−2

−1

0

1

Figure 6: The left figure corresponds to the bulb which which shares the boundary parameter
α = 3 + eπi(2/3+1)/2 with the body of the Cat set. For this parameter the map Oα(z) has a
parabolic point of multiplier e2πi1/3 (see Figure 3). The right figure shows a period 3 attracting
cycle for a parameter within this bulb (α = 3.28− 0.48i). Both figures have 900× 900 points.

6 Dynamical study on degree n polynomials

The goal of this section is to provide numerical studies of how the family of Chebyshev-Halley
type methods acts on the family of degree n polynomials zn + c. We will justify that, as it is
the case with the operator studied above, it is enough to analyse the orbit of one critical point
to determine if there is any stable behaviour other than the basins of attraction of the zeros of
the polynomial.

We provide the operator applied to the polynomials zn − 1. This is enough since the
conjugacy η(z) = z/ n

√
−c, which sends the roots of zn + c to the roots of zn− 1, conjugates the

operators obtained in each case, i.e. On,α,−1(z) = η ◦ On,α,c ◦ η−1(z) where On,α,c denotes the
operator applied to zn + c.

When applying the family of Chebyshev-Halley type methods to the polynomials zn− 1 we
obtain the operator

On,α(z) = z − (zn − 1)((−1 + 2α + n− 2αn) + (1− 2α− 3n+ 2αn)zn)

2nzn−1(α(n− 1)(zn − 1)− nzn)
=

=
(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

2αn(1− n)zn−1 + 2n(−α− n+ αn)z2n−1
. (13)

This operator has 2n finite fixed points, i.e. solutions of On,α(z) = z. Besides the nth-roots
of the unity, which are the zeros of the polynomial zn − 1 and are superattracting fixed points
of the method, there are n fixed points which are the solutions of
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−1 + 2α + n− 2αn+ (1− 2α− 3n+ 2αn)zn = 0.

The point z = ∞ is fixed since the term with bigger exponent on z in the numerator is
(n − 1)(1 − 2α − 2n + 2αn)z2n and in the denominator is 2n(−α − n + αn)z2n−1. Therefore,
the dynamics around z =∞ is locally like

(n− 1)(1− 2α− 2n+ 2αn)

2n(−α− n+ αn)
z =: λz. (14)

Moreover, z = ∞ is a repulsive fixed point if |λ| < 1. The idea behind this claim is that, if
|λ| < 1, then given a point w in a neighbourhood of z =∞ we have the inequality |On,α(w)| ≈
|λ||w| < |w|. Alternatively, we can perform the change of variables I(z) = 1/z which sends
z = ∞ to z = 0. It is not difficult to check that after this change of variables the fixed point
z = 0 has multiplier (I ◦On,α ◦ I)′(0) = 1/λ and hence it is repelling if and only if |λ| < 1. By
using this λ the proof the following lemma is straightforward.

Proposition 6.1. The fixed point z =∞ satisfies the following statements.

1. If
∣∣∣α− 1−4n+5n2

2(n−1)(2n−1)

∣∣∣ < (
n

2(2n−1)

)
, then z = ∞ is an attractor. In particular, it is a

superattracting fixed point if its multiplier is equal to 0, i.e. α = n
n−1 .

2. If
∣∣∣α− 1−4n+5n2

2(n−1)(2n−1)

∣∣∣ =
(

n
2(2n−1)

)
, then z =∞ is an indifferent point.

3. If
∣∣∣α− 1−4n+5n2

2(n−1)(2n−1)

∣∣∣ > ( n
2(2n−1)

)
, then z =∞ is a repulsive fixed point.

Proof. From Eq. (14) we know that z =∞ is an indifferent fixed point if∣∣∣∣(n− 1)(1− 2α− 2n+ 2αn)

2n(−α− n+ αn)

∣∣∣∣ = 1.

We take α = a + ib, a, b ∈ R, in this equation. Then, we calculate the square of the module
and simplifying the results we obtain

b2 +

(
a− 1− 4n+ 5n2

2(n− 1)(2n− 1)

)2

=
n2

4(2n− 1)2
,

that corresponds to the equation of a circle of center
(

1−4n+5n2

2(n−1)(2n−1) , 0
)

and radius n
2(2n−1) .

