A Ferromagnetic Salicylaldoximate/Azide $\mathrm{Mn}^{\mathrm{II}}{ }_{2} \mathrm{Mn}^{\mathrm{III}}{ }_{6}$ Cluster with an $\mathrm{S}=\mathbf{1 7}$ Ground State and a Single-Molecule-Magnet Response

R. Vicente $, *, \dagger$ M. S. El Fallah, \dagger B. Casanovas,\dagger M. Font-Bardia,\dagger and A. Escuer*, \dagger
\dagger Department de Quimica Inorgànica i Orgànica, Secció Inorgànica and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí Franquès 1-11, 08028 Barcelona, Spain
\ddagger Departament de Mineralogia, Cristal•lografia i Dipòsits Minerals and Unitat de Difraccióde R-X, Centre Científic i Tecnològic de la Universitat de Barcelona, Universitat de Barcelona, Solé i Sabarís 13, 08028 Barcelona, Spain

Ramón Vicente: rvicente@ub.edu
Albert Escuer: albert.escuer@ub.edu

Abstract

: One new $\mathrm{Mn}^{\mathrm{II}}{ }_{2} \mathrm{Mn}^{\mathrm{III}}{ }_{6}$ cluster exhibiting an $\mathrm{S}=17$ spin ground state and single-molecule-magnet properties has been designed linking $\mathrm{Mn}^{\mathrm{III}}{ }_{3}$-salicylaldoximate triangles and tetracoordinated $\mathrm{Mn}^{\mathrm{II}}$ cations by means of end-on azido bridges. The ferromagnètic coupling has been rationalized as a function of their structural parameters.

