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Abstract  33 

 Economically motivated food fraud has increased in recent years, with 34 

adulterations and substitutions of high-quality products being common practice. 35 

Moreover, this issue can affect food safety and pose a risk to human health by causing 36 

allergies through nut product adulterations. Therefore, in this study, high-performance 37 

liquid chromatography with fluorescence detection (HPLC-FLD) fingerprints were used 38 

for classification of ten types of nuts, using partial least squares regression-discriminant 39 

analysis (PLS-DA), as well as for the detection and quantitation of almond-based 40 

product (almond flour and almond custard cream) adulterations with hazelnut and 41 

peanut, using partial least squares regression (PLS). A satisfactory global nut 42 

classification was achieved with PLS-DA. Paired PLS-DA models of almonds in front 43 

of their adulterants were also evaluated, producing a classification rate of 100%. 44 

Moreover, PLS regression produced low prediction errors (below 6.1%) for the studied 45 

adulterant levels, with no significant matrix effect observed.     46 

 47 
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1. INTRODUCTION 54 

Food fraud, which costs the global food industry approximately 30 billion euros a year, 55 

has increased because of the complex nature of the globalised world, where many 56 

individuals participate in the food chain between production and consumption. In the 57 

European Union (EU), the number of requests concerning fraud suspicions sent to the 58 

EU Administrative Assistance and Cooperation (AAC) system had increased by 49% 59 

from 2016 to 2018 (European Comission, 2018). There are different ways of 60 

perpetuating food fraud, such as deception during manufacturing, use of illicit supply 61 

chains, duplication, misrepresentation, and manipulation of the food product (e.g., 62 

adulteration, addition, substitution, etc.) (Manning & Soon, 2019). Although it is 63 

generally economically motivated, the addition or replacement of certain substances can 64 

be extremely dangerous for human health, for example, by causing allergies, thereby 65 

turning a food authentication issue into a food safety one (Fritsche, 2018). 66 

Nuts and seeds, which are widely consumed mainly due to their beneficial effects on 67 

human health (De Souza, Schincaglia, Pimente, & Mota, 2017), encompass a wide 68 

range of food products such as almonds, Brazil nuts, cashew nuts, hazelnuts, 69 

macadamia nuts, peanuts, pecans, pine nuts, pistachios, pumpkin seeds, sunflower 70 

seeds, and walnuts. Some of them are at medium or high risk for food fraud (Food 71 

Fraud Risk Information, 2019), being susceptible to adulterations, replacements or 72 

substitutions with cheaper and lower-quality products, as well as to their characteristics 73 

being misrepresented (e.g., origin, year of the stock or organic production). For 74 

instance, almonds, which are one of the most expensive internationally produced nuts 75 

(more than 2 million tonnes produced in 2017, with USA the main producer (Food and 76 

Agriculture Organization of the United Nations, 2019)), as well as their byproducts 77 

(snacks, baked goods and pastry), can be partly or totally replaced with peanut or 78 
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hazelnut, constituting not only an economic deception, but also a threat to human health 79 

by causing allergies (Mustafa et al., 2019). Therefore, there is an increasing need to 80 

develop new analytical methodologies to guarantee the authenticity and safety of 81 

almond and almond-based products.    82 

To date, most of the analytical methods described in the literature for almond 83 

authentication deal with its agricultural origin, with only a few focusing on its 84 

adulteration. For instance, several analytical platforms based on thermal analysis 85 

(Beltrán-Sanahuja, Grané-Teruel, Martín-Carratalá, & Garrigós-Selva, 2011), gas 86 

chromatography coupled to mass spectrometry for the determination of 12 targeted 87 

volatile compounds (Beltrán-Sanahuja, Ramos-Santonja, Grané-Teruel, Martín-88 

Carratalá, & Garrigós-Selva, 2011), high-performance liquid chromatography with an 89 

evaporative light-scattering detector (HPLC-ELSD) for triacylglycerol profiling 90 

(Barreira et al., 2012), and approaches combining more than one technique (Čolić et al., 91 

2017; García, Beltrán Sanahuja, & Garrigós Selva, 2013), have been successfully 92 

employed when combined with chemometric techniques for origin classification. 93 

However, to the best of our knowledge, there are very few studies investigating the 94 

adulteration of almond-based products. Multi-elemental profiling by inductively 95 

coupled plasma-optical emission spectrometry (ICP-OES) has been used to detect and 96 

quantitate the adulteration of almond powder with peanut (Esteki, Vander Heyden, 97 

