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Background: Obstetric complications have long been retrospectively associated with a wide range of short- and
long-term health consequences, including neurodevelopmental alterations such as those observed in schizophrenia
and other psychiatric disorders. However, prospective studies assessing fetal well-being during pregnancy tend to
focus on perinatal complications as the final outcome of interest, while there is a scarcity of postnatal follow-up
studies. In this study, the cerebroplacental ratio (CPR), a hemodynamic parameter reflecting fetal adaptation to
hypoxic conditions, was analyzed in a sample of monozygotic monochorionic twins (60 subjects), part of them with
prenatal complications, with regard to (i) epigenetic age acceleration, and (i) DNA methylation at genes included in
the polygenic risk score (PRS) for schizophrenia, and highly expressed in placental tissue.

Results: Decreased CPR measured during the third trimester was associated with epigenetic age deceleration (3 =
021, t = 3362, p = 0.002). Exploration of DNA methylation at placentally expressed genes of the PRS for
schizophrenia revealed methylation at cg06793497 (EP300 gene) to be associated with CPR (3 = 0.021, t = 4.385; p
= 0.00008, FDR-adjusted p = 0.11). This association was reinforced by means of an intrapair analysis in monozygotic
twins discordant for prenatal suffering (3 = 0.027, t = 3.924, p = 0.001).

Conclusions: Prenatal adverse environment during the third trimester of pregnancy is associated with both (i)
developmental immaturity in terms of epigenetic age, and (ii) decreased CpG-specific methylation in a gene
involved in hypoxia response and schizophrenia genetic liability.

Keywords: DNA methylation, Obstetric complications, Prenatal stress, Hypoxia, EP300 gene, Epigenetic clock,

Main text
Background
Prenatal environment constitutes the first modulating agent
the developing fetus encounters as it progresses through
gestation. The tremendous impact of any environmental
threat occurring during this period for both short- and
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long-term consequences is now widely accepted and
well-known as the Developmental Origins of Health and
Disease (DOHaD) hypothesis [1]. Also known as the theory
of fetal programming, the embedding of early life and its
ability to exert long-term effects in late-life is thought to
rely on epigenetic mechanisms [2, 3].

Recently, several DNA methylation-based epigenetic
clocks have been developed in order to predict chrono-
logical age with high accuracy [4, 5]; afterward, Knight
and colleagues developed a new predictor specifically
aimed to predict gestational age (GA) in perinatal sam-
ples [6]. Although epigenetic and chronological age
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robustly show high correlation across studies, the differ-
ence between both variables allows the estimation of the
so-called age acceleration (i.e., when epigenetic age is
higher than chronological age).

On the one hand, epigenetic age acceleration in adult
subjects has been associated with cumulative lifetime
stress, lifestyle, and all-cause mortality, among others,
suggesting its utility as a better predictor for life expect-
ancy than chronological age itself [7-9]. On the other
hand, epigenetic GA deceleration (i.e., when chrono-
logical age is higher than epigenetic age), as measured in
cord blood, has been described in newborns born to
women with low socioeconomic status, Sjogren syn-
drome, insulin-treated gestational diabetes mellitus, and
experiencing antenatal depressive symptoms [6, 10, 11].
Such findings suggest that newborns exposed to prenatal
stressors are born in an immature state independently of
their chronological GA. In this regard, boys—but not
girls—who exhibited lower epigenetic GA at birth exhib-
ited more internalizing problems, such as
anxious-depressive symptoms or somatic complaints, at
follow-up (mean age 3.7 years), suggesting they are born
with a developmental disadvantage [11].

Nevertheless, there is a dearth of studies examining
the putative relationship between ultrasound parameters
acquired during pregnancy and epigenetic GA acceler-
ation. In this regard, the cerebroplacental ratio (CPR)
has been reported to be associated with adverse perinatal
outcomes not only in growth-restricted fetuses, but also
in low-risk population [12, 13]. Briefly, CPR is calculated
by dividing the middle cerebral artery (MCA) pulsatility
index (PI) by the umbilical artery (UA) PI [14]. The PI is
a parameter reflecting vascular impedance or resistance,
i.e., decreased blood flow. Specifically, fetal brain blood
supply is known to increase in front of hypoxic stimuli
thus decreasing PI in the MCA [15]; while placental in-
sufficiency decreases umbilical blood flow hence increas-
ing UA PI, and has been associated with both short- and
long-term detrimental outcomes, including increased
cardiovascular risk and deficits in cognition [16, 17].
Consequently, a decreased CPR reflects the combination
of both alterations and is an indicator of fetal adaptation
to adverse conditions [12].

Obstetric complications (OCs) constitute one of the
risk factors more reliably associated with psychopath-
ology, particularly with neurodevelopmental disorders;
specifically, the putative association between OCs and
schizophrenia has been debated since the 1970s [18-20].
In this regard, a recent umbrella review evaluating all
published meta-analysis regarding risk factors and bio-
markers for schizophrenia spectrum disorders revealed a
history of OCs to significantly increase the risk for de-
veloping the disorder with an odds ratio of 2 [21]. Fur-
thermore, exposure to severe OCs together with

Page 2 of 10

increased genetic vulnerability, as measured with the
polygenic risk score (PRS) for schizophrenia, interact to
increase the risk to suffer the disorder up to an odds ra-
tio of 8.36 [22]. In the same study, authors further ex-
plored the putative relevance of placental expression of
genes included in the PRS; following this approach, they
reported (i) an enrichment of PRS genes expressed in
placental tissue and (ii) differential expression of PRS
genes in placentae from complicated pregnancies (spe-
cifically in pre-eclampsia and intrauterine growth restric-
tion). Specifically, the described gene-environment
interaction between exposure to OCs and the PRS for
schizophrenia was driven by those genes highly
expressed in placenta and/or dynamically regulated in
complicated pregnancies [22]. Since CPR is a robust in-
dicator of prenatal stress and a predictor of perinatal
and long-term morbidity, DNA methylation analysis of
genes included in the placental PRS for schizophrenia
could shed light on the epigenetic mechanisms mediat-
ing the interaction between OCs and neurodevelopmen-
tal disorders.