The previous result is the analogous to Proposition 2.1 for the family Oα(z). Indeed, it
is easy to check that the circles of parameters given above coincide for n = 2. The only
difference is that the change of variables performed in the family Oα(z) sends the two roots of
the polynomial z2 + c to z = 0 and z =∞. This change of variables also sends ∞ to z = 1.

The operators On,α(z) posses a symmetry property which will be interesting for us. It is
described in the following lemma. Its proof is analogous to the one of Lemma 3.1.

Lemma 6.2. Let n ∈ N and let ξ be an nth-root of the unity, i.e. ξn = 1. Then Iξ(z) = ξz
conjugates On,α(z) with itself, i.e.

Iξ ◦On,α(z) = On,α ◦ Iξ(z).
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This lemma tells us that the orbits of points placed in symmetric positions with respect to
the nth-roots of the unity are also symmetric. It is useful since, as we shall see, all free critical
points are preserved by this symmetry. Critical points are given by the solutions of O′n,α(z) = 0,
where O′n,α(z) is given by

(zn−1)2(n− 1)(α(1−2n+n2) + α2(−2+4n−2n2)+(2n2−n+ α(−1+5n−4n2)+α2(2−4n+2n2))zn)

zn(2n(nzn − α(n− 1)(zn − 1))2)
.

Hence, the nth-roots of the unity are double solutions of the equation O′n,α(z) = 0. Indeed,
they are superattracting fixed points of local degree 3 of the operator by construction of the
numerical method. We also have n other critical points which are solutions of

α(1− 2n+ n2) + α2(−2 + 4n− 2n2) + (2n2− n+ α(−1 + 5n− 4n2) + α2(2− 4n+ 2n2))zn = 0.

We denote them by

cn,α,ξ = cξ = ξ

(
α(−1 + 2n− n2) + α2(2− 4n+ 2n2)

2n2 − n+ α(−1 + 5n− 4n2) + α2(2− 4n+ 2n2)

)1/n

, (15)

where ξ denotes the nth-root of the unity. Since these n free critical points are symmetric with
respect to the nth-roots of the unity, it follows from Lemma 6.2 that it is enough to analyse
the asymptotic behaviour of one of the n critical orbits to comprehend it for all of them.

In the following result we show that, fixed n ≥ 2, there exists a unique parameter α(n) such
that the numerical method associated to On,α(n) has order of convergence 4. This result was
also obtained in [16], from the point of view of real dynamical systems.

Proposition 6.3. Fixed n ≥ 2, the numerical method associated to On,α(z) has order of con-
vergence 4 if, and only if, α is given by

α(n) =
2n− 1

3n− 3
.

Proof. A parameter (n, α) is associated to a numerical method which has order of convergence
4 if, and only if, the critical points cn,α,ξ coincide with the roots of the unity. Indeed, these
are the only parameters for which the roots are critical points of multiplicity 3 and, hence, are
superattracting fixed points of local degree 4.

The critical points defined in Equation (15) coincide with the roots of the unity ξ if

α(−1 + 2n− n2) + α2(2− 4n+ 2n2)

2n2 − n+ α(−1 + 5n− 4n2) + α2(2− 4n+ 2n2)
= 1.

Isolating α in this equation we obtain α = 2n−1
3n−3 .

We want to point out that we have not described yet all the critical points of the family.
Indeed, it is known that any degree d rational map has 2d−2 critical points (c.f. [5] or [18]). The
maps On,α(z) have degree 2n, which is the maximum of the exponents of z over the denominator
and the numerator of the operator. Hence, it has 4n− 2 critical points. However, we have only
found 3n of them when solving the equation. This is because we solved the equation in C. The
equation O′n,α(z) = 0 should be solved over the Riemann sphere Ĉ. This means that z = ∞
and the poles can also be critical points, but they can not be found by solving the equation
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directly. This can be solved by performing a change of variables near z =∞. However, we do
not need to do this change to know if z =∞ is a critical point since we have already studied its
local behaviour as fixed point (see Lemma 6.1). On the other hand, the critical points which
are preimages of z = ∞ are not enough to allow the stability of z = ∞. Indeed, the basin of
attraction of an attracting fixed point (not superatracting) contains a critical point whose orbit
accumulates on the fixed point but it is never mapped onto it (c.f. [18, Lemma 8.5]).

