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Sergi SÁNCHEZ DE LA BLANCA CONTRERAS

Financial Institutions perform risk assessments continuously in order to judge if cer-
tain companies are viable and should receive funding or loans to prevent companies
to go bankrupt (default). This task helps keeping the financial system healthy. How-
ever, risk assessment is a tremendously difficult task since there are many variables
to take into account. This work is a continuation of Barja et al., 2019, in which a
model is posed to simulate customer-supplier relationships. The model helps to ex-
plore the risk of default of companies under certain circumstances. We extended the
model in several ways to make it more realistic. The main objective of the work is
to gain better insights in how defaulted companies affect non-defaulted ones. This
is analyzed by keeping track of the possible default cascades produced when a com-
pany goes bankrupt and stops paying. In addition, studying how financial networks
behave, it is also possible shed some light about how the risk of specific companies
or economical sectors can be tracked.
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Chapter 1

Introduction

A longed for desire by banks, governments, business owners and, indirectly, citizens
is to prevent the (partial) collapse of the financial system. Banks actively work on
risk assessment of companies to decide if a company is healthy enough to receive
a loan or credit, or on the contrary, its financial products must be reduced. This
decision largely affects company’s liquidity producing delays in its payments, and
therefore, affecting other companies’ liquidity.

Risk assessment is an incredibly difficult task due to the complex nature of econ-
omy; fluctuations in demand/offer, procurement expenses, labor market, etc. For
these reasons, to mitigate this issue, client-supplier networks analytics are used.
Those analysis can simulate a vast range of parameters, representing different mar-
ket conditions and business relations.

This work is a continuation of a previous paper, based on transaction data be-
tween business clients from the Spanish bank BBVA Barja et al., 2019. The goal of this
work is to create a set of simulations of different client-supplier relationships. This is
done using a directional graph representation of companies, where every company
is a node and the dependency of companies are weighted edges. The dependence is
modelled based on the real money flows observed among companies. The larger the
money flow, the higher the weight and therefore the dependency. Every company
(or node) has a probability of going bankrupt (default). This is modelled as a node
property and is updated every iteration of the simulation. This default probability
solely depends on the default probability of the neighboring nodes, since the com-
pany only depends on transactions from the neighboring companies.

This work focuses on extending the model to better cope with reality as well as
giving more insights for risk assessment. The first improvement with regards to pre-
vious contributions is making it a stochastic system. This change is explained by the
fact that default of companies is binary; they are either bankrupt or not. Interme-
diary probabilities are possible, but after recalculating the default probability this
gets either translated to defaulted or not, 1 or 0. The second change is implement-
ing a so-called default delay. This delay comes forth from forgiveness; a company
will not immediately cut ties with another company if they do not deliver. In addi-
tion to these two contributions and to enhance the usefulness of the simulation, we
have also analyzed default cascades. Such cascades are chains of defaulted compa-
nies, stemming from a single defaulted company. Using cascades we can inspect the
health of the entire supply chain. This information is extremely useful in risk assess-
ment of companies, since it accounts for the start and end of its value chain, because
we can assess the economic strength of the neighborhood of the different companies
recursively.
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To assess the inner workings of the system, we pose two different scenarios: a
liberal market network and a network representing sharing economy. In the liberal
market network there will be some nodes with many outgoing nodes, which also
likely have many incoming nodes. These nodes represent big corporations that are
very resilient to default. On the other hand, this network mostly consists of sparsely
connected nodes, which are much more prone to default. In the sharing economy
networks, nodes will have more equally distributed number of connections. The
hypothesis is that the liberal market network will be much more resilient to large
cascades or even to the entire collapse of the system. However, there will be more
small cascades and defaulted companies than the sharing economy network. This
hypothesis is supported by the fact that the liberal market network has some very
large nodes. These large nodes provide a buffer for smaller companies to recover if
they go default. However, not all small nodes are connected to such big nodes and
therefore are very prone to get ’infected’, hence going default due to the poor eco-
nomic strength of its economic neighborhood. Whenever a large node in the liberal
market network defaults, it has disastrous consequences to the entire system, but the
probability of a situation like such arising is extremely small due to the abundance
of suppliers (outgoing connections). In a sharing economy, nodes have much more
equal numbers of suppliers and customers. Therefore, any location in the network
is of medium economic strength, causing the probability of companies to default to
be smaller than in the liberal market network. However, because of the same reason,
in this network the default ’infection’ can spread rather rapidly, making the system
in general less resilient to cascades than the liberal market system.