Monozygotic twins have been instrumental for the elu-
cidation of environmental and genetic risks in the eti-
ology of complex traits and disorders. Actually, the
differential role of the prenatal environment in shaping
psychopathological proneness was first described thanks
to monozygotic twin designs [23-25]; these pioneering
studies focused on dermatoglyphic measures assessed at
birth, which can be used as surrogate measures of al-
tered neurodevelopment during the second trimester of
pregnancy [26]. Furthermore, monozygotic twin preg-
nancies and, more specifically, monochorionic twin
pregnancies—i.e., those in which both fetuses share the
placenta—are at a higher risk of obstetric complications,
the more prevalent being twin-to-twin transfusion syn-
drome (TTTS) and selective intrauterine growth restric-
tion (sIUGR) [27-29]. Thus, the thorough and
prospective ultrasound assessment of prenatal develop-
ment through monochorionic twin pregnancies offers a
quasi-experimental study design in which the genetic
and environmental components of epigenetic variability
can be dissected.

The objective of the current study was to investigate
whether prenatal adverse environment (i) alters human
development in terms of epigenetic age, and if (ii) it can
get embedded through epigenetic mechanisms in genes
previously identified as risk factors for schizophrenia
acting during prenatal stages. We hypothesized that a
higher exposure to prenatal adverse environment would
be associated with (i) delayed development and (ii) DNA
methylation at genes involved in the pathogenesis of
schizophrenia. While CPR can have diverse effects on
genome-wide DNA methylation, with potential relevance
for a multitude of phenotypes, the present study a priori
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examined how CPR epigenetically regulates risk genes
for schizophrenia, previously described to interact with
the presence of OCs [22].

Results

GA estimation using Knight's epigenetic clock

After exclusion of two twin pairs (see Methods section),
the final sample size was 30 twin pairs. The mean GA at
birth of our twin cohort (n = 30 twin pairs) was 35.3
weeks (range = 31.7-37.1) and the mean DNA methyla-
tion GA at birth was 35 weeks (range = 31.4-37.7). To
validate the epigenetic clock predictor in our sample,
DNA methylation-based GA was tested for correlation
with chronological GA (r = 0.76, p = 1.68 x 10™'% Fig.
1). The average absolute difference between epigenetic
GA and chronological GA—hereinafter referred as
AGA—was 0.9 weeks (range = 0.03-4.02), i.e., 6.3 days.
In agreement with previous studies, there was a signifi-
cant negative correlation between AGA and chrono-
logical GA (r = - 0.47; p < 0.001).

Association between AGA and CPR
AGA was tested for associations with CPR measured
during the third trimester (mean = 33.8 weeks, range =
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28.3-36.4), a few days before childbirth (median = 6.5
days). CPR was significantly associated with AGA (p =
0.21, t = 3.362, p = 0.002) when adjusting for sex, birth-
weight, diagnostic of either TTTS or sIUGR, surgery
time interval (when laser fetoscopy had been applied),
and gestational age at ultrasound as covariates. The posi-
tive association between CPR and AGA remained signifi-
cant after correction for cell type proportion ( = 0.21, ¢
= 2.616, p = 0.01). Figure 2 shows the positive associ-
ation between third trimester CPR and AGA.

Epigenetic exploration of placental PRS for schizophrenia
with regard to CPR

Following the approach developed by Ursini and collab-
orators (2018), association between CPR and DNA
methylation was tested in all CpG sites included in the
DNA methylation array located within genes of the PRS
for schizophrenia expressed in placental tissue (placental
PRS) [22]. There were 1400 CpG sites annotated to pla-
cental PRS genes out of 866,091 CpG sites included in
the array. After FDR correction for multiple testing,
methylation at one single CpG site, cg06793497, was sig-
nificantly associated with CPR ( = 0.021, p = 0.00008, ¢
= 4.385; gppR adjusted = 0.11; Fig. 3a), such that increased
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Fig. 1 Correlation between chronological GA and epigenetic GA. Chronological GA was calculated using first-trimester crown-rump length
measurement of the larger twin, and epigenetic age was calculated based on DNA methylation-based Knight's clock. Both GA estimations were
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Fig. 2 Association between epigenetic age acceleration and cerebroplacental ratio measured during the third trimester. Epigenetic age delta
(AGA) corresponds to estimated epigenetic age minus chronological age. Thus, AGA-positive values reflect epigenetic age acceleration while
negative values point out the presence of epigenetic age deceleration. The cerebroplacental ratio (CPR) is calculated as the ratio between the
MCAPI and UAPI. Both variables were significantly correlated when adjusting for sex, chronological gestational age, birth weight, and gestational

cg06793497 methylation was associated with increased
CPR. The top 10 CpG sites yielded by this approach are
summarized in Table 1 (all g values > 0.75).

To further explore the association between
cg06793497 methylation and CPR, it was analyzed in a
monozygotic twin intrapair design. The intrapair twin
design further allows controlling for chronological GA,
sex, and timing of the Doppler ultrasound, since these
variables are shared by co-twins of a pair. Four observa-
tions were removed from the analysis due to missingness
for any of the variables in one of the co-twins of a pair.
Thus, intrapair differences for these measures were cal-
culated for all twin pairs of the sample were both mea-
sures were available for both twins of a pair (n = 27 twin
pairs). Intrapair differences in cg06793497 methylation
and CPR, measured during the third trimester, were sig-
nificantly correlated (r = 0.64, p < 0.001; Fig. 3b). The
association between both variables remained significant
after adjusting for cell type count intrapair differences (
= 0.027, t = 3.924, p = 0.001). Intrapair exploration of
the top 10 CpG sites (Table 1) revealed significant asso-
ciations between CPR and DNA methylation at CpG
probes ¢g00262246 (f = 0.012, p = 0.029), cg01024069

(B = - 0.01, p = 0.033), and cg12955069 (B =
0.026).

