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Abstract
The exposome represents the totality of life course environmental exposures (including lifestyle and other non-genetic fac-
tors), from the prenatal period onwards. This holistic concept of exposure provides a new framework to advance the under-
standing of complex and multifactorial diseases. Prospective pregnancy and birth cohort studies provide a unique opportunity 
for exposome research as they are able to capture, from prenatal life onwards, both the external (including lifestyle, chemical, 
social and wider community-level exposures) and the internal (including inflammation, metabolism, epigenetics, and gut 
microbiota) domains of the exposome. In this paper, we describe the steps required for applying an exposome approach, 
describe the main strengths and limitations of different statistical approaches and discuss their challenges, with the aim to 
provide guidance for methodological choices in the analysis of exposome data in birth cohort studies. An exposome approach 
implies selecting, pre-processing, describing and analyzing a large set of exposures. Several statistical methods are currently 
available to assess exposome-health associations, which differ in terms of research question that can be answered, of bal-
ance between sensitivity and false discovery proportion, and between computational complexity and simplicity (parsimony). 
Assessing the association between many exposures and health still raises many exposure assessment issues and statistical 
challenges. The exposome favors a holistic approach of environmental influences on health, which is likely to allow a more 
complete understanding of disease etiology.
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Introduction

Disease risk is largely determined by behavioral, environ-
mental, and occupational risk factors [1]. Many of these risk 
factors are modifiable and therefore can be a potential target 
for prevention. However, current insights into the associa-
tion between many of these risk factors and health are too 
limited for effective prevention. A substantial proportion 
of the modifiable risk of major chronic diseases remains 
to be discovered [1]. Also, not much is known about the 
complex interrelations between risk factors and how they 
relate to biological endogenous responses. The holistic expo-
some concept may provide a useful framework to broaden 
our understanding of the impact over the life course of a 
multitude of risk factors on human health, and ultimately 
contribute to explaining the unattributable burden of disease 
and developing effective preventive measures. Pregnancy 
and birth prospective cohorts, combining a wealth of data 
collected at the individual and population level by methods 
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such as questionnaires, physical examinations, biological 
samples and geo-spatial modelling, represent a unique and 
resourceful opportunity to perform exposome studies of the 
fetal and early life onwards.

In this paper, we describe the steps required for apply-
ing an exposome approach in epidemiologic studies, with a 
specific focus on prospective birth cohort studies. We intend 
to provide researchers with relevant information to perform 
exposome analyses, understand the main strengths and limi-
tations of different statistical approaches and list the chal-
lenges for future research on the exposome.

The exposome

The concept of the exposome was first proposed in 2005 
by the cancer researcher Christopher Wild to encompass 
‘life-course environmental exposures (including lifestyle 
factors), from the prenatal period onwards’ [2]. It was 
developed to highlight the need for more accurate, reli-
able and comprehensive environmental exposure data to 
complement the impressive advances made in measuring 
the human genome. The exposome has been proposed to 
comprise three overlapping and complementary domains: 
(1) a general external domain, including factors such as 
climate, urban/rural environment and societal factors, 
which are mainly assessed at the community level by 
geographical mapping methods; (2) a specific external 
domain, including environmental pollutants, tobacco and 
diet, which are assessed at the individual level by ques-
tionnaires or biomonitoring, and (3) an internal domain, 
including internal body processes such as inflammation, 
metabolism, and endogenous circulating hormones, which 
are often assessed by high-throughput molecular omics 
methodologies [3]. The internal exposome is expected 
to, at least partly, reflect the external exposome. The 
exposome is complex and challenging in many respects. 
Measuring it implies the accurate and reliable assessment 
of many time-varying exposures over the life course. 
The technical challenges of measuring the external and 
internal domains of the exposome are beyond the scope 
of this review and have been discussed elsewhere [4, 5]. 
Continuous exposome assessment is difficult and thus the 
life course exposome is usually obtained from exposure 
assessments at specific time points. The choice of the time 
points is of utmost importance since the health effects of 
a given exposure may vary during the various develop-
mental periods or may be altered when it co-occurs with 
other exposures through synergistic/interactive effects [6]. 
Since the developing fetus is particularly vulnerable to 
the effects of environmental exposures and since adverse 
exposures in utero during critical windows may have a life-
time health impact, the pregnancy period is an important 

starting point to develop a lifetime exposome [6]. Other 
possible key time points where measures of the exposome 
could be made include the infancy, childhood, adolescence 
and adulthood life periods [3]. Whilst it is clear that full 
measurement of the exposome at even a single time point 
is currently impossible, even partial exposome coverage, 
where neither the totality of exposures nor the dynamic 
coverage are assessed, is valuable [3]. Important pro-
gresses in uncovering the various aspects of the exposome 
are currently being made by different research projects 
worldwide, including the LifeCycle (www.lifec ycle-proje 
ct.eu), HELIX (www.proje cthel ix.eu), EXPOsOMICS 
(www.expos omics proje ct.eu), HEALS (www.heals -eu.eu), 
HERCULES (https ://emory hercu les.com) and CHEAR 
(https ://chear progr am.org) projects [7–11]. Further, an R 
package called rexposome, which allows exposome data 
loading, exploration, and analysis has been developed 
[12]. In the next sections of this paper, we describe the 
main steps undertaken in exposome research.