The objective is to simulate client-supplier sectorial networks as closely to reality
as possible with feasible computation times and usable results for risk assessment.
We simulate a reduced sectorial network based on statistics of transaction data pro-
vided by the BBVA. We expect to see different behaviours in each sector regarding
the number of defaulted companies as well as cascade sizes. Some sectors have
much higher numbers of connections than other sectors and should therefore be
more resilient against infection.

This document is organized as follows. First, in Section 2 an introduction is made
explaining which data is used, how it is used, how it is structured and a reference
to previous work made by the BBVA. In Section 3 we elaborate on the fundamentals
of graph theory used in this project. In Sections 4, 5 and 6, the theory of the work-
ings and use of financial client-supplier networks is illustrated. After explaining the
theory, in Section 7, we show the results and hint towards our hypothesis. Finally,
the document ends with a discussion about obtained results, suggestions for future
work and our conclusions, including comments towards the confirmation and devi-
ations regarding our hypothesis.
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Chapter 2

Database

The data used in this work is provided by the BBVA bank. The data is collected
using the transaction data the bank has between its business clients. Their business
clientele is mainly composed of a vast amount Spanish companies. This data set
contains the following information.

• Company identifier.

• Economical sector of the company.

• Companies that receive money from other companies.

• Relative importance of the relation.

• Defaulted probability of each company [0 or 1] where 0 is not defaulted and 1
is defaulted.

• Weights that follow the direction of the money flow ( Normalized for all the
outgoing edges of a node )

We treat this data set as a financial client-supplier network, we also have the infor-
mation of each node and their edges. For more information about the real data see
Table 2.1. To get a better grasp at complex networks and to better understand this
data, an introduction into the matter is given in 3.

2.1 Metadata

Due to confidentially issues with the data, we ran our simulations on a synthetic net-
work designed to mimic the BBVA data. Besides confidentially, another important
issue was the lack of hardware to store and analyze the real network. Therefore, we
decided to create a smaller synthetic network. More information about the genera-
tion of the network can be found in Subsection 4.1.1.

The sectors that have been analyzed during the study are as follows:

• Financial Institutions: A financial institution is responsible for the supply of
money to the market through the transfer of funds from investors to the com-
panies in the form of loans, deposits, and investments. Large financial institu-
tions such as JP Morgan Chase, HSBC, Goldman Sachs or Morgan Stanley can
even control the flow of money in an economy.

• Energy: The energy sector is a category of stocks that relate to producing or
supplying energy. This sector includes companies involved in the exploration
and development of oil or gas reserves, oil and gas drilling and refining, or
integrated power utility companies including renewable energy and coal.
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• Financial Services: Financial services are the economic services provided by
the finance industry, which encompasses a broad range of businesses that man-
age money, including credit unions, banks, credit-card companies, insurance
companies, accountancy companies, consumer-finance companies, stock bro-
kerages, investment funds, individual managers and some government-sponsored
enterprises.

• Utilities: Is an economic term introduced by the noted 18th century Swiss
mathematician Daniel Bernoulli referring to the total satisfaction received from
consuming a good or service. The economic utility of a good or service is im-
portant to understand because it will directly influence the demand, and there-
fore price, of that good or service. A consumer’s utility is hard to measure,
however, but it can be determined indirectly with consumer behavior theories,
which assume that consumers will strive to maximize their utility.

• Telecom: Information Communication & Telecommunication Economics refers
to a broad range approach to the micro and macro economics of data consump-
tion and management, voice or data. This application of micro cum macro
economic principles to the subject matter here is referring to three clear strate-
gies vis-a-vis information, communication and telecommunication. Informa-
tion refers to data that is accurately organized and timely presented so as to
affect the end user’s behavior.

• Basic Materials: Companies included in the basic materials sector are involved
in the physical acquisition, development, and initial processing of the many
products commonly referred to as raw materials. Oil, gold, and stone are ex-
amples. Raw materials, for the most part, are naturally occurring substances
and resources. Some are finite. Others are reusable but are not available in
infinite quantities at any given point in time.