-0.021, p =

DNA methylation exploration of EP300 gene

To further explore the putative relevance of DNA
methylation at other CpG sites located within the EP300
gene and its surrounding regions, DNA methylation at
27 CpG sites included in the array and annotated to this
region was also explored with regard to CPR (see Table
2). All analyses were adjusted for cell sex, birthweight,
gestational age at ultrasound, and cell type count. In
addition to cg06793497, two additional CpG sites—
¢g12968540 and ¢g19011939—were significantly associ-
ated with CPR (p < 0.05); moreover, methylation at four
additional ~CpG  sites—cg04452260,  ¢g243499109,
cg11931284 and cg25888227—showed trend associations
with CPR (p < 0.01). The intrapair approach was then
applied for these newly identified six CpG sites revealing
cgl1931284 (B = 0.028, t = 2985, p = 0.008) and
cgl9011939 (B = - 0.021, £ = — 2.343, p = 0.03) to be sig-
nificantly associated with CPR, when adjusting for cell
types intrapair differences.
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Fig. 3 Schizophrenia PRS methylation exploration with regard to cerebroplacental ratio measured during the third trimester. a Methylation at
€g06793497 (EP300 gene) was significantly associated with CPR in the whole sample (n = 54 twin subjects). b Intrapair methylation difference at
€g06793497 was significantly associated with intrapair CPR difference (n = 26 twin pairs)
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Discussion

To the best of our knowledge, this is the first study ana-
lyzing the epigenetic age in association with adverse pre-
natal environment as measured by a hemodynamic
ultrasound parameter. Firstly, we describe the significant
association between CPR measured during the third tri-
mester of pregnancy with epigenetic age acceleration.
Specifically, subjects exhibiting decreased CPR—exposed

to prenatal adverse conditions—were born with deceler-
ated epigenetic age, i.e., prenatally stressed subjects were
born immature adjusting for their gestational age at
birth. Additionally, methylomic exploration of schizo-
phrenia PRS genes known to be expressed in placenta
revealed the association between CPR and EP300 gene
CpG-specific methylation, at the cg06793497 probe, in
our monochorionic twin sample.

Table 1 Top 10 CpG sites of the PRS methylomic exploration in association with CPR (1400 CpG sites tested)

# CpG probe® Genomic Gene PRS exploration® Intrapair®
coordinates® beta p value q value beta p value

1 cg06793497 22: 41,542,898 EP300 0.021 8.2E-05 0.115 0.027 0.001
2 €g15620905 1: 44,024,150 PTPRF 0.040 0.002 0.804 0.008 0.563
3 €g12252443 2: 198,364,630 HSPD1 -0.006 0.002 0.804 —-0.007 0.055
4 €g24936500 2: 233,499,637 EFHD1 0.022 0.004 0.804 0.001 0.849
5 €g00262246 3: 136,007,461 PCCB 0012 0.004 0.804 0.012 0.029
6 €g22495590 5: 138,161,059 CTNNAT -0.020 0.004 0.804 -0010 0.203
7 g 14902598 5: 138,210,650 CTNNAT 0.017 0.005 0.804 0.006 0.371
8 cg01024069 14: 104,158,878 KLCT -0.010 0.005 0.804 -0.010 0.033
9 €g16362480 16: 30,077,084 ALDOA 0.031 0.005 0.804 0.024 0.126
10 €g 12955069 16: 58,593,852 CNOTT; SNORA50 -0.016 0.006 0.804 -0.021 0.026

@ CpG site code according to the lllumina annotation

PGenomic coordinates correspond to hg19 built

“Refers to the statistics of each analysis in the first model encompassing 1400 CpG sites located in genes of the PRS for schizophrenia highly expressed in the
placenta as described by Ursini et al.

dRefers to intrapair comparison of DNA methylation values and CPR. Thus, the n for these analyses was of 26 twin pairs
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Table 2 List of CpG sites included in the array located in the
EP300 gene and its surrounding CpG island and antisense
NcRNA (EP300-AST)

CpG probe Genomic coordinates beta p value
cg00500400 41487283 0.001 0.67
€g04452260 41487569 0.003 0.09
cg09331127 41487734 —0.0006 0.79
€g02046995 41487740 0.004 049
€g24349919 41487761 0.005 0.09
cg02107564 41488750 —0.005 048
€g03427564 41489051 0.004 021
€g03656483 41490340 —0.001 0.65
cg00187244 41492007 0011 0.23
€g11931284 41492370 0015 0.07
€g13028324 41501680 —0.0005 0.89
cg20730595 41513219 -0.001 0.85
cg17439569 41513539 —0.005 0.16
€g05997318 41542772 -0.014 0.12
€g06793497 41542898 0021 0.00008
€g06329185 41544246 —0.0008 0.75
cg07345240 41556691 0.002 0.73
€g25299898 41563501 0.003 0.74
cg12968540 41572924 0.009 0.008
€g26901641 41573032 —0.006 0.12
€g03950371 41573046 —0.003 048
cg14455139 41573155 —0.0001 0.98
cg05601844 41573176 —0.0005 0.89
cg19011939 41591607 -001 0.01
cg12917725 41592634 0.002 0.76
€g25888227 41593581 0.004 0.07
€g22037654 41593650 0.0001 0.94

DNA methylation at CpG sites highlighted in italics was significantly associated
with CPR measured during the third trimester in an intrapair approach