Selecting and pre‑processing exposures

The selection of exposures to consider in the study depends 
on the research question and issues of feasibility and data 
accessibility. Previous studies have included a wide range 
of external environmental exposures from various families, 
or have been specifically focused on certain components of 
the exposome, such as the urban or the chemical exposome, 
assessed at various developmental periods [13–19]. Socio- 
and public health exposome conceptual frameworks have 
also been proposed and can guide the selection of exposures 
[20, 21]. Once the research question and set of exposure 
variables have been clarified, a considerable amount of pre-
processing of the data is required.

Handling missing data in the exposures

Missing data is problematic in an exposome context that 
examines exposures jointly because the number of complete 
cases may decrease as the number of included exposures 
increases. The use of imputation techniques is therefore rec-
ommended. Multiple imputation is commonly used to handle 
missing data in epidemiological studies, and Rubin’s rule 
can be used to combine coefficient estimates obtained from 
each imputed dataset [22]. Applying multiple imputation to 
large datasets involves additional difficulties that were pre-
viously described [23]. It is recommended that imputation 
models include no more than 15–25 predictors, since adding 
more predictors usually provides little gain and can lead to 
problems of convergence due to predictors collinearity [24].

http://www.lifecycle-project.eu
http://www.lifecycle-project.eu
http://www.projecthelix.eu
http://www.exposomicsproject.eu
http://www.heals-eu.eu
https://emoryhercules.com
https://chearprogram.org
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Dealing with exposure values below the limits 
of detection and quantification

For exposures that are measured through biochemical assays, 
some values may be below the limit of detection (LOD). 
The LOD is the lowest quantity of an exposure that can be 
detected by a specific method. A commonly used approach 
consists in replacing all values below the LOD by a fixed 
value such as the LOD, half the LOD or LOD/√2 [25]. 
While single substitution could be acceptable when the pro-
portion of values below the LOD is low (e.g., < 5%), this 
method introduces bias in the results as the proportion of 
values below the LOD increases [26]. It is therefore rec-
ommended that values below the LOD are imputed using 
imputation approach for left-censored missing data (e.g., 
using the imputeLOD function available in the rexposome 
R package) [27, 28]. However, despite the good performance 
of the imputation methods, exposures with a high proportion 
of values below the LOD (e.g., > 80%) should be either not 
used or dichotomized into detected/undetected. Exposures 
measured through biochemical assays may also have val-
ues below the limit of quantification, which is the lowest 
quantity of an exposure that can be detected with a stated 
accuracy and precision. Exposures with a high proportion of 
values below the limit of quantification should be carefully 
interpreted.

Correcting for measurement error of the exposures

An important issue in an exposome study concerns exposure 
misclassification, especially when the degree of measure-
ment error differs from one exposure or exposure family to 
another. Assuming two exposures A and B are associated 
with an outcome and that exposure A has larger misclassifi-
cation than exposure B, an exposome study ignoring expo-
sure misclassification will more likely observe an association 
with the outcome for exposure B than for A, hence inducing 
differential power to detect associations. Ideally, the quan-
tification of the measurement error for each exposure, typi-
cally through their intraclass correlation coefficient, would 
be available and a exposure measurement error correction 
method could be applied. However, this cannot be computed 
if no repeated biospecimen are collected, at least in a sub-
set of the study population and the literature cannot always 
provide relevant intraclass correlation coefficient estimates 
since these need to be assessed from comparable studies, 
typically in terms of study population and of biospecimen 
collection time points. Intraclass correlation coefficient for 
some non-persistent chemicals have been recently reported 
[27]. Previous studies have described methods that jointly 
correct for measurement error and perform variable selec-
tion, but they are mostly complex to implement, not avail-
able in standard statistical software and not applicable to 

all types of regression models or to all settings [29–31]. A 
simulation study showed that two measurement error models 
(simulation extrapolation and regression calibration) limit 
attenuation bias due to exposure misclassification. A poste-
riori disattenuation can also be applied, dividing the effect 
estimate by the intraclass correlation coefficient of the cor-
responding exposure [32].

Describing the exposome

Besides the summary statistics of each exposure, the expo-
some can be described in terms of its correlation structure, 
dimensionality, and variability. Gaining insight into this will 
allow improved analysis and interpretation of the associa-
tions with determinants and health outcomes.