After the discovery of the first members of the $\mathrm{Mn}^{\mathrm{III}}{ }_{6}$ family of single molecule magnets (SMMs) employing the salicylaldoxime (H_{2} salox) ligand ${ }^{1}$ and further systematic study in the last 10 years by Brechin et al., ${ }^{2-11}\left\{\mathrm{Mn}^{\mathrm{III}}{ }_{3}\left(\mu_{3}-\mathrm{O}\right)\right\}$ triangular fragments with salicyloximato side bridges have been one of the most fruitful and better studied systems in the search for a SMM response. The factors that control the sign and magnitude of the magnetic interaction inside the triangular units were rationalized as a function of the $\mathrm{Mn}^{\text {III }}-\mathrm{N}-\mathrm{O}-\mathrm{Mn}^{\text {III }}$ torsion angle, establishing the border between ferromagnetic (FM) and antiferromagnetic (AF) interaction around $31^{\circ} 4,5$.
The ground state for a $\left\{\mathrm{Mn}^{\mathrm{II}}{ }_{3}\left(\mu_{3}-\mathrm{O}\right)\right\}$ triangle is restricted to the $\mathrm{S}=0-6$ range, but the hexanuclear systems, consisting of two linked triangles by means of $\eta^{2}: \eta^{1}: \eta^{1}: \mu_{3}$-oximato bridges, can reach the larger $\mathrm{S}=12$ ground state (Chart 1). It is worth noting that for these systems the easy axes of the $\mathrm{Mn}^{\mathrm{III}}$ cations are roughly parallel, and they reached the largest energy barrier to magnetization reversal for d transition-metal clusters ${ }^{6}$ In addition to the $\mathrm{Mn}^{\text {III }}{ }_{3}$ and $\mathrm{Mn}^{\mathrm{III}}{ }_{6}$ cores, other molecular clusters, based in the $\left\{\mathrm{Mn}^{\mathrm{III}_{3}}\left(\mu_{3}-\mathrm{O}\right)\right\}$ fragment, are those consisting of four stacked triangles ${ }^{12}\left(\mathrm{Mn}^{\mathrm{III}}{ }_{12}\right), \mathrm{Mn}^{\mathrm{II}}$ bicapped triangles ${ }^{13,14}$ with a $\mathrm{Mn}^{\mathrm{H}_{2}}\left\{\mathrm{Mn}^{\mathrm{III}}\left(\mu_{3}-\mathrm{O}\right)\right\}$ core, or $\mathrm{Mn}^{\mathrm{II}}$ bicapped hexanuclears with a $\mathrm{Mn}^{\mathrm{HI}}\left\{\mathrm{Mn}^{\mathrm{II}}{ }_{6}\left(\mu_{3}-\right.\right.$ $\mathrm{O})_{2}{ }^{15-17}$ core. The presence of two additional $\mathrm{Mn}^{1 \mathrm{II}}$ cations can reduce or increase the S ground state by up to five units as a function of the sign and magnitude of the magnetic interactions. In fact, Hendrickson proved experimentally that the pentanuclear $\mathrm{Mn}^{\mathrm{II}}\left\{\mathrm{Mn}^{\mathrm{III}} 3\left(\mu_{3}-\mathrm{O}\right)\right\}$ core can reach up to the maximum S $=11$ ground state, ${ }^{14}$ whereas only AF interactions between the $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Mn}^{\text {III }}$ cations have been found until now for the $\mathrm{Mn}^{\mathrm{II}}\left\{\mathrm{Mn}^{\mathrm{III}} 6\left(\mu_{3}-\mathrm{O}\right)_{2}\right\}$ core, resulting in $\mathrm{S}=1$ and 7 ground states. ${ }^{15-17}$ On the basis of these premises, we have designed the synthesis of one new octanuclear compound with a $\mathrm{Mn}^{\mathrm{II}}{ }_{2}\left\{\mathrm{Mn}^{\mathrm{III}}{ }_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\right\}$ core with the goal of obtaining FM interactions between the inner hexanuclear fragment and the capping $\mathrm{Mn}^{\mathrm{II}}$ cations and reaching the $\mathrm{S}=17$ record ground state for this wide family of complexes. The reaction of H_{2} salox, sodium azide, and manganese chloride in a methanolic medium, employing $\operatorname{Pr}_{4} \mathrm{NOH}$ as a base, yields compound $\left.