• Transportation: Transport Economics is the study of the movement of peo-
ple and goods over space and time. It is a branch of economics that deals
with the allocation of resources within the transport sector. Historically, it has
been thought of as the intersection of microeconomics and civil engineering,
as shown on the right.

• Retail: Retail sales is the purchases of finished goods and services by con-
sumers and businesses. These goods and services have made it to the end
of the supply chain.

• Retailers: The middle of the supply chain is wholesale sales. They distribute
the goods and services to retailers. The retailers sell them to the consumer.

• Capital Goods: also called complex products and systems (CoPS) is a durable
good that is used in the production of goods or services. Capital goods are one
of the three types of producer goods, the other two being land and labour. The
three are also known collectively as "primary factors of production"

• Auto: The automotive industry comprises a wide range of companies and or-
ganizations involved in the design, development, manufacturing, marketing,
and selling of motor vehicles. It is one of the world’s largest economic sectors
by revenue. The automotive industry does not include industries dedicated
to the maintenance of automobiles following delivery to the end-user, such as
automobile repair shops and motor fuel filling stations.
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• Consumer and Healthcare: The healthcare sector consists of companies that
provide medical services, manufacture medical equipment or drugs, provide
medical insurance, or otherwise facilitate the provision of healthcare to pa-
tients.

• Construction and Infrastructure: The construction industry plays an impor-
tant role in the economy, and the activities of the industry are also vital to the
achievement of national socio-economic development goals of providing shel-
ter, infrastructure and employment.

• Real Estate: Real estate is "property consisting of land and the buildings on it,
along with its natural resources such as crops, minerals or water; immovable
property of this nature; an interest vested in this (also) an item of real property,
(more generally) buildings or housing in general. Also: the business of real
estate; the profession of buying, selling, or renting land, buildings, or housing."

• Leisure: the leisure industry is the segment of business focused on recreation,
entertainment, sports, and tourism (REST)-related products and services

• Institutions: organizations founded for a religious, educational, professional,
or social purpose.

• Unknown: The sector is unknown, most likely due to the instance not being a
client of the bank.

The data has been simulated using the following statistics:

sector size(%) kin kout default ( %)
Financial Institutions 0.046 39.613 45.529 3.650
Energy 0.083 12.844 8.666 1.111
Financial Services 1.165 6.300 20.265 0.786
Utilities 1.529 5.589 5.903 1.264
Telecom 3.299 5.960 5.194 1.1776
Basic Materials 2.745 5.789 5.350 2.782
Transportation 4.023 5.411 4.336 1.868
Retail 4.064 3.973 3.233 1.217
Retailers 4.273 5.001 3.613 1.885
Capital Goods 8.698 4.528 3.098 1.866
Auto 1.470 4.454 2.991 1.786
Consumer and Healthcare 7.055 3.259 3.770 1.539
Construction and Infrastructure 8.907 3.067 3.270 1.539
Unknown 10.159 0.930 1.413 1942
Real Estate 6.843 1.517 1.844 3.603
Leisure 12.861 2.509 2.512 1.511
Institutions 3.219 5.547 10.764 0.535

TABLE 2.1: Network properties of all financial sectors of the BBVA
data (Real one)

Table 2.2 represents the metadata of the simulated BBVA graph. The graph is
simulated using random statistics based on the original BBVA metadata, but ap-
plied on much less nodes. In total 104 nodes have been generated for the BBVA
simulation. The generation procedure starts with generating the nodes per sector
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sector size(%) kin kout default ( %)
Financial Institutions 0.050 36.800 46.200 0.000
Energy 0.080 11.125 8.750 0.000
Financial Services 1.160 6.147 20.500 0.000
Utilities 1.530 5.797 5.889 0.000
Telecom 3.300 5.758 5.188 0.303
Basic Materials 2.740 6.077 5.401 2.555
Transportation 4.060 5.308 4.374 0.985
Retail 23.592 3.956 3.179 1.314
Retailers 4.270 5.178 3.628 1.171
Capital Goods 8.691 4.525 3.075 2.877
Auto 1.470 4.415 3.027 2.041
Consumer and Healthcare 7.061 3.360 3.796 1.133
Construction and Infrastructure 8.911 2.975 3.226 3.030
Unknown 10.161 0.928 1.260 2.067
Real Estate 6.841 1.456 1.971 3.216
Leisure 12.861 2.495 2.526 1.555
Institutions 3.220 5.326 10.745 5.901