Correlation structure of the exposome

The correlation structure of a large set of exposures has been 
described using data from the Spanish INMA birth cohort 
and from the US NHANES and LIFE studies [17, 33–35]. 
More recently, the HELIX project has also described the 
correlation structure of the exposome, using over 200 envi-
ronmental exposures that were assessed in pregnant women 
and later in their children in 6 European birth cohorts [19]. 
In these previous studies, the correlation coefficients were 
stronger within than between families of exposures. This 
may suggest that findings from epidemiological studies 
focusing on a single family of exposures may be less con-
founded by unmeasured exposures from other families, 
although this can vary on a case-by-case basis. Strong cor-
relations between specific pairs of exposures from the same 
family were reported, although, particularly in the HELIX 
project, most correlations were low or moderate (the median 
correlation value observed within families was only 0.2). 
The exposome correlation structure seems also to vary 
across spatially and temporally distributed populations [19]. 
Thus, the exposures correlation structure needs to be evalu-
ated in each exposome study, since it is largely influenced by 
the setting and by the set of exposures and exposure families 
included.

The correlation structure of the exposome may have 
implications in the exposome-health associations due to the 
difficulty to untangle the exposures truly affecting the health 
outcome from their correlated exposures, thus increasing 
the probability of obtaining false positives. A simulation 
study conducted by the HELIX and EXPOsOMICS projects 
showed that, due to the correlation within the exposome, 
the linear regression-based statistical methods that were 
investigated were only moderately efficient to differentiate 
true predictors from correlated covariates [36]. Therefore, 
to ensure a correct use of statistical methods and appropriate 
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interpretation of the results, it is crucial to first explore the 
correlations between the exposures under study. For sets of 
exposures that exhibit absolute correlations higher than 0.9 
and therefore are assumed to provide the same information, 
we recommend to select only one exposure since it would 
be very difficult to separate their effects unless very large 
sample sizes are available. Heat maps and circos plots have 
been developed to visually display the correlations [17, 34, 
37]. Another tool to visualize the complex relations between 
exposures is a network analysis, in which exposures that 
are close together in the network are more correlated than 
more distant ones [19]. We should note that the correlation 
structure might be influenced by how the exposures were 
assessed or constructed and by the presence of measurement 
error. Exposures obtained using the same methodology, in 
the same biological matrix or constructed from the same 
variables may show greater correlation compared to those 
obtained by distinct approaches.

Dimensionality of the exposome

Data-driven dimension reduction techniques, such as prin-
cipal component analysis or factor analysis, can be used to 
describe patterns of exposure within the exposome. These 
techniques allow capturing the variance of many exposures 
in a smaller set of independent components or factors, each 
of them being composed of exposures that tend to occur 
simultaneously in the population. The results may vary 
according to the technique used, the number of components/
factors retained and the loading value chosen as threshold 
[38]. Clustering approaches, such as partitioning, hierarchi-
cal, or model-based clustering, can be used to identify mutu-
ally exclusive groups of subjects sharing a similar pattern 
of exposure. Such clustering models assume that the study 
population is made of distinct groups of individuals sharing 
similar characteristics in the observed variables [39].

Multicenter studies pose special challenges for identify-
ing exposome patterns, because usually the center will be the 
main driver of such patterns (e.g. in the same center, subjects 
will have similar diet or similar air pollution). Thus, clus-
ter analyses may end up identifying centers as the clusters. 
One may attempt to remove center effects before performing 
cluster analysis, but that might eliminate existing exposure 
variation between centers [18].

These techniques can be applied either using all expo-
sures or within each exposure family. The latter strategy 
might allow a better interpretability of the resulting patterns/
clusters, but will not take into account and highlight the 
between-family variability. Obtaining exposome patterns/
clusters of subjects instead of using all single exposures 
might facilitate the analyses and interpretation of the asso-
ciations with determinants and health outcomes and reduce 
the problem of multiple testing. However, in exposome 

analyses including several exposures, it might be difficult 
to summarize the data in a reasonable number of patterns/
clusters. In the HELIX project, due to the large number of 
exposures and low correlations observed between them, the 
exposome revealed to be high dimensional and difficult to 
summarize in a few principal components. Ten principal 
components explained 45% and 39% of the total variance 
in the pregnancy and childhood exposome, respectively, 
while 65 and 90 components were required to explain 95% 
of the exposome variability [19]. In studies using specific 
subsets of exposures, namely urban or chemical exposures, 
a reasonable number of principal components was obtained, 
reinforcing that summarizing the data might be easier for 
a smaller subset of exposures and within certain exposure 
families [15, 18].