Since all free critical points cξ are symmetric and, by Lemma 6.2, have symmetric orbits, to
find all possible stable dynamics of the maps On,α(z) other than the superattracting fixed points
coming from the roots of the polynomial zn−1 and the fixed point z =∞ (see Proposition 6.1)
it is enough to analyse the asymptotic behaviour of the orbit of one of the free critical points.
Consequently, we can attempt to draw the parameter spaces of the maps On,α(z) for several
fixed n. In Figure 7 we show the parameter spaces for n = 2, 3, 4, 5, 10, and 100. The pictures
are done by using a C program similar to the one used for the operator Oα(z). In this case
we iterate the critical point cn,α,1 up to 150 times, where 1 denotes the choice of the root of
the unity. If in a number of iterations smaller than 150 the iteration w is close enough to the
root ξ of the polynomial (|ξ − w| < 10−4) then we conclude that the critical orbit converges
to a ξ and stop iterating. In that case we plot the parameter α using a scaling from pallid
blue (slow convergence) to green to yellow and to red (fast convergence) depending on how fast
the critical orbit converges to the root. If after 150 iterates the critical orbit has not reached
the neighbourhood of a root of zn − 1 then we plot the parameter α in black. We want to
point out that, for all pictures, we have used the range of α given by Re(α) ∈ (−1.4, 4.6) and
Im(α) ∈ (−2, 2) and a grid of 3000 × 2000 points. We do not show the numerics outside this
range since we have found no pair (n, α) for which the the orbit of cn,α,1 does not converge to
a zero of zn − 1 outside it. Consequently, we observe how the bound given in Theorem 4.1
for the boundedness of the Cat set (n=2), whose proof depends strongly on the choice of the
polynomials z2+c, is also satisfied when we study numerically the parameter space for arbitrary
n. In all figures we can see the black disk of parameters described in Proposition 6.1 for which
z = ∞ is an attracting fixed point. It follows from Proposition 6.1 that the size of this disk
decreases when n increases and its radius converges to 1/4 when n→∞. We also observe that
the necklace of the cat set grows thicker with n and that for parameters close to the necklace
the critical orbits take more iterates to converge to a root. For n = 10 we observe some small
blacks disks in the necklace. They correspond to parameters for which 150 iterates are not
enough for the critical orbits to converge to a root. If we would increase the number of iterates
these disks would become much smaller. For n = 100 these small disks become relatively big
black components of a size comparable to the head of the generalized Cat set. Again these
black regions of parameters would become smaller increasing the number of iterates. We also
want to point out that the generalized Cat set moves slightly to the left when we increase n.

We finish the section providing some pictures of the dynamical planes of the operators
On,α(z). The pictures are done using a program in C which is similar to the one used for the
parameter spaces. In this case, we fix n and α and iterate the points in a grid of 1000× 1000
points. As before, if in a number of iterations smaller than 150 the point w is close enough to a
root ξ of the polynomial (|ξ−w| < 10−4) then we plot the corresponding point in the grid using
a scaling from pallid blue (slow convergence) to green to yellow and to red (fast convergence). If
we reach 150 iterates without converging, we plot the point of the grid in black. In Figure 8 we
show the dynamical planes of 4 pairs (n, α = n/(n− 1)) such that z =∞ is a superattracting
fixed point (see Proposition 6.1). We observe how the basins of attraction of the roots become
smaller when we increase n.
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Figure 7: Parameter space of the family Oα,n(z) for different values of n. For all pictures the range
of α is Re(α) ∈ (−1.4, 4.6) and Im(α) ∈ (−2, 2).
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Figure 8: Dynamical planes of the operators On,α(z) for n = 2, 3, 5, 10 and α = n/(n− 1).