Farajmand, & Kolahderazi, 2017), while fatty acid profiles obtained with gas 98 

chromatography with flame-ionisation detection (GC-FID) have been employed to 99 

study apricot kernel as an adulterant (Esteki, Farajmand, Kolahderazi, & Simal-100 

Gandara, 2017). In both cases, multivariate data analysis was also used to quantify the 101 

adulterant level in the studied samples.  102 
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While most of the methods described in the literature for almond authentication are 103 

based on targeted profiling (a given group of known chemical compounds are 104 

determined), chromatographic fingerprinting involving non-targeted instrumental 105 

signals has emerged as a promising strategy in the food authentication field since it does 106 

not need specific biomarkers. This approach has already been proven in some studies on 107 

complex food matrices (Cuadros-Rodríguez, Ruiz-Samblás, Valverde-Som, Pérez-108 

Castaño, & González-Casado, 2016). In fact, high-performance liquid chromatography 109 

with ultraviolet detection (HPLC-UV) fingerprinting has been demonstrated to be able 110 

to completely distinguish almond samples from peanut and hazelnut ones, although it 111 

could not discriminate the whole types of the studied nuts (Campmajó et al., 2019).  112 

Therefore, this study aimed to classify nuts according to their typology, independently 113 

of their processing thermal treatment (natural, toasted or fried), by high-performance 114 

liquid chromatography with fluorescence detection (HPLC-FLD) fingerprinting, which 115 

is a more selective technique than HPLC-UV, and partial least squares regression-116 

discriminant analysis (PLS-DA). Moreover, the chromatographic fingerprints were also 117 

used to detect and quantitate hazelnut and peanut adulterations of almond and almond-118 

based products by partial least squares (PLS) regression.   119 

 120 

2. MATERIALS AND METHODS 121 

2.1 Reagents and solutions 122 

Unless otherwise stated, all the reagents were of analytical grade. Purified water was 123 

obtained using an Elix® 3 coupled to a Milli-Q® system (Millipore Corporation, 124 

Bedford, MA, USA) and filtered through a 0.22-µm nylon membrane. Acetone, hexane 125 

and formic acid (96%) were obtained from Sigma-Aldrich (St. Louis, MO, USA), 126 

whereas UHPLC-gradient grade methanol was from Panreac (Barcelona, Spain).  127 
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2.2 Instrumentation 128 

The chromatographic system consisted of an Agilent 1100 Series HPLC instrument 129 

equipped with a binary pump (G1312A), a degasser (G1379A), an automatic injection 130 

system (G1329B), a fluorescence detector (G1321A) and a computer with the Agilent 131 

ChemStation software, all from Agilent Technologies (Waldbronn, Germany). The 132 

HPLC-FLD fingerprints were obtained by employing a Kinetex C18 column(100 mm × 133 

4.6 mm id., 2.6 µm particle size), which was purchased from Phenomenex (Torrance, 134 

CA, USA), and a previously developed gradient elution mode with 0.1% (v/v) formic 135 

acid aqueous solution (solvent A) and methanol (solvent B) constituting the components 136 

of the mobile phase (Campmajó et al., 2019). The flow rate was 0.4 mL·min
-1 

and the 137 

injection volume 5 µL. For fluorescence acquisition, 280 nm and 350 nm were chosen 138 

as the excitation and emission wavelengths, respectively.    139 

2.3 Samples and sample treatment 140 

For nut classification, 149 nut samples obtained from Barcelona markets, belonging to 141 

various classes and some of them processed with different thermal treatments, were 142 

analysed (sample details are described in Table 1). Method repeatability and the 143 

robustness of the chemometric results were controlled by using a quality control (QC) 144 

sample, which was a mix prepared with 50 µL of each nut sample extract.   145 

Hazelnuts and peanuts were studied as potential adulterants of almonds and almond-146 

based products. Thus, they were added in proportions from 0 to 100%, as shown in 147 

Table 2, to two different almond matrices: natural almond flour and almond custard 148 

cream. The cream was made from hen eggs, milk, sugar, and corn flour. Afterwards, the 149 

almond custard cream and its adulterated samples were obtained by adding the 150 

adulterants as described above. Five replicates of each percentage of adulteration were 151 
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prepared, giving a total of 105 samples for each studied almond-based product. In this 152 

study, an additional 50% adulterated sample was prepared for use as the QC sample.  153 

A simple two-step sample treatment was performed following a previously described 154 

method (Campmajó et al., 2019) based on an extraction with acetone:water (70:30 v/v) 155 

followed by a defatting step with hexane. Briefly, 0.125 g of the nut product were 156 

extracted by stirring in a Vortex (Stuart, Stone, United Kingdom) and sonication (5510 157 