Dealing with multiple imputation in dimension reduction 
or clustering techniques might be complicated. In principal 
component analysis or factor analysis, different components/
factors with different interpretations can be obtained in each 
imputed dataset, which can be complex to combine. One 
suggested approach to deal with missing data in dimension 
reduction techniques consists in estimating the covariance 
matrix on the complete data (i.e. in each pair of exposures’ 
complete data), and then perform principal component 
analysis or factor analysis on this matrix [40]. Bayesian 
model-based clustering techniques can automatically han-
dle missing data without having to use imputations. Bayes-
ian techniques may not be feasible with high-dimensional 
or large sample settings due to high computational costs. 
In such cases, an alternative is a framework that integrates 
multiple imputation in cluster analysis, which has been pre-
viously described [41].

Variability of the exposome

Unlike the genome, the exposome changes over time, which 
complicates its characterization. The levels of exposure 
might vary over time due, for instance, to changes in indi-
vidual behavior (e.g., change in diet), in the outdoor envi-
ronment (e.g., change of address), and in the governmental 
policy (e.g., restriction in use of bisphenol A in some coun-
tries). Large within-subject temporal variability is a com-
mon issue for non-persistent chemical contaminants as they 
can have short half-life in the human body. As a result, for 
many non-persistent chemicals, a few dozen samples seem 
to be required to accurately assess exposure over periods 
encompassing several trimesters or months [19, 27, 42]. A 
recent study, characterizing the personal external exposome, 
including air pollution, traffic-related noise, natural outdoor 
environments, ultraviolet radiation and levels of physical 
activity, of pregnant women and children in eight European 
cities, suggested that the assessment of these personal expo-
sures requires monitoring from one day to more than one 
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year, depending on exposure due to high variability between 
and within cities and participants [43].

The between-subject variability of the data observed for 
a given exposure may be influenced by the method of data 
collection. Differences in the variability were observed in 
the INMA pregnancy exposome dataset between the expo-
sures measured through biomarkers and those derived from 
geospatial models [17]. Biomarker measurements showed 
higher between subject variability, which may be due to 
incorporating information regarding both prevalence in the 
environment and personal behavior.

Assessing the determinants of the exposome

The exposome is specific of each individual but many parts 
of the exposome are shared between subgroups of the pop-
ulation due to shared determinants such as diet, physical 
activity, mobility, social and ethnic factors. Environmental 
inequality, which is the differential exposure to environmen-
tal factors between groups within a population, may have 
important health implications. The environmental inequality 
might differ by geographical setting. The HELIX project 
has previously reported that the urban exposome among 
pregnant women seems to be socially determined, with 
considerable differences among European cities [18]. Preg-
nant women of low socio-economic position were exposed 
to higher levels of environmental hazards in some cities, but 
not all, which may contribute to inequalities in child health 
and development. Other studies, embedded in the HELIX 
project but also using NHANES, INMA and Korean data, 
also showed that exposure to environmental contaminants 
seems to be determined by socioeconomic indicators, with 
both lower and higher socioeconomic groups incurring into 
high exposure levels [15, 44–46]. Assessing the determi-
nants of the exposome will improve the understanding on 
the populations at higher risk of exposure to certain hazards 
and ultimately at higher risk of adverse health outcomes.

Assessing exposome‑health associations

The association between exposures and health has tradition-
ally been assessed in studies focused on a single or a limited 
number of exposures. Besides providing only a fragmented 
view of exposome-health associations, results from these 
approaches may suffer from confounding due to unmeasured 
exposures, selective reporting and publication bias. This may 
be overcome by using a more holistic and systematic expo-
some approach. Insight into the relationship between the 
exposome and health outcomes can be obtained by relying 
on several methods, which have been previously described 
[47, 48]. A classification of the methods has been proposed 

and categorizes them into one of three different groups: 
variable selection, dimension reduction, and grouping of 
observations [48]. Analyzing several exposures together in 
an exposome context also allows identifying synergies or 
combined effects of groups of exposures that might confer 
an overall risk that differs from that derived from each expo-
sure separately. Specific frequentist and Bayesian methods 
to analyze combined effects of exposures related to health 
risk have been previously reviewed [47].

We give here a non-exhaustive description of three groups 
of methods used to assess exposome-health associations: (1) 
single exposure approaches such as environment-wide asso-
ciation study (ExWAS), (2) variable selection techniques 
such as deletion-substitution-addition (DSA) algorithm, 
elastic net (ENET) or graphical unit evolutionary stochas-
tic search (GUESS) algorithm, and (3) dimension reduction 
techniques such as sparse partial least squares (sPLS) regres-
sion. Unsupervised analyses for grouping of observations, 
such as cluster analyses, have already been briefly described 
in a previous section of this paper about the dimensionality 
of the exposome and thus will not be further discussed here. 
Also, details about the supervised techniques for grouping 
of observations can be found elsewhere [48].