Developmental deficits and developmental delays
have been previously described in children who would
later develop schizophrenia [30]; although such pro-
dromal symptoms were in accordance with the neuro-
developmental hypothesis for schizophrenia, biological
mechanisms mediating these effects remain largely
unknown. Epigenetic immaturity in response to pre-
natal stress could be contributing to this developmen-
tal delay. Interestingly, epigenetic age deceleration has
been previously described in association with maternal
pathologies during pregnancy, such as maternal de-
pression or Sjogren’s syndrome, suggesting it can be a
robust biomarker of prenatal suffering [10, 11]. It is
worth noting that CPR was measured a few days
prior to childbirth; thus, it can be used as a surrogate
marker of prenatal adaptation to adverse conditions
experienced at the end of the pregnancy, ie., as a
marker of perinatal risk.
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Integration of the schizophrenia PRS [31] with obstet-
ric and placental information [22], allowed the identifi-
cation of EIA binding protein p300 (EP300) gene
CpG-specific methylation as a putative marker of expos-
ure to prenatal stress. Interestingly, the EP300 gene en-
codes a histone acetyltransferase (HAT) involved in
several cell pathways such as cell proliferation and differ-
entiation. Mutations at EP300 gene have been described
to cause Rubinstein-Taybi syndrome, a rare autosomal
dominant neurodevelopmental disorder characterized by
intellectual disability, psychomotor and language delay,
and facial dysmorphisms [32]. Likewise, these symptoms,
including developmental delay, learning problems, and
cleft palate, characterize the 22q11.2 deletion syndrome,
a well-defined congenital condition caused by the dele-
tion of the 22q11.2 segment [33]. Notably, this syndrome
is associated with a higher risk to develop schizophrenia,
among other psychiatric conditions [34]; interestingly,
EP300 gene is located on chromosome 22 at position
22q13.2.

Further exploration of differential DNA methylation in
and around the EP300 gene revealed c¢g19011939 to be
differentially methylated in association with prenatal ad-
versity. While higher exposure to a prenatal adverse en-
vironment, as reflected by lower CPR during the third
trimester, is associated with decreased methylation at
¢g06793497 in the hypoxia-responsive EP300 gene, there
appears to be increased methylation at ¢g19011039 at
EP300-AS1 gene. Thus, we speculate that higher expos-
ure to prenatal stress might be associated with reciprocal
patterns of EP300 and EP300-ASI epigenetic regulation
that could act synergistically, a hypothesis that may be
explored in future studies [35].

Remarkably, EP300 has been identified as a
co-activator of the hypoxia-inducible factor 1 alpha
(HIF1A). In this regard, hypoxic conditions stimulate
EP300 expression, which has a neuroprotective role [36].
Accordingly, genetic variability at EP300 gene has been
associated with human adaptations to high altitude re-
gions, e.g., the Tibet [37]. Likewise, pre- and peri-natal
hypoxia have been associated with schizophrenia
spectrum disorders, particularly by decreasing hippo-
campal volume [38, 39]; complementarily, a decreased
or impaired response to hypoxia via neurotrophic factors
has also been implicated in the etiology of schizophrenia
[40]. Furthermore, DNA methylation at the IGF2BP1
gene, also involved in prenatal development [41], has
been associated with both adult working memory and
birthweight [42]; further highlighting the advantage of
twin study designs to identify environmentally-driven
epigenetic consequences of prenatal stress. Overall, these
findings point to the existence of a GxE interaction be-
tween genetic vulnerability and exposure to prenatal
hypoxia, as already highlighted by Ursini and



Palma-Gudiel et al. Clinical Epigenetics (2019) 11:73

collaborators [22]. In this framework, EP300 methylation
could be one of the mediators of such interaction.

A number of limitations of the present study should
be noted. First, the moderate sample size (1 = 60 sub-
jects, 30 twin pairs) limits the statistical power of the
analysis; however, smaller sample sizes (n = 22 MZ twin
pairs) have been described to be sufficient to identify
methylation differences of 6% with >80% power [43].
Moreover, a lenient significance threshold after correc-
tion multiple testing was used; however, previous epi-
genetic studies have described FDR values between 5
and 20% as markers of medium-confidence sites [44].
Another limitation regards the moderately small re-
ported effect sizes (around 2%) questioning the bio-
logical relevance of our findings [45]; however, these
findings are in agreement with a larger body of evidence
regarding cord blood methylation after exposure to a
number of prenatal stressors. Such small DNA methyla-
tion changes may act in conjunction with a myriad of
other epigenetic signatures and biological processes in
order to maintain homeostasis in the face of threats.
Additionally, although epigenomic information was
available from a methylomic array including more than
800,000 CpG sites distributed throughout the whole hu-
man genome, only 1400 CpG sites were analyzed; alter-
native approaches including the total of CpG sites
included in the array would have yield different findings,
probably pointing to genes involved in other neurodeve-
lopmental disorders besides schizophrenia. Furthermore,
while the set of genes analyzed in the current approach
were described to be highly expressed in placental tissue
[22], placentae were not available for this sample and
cord blood was thus analyzed as the proxy tissue of
choice with regard to exposure to prenatal adversity. Fi-
nally, MZ twin pregnancies are characterized by lower
gestational ages at birth than singleton pregnancies; be-
sides, obstetric scales commonly used in psychiatric
studies include twin pregnancies as an obstetric compli-
cation. Thus, findings derived from the present design
might not be generalizable to the general population.

Conclusions

Further studies are needed to test the time stability of
the hereby identified methylation signature. It will be
equally relevant to explore neurobehavioral correlates of
EP300 methylation during early childhood along with its
putative association with neurodevelopmental outcomes,
including psychosis liability. Additionally, a longitudinal
follow-up is required to test the role of postnatal envir-
onment in these phenotypes since both epigenetic age
deceleration and CpG-specific differential methylation in
association with CPR could return to basal levels after
birth. Finally, genetic exploration of these subjects re-
garding schizophrenia PRS will be instrumental for the
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study of GxE interactions and genetic liability for an im-
paired hypoxia response during human development.