Branson ultrasonic bath, Hampton, NH, USA) in 3 mL of the extracting solvent. Then, 158 

centrifugation was performed for 30 min at 3,400 rpm (ROTANTA 460 RS Centrifuge, 159 

Hettich, Germany). the resulting supernatant extract was defatted with 3 mL of hexane, 160 

also by stirring in a Vortex followed by centrifugation for 15 min. After filtering the 161 

sample extract with a 0.22-µm nylon filter (Scharlab, Sentmenat, Spain), it was stored at 162 

-18°C in a 2-mL glass injection vial until HPLC-FLD analysis.         163 

To avoid and control for systematic errors and cross-contamination during sample 164 

sequences, a QC sample and an extracting solvent blank were injected at the beginning 165 

and after every ten sample injections.  166 

2.4 Data analysis 167 

Depending on the aim of the multivariate data analysis, principal component analysis 168 

(PCA), PLS-DA or PLS regression was carried out by using the Solo 8.6 chemometrics 169 

software from Eigenvector Research (Manson, WA, USA) (Eigenvector Research 170 

Incorporated, 2019). Details of the theoretical background of these statistical 171 

methodologies are addressed elsewhere (Massart et al., 1997).   172 

For the chemometric study, the construction of different data matrices was required. 173 

Thus, indistinctly of the chemometric method used, the X-data matrices of responses 174 

consisted of the HPLC-FLD chromatographic fingerprints acquired. Furthermore, PLS-175 
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DA Y-data matrices defined each sample class, whereas PLS ones defined each 176 

percentage of adulteration.  177 

HPLC-FLD fingerprints were smoothed, baseline-corrected, aligned, and autoscaled 178 

before building the chemometric model to improve data quality by reducing noise 179 

interferences, baseline drifts and peak shifting. Afterwards, the most appropriate 180 

number of principal components (PCs) in PCA, and latent variables (LVs) in the PLS-181 

DA and PLS was established at the first significant minimum point of the venetian blind 182 

cross validation (CV) error. 183 

Moreover, the applicability of the built chemometric models was tested through their 184 

validation. For instance, the PLS-DA models were validated by using 70% of a sample 185 

group as the calibration set, and the remaining 30% as the validation set. In the case of 186 

the PLS models, Table 2 shows the percentages of adulteration used in the calibration 187 

and validation sets.        188 

            189 

3. RESULTS AND DISCUSSION 190 

3.1 Nut classification 191 

Several types of nuts are vulnerable to food fraud practices such as being substituted 192 

with cheaper adulterants. Therefore, analytical methodologies capable of classifying nut 193 

samples according to their type are required. Although a previous study demonstrated 194 

that HPLC-UV fingerprints were good chemical descriptors for classifying certain types 195 

of nuts, they could not achieve complete nut classification (Campmajó et al., 2019). 196 

Thus, in this work, HPLC-FLD fingerprints were used as an alternative to obtain better 197 

descriptors. 198 

 199 

3.1.1 HPLC-FLD fingerprints  200 
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As previously mentioned in Section 2.3, a wide variety of nut samples were assessed by 201 

HPLC-FLD for classification. As can be seen in Figure S1 (Supplementary Material) 202 

showing the chromatographic fingerprints acquired for a selected sample, there were 203 

noteworthy differences in the abundance of the compounds detected (considering the 204 

retention time), as well as in the peak intensity. Moreover, since these features were 205 

reproducible among samples belonging to the same type of nut, these chemical 206 

descriptors were evaluated to classify nut types through a multivariate chemometric 207 

approach.   208 

 209 

3.1.2 Chemometrics for classification  210 

First, a preliminary exploratory chemometric PCA was performed to study QC sample 211 

behaviour. Therefore, a 164 × 4,863 (samples × variables) dimension data matrix, with 212 

the emitted fluorescence intensity at 350 nm a function of time for the analysed nut and 213 

QC samples, was examined. As shown in Figure S2, QC samples formed a compact 214 

group in the central part of the scores plot of PC1 vs. PC2 (two PCs were chosen for the 215 

PCA), indicating the absence of systematic errors during the sample injection sequence 216 

and demonstrating the validity of the chemometric results.  217 

The supervised chemometric analysis for classification was conducted with PLS-DA. 218 

While the X-data matrix (149 × 4,863) consisted of the same information as that used in 219 

the PCA without the QC samples, the Y-data matrix (149 × 2) indicated the membership 220 

of each nut sample. Due to the large number of nut classes under study, a total of ten 221 

LVs were required for the construction of the PLS-DA model, which clearly enabled the 222 

discrimination of some of them. For instance, the scores plot of LV1 vs. LV2 (Figure 223 