Single exposure approaches

One of the first studies using an exposome approach con-
ducted an ExWAS to study type 2 diabetes mellitus using 
data from the NHANES [49]. In an ExWAS, a large number 
of exposures are successively and independently tested for 
their association with the outcome (only adjusting for poten-
tial confounders), using an analogous statistical approach 
to that of genome-wide association studies. Thus, there is 
no control for between-exposure confounding. Although 
not ideal, for practicality, and due to the large number of 
exposures involved in exposome studies, the same set of 
confounders is usually used for all exposures. A correction 
for multiple comparisons is further applied to limit false 
positive results. Various methods exist and can be divided 
into Family-wise error rate (FWER) and False discovery 
rate (FDR) methods. Among the most popular methods 
used in epidemiologic studies, we can cite the Bonferroni 
procedure and the Holm procedure (both FWER methods), 
or the Benjamini and Hochberg procedure (FDR method). 
However, one limitation of these methods is that they 
assume independence of tests and can be highly conserva-
tive when this assumption is violated [50]. In an exposome 
context, assuming this assumption is questionable since 
exposures may not be independent, e.g., in the case of a 
common source or chemical metabolites resulting from a 
single parent compound, or in the case of highly correlated 
exposures in the outdoor environment [18]. To counter 
this limitation, additional procedures exist, among which, 
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one similar to the Bonferroni procedure (which consists in 
dividing the significance level α by the number of tests M; 
αcorrected = α/M), has been proposed: the idea is to change 
the value of M according to the “effective number of tests” 
determined from the correlation structure of the data [50, 
51]. While several methods have been proposed for esti-
mating the effective number of tests in genomic research, 
their performance in an exposome context has not yet been 
addressed [51]. Additionally, in case of multiple outcomes, 
multiple testing correction should take the multiplicity of 
both exposures and outcomes into account. Thus far, to the 
best of our knowledge, no suitable multiple testing correc-
tion method has been assessed that simultaneously handle 
the multiplicity of exposures and outcomes in an exposome 
context. Exposures that are significantly associated with 
the outcome after correcting for multiple testing may be 
subsequently included in a multiple regression model. This 
two-step approach is referred to as ExWAS-multiple regres-
sion. Unlike ExWAS, it allows to correct exposure-health 
associations for potential co-exposure confounding. Volcano 
and Manhattan plots may be used to display the associations 
obtained from the ExWAS approach. This approach is com-
putationally efficient, can handle various types of outcome 
data, interactions and adjustment for covariates and is read-
ily available in statistical software, namely in the rexposome 
package in the R software. In a simulation study mimicking 
a realistic correlation structure of exposure variables in the 
INMA birth cohort, the ExWAS underperformed the other 
methods in terms of false discovery proportion but displayed 
the largest sensitivity [36]. When ExWAS was followed by 
a multiple regression step, the problem of false discoveries 
was improved, but the sensitivity was low, indicating that 
only a small proportion of true predictors were captured. 
ExWAS analyses can easily integrate multiple imputed data-
sets. Most software/software tools are able to automatically 
conduct a regression analysis in each of the imputed datasets 
and combine the results while incorporating uncertainty due 
to imputations.

Variable selection techniques

These techniques are predictive methods that seek for a sub-
set of exposures that are related to the outcome. Initially, 
all exposures are candidates, so they have the potential to 
control for between-exposure confounding. Due to its pre-
dictive nature, these methods may not be accurate for etio-
logic analysis, since an exposure potentially related to the 
outcome may not be selected if another highly correlated 
exposure is already selected and thus does not confer any 
additional improvement to the prediction. Examples of vari-
able selection techniques include the DSA algorithm, ENET 
and GUESS algorithm.