\left(\operatorname{Pr}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}} \mathrm{Mn}_{6}{ }^{\text {III }}(\mathrm{O})_{2} \text {-(salox }\right)_{6}\left(\mathrm{~N}_{3}\right)_{6}(\mathrm{Cl})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $\left(1 \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$; Supporting Information, synthetic details). Analysis of its magnetic properties reveals a SMM response with a medium energy barrier. Complex 1 can be described as two stacked $\left\{\mathrm{Mn}^{\mathrm{II}}{ }_{3}\left(\mu_{3}-\right.\right.$ O)(salox) $\left.)_{3}\right\}$ triangles bicapped by $\mathrm{Mn}^{\text {II }}$ cations (Figure 1, and BSV calculations in Table S1). The $\mathrm{Mn}^{\text {III }}$ cations are linked by salox ${ }^{2-}$ ligands, four of them in the main plane of the triangular subunits in its $\eta^{1}: \eta^{1}: \eta^{1}: \mu^{2}$ coordination mode and two in its $\eta^{1}: \eta^{2}: \eta^{1}: \mu^{3}$ mode, connecting both triangles. Mn1 and Mn3 are hexacoordinated, whereas Mn2 shows a square-pyramidal environment, with weak contact with the phenoxo O^{\prime} atom. Each triangular subunit is capped by one $\mathrm{Mn}^{\mathrm{II}}$ cation, linked by means of three endon azido bridges with similar $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\text {azido }}-\mathrm{Mn}^{\text {III }}$ bond angles close to 104.0°. The $\mathrm{Mn}^{\mathrm{II}}$ cation is tetracoordinated, and the coordination sphere is fulfilled with one Cl^{-}anion. $\mathrm{Mn}-\mathrm{N}-\mathrm{O}-\mathrm{Mn}$ torsion angles are relatively low with $13.7(5)^{\circ}, 25.5(5)^{\circ}$, and $32.1(4)^{\circ}$ values. Charge balance is achieved with two $\mathrm{Pr}_{4} \mathrm{~N}^{+}$cations, which efficiently isolate the octanuclear clusters. The only intermolecular interaction involves the coordinated and crystallization water molecules and one azidoNatom. Additional plots and structural data can be found in Tables S2 and S3 and Figures S1 and S2.
The room temperature $\chi_{\mathrm{M}} \mathrm{T}$ value is $28.96 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}$, slightly larger than the expected value for two $\mathrm{Mn}^{\mathrm{II}}$ and six $\mathrm{Mn}^{\text {III }}$ noninteracting ions ($\mathrm{g}=2.00$; Figure 2). Upon cooling, $\chi_{\mathrm{M}} \mathrm{T}$ increases up to a maximum value of $100.6 \mathrm{~cm}^{3} \cdot \mathrm{~mol}-1 \cdot \mathrm{~K}$ at 5 K , and below this temperature, $\chi_{\mathrm{M}} \mathrm{T}$ decays to a final value of $85.4 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}$ at 2 K . The most simplified coupling scheme to describe the system requires four J constants, assuming J_{1} as the intertriangle interaction, J_{2} and J_{3} as the interactions mediated by the Mn^{-} $\mathrm{O}-\mathrm{N}-\mathrm{Mn}$ pathways with torsions larger or lower than 30°, respectively, and J_{4} as the $\mathrm{Mn}^{\mathrm{II} \cdots} \mathrm{Mn}^{\mathrm{III}}$ interaction mediated by end-on azido bridges (Figure S3). The system was fitted ${ }^{18}$ isotropically in the $25-300 \mathrm{~K}$ range of temperature to avoid low-temperature effects as zero-field splitting. Best-fit parameters under these conditions were $J_{1}=+3.9 \mathrm{~cm}^{-1}, J_{2}=$ $14.0 \mathrm{~cm}^{-1}, J_{3}=-2.7 \mathrm{~cm}^{-1}, J_{4}=+7.4 \mathrm{~cm}^{-1}$, and $\mathrm{g}=1.88$ with $R=6.0 \times 10^{-4}$, suggesting an $S=17$ ground state. As will be further discussed, the sign and magnitude of the J and g constants lie in the normal range for these kinds of systems, but absolute values of J are obviously poorly reliable as a consequence of the simplified fit procedure.