1A) shows a clear separation of walnuts and macadamia nuts, which are on the right 224 

side of the plot displaying positive LV1 values, whereas pine nuts are at the bottom of 225 
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the plot with negative LV2 values. Although the combination of other LVs and the use 226 

of 3D plots also enabled the classification of peanuts (Figure S3A) and sunflower seeds 227 

(Figure S3B), LV construction was mainly influenced by these classes of nuts, with the 228 

scores plots not visually discriminating between the remaining five classes. For that 229 

reason, a new PLS-DA model for almond, cashew nut, hazelnut, pistachio, and pumpkin 230 

seed samples was built with four LVs. This resulted in better classification, especially 231 

for sunflower seeds, as can be seen in the corresponding scores plot of LV1 vs. LV2 in 232 

Figure 1B.  233 

As this work focused on the study of almond adulterations, whichcommonly constitute 234 

its substitution with cheaper nuts such as hazelnuts or peanuts, paired PLS-DA models 235 

with almond in front of hazelnut and peanut samples were constructed. As previously 236 

detailed in Section 2.4, 70% of the samples were used in the calibration set, whereas the 237 

remaining 30% were used in the validation set. Figure 2 presents these classification 238 

plots, the red dashed line indicating the classification boundary. The calibration and 239 

validation samples are located on the left and right side of the plot, respectively. A 240 

classification rate of 100% was obtained when studying almonds in front of their most 241 

common adulterating nuts, [9, 0; 0, 6] being the confusion matrix for both almond vs. 242 

hazelnut and almond vs. peanut validations.      243 

Although UV fingerprints at 280 nm are much richer in peak features than the FLD 244 

counterparts, results presented in this paper demonstrate the better descriptive 245 

performance of HPLC-FLD data compared with HPLC-UV (Campmajó et al., 2019), 246 

with higher classification rates and lower prediction errors for some of the systems 247 

under study. The selectivity of UV spectroscopy at 280 nm is poor and a wide range of 248 

compounds are detected, mainly consisting of phenolic acids (and flavonoids with lower 249 

sensitivity), which are components occurring in all kinds of samples. As a result, the nut 250 
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discrimination is then based on cross selectivities (i.e., differences in concentration 251 

levels among classes), while more specific markers have not been encountered. In 252 

contrast, FLD fingerprints generally contain a fewer number of peaks since the selection 253 

of excitation and emission conditions provides more selective data (Bakhytkyzy, Nuñez, 254 

& Saurina, 2018). Moreover, signals from hydroxycinnamic acids, stilbenoids and 255 

various types of flavonoids are negligible; only hydroxybenzoic acids and flavanols are 256 

reasonably detectable under these conditions. In particular, the detection of flavanols is 257 

especially favored, thus achieving a great sensitivity for catechin, epicatechin, and 258 

related species. Therefore, despite having simpler chromatograms from FLD in terms of 259 

the number of features, the more selective detection of highly relevant descriptors may 260 

lead to better predictive figures.   261 

 262 

3.2 Almond-based product adulterations  263 

Following the satisfactory classification obtained with the PLS-DA models, HPLC-FLD 264 

fingerprints were also used for the detection and quantitation of adulterations in two 265 

types of almond-based matrices: natural almond flour and almond custard cream. PLS 266 

was applied as the most suitable chemometric approach to study them.        267 

 268 

3.2.1 HPLC-FLD fingerprints 269 

A set of almond-based product (natural almond flour and almond custard cream) 270 

samples, which were obtained by adding different percentages of the adulterant as 271 

specified in Section 2.3 and detailed in Table 2, were analysed with HPLC-FLD.  272 

As shown in Figure S1, both the pure hazelnut and peanut fingerprints showed 273 

significant differences compared to the almond ones in terms of the number of 274 

compounds detected, abundance, and intensity. For instance, the peanut and hazelnut 275 
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samples presented a higher number of chromatographic peaks than the almond samples. 276 

In fact, an increase in the number of peaks could be seen when transitioning from pure 277 

almond to adulterated samples. Therefore, as the HPLC-FLD fingerprints seemed to 278 

vary according to the adulterant percentage, they were proposed as chemical descriptors 279 

to detect and quantitate adulterations, using PLS.     280 

 281 

3.2.2 Chemometric detection and quantitation of adulterations 282 

The ability of the HPLC-FLD fingerprints to detect and quantify almond adulterations 283 

with peanut or hazelnut was evaluated by PLS. Table 3 summarises the LVs used in 284 

each calibration PLS model, as well as the calibration and prediction error obtained in 285 

all the adulteration cases studied. The calibration models built were good, as indicated 286 