The DSA algorithm was used, for instance, in recent 
studies within the HELIX project looking at the associa-
tions between the early-life exposome and childhood lung 
function and between the urban pregnancy exposome and 
birth weight [13, 16]. The DSA algorithm is an iterative 
model search algorithm that relies on deletion (removing 
one variable from the model), substitution (replacing one 
variable from the model by one that was not yet included 
in the model) or addition (adding one new variable to 
the model) moves to find the optimal set of variables that 
minimizes the root mean square error. The final model is 
selected based on cross-validation [52]. Due to the reli-
ance on cross-validation, repeating the variable selection 
process could lead to different sets of exposures retained 
and therefore we recommend to run a minimum of 50 DSA 
models. Then, a potential procedure to have a final model 
would be as follows: (1) run a multi-exposure regression 
model including exposures selected in at least 5% of the 
DSA models (a different % cut-off might be applied); (2) 
exclude non-significant exposures one-by-one following 
the order of the frequency of selection until the final model 
that includes only significant exposures. We can argue that a 
non-significant exposure might improve the prediction of the 
outcome or confound another association and thus there is 
less consensus regarding the latter step. In simulation stud-
ies, DSA showed high sensitivity and low false discovery 
rate, and showed good performance in the ability to capture 
interaction terms [36, 53]. Pre-selection of candidate expo-
sures (i.e. keeping only one exposure among highly corre-
lated ones) may be useful to prevent problems with the DSA 
algorithm. In the HELIX project, it was defined that only 
one exposure would be included as candidate among expo-
sures with correlations > 0.8. The DSA algorithm supports 
Gaussian, binomial, and multinomial outcome distributions 
(i.e., censored and counted data are not supported). It allows 
incorporation of nonlinear terms of predictors, interaction 
and adjustment for confounders. However, it is not possi-
ble to restrict interactions to a specific factor (e.g., sex) or 
exposure, and all pairwise interactions, but also quadratic 
terms, will be considered by the DSA. These limitations 
together with lack of statistical power has precluded the 
consideration of non-linear relationships or interactions in 
some previous work using the DSA algorithm [13, 53]. In 
practice, the DSA can be run using R after downloading the 
DSA package available on GitHub. All variables, which are 
not forced into the model, are candidates for selection. DSA 
models can suffer from a long computing time, although this 
is less problematic when using parallel computing. It is also 
not straightforward to combine this approach, or any other 
variable selection approach, with multiple imputation since 
a different set of variables may be retained in each imputed 
dataset. To overcome this, the analyses can be performed on 
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an extended dataset obtained by stacking all imputed data-
sets, using weights to restrain to the initial sample size [54].

The ENET was previously used, for instance, to study 
the associations between multiple environmental contami-
nants and birth weight among three cohorts from Greenland, 
Poland and Ukraine and between several persistent organic 
pollutants in breast milk samples and infant behavioral prob-
lems [55, 56]. The ENET is a penalized regression model 
that combines advantages of both LASSO and Ridge regres-
sion. Briefly, the LASSO regression promotes sparsity and 
performs variable selection by shrinking the lowest regres-
sion coefficients, which correspond to the least informative 
predictors, to zero. The predictors with non-null shrunk 
coefficients are those found to be jointly associated with the 
outcome. The Ridge regression accommodates correlated 
variables and ensures numerical stability [57]. Generalized 
version of ENET accommodates linear, logistic, multino-
mial, Poisson and Cox regression models [58, 59]. In a simu-
lation setting, this approach showed high sensitivity and a 
moderate false discovery rate [36].

The GUESS algorithm is a Bayesian variable selection 
technique that uses a search algorithm that is based on mul-
tiple chain genetic algorithms. It was proposed to explore 
complex genetic-association models and maximize genetic 
variant detection [60]. Similarly to the DSA algorithm, in a 
simulation study, GUESS showed high sensitivity and low 
false discovery rate [36]. However, accounting for confound-
ers is not straightforward and can only be achieved by first 
fitting the outcome on the confounders, and then, fitting a 
GUESS model on the residuals.

Dimension reduction techniques

Dimension reduction techniques, such as principal com-
ponent analysis, have already been described in a previous 
section of this paper about the dimensionality of the expo-
some and also in a previous review [48]. We focus here, as 
an example of these techniques, on PLS approaches. The 
EXPOsOMICS project described the application of PLS 
approaches by investigating the effect of exposure to disin-
fection by products on inflammation [61]. The sPLS regres-
sion was previously used in studies aiming, for instance, 
to identify, from multiple contaminant exposures, exposure 
profiles associated with biomarkers of male reproductive 
function [62]. This approach builds latent variables (linear 
combinations of the predictors) in a supervised manner, i.e., 
using the outcome, and then regresses the outcome on the 
latent variables. The sPLS components do not only capture 
as much variance of the predictors as possible, but also focus 
on the variance that is relevant to the outcome of interest. It 
imposes sparsity when constructing the latent variables, so 
that they depend only on a subset of the original set of pre-
dictors, improving their interpretability [63]. This approach 

is computationally efficient, multicollinearity and over-fit-
ting are no longer concerns but results may lack interpret-
ability and the ability to adjust for confounders is limited. In 
a simulation setting, this approach showed high sensitivity 
and a moderate false discovery rate [36].