Methods

Study population

This was a prospective study including fetal pairs from
monochorionic diamniotic twin pregnancies attended at
Hospital Clinic de Barcelona (Spain) during a 2-year re-
cruitment period. Monochorionic monoamniotic twin
pregnancies were excluded from the present study to
avoid putative confounding with regard to differential
exposure to stress in both types of twin pregnancies.
The study protocol was approved by the hospital ethics
committee (HCB/2016/0046), and all patients provided
written informed consent.

We included 32 monochorionic pregnancies (n = 64
samples). The sample was enriched for two
monochorionic-specific severe obstetric complications:
twin-to-twin transfusion syndrome (TTTS, n = 8) and
selective intrauterine growth restriction (sIUGR, n = 9).
All TTTS cases were treated upon detection by means
of laser fetoscopy [46].

Maternal age and pre-pregnancy BMI were retrieved
from hospital records. Gestational age was dated using
first-trimester crown-rump length measurement of the
larger twin [47].

Fetal ultrasound assessment

Ultrasound assessment was performed on a Voluson Ex-
pert 8 (General Electrical Medical Systems, Milwaukee,
WI, USA) or a Siemens Sonoline Antares (Siemens
Medical Systems, Erlangen, Germany) with 8- to 4-MHz
or 6- to 4- MHz curved array probes, respectively. All
fetuses underwent detailed ultrasound evaluation includ-
ing fetal anatomy and Doppler measurements such as
UAPI, MCAPI and ductus venosus PI. All Doppler eval-
uations were acquired at a normal fetal heart rate (FHR)
in the absence of fetal body or respiratory movements
and at an angle of insonation as close to 0° as possible
(but always < 15°), and the mechanical and thermal indi-
ces were maintained below 1. CPR was calculated as the
ratio between MCAPI and UAPI, according to previous
studies [12].

DNA methylation

Umbilical vein cord blood samples were obtained from
the clamped umbilical cord immediately after delivery of
the fetus. All blood samples were collected in
EDTA-treated tubes and processed within 1 h. Plasma
was separated by centrifugation at 3000 rpm for 10 min
at 4 °C, and stored at — 80 °C until further use. Genomic
DNA was extracted from fetal cord blood using QIAamp
DNA Mini Kit (Qiagen). DNA quality and quantity were
assessed by NanoDrop One (Thermo Scientific).
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Genomic DNA was bisulfite converted using the Zymo
EZ-96 DNA Methylation Kit (Zymo Research).
Genome-wide DNA methylation levels were assessed
over 850,000 CpG sites by means of the Infinium Methy-
lationEPIC BeadChip Kit (Illumina Inc., CA, USA) ac-
cording to the manufacturer’s protocol. Pre-processing
and normalization were performed using the Bioconduc-
tor minfi package [48]. CpG probes containing common
SNPs were discarded. All probes mapping to the X and
Y chromosomes were also removed. Finally,
cross-hybridizing probes as previously identified were
excluded from further analysis [49]. All samples (n = 64)
were run on the same plate.

Absence of maternal contamination was confirmed
after retrieving DNA methylation values at 10 CpG sites
previously described to identify sample contamination
by maternal blood during sample collection [50]. None
of the samples assayed exhibited DNA methylation
values above the threshold at 5 or more of those CpG
sites (see Additional file 1 for specific methylation
values). Two samples (from the same twin-pair) were ex-
cluded from further analyses due to lack of monozygos-
ity as assessed by 59 SNPs included in the array. One of
the samples was removed from analysis due to insuffi-
cient DNA concentration, the co-twin sample was also
excluded from further analysis.

Statistical analyses

All statistical analyses were conducted in R version 3.5.0
[51]. DNA methylation-based GA prediction was per-
formed using the R code and statistical pipeline devel-
oped by Knight, based on the methylation profile of 148
CpG sites [6]; this predictor was developed using 15 Illu-
mina DNA methylation datasets (n = 1434 neonates).
Following Simpkin et al. recommendations, the Knight
clock was preferred for our analysis as it was developed
and tested in preterm infants datasets such as our
monozygotic twin population, characterized by a mean
gestational age at birth of 35.3 weeks [52]. The EPIC
array lacks 6 of the CpG sites originally included in the
Knight clock, these values were imputed manually as
non-available. Interestingly, DNA methylation-based age
estimation relying on EPIC array data has already been
described to accurately predict age despite the lack of
several CpG sites originally included in Horvath’s and
Hannum’s clocks [53].

Gestational age acceleration (AGA) was calculated as
the absolute difference between epigenetic GA and
chronological GA. Since AGA was associated with
chronological GA (r = — 0.47; p < 0.001), the latter was
included as a covariate in all statistical models; this asso-
ciation has been already reported in prior studies explor-
ing epigenetic-based GA estimations at birth [6, 10, 11].
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Cell counts of CD4" T cells, CD8" T cells, B cells, NK
cells, granulocytes, monocytes, and nucleated red blood
cells (nRBCs) were estimated using the R code and stat-
istical pipeline developed by Houseman [54].

A multiple linear regression model was built to analyze
the correlation between AGA and CPR. Fetal sex, birth-
weight, diagnostic of either TTTS or sIUGR (binary vari-
able), post-surgery interval (in TTTS cases where laser
fetoscopy had been applied), and gestational age at ultra-
sound were included as independent variables in the
model as they are known to influence either DNA
methylation (from which AGA is calculated) or CPR.
This analysis was conducted in the total MZ twin sample
(n = 60).