by the low calibration errors (≤ 4.7%), bias values tending towards zero and good 287 

linearity with R
2
 ≥ 0.982. When focusing on a specific matrix, similar prediction errors 288 

were obtained independently of the adulterant used. As can be seen in Figure 3, the 289 

results achieved when predicting peanut levels in almond flour (Figure 3A) and almond 290 

custard cream (Figure 3B) were excellent, with no significant differences between the 291 

matrices (PLS results for the adulteration with hazelnut are shown in Figure S4). Hence, 292 

although almond custard cream is a fatter matrix than almond flour, no interfering 293 

matrix effect was observed in the results.      294 

 295 

4. CONCLUSIONS 296 

HPLC-FLD chromatographic fingerprints, using an excitation wavelength of 280 nm 297 

and an emission wavelength of 350 nm, were suitable chemical descriptors for nut 298 

classification and authentication. Satisfactory discrimination of nut samples according 299 

to their type was achieved by PLS-DA. Moreover, when focusing on the specific 300 
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adulteration of almond-based products with peanut or hazelnut, paired PLS-DA models 301 

showed complete sample distinction (classification rate of 100%), while PLS models 302 

produced low prediction errors below 6.1% for both matrices when predicting the 303 

percentages of adulteration. Thus, the HPLC-FLD fingerprinting method described in 304 

this study can classify nut samples according to their type, as well as detect and 305 

quantitate the levels of peanut or hazelnut adulteration of almond-based products. 306 

Therefore, it can be used as a simple and reliable method to prevent food fraud and 307 

guarantee food product safety.      308 
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Figure legends 402 

Figure 1. (A) PLS-DA scores plot of LV1 vs. LV2, using the HPLC-FLD fingerprints 403 

acquired for all the nut samples tested. (B) PLS-DA scores plot of LV1 vs. LV2, using 404 

only the almond, cashew nut, hazelnut, pistachio, and pumpkin seed HPLC-FLD 405 

fingerprints.  406 

 407 

Figure 2. Classification plot depicting Sample vs. Y predicted 1 score plot for (A) 408 

almond vs. hazelnut samples and (B) almond vs. peanut samples. Solid symbols, 409 

calibration samples; empty symbols, validation samples.   410 

 411 

Figure 3. Scatter plot of measured vs. predicted percentages of adulteration, using PLS. 412 

Results are shown for (A) almond flour and (B) almond custard cream adulterated with 413 

peanut.      414 
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Table 1. Description of the samples analysed in the nut classification study.   

NUT TYPE ABBREVIATION 
NUMBER OF SAMPLES 

Natural Fried Toasted 

Almonds AL 10 10 10 

Cashew Nuts CN - 10 - 

Hazelnuts HN 10 - 10 

Macadamia Nuts MN 10 - - 

Peanuts PN - 10 10 

Pine Nuts PI 10 - - 

Pistachios PT - - 9 

Pumpkin seeds PS - 10 10 

Sunflower seeds SS - - 9 

Walnuts WN 10 - - 

 



Table 2. Samples used in the PLS adulteration studies as calibration or validation set. 

Hazelnut and peanut were proposed as adulterants of a natural almond flour and an 

almond custard cream.  

 ALMOND, % ADULTERANT, % 

CALIBRATION SET 

100 0 

80 20 

60 40 

40 60 

20 80 

0 100 

VALIDATION SET 

85 15 

75 25 

50 50 

25 75 

15 85 

 

 

 



Table 3. Overall results for the evaluation of the adulteration of almond flour and 

almond custard cream with hazelnut and peanut by PLS. LVs, number to build each 

PLS mode; Cal. Error, error in the calibration step; Pred. Error, error in the prediction 

step.    

 ALMOND FLOUR ALMOND CUSTARD CREAM 

 LVs Cal. 

Error 

(%) 

Pred. 

error (%) 

LVs Cal. 

Error 

(%) 

Pred. 

error (%) 

HAZELNUT 5 2.6 5.6 4 3.5 6.1 

PEANUT 3 4.7 5.0 4 3.1 6.1 
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Figure S1. HPLC-FLD fingerprints (acquired with an excitation and emission wavelength 

of 280 and 350 nm, respectively) for a selected sample for each nut type under study. 
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Figure S2. PCA scores plot of PC1 vs. PC2 showing the correct behaviour of QC samples. 
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Figure S3. PLS-DA scores plot of (A) LV1 vs. LV3 and (B) LV1 vs. LV4, using the 

HPLC-FLD fingerprints acquired for all the nut samples assessed. 
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Figure S4. PLS results of (A) almond flour and (B) almond custard cream adulterated with 

hazelnut. 
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