Incorporating omics into exposome research

The internal exposome, defined as the internal endogenous 
processes including epigenetic, gene expression, inflamma-
tion, and metabolism, can be assessed through high-through-
put molecular omics methodologies such as genome-wide 
DNA methylation, transcriptomics, proteomics and metabo-
lomics [3]. Analytical platforms such as untargeted high-
resolution metabolomics in blood specimens are extend-
ing the coverage of internal exposures of potential health 
significance, regardless of their exogenous or endogenous 
origin [64, 65]. In general, omics signatures may reflect both 
physiological responses to external exposures and internal 
signatures of health outcomes [66]. Omics data are hetero-
geneous in terms of their dimension, nature, complexity and 
stability/volatility. The strength and complexity of correla-
tion structure are also heterogeneous across different types 
of omics data, varying from distance-driven correlation 
in the genome to more complex patterns in other omics, 
especially in metabolomics [66]. Omics data are also highly 
sensitive to matrix selection (e.g., blood, urine) and experi-
mental conditions (e.g., time of sample collection, sample 
storage and analytical batches), and can therefore be affected 
by measurement error. For this reason, extensive data qual-
ity control prior to the main analysis should be undergone 
to remove potential technical noise hindering identification 
of biological effects. Techniques such as surrogate variable 
analysis aim to remove major variability in the dataset that 
is not related to the outcome of interest or known technical 
noise [67].

Omics can be considered (1) as the outcome and the 
external exposures as predictors, (2) as the exposures, fit-
ting in the definition of the exposome as non-genetic causes 
of disease, or (3) as external exposome-health mediators 
and thus both external and internal domains should be ana-
lysed side by side, with emphasis on interaction between and 
within domains. To illustrate this last point, a study assessed 
the impact of the gut microbiome diversity on childhood 
asthma together with persistent organic pollutant exposure 
and found that gut microbial diversity did not mediate the 
observed association between environmental chemicals and 
asthma [68].

Ongoing birth cohorts have increasingly access to large 
omics datasets characterizing the molecular phenotype in 
early life, before the development of clinical symptoms. 
Omics profiles are of interest as a phenotype outcome in 
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itself without necessarily including clinical outcomes, 
and might be used as predictors of later disease risks. The 
analysis of omics profiles in relation to external exposome 
factors and/or clinical outcomes require the use of spe-
cific statistical tools due to the nature of the omics pro-
files (high dimensional, complex correlation structure and 
biological interpretation). We give here a non-exhaustive 
list of specific tools developed for omics data that can 
be adapted to study omics in the context of exposome 
research depending on the research questions (Fig. 1) [47, 
61, 69–72]. Network based approaches in systems biology 
and medicine, including transcription factor binding, pro-
tein–protein interactions, metabolic interactions, genetic 
interaction and disease-disease association (diseasome) 
networks, have helped to interpret the behavior of mol-
ecules or diseases that are related, and to provide insights 
into their mechanisms. In an exposome context, network 
science enables organization of high dimensional omics 
data for visualization and information summary purpose 
such as to identify hubs of correlated exposures and to 
interpret systemic biological changes that associate with 
multiple exposures and health effects [73–76]. Networks 

can be used to study the relationships between exposures 
based on their correlation in a population or based on their 
chemical or toxicological properties, and therefore reveal 
grouping of exposures [77, 78]. This structure may be 
interpreted a posteriori through previous knowledge on 
the exposure sources (e.g., occupational exposure, con-
sumer goods, diet), or in a biological context using KEGG 
pathways or mummichog for pathway enrichment analy-
sis or adverse outcome pathway (AOPs). Inferred expo-
some networks based on the researcher collected exposure 
data can inform on new pathway to exposure in a specific 
cohort, for a specific age range or population subgroup 
that was not previously described [79]. If the network is 
based on collected omics data, the emerging hierarchical 
structure may not have been described yet in a general 
human population and may serve for grouping exposures 
into mixture and study combined effects on health. There 
are several limitations to these approaches, including the 
difficulty to link different types of exposures (e.g. chemical 
and outdoor urban exposomes) or different types of omics 
layers (e.g. methylation data with gene-level annotations 
versus metabolome data with microbiome/dietary related 
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Fig. 1  Specific omics tools that can be used in exposome research
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sources) to public libraries which are in general specific to 
one type of data. Supervised network alternatives, i.e. dif-
ferential networks, can also be used to characterize differ-
ences in omics correlation patterns in subpopulations. This 
method consists of inferring first the individual network 
(i.e., exposed vs. non-exposed), define the metrics for the 
change in correlation between the two populations and 
finally identify significant changes in correlations. The less 
stable nodes may be the ones the most influential on their 
association to the outcome [80]. To explore the associa-
tion between multiple external exposome constituents and 
omics profiles, taking into account the correlation struc-
ture of the omics, statistical inference can be done through 
dimension reduction techniques (PLS approaches) and 
variable selection techniques (with penalization or Bayes-
ian Variable Selection) or a combination of both (sPLS). 
These techniques can also be used for more appropriate 
grouping of external exposures based on shared biologi-
cal/physiological effects or shared source of exposure. 
A recent study applied a O2PLS approach in pregnant 
women from the Spanish INMA birth cohort to assess the 
association between multiple chemical exposures (> 30) 
and urine 1H nuclear magnetic resonance metabolomics 
(> 60). This allowed the identification of common route of 
exposures such as fish intake and oxidative stress of chem-
ical exposures with known detrimental health effects [81].