DNA methylation at CpG sites annotated to the 43
genes of the Placental PRS1 as described by Ursini et al.
[22] was retrieved to test their association with CPR. A
second multiple linear regression model was then de-
signed to explore putative effects of CPR upon methyla-
tion of PRS genes, testing 1,400 associations. The
aforementioned confounding variables along with cell
types proportions (CD4" T cells, CD8" T cells, B cells,
NK cells, granulocytes, monocytes, and nRBCs) were in-
cluded as covariates, as they are known to affect methy-
lation values. False discovery rate (FDR) correction for
multiple testing was applied, considering ¢ values under
20% to be indicative of medium-confidence probes fol-
lowing prior studies [44].

A twin-based approach previously developed in our
group [55] was also applied to refine the association be-
tween cg06793497 methylation and CPR. Briefly, intra-
pair differences for both variables of interest were
computed for each twin pair; afterward, a regression
model was fitted with an estimated intrapair cg06793497
methylation (Amethylation) and intrapair CPR (ACPR).
This last model was not adjusted for either sex or
chronological gestational age since both variables are
identical for both twins of a pair.

Additional file

Additional file 1: DNA methylation values for CpG probes used to
discard the presence of maternal contamination. (DOCX 29.6 kb)

Acknowledgements

We would like to thank Anna Valldeperas, Miriam Osorio, and Talita
Micheletti for their technical assistance with the biological sample
processing. We are indebted to the IDIBAPS Biobank, integrated in the
Spanish National Biobank Network, for the sample and data procurement.

Funding

This work was supported by a NARSAD Distinguished Investigator Grant,
awarded to Professor Lourdes Fanands, the Biomedical Research Networking
Center for Mental Health (CIBERSAM) and the Comissionat per a Universitats
i Recerca del DIUE, Generalitat de Catalunya (grant number 2017SGR1577).
This research was also partially funded by CERCA Programme/Generalitat de


https://doi.org/10.1186/s13148-019-0674-5

Palma-Gudiel et al. Clinical Epigenetics (2019) 11:73

Catalunya "la Caixa” Foundation (LCF/PR/GN14/10270005), and AGAUR 2017
SGR grant number 1531. The organizations listed above had no further role
in study design, in the collection, analysis and interpretation of data, in the
writing of the report, and in the decision to submit the paper for
publication.

Availability of data and materials

The datasets used and/or analyzed during the current study together with
the associated relevant meta-data are available from the corresponding au-
thor upon reasonable request.

Authors’ contributions

HPG contributed to the statistical analyses, writing/editing the manuscript,
and prepared the figures. EE and FC contributed to the acquisition of the
data, and writing/editing the manuscript. SM performed the methylation
analysis and contributed to the statistical analysis. AZ contributed to the
interpretation of the results and editing the manuscript. LF contributed to
the conception and design of the work, acquisition of data, and writing/
editing the manuscript. All authors read and approved the manuscript.

Ethics approval and consent to participate

Written informed consent was obtained from all participants after a detailed
description of the study aims and design, as approved by the Bioethics
Committee of the University of Barcelona. All procedures contributing to this
work were performed in accordance with the Helsinki Declaration of 1975, as
revised in 2008.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Evolutionary Biology, Ecology and Environmental Sciences,
Faculty of Biology, University of Barcelona (UB), Avda. Diagonal 643 2n A,
08028 Barcelona, Spain. “Centro de Investigacion Biomédica en Red en Salud
Mental (CIBERSAM), Madrid, Spain. 3Fetal i+D Fetal Medicine Research Center,
BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine
(Hospital Clinic and Hospital Sant Joan de Déu), Institut Clinic de
Ginecologia, Obstetricia i Neonatologia, Institut d'Investigacions Biomediques
August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain. “Center for
Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain. >Cancer
Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research
Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. 6Departments
of Psychiatry and Genetics, University of North Carolina, Chapel Hill, NC, USA.

Received: 21 January 2019 Accepted: 26 April 2019
Published online: 09 May 2019

References

1. Graignic-Philippe R, Dayan J, Chokron S, Jacquet AY, Tordjman S. Effects of
prenatal stress on fetal and child development: A critical literature review.
Neurosci Biobehav Rev. 2014:43:137-62 Elsevier Ltd.

2. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA
methylation signatures link prenatal famine exposure to growth and
metabolism. Nat Commun. 2014;5:5592.

3. Palma-Gudiel H, Cirera F, Crispi F, Eixarch E, Fafanas L. The impact of
prenatal insults on the human placental epigenome: A systematic review.
Neurotoxicol Teratol Pergamon. 2018;66:80-93.

4. Horvath S. DNA methylation age of human tissues and cell types. Genome
Biol. 2013;14:R115.

5. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al.
Genome-wide methylation profiles reveal quantitative views of human
aging rates. Mol Cell. 2013;49:359-67 Elsevier Inc.

18.

19.

20.

22.

23.

24.

25.

26.

Page 9 of 10

Knight AK, Craig JM, Theda C, Baekvad-Hansen M, Bybjerg-Grauholm J,
Hansen CS, et al. An epigenetic clock for gestational age at birth based on
blood methylation data. Genome Biol. 2016;17:1-11.

Zannas AS, Arloth J, Carrillo-Roa T, lurato S, Roh S, Ressler KJ, et al.
Lifetime stress accelerates epigenetic aging in an urban, African
American cohort: Relevance of glucocorticoid signaling. Genome Biol.
2015;16:1-12.

Chen B, Marioni RE, Bressler J, Fornage M, Studenski S, Vandiver AR, et al.
DNA methylation-based measures of biological age : meta-analysis
predicting time to death. Aging (Albany NY). 2016;8:1-22.

Declerck K, Vanden Berghe W. Back to the future: epigenetic clock plasticity
towards healthy aging. Mech Ageing Dev. 2018;174:18-29 Elsevier.
Girchenko P, Lahti J, Czamara D, Knight AK, Jones MJ, Suarez A, et al.
Associations between maternal risk factors of adverse pregnancy and birth
outcomes and the offspring epigenetic clock of gestational age at birth.
Clinical Epigenetics. 2017,9:1-14.