Magnetization measurements at 2 K in the $0-5 \mathrm{~T}$ field range show a maximum unsaturated value equivalent to 28.2 electrons, which can be fitted ${ }^{18}$ to the maximum spin $S=17$ for $g=1.87$ and $D \approx$ $0.15 \mathrm{~cm}^{-1}$ (Figure 2). In light of these results and the more reliable further fit of the reduced magnetization, which gives a D value of $-0.12 \mathrm{~cm}^{-1}$ (Figure S 4), alternating-current measurements were performed in the $1488-10 \mathrm{~Hz}$ range of frequencies.
Well-defined χ " peaks in the $3.96-2.85 \mathrm{~K}$ range were observed (Figure 3). The Arrhenius fit of the peak maxima gives $E_{\mathrm{a}}=35.2 \mathrm{~cm}^{-1}, \tau_{0}=3.25 \times 10^{-10} \mathrm{~s}$, and $D=-0.12 \mathrm{~cm}^{-1}$, in excellent agreement with the D value obtained from the reduced magnetization measurement and indicating that tunnelling relaxation is not operative. Measurements at 2 K do not show magnetic hysteresis.
Nevertheless, an interesting question arises from analysis of the structural data: following the rule of the $\mathrm{Mn}^{I I I}-\mathrm{N}-\mathrm{O}-\mathrm{Mn}^{\mathrm{III}}$ torsion angle ${ }^{5}$ and compared with $\mathrm{Mn}^{\text {III }}{ }_{6}$ complexes with a similar range of torsion angles (summarized in Table S4), ${ }^{10,19-21}$ the inner hexanuclear unit should have an $S=4$ local spin and, apparently, complex 1 should only reach $S=9$ if the interaction with the $\mathrm{Mn}^{\mathrm{II}}$ cations was FM. Thus, why does this complex reach its maximum spin?
The answer requires detailed analysis of selected bond parameters of the related octanuclear $\left[\mathrm{Mn}_{2}{ }^{\text {II }} \mathrm{Mn}_{6}{ }^{\mathrm{III}}(\mathrm{O})_{2}(\text { napthsalox })_{6}\left(\mathrm{~N}_{3}\right)_{6}(\mathrm{MeOH})_{8}\right]$ and $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}} \mathrm{Mn}_{6}{ }^{\mathrm{III}}(\mathrm{O})_{2}(\mathrm{Mesao})_{6}\left(\mathrm{~N}_{3}\right)_{6}(\mathrm{MeOH})_{8}\right]$ clusters (CCDC codes CIGYIB and CIGYOH) $)^{15,16}$ and the pentanuclear $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}} \mathrm{Mn}_{3}{ }^{\mathrm{III}}(\mathrm{O})-(\text { salox })_{3}\left(\mathrm{~N}_{3}\right)_{6} \mathrm{X}_{2}\right]^{2-}(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br})$ and $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}} \mathrm{Mn}_{3}{ }^{\mathrm{III}}(\mathrm{O})(\mathrm{Mesao})_{3}\left(\mathrm{~N}_{3}\right)_{6} \mathrm{Cl}_{2}\right]^{2-}$ complexes, 13,14 (CCDC codes TEZNES, WAJKOJ, and WAJKUP; Table S5). If the capping $\mathrm{Mn}^{\mathrm{II}}$ cation is octahedrally coordinated, as occurs for CIGYIB and CIGYOH, the $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\text {azido }}$ bond distances are larger than $2.2 \AA$, the $\mathrm{N}_{\text {azido }}-\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\text {azido }}$ angles are close to 90°, and the $\mathrm{Mn}^{\text {II }}-\mathrm{N}_{\text {azido }}-\mathrm{Mn}^{\text {III }}$ bond angles are close to 120°. When the capping $\mathrm{Mn}^{\text {II }}$ cation is tetrahedrally coordinated, the $\mathrm{N}_{\text {azido }}-\mathrm{Mn}^{\mathrm{IL}}-\mathrm{N}_{\text {azido }}$ bond angles increase up to 110° and the remainder of the bond parameters are also modified: $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\text {azido }}$ distances become $0.1 \AA$ shorter, axial $\mathrm{Mn}^{\text {III }}-\mathrm{N}_{\text {azido }}$ distances increase, the $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\text {azido }}-\mathrm{Mn}^{\text {III }}$ bond angles decrease below 110°, and the $\mathrm{Mn}^{\text {II }}$ cation is closer to the centroid of the $\mathrm{Mn}^{\mathrm{III}}{ }_{3}$ plane, giving a compressed $\left\{\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{N}_{3}\right)_{3} \mathrm{Mn}^{\mathrm{III}}{ }_{3}\right\}$ fragment (Figure 4).
End-on azido bridges usually induce FM interaction, ${ }^{22}$ but for large $\mathrm{Mn}-\mathrm{N}-\mathrm{Mn}$ bond angles, it becomes AF, as was demonstrated by Alvarez et al. ${ }^{23}$ Tetrahedral coordination of the capping $\mathrm{Mn}^{\mathrm{II}}$ for 1 leads to $\mathrm{Mn}^{\text {II }}-\mathrm{N}_{\text {azido }}-\mathrm{Mn}^{\text {III }}$ bond angles in the typical range of FM interactions.
When the oximate torsion and azide bond angle rules are combined, the S ground state for the systems in which the interactions inside the $\left\{\left(\mu_{3}-\mathrm{O}\right) \mathrm{Mn}^{\mathrm{III}}{ }_{3}\right\}$ units are FM is trivial: S ground states become a combination of the local S_{L} spin of the inner hexanuclear or trinuclear fragments and the $5 / 2$ spins of each $\mathrm{Mn}^{\mathrm{II}}$, and thus applying $S=\left|S_{\mathrm{L}} \pm 5 / 2 \pm 5 / 2\right|$, we obtain $|12-5 / 2-5 / 2|=7$ for CIGYOH, $6+5 / 2$ $+5 / 2 \mid=11$ for TEZNES or WAJKOJ, and $|6-5 / 2+5 / 2|=6$ for WAJKUP, in full agreement with the experimental values (Table $S 5$). In contrast, for the octanuclear systems with $S=4$ local spin for the inner hexanuclear unit, the overall S ground state is a function of the dominant interaction, and in that case, the $S=\left|S_{\mathrm{L}} \pm 5 / 2 \pm 5 / 2\right|$ sum is no longer applicable because all intermediate S ground states are possible. In fact, if the $\mathrm{Mn}^{\mathrm{IL}}-\mathrm{Mn}^{\mathrm{III}}$ interaction is AF and dominant, the ground state will be $S=7$, and if this interaction is FM and dominant, the ground state will be $S=17$. In contrast, if the $\mathrm{Mn}^{\mathrm{II}}-\mathrm{Mn}^{\text {III }}$ interaction is weakly AF, the ground state must be $S=1$, as occurs for the octanuclear complex CIGYIB (Figure S5).
In conclusion, we have reported a new member of the $\mathrm{Mn}^{\mathrm{II}}{ }_{2} \mathrm{Mn}^{\mathrm{III}}{ }_{6}$ family of clusters based on bicapped stacked $\mathrm{Mn}^{\text {III }}$ triangles. The new system is FM, reaching the limit of the $S=17$ ground state, and it is moderately anisotropic and exhibits a SMM response with $E_{a}=35 \mathrm{~cm}^{-1}$. The FM response is attributed to a subtle combination of factors such as the tetrahedral environment of the $\mathrm{Mn}^{\mathrm{II}}$ cation and the end-on azido bridges with low $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}-\mathrm{Mn}^{\mathrm{III}}$ bond angles.