When multiple omics profiles are available in the same 
individuals, cross-omics analyses investigate how exposure 
and/or outcome-related signals found at one molecular level 
correlate to those found at another level, gaining insight into 
the molecular cascades related to that specific exposure and/
or outcome [82]. A UK twins study suggested that metabo-
lomics combined with epigenetics could identify key molec-
ular mechanisms in early development that lead to long-term 
physiological changes influencing human health and ageing 
[83]. There are several approaches for cross-omics analy-
ses, that can be summarized briefly as (1) based on apriori 
biological knowledge by linking the omics layers through 
a common gene/pathway identifier and conduct pathway 
enrichment analyses or through looking for a candidate 
omics markers after explorative analysis in another omics 
layer or (2) without apriori biological knowledge through, 
for example, multi-block PLS model or canonical regression 
analyses [84].

Recently, dimension reduction techniques, such as sPLS, 
have also been extended to take into account functional 
grouping within the omics such as gene pathways, or meta-
bolic function. For example, this tool was applied to identify 
the predictive power of prediagnostic levels of inflammatory 
markers in patients with B-cell lymphomas to select the most 
relevant protein groups in relation to disease status [85]. 
When considering the internal exposome as a mediator of 
the external exposome-health outcome, approaches such as 

the meet-in-the-middle approach may be useful, i.e., iden-
tifying biomarkers linking exposures and disease outcomes 
[86].

In general, longitudinal cohort studies have been applying 
omics technologies in nested case–control studies to assess 
specific health outcomes or to study one particular external 
exposure effect such as tobacco smoking or arsenic. To our 
knowledge, there is no previous study that presents a more 
comprehensive exposome approach by taking into account 
multiple external exposures and multiple omics signatures.

Sample size in an exposome context

Statistical power in an exposome context is limited by the 
multiplicity of exposures tested and the correction for mul-
tiple testing performed. This is even a bigger concern if low 
to moderate association sizes are expected for the exposures, 
and when a substantial proportion of concentrations below 
LOD are present. These issues can be partly overcome by 
increasing the sample size of the study. A previous study 
estimated the required sample size to perform an ExWAS 
approach of endocrine disrupting chemical biomarkers in 
relation to male fertility outcomes [14]. Since the effect sizes 
are typically low and the biologically significant sizes for 
these exposures is not known, the authors assumed a null 
effect size distribution and took the 95th percentile effect 
size as a threshold of important effect size. Under these con-
ditions, an ExWAS approach combined with FDR multiple 
testing correction would require a sample size of 1000–2000 
subjects to deal with 100 exposures and achieve power of 
80% to detect the 95th effect sizes. This study also showed 
that, in comparison with Bonferroni correction, the FDR 
correction allowed to rely on a smaller sample size, although 
much larger than the required to provide sufficient power 
when a single exposure is considered.

Challenges for future exposome statistical 
analyses

Ideally, statistical methods used in exposome research should 
be capable of handling a large set of time-varying exposures 
from different domains, while considering correlation struc-
tures and accounting for multiple comparisons. To date, it 
remains difficult to efficiently untangle the exposures truly 
affecting the health outcome from correlated exposures and 
to identify synergistic effects between exposures. The incor-
poration of the multilevel structure assuming the three inter-
linked general and individual external and internal domains, 
and of the causal structure between exposures within and 
across domains into an exposome analysis is another com-
plexity still to be addressed. Pregnancy and birth cohort 
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studies have collected a large amount of longitudinal data 
on exposures. However, there are no clear guidelines on how 
to conduct longitudinal analyses with exposome data. The 
longitudinal aspect further increases the dimensionality of 
the data and forces the analyst to take more decisions. For 
example, one can model changes, trajectories of both expo-
some and outcome, cumulative exposure, lagged effects, or 
look for windows of susceptibility, among others. Due to 
the temporal structure, potential time-varying sets of con-
founding factors should be taken into consideration. Future 
simulation studies should assess the performance of several 
statistical exposome methods in the context of longitudi-
nal modelling. The EU Child Cohort Network, which is 
established by the LifeCycle Project, represents an unique 
opportunity to address these statistical issues and provides 
an important framework to conduct replication studies in 
exposome research.

Conclusions

The exposome is a promising field of research that will help 
identifying exposures that impact health and disease across 
the lifespan. Despite considerable methodological advances, 
estimating the association between a large set of exposures 
and health is still challenging. On-going and future projects 
on the exposome, including theoretical and methodological 
studies, will be crucial to explore ways of overcoming the 
limitations of the current methods and ultimately allow a 
better understanding of the human exposome.
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