Suarez A, Lahti J, Czamara D, Lahti-Pulkkinen M, Knight AK, Girchenko P, et
al. The epigenetic clock at birth: associations with maternal antenatal
depression and child psychiatric problems. J Am Acad Child Adolesc
Psychiatry. 2018,57:321-328.e2.

DeVore GR. The importance of the cerebroplacental ratio in the evaluation
of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol. 2015;213:
5-15 Elsevier Inc.

Morales-Roselld J, Khalil A, Morlando M, Papageorghiou A, Bhide A,
Thilaganathan B. Changes in fetal Doppler indices as a marker of failure
to reach growth potential at term. Ultrasound Obstet Gynecol. 2014;43:
303-10.

Bahado-Singh RO, Kovanci E, Jeffres A, Oz U, Deren O, Copel J, et al. The
Doppler cerebroplacental ratio and perinatal outcome in intrauterine
growth restriction. Am J Obstet Gynecol. 1999;180:750-6.

Peeters LLH, Sheldon RE, Jones MD Jr, Makowski EL, Meschia G. Blood flow
to fetal organs as a function of arterial oxygen content. Am J Obstet
Gynecol. 1979;135:637-46 Elsevier.

Mone F, Thompson A, Stewart MC, Ong S, Shields MD. Fetal umbilical artery
Doppler pulsatility index as a predictor of cardiovascular risk factors in
children—a long-term follow up study. J Matern Neonatal Med. 2014;27:
1633-6 Taylor & Francis.

Mone F, McConnell B, Thompson A, Segurado R, Hepper P, Stewart MC, et
al. Fetal umbilical artery Doppler pulsatility index and childhood
neurocognitive outcome at 12 years. BMJ Open. 2016;6:e008916.
Gottesman I, Shields J. A critical review of recent adoption, twin, and family
studies of schizophrenia: behavioral genetics perspectives. Schizophr Bull.
1976;2:360-401.

Cannon M, Ph D, Jones PB, Ph D, Murray RM, Sc D, et al. Obstetric
complications and schizophrenia : historical and meta-analytic review. Am J
Psychiatry. 2002;159:1080-92.

Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, et al.
Early life programming and neurodevelopmental disorders. Biol Psychiatry.
2010;68:314-9 Elsevier Inc.

Belbasis L, Kohler CA, Stefanis N, Stubbs B, Os J, Vieta E, et al. Risk factors
and peripheral biomarkers for schizophrenia spectrum disorders: an
umbrella review of meta-analyses. Acta Psychiatr Scand. John Wiley & Sons,
Ltd (10.1111). 2017;137:88-97.

Ursini G, Punzi G, Chen Q, Marenco S, Robinson JF, Porcelli A, et al.
Convergence of placenta biology and genetic risk for schizophrenia. Nat
Med. 2018;24:1-10.

Bracha HS, Torrey EF, Gottesman II, Bigelow LB, Cunniff C. Second-trimester
markers of fetal size in schizophrenia: a study of monozygotic twins. Am J
Psychiatry. 1992;149:1355-61 American Psychiatric Publishing.

Torrey EF, Taylor EH, Bracha HS, Bowler AE, McNeil TF, Rawlings RR, et
al. Prenatal origin of schizophrenia in a subgroup of discordant
monozygotic twins. Schizophr. Bull. US: National Institute of Mental
Health; 1994. p. 423-432.

Rosa A, Fafnanas L, Bracha HS, Torrey EF, van Os J. Congenital
dermatoglyphic malformations and psychosis: a twin study. Am J Psychiatry.
American Psychiatric Publishing. 2000;157:1511-3.

Fafanas L, van Os J, Hoyos C, McGrath J, Mellor CS, Murray R.
Dermatoglyphic a-b ridge count as a possible marker for developmental
disturbance in schizophrenia: replication in two samples. Schizophr Res.
1996;20:307-14.



Palma-Gudiel et al. Clinical Epigenetics

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

(2019) 11:73

Valsky DV, Eixarch E, Martinez JM, Crispi F, Gratacds E. Selective intrauterine
growth restriction in monochorionic twins: pathophysiology, diagnostic
approach and management dilemmas. Semin Fetal Neonatal Med. Elsevier
Ltd. 2010;15:342-8.

Sebire NJ, Snijders RIM, Hughes K, Sepulveda W, Nicolaides KH. The hidden
mortality of monochorionic twin pregnancies. BJOG An Int J Obstet
Gynaecol. John Wiley & Sons, Ltd (10.1111). 1997;104:1203-7.

Chalouhi GE, Stirmemann JJ, Salomon LJ, Essaoui M, Quibel T, Ville Y. Specific
complications of monochorionic twin pregnancies: twin-twin transfusion
syndrome and twin reversed arterial perfusion sequence. Semin Fetal
Neonatal Med. Elsevier Ltd. 2010;15:349-56.

Reichenberg A, Caspi A, Harrington H, Houts R, Keefe RSE, Murray RM, et al.
Static and dynamic cognitive deficits in childhood preceding adult
schizophrenia: a 30-year study. Am J Psychiatry. American Psychiatric
Publishing. 2010;167:160-9.

Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci. Nature.
Nature Publishing Group, a division of Macmillan Publishers Limited. All
Rights Reserved. 2014;511:421-7.

Lépez M, Garcia-Oguiza A, Armstrong J, Garcfa-Cobaleda I, Garcia-Mifiaur S,
Santos-Simarro F, et al. Rubinstein-Taybi 2 associated to novel EP300
mutations: deepening the clinical and genetic spectrum. BMC Med Genet.
2018;19:36.

McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman
JAS, et al. 22g11.2 deletion syndrome. Nat Rev Dis Prim. Macmillan
Publishers Limited. 2015;1:15071.

Van L, Boot E, Bassett AS. Update on the 22q11.2 deletion syndrome and its
relevance to schizophrenia. Curr Opin Psychiatry. 2017;30:191-6.

Cui I, Cui H. Antisense RNAs and epigenetic regulation. Epigenomics
[Internet]. Future Medicine. 2010;2:139-50 Available from: https://doi.org/10.
2217/epi09.46.

Tan XL, Zhai Y, Gao WX, Fan YM, Liu FY, Huang QY, et al. p300 expression is
induced by oxygen deficiency and protects neuron cells from damage.
Brain Res. 2009;1254:1-9.

Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, et al. Genetic Variations in
Tibetan Populations and High-Altitude Adaptation at the Himalayas. Mol
Biol Evol. 2011;28:1075-81.

van Erp TGM, Saleh PA, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, et al.
Contributions of genetic risk and fetal hypoxia to hippocampal volume in
patients with schizophrenia or schizoaffective disorder, their unaffected
siblings, and healthy unrelated volunteers. Am J Psychiatry. American
Psychiatric Publishing. 2002;159:1514-20.

Cannon TD, van Erp TGM, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, et
al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients,
their siblings, and controls. Arch Gen Psychiatry. 2002;,59:35-41.

Cannon TD, Yolken R, Buka S, Torrey EF. Decreased neurotrophic response
to birth hypoxia in the etiology of schizophrenia. Biol Psychiatry. 2008,64:
797-802.

Parets SE, Conneely KN, Kilaru V, Fortunato SJ, Syed TA, Saade G, et al. Fetal
DNA methylation associates with early spontaneous preterm birth and
gestational age. PLoS One. Public Library of Science. 2013;8:267489.
Cérdova-Palomera A, Alemany S, Fatjo-Vilas M, Goldberg X, Leza JC,
Gonzalez-Pinto A, et al. Birth weight, working memory and epigenetic
signatures in IGF2 and related genes: a MZ twin study. PLoS One. Public
Library of Science. 2014;9:2103639.

Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, et al.
Disease-associated epigenetic changes in monozygotic twins discordant for
schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20:4786-96.

Essex MJ, Thomas Boyce W, Hertzman C, Lam LL, Armstrong JM, Neumann SMA,
et al. Epigenetic vestiges of early developmental adversity: childhood stress
exposure and DNA methylation in adolescence. Child Dev. 2013,84:58-75.
Leenen FAD, Muller CP, Turner JD. DNA methylation: conducting the
orchestra from exposure to phenotype? Clin Epigenetics [Internet]. 2016;8:
92 Available from: https://doi.org/10.1186/513148-016-0256-8.

Sago H, Ishii K, Sugibayashi R, Ozawa K, Sumie M, Wada S. Fetoscopic laser
photocoagulation for twin-twin transfusion syndrome. J Obstet Gynaecol
Res. John Wiley & Sons, Ltd (10.1111). 2018;44:831-9.

Robinson HP. Sonar measurement of fetal crown-rump length as means of
assessing maturity in first trimester of pregnancy. Br Med J. 1973;4:28 LP-31.

48.

49.

50.

52.

53.

54.

55.

Page 10 of 10

Aryee M, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et
al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of
Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363-9.
McCartney DL, Walker RM, Morris SW, McIntosh AM, Porteous DJ, Evans KL.
Identification of polymorphic and off-target probe binding sites on the
[llumina Infinium MethylationEPIC BeadChip. Genomics Data. 2016,9:22-4
Elsevier; [cited 2019 Apr 16];. Available from: https://www.sciencedirect.com/
science/article/pii/S221359601630071X?via%3Dihub.

Morin AM, Gatev E, McEwen LM, Maclsaac JL, Lin DTS, Koen N, et al.
Maternal blood contamination of collected cord blood can be identified
using DNA methylation at three CpGs. Clin Epigenetics. 2017,9:75.

R Development Core Team. R: A Language and environment for statistical
computing [Internet]. Team RDC, editor. R Found. Stat. Comput. R
Foundation for Statistical Computing; 2011. p. 409. Available from: http://
WWW.I-project.org

Simpkin AJ, Suderman M, Howe LD. Epigenetic clocks for gestational age:
Statistical and study design considerations. Clin Epigenetics. Clin
Epigenetics. 2017;9:1-2.

Mcewen LM, Jones MJ, Tse D, Lin S, Edgar RD, Husquin LT, et al. Systematic
evaluation of DNA methylation age estimation with common preprocessing
methods and the Infinium MethylationEPIC BeadChip array. Clin Epigenetics.
Clin Epigenetics. 2018;10:123.

Houseman E, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinformatics. 2012;13:86.

Cérdova-Palomera A, Fatjo-Vilas M, Palma-Gudiel H, Blasco-Fontecilla H,
Kebir O, Fafianés L. Further evidence of DEPDC7 DNA hypomethylation in
depression: a study in adult twins. Eur Psychiatry. 2015;30:715-8.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.2217/epi.09.46
https://doi.org/10.2217/epi.09.46
https://doi.org/10.1186/s13148-016-0256-8
https://www.sciencedirect.com/science/article/pii/S221359601630071X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S221359601630071X?via%3Dihub
http://www.r-project.org
http://www.r-project.org

	Abstract
	Background
	Results
	Conclusions

	Main text
	Background
	Results
	GA estimation using Knight’s epigenetic clock
	Association between ΔGA and CPR
	Epigenetic exploration of placental PRS for schizophrenia with regard to CPR
	DNA methylation exploration of EP300 gene

	Discussion
	Conclusions
	Methods
	Study population
	Fetal ultrasound assessment
	DNA methylation
	Statistical analyses


	Additional file
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