In Figure 9 we provide 4 pictures of parameters for which there is no stable behaviour other
than the basins of attraction of the roots. Figures (a) and (c) correspond to parameters which
belong to the red region bounded by the necklace of the parameter spaces. Figures (b) and
(d) correspond to parameters on the unbounded red region surrounding the necklace in the
parameter space. We observe that the convergence is slower when we increase n. We also
observe that the convergence is faster in the small red region bounded by the necklace. It is
not surprising given that the parameter α(n) for which the method has order of convergence
4 (see Proposition 6.3) lies in this region for all parameter spaces we have plot (see Figure 7).
In all pictures we observe small regions of slow convergence. They correspond to regions which
surround preimages of z = ∞. Among those regions, the bigger one surrounds z = 0, which
is a preimage of order n − 1 of z = ∞ due to the term zn−1 in the denominator of On,α(z)
(Equation (13)).
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(a) Dynamical plane of O3,0.75(z).
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(b) Dynamical plane of O3,4i(z).
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(c) Dynamical plane of O10,0.75(z).
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(d) Dynamical plane of O10,4i(z).

Figure 9: Dynamical planes of 4 operators On,α(z) for which there is no stable behaviour other than
the basins of attraction of the roots of the polynomials.

Finally, in Figure 10 we plot the dynamical plane of On,α(z) for n = 100 and α = 1, which
corresponds to the super-Halley’s method. We observe that the basins of attraction of the roots
(in red) have a rather small size. Notice that the roots lie in the inner red ‘annulus’ of the
left figure, which contains the unit circle. We observe an outer ‘annulus’ which corresponds to
a preimage of the original one. By taking a bigger range of the picture we can observe many
more of these ‘annular’ preimages. We want to remark that for n big some numerical problems
appear. Indeed, standard arguments of complex dynamics show that small preimages of the
red regions should be observable near z = 0, since it is a preimage of the fixed point z = ∞
which is repelling for n = 100 and α = 1 (c.f. Proposition 6.1).
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Figure 10: Dynamical plane of O100,1(z).

7 Conclusions

In this paper, we study the Chebyshev-Halley methods using the family of degree n polynomials
zn + c. We find n free critical points and prove that they are symmetric with respect to the
nth-roots of the unity. Hence, it is enough to analyze the asymptotic behaviour of one of the
n critical orbits to comprehend the asymptotic behaviour for all of them. We also show that
infinity is a fixed point, but it is not always attracting (Proposition 6.1). Moreover, we observe
that when infinity is attracting, the basins of attraction of the roots become smaller as the
value of n grows. Taking into account these results we draw the parameter spaces of this family
of maps for n = 2, 3, 4, 5, 10, 100. In all figures, we can see the black disk of parameters
described in Proposition 6.1 for which the strange fixed point z =∞ is attracting. Afterwards,
we show the dynamical planes for n = 2, 3, 5, 10 and α = n

n−1 . For these parameters z = ∞
is superatracting (see Proposition 6.1). We observe that the basins of attraction of the roots
become smaller when n increases.

Although the order of convergence of the Chebyshev-Halley family is 3, we demonstrate
that there is a member of order 4 for each value of n (Proposition 6.3). Fixed n, this parameter
belongs to a hyperbolic component of parameters bounded by the necklace (see Figure 7). The
convergence to the roots for parameters within this region seems faster than in the unbounded
hyperbolic component surrounding the necklace (see Figure 9). However, as we increase n, the
generalized Cat set moves slightly to the left an this hyperbolic region of parameters with faster
convergence becomes smaller (see Figure 7). Indeed, we can observe that the parameter α = 1,
which corresponds to the super-Halley’s method and has order of convergence 4 for n = 2 (c.f.
Proposition 6.3), has good behaviour for n small and bad behaviour for n = 100 (see Figure 10).

We also continue the dynamical study of the Chebyshev-Halley family applied on quadratic
polynomials. For this case, we bound the set of parameters corresponding to iterative methods
with no stable behaviour (Proposition 4). That means that if α > 8.57, the orbit of almost any
initial condition converges to one of the roots. We can also observe that the bound on the set
of parameters with bad numerical behaviour obtained in the case of the quadratic polynomials
z2 + c also applies for the zn + c.
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