References

Milios, C. J.; Raptopoulou, C. P.; Terzis, A.; Lloret, F.; Vicente, R.; Perlepes, S. P.; Escuer, A. Angew. Chem., Int. Ed. 2004, 43, 210-212.
Milios, C. J.; Vinslava, A.; Wood, P. A.; Parsons, S.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P.; Brechin, E. K. J. Am. Chem. Soc. 2007, 129, 8-9.
Milios, C. J.; Vinslava, A.; Wernsdorfer, W.; Prescimone, A.; Wood, P. A.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2007, 129, 6547 - 6561.

Milios, C. J.; Inglis, R.; Vinslava, A.; Bagai, R.; Wernsdorfer, W.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2007, 129, 12505-12511.
Milios, C. J.; Inglis, R.; Bagai, R.; Wernsdorfer, W.; Collins, A.; Moggach, S.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. Chem. Commun. 2007, 3476-3478.
Milios, C. J.; Vinslava, A.; Wernsdorfer, W.; Moggach, S.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2007, 129, 2754-2755.
Milios, C. J.; Piligkos, S.; Brechin, E. K. Dalton Trans. 2008, 1809-1817.
Inglis, R.; Milios, C. J.; Jones, L. F.; Piligkos, S.; Brechin, E. K. Chem. Commun. 2012, 48, 181-190.
Martinez-Lillo, J.; Tomsa, A. R.; Li, Y.; Chamoreau, L. M.; Cremades, E.; Ruiz, E.; Barra, A. L.; Proust, A.; Verdaguer, M.; Gouzerh, P. Dalton Trans. 2012, 41, 13668-13681.
Martinez-Lillo, J.; Dolan, N.; Brechin, E. K. Dalton Trans. 2013, 42, 12824-12827.
Martinez-Lillo, J.; Dolan, N.; Brechin, E. K. Dalton Trans. 2014, 43, 4408-4414.
Cordero, B.; Roubeau, O.; Teat, S. J.; Escuer, A. Dalton Trans. 2011, 40, 7127-7129.
Yang, C.-I.; Wernsdorfer, W.; Lee, G.-H.; Tsai, H.-L. J. Am. Chem. Soc. 2007, 129, 456-457.
Feng, P. L.; Stephenson, C. J.; Amjad, A.; Ogawa, G.; del Barco, E.; Hendrickson, D. N. Inorg. Chem. 2010, 49, 1304 - 1306.
Milios, C. J.; Inglis, R.; Vinslava, A.; Prescimone, A.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. Chem. Commun. 2007, 2738-2740.
Milios, C. J.; Inglis, R.; Jones, L. F.; Prescimone, A.; Parsons, S.; Wernsdorfer, W.; Brechin, E. K. Dalton Trans. 2009, 2812-2822.
Escuer, A.; Cordero, B.; Font-Bardia, M.; Teat, S. J.; Roubeau, O. Eur. J. Inorg. Chem. 2016, 2016, 1232-1241. PHI program: Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. J. Comput. Chem. 2013, 34, 1164-1175.
Inglis, R.; Jones, L. F.; Milios, C. J.; Datta, S.; Collins, A.; Parsons, S.; Wernsdorfer, W.; Hill, S.; Perlepes, S. P.; Piligkos, S.; Brechin, E. K. Dalton Trans. 2009, 3403-3412.
Holynska, M.; Dehnen, S. Z. Anorg. Allg. Chem. 2012, 638, 763-769.
Inglis, R.; Dalgarno, S. J.; Brechin, E. K. Dalton Trans. 2010, 39, 4826-4831.
Escuer, A.; Esteban, J.; Perlepes, S. P.; Stamatatos, T. C. Coord. Chem. Rev. 2014, 275, 87-129.
Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J. Am. Chem. Soc. 1998, 120, 11122-11129.

Legends to figures

Chart 1. Isolated, Stacked, or Capped $\mathrm{Mn}^{\mathrm{III}}{ }_{3}$-Salox Triangles and Their Range of S Ground States ${ }^{\mathrm{a}}$ ${ }^{\text {a }}$ Color key: $\mathrm{Mn}^{\text {II }}$, orange; $\mathrm{Mn}^{\text {III }}$, dark green; O, red; N , navy blue.

Figure 1. Labelled plot of the core of compound 1.
Figure 2. $\chi_{\mathrm{M}} \mathrm{T}$ product for compound 1. Inset: magnetization plot at 2 K . Solid lines show the best obtained fits.

Figure 3. Alternating-current measurements for compound 1. Inset: Arrenhius plot from the position of the $\chi^{\prime \prime}$ peaks.

Figure 4. Triangular $\left.\left\{\mathrm{Mn}^{\mathrm{III}}{ }_{3}\left(\mu_{3}-\mathrm{O}\right) \text { (oximate) }\right)_{3}\right\}$ fragments with end-on azido bridges linking an additional $\mathrm{Mn}^{\text {II }}$ cation in octahedral or tetrahedral environments.

179
180
181

$S=6,11$

$S=1,7$

$S=0-6$

$S=4-12$

$S=8$

FIGURE 2

195
196
197
198

FIGURE 3

$\mathrm{Mn}-\mathrm{N}-\mathrm{Mn}>120^{\circ}$

$\mathrm{Mn}-\mathrm{N}-\mathrm{Mn}<110^{\circ}$