TABLE 2.2: Network properties of all financial sectors of the BBVA
data (simulated)

according to the relative frequency. For each node we randomly generate a number
of connections the node should have. This number is drawn from a N(n, n/10) dis-
tribution. Here, n is the average outgoing number of connection for the sector of the
node. Afterwards, we pick a selection of sectors, equal to the number of connections
previously generated. For each selected sector a random node is picked to connect
to. The sector selection probability relies on the relative size of the sector multiplied
by the number of average incoming connections. Comparing the metadata of the
simulated graph, Table 2.2, with the original metadata, Table 2.1 some deviance can
be noticed, especially in the percentage of defaulted companies. These differences
can be explained by the fact that the simulated graph is simply a smaller projection
of the statistical data of the original graph. For example, Financial Institutions takes
up 0.046% of the entire original network and the percentage of defaulted companies
is 3.650%. Lets calculate, 0.046%× 10000 ∼ 5 companies, which is 0.05% of the sim-
ulated network. However, if even one Financial Institution in the simulated network
is defaulted, a default percentage of 1/5 = 20% is obtained. Now it should be clear
how the simulation results in these differences.

2.2 Previous work done by BBVA

The main goal of this work is to improve and expand the previous work carried out
by BBVA Data science team (Barja et al., 2019). The purpose now is compare the
results obtained from BBVA, and expand including default cascades analysis. The
BBVA team had proposed a computational model, based on the probabilities of de-
fault contagion, to study the default diffusion at individual and aggregated levels.
They had been performed massive experiments based on this model by varying sev-
eral parameters such as the initial default rate, the contagion rate β and the recovery
rate µ. And the results that they have been obtained shown the relationship between
dynamical and topological properties for more than 140,000 BBVA firms aggregated
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using their economic sector. This allow us to create a ranking of sectors which can
be used in specific scenarios.

What they did was provide a simple mechanistic model to assess the impact of a
particular diffusion process on financial networks, that of default contagion. To this
end, they take advantage of a probabilistic computational framework named mi-
croscopic Markov chain approach (MMCA) to compute the probability of the states
of individual agents in contagion processes in complex networks, and adapted its
formulation to the understanding of the default propagation in financial networks.

To analyze the behaviour of our proposed model, they use real data from the
anonymized database of BBVA from December 2015 to December 2016, covering
about 140,000 public and private Spanish firms. With this data they had access to the
real network of interactions and to the default endogenous propagation dynamics.

The results of the model that was applied to the real data reveal which sectors
are more at risk in the propagation of default, which sectors are more resilient to the
default avalanches, and what are the expectations for the cascades of default under
different stochastic conditions. Below is shown some of the results obtained for a
baseline model with no edge rewiring.

Plot 2.2 shows ρ(β, µ) for each economical sector. Clearly, not all sectors behave
in the same way regarding default dynamics. Broadly speaking, economical sectors
can be grouped in three blocks given its response to default propagation. On one
hand, Institutions, Leisure and unknown sector show a low propensity to default
propagation, where the sector default probability density range from approximately
0.04 to 0.10 for high infectious rate β. On the other hand, Financial Institutions and
Energy evince a high propensity to default contagion, with ρ reaching almost 0.50.
In other words, on average, each company of these two sectors has a 0.50 probability
of being in default for extreme parameter conditions. In-between, we find the rest of
the sectors with density variations ranging from 0.15 to almost 0.30. Interestingly, the
exposure of the economical sectors is quite different to one another. This result, may
allow current risk assessment models (ex. Generalized Linear Models) to include a
quantification of sectorial risk and rank accordingly.
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Chapter 3

Complex Networks

In this section one can find a general overview into complex networks focusing
on the necessary knowledge to understand the original and simulated data, Tables
2.1,2.2, as well as the model networks (BA and ER) used in section 7.

The main difference between simple graph/network theory and complex net-
works lies in the fact that complex networks are based on real networks and present
several non-trivial topological features and unexpected dynamics.

3.1 General definitions

The two main components of a complex networks are the nodes and the edges. A
node represents the actual individuals, companies, elements that are part of the sys-
tem to analyze and the edges are the relations between those individuals. In that
sense, if two nodes are related with each other then, an edge is established between
them. For example, in a social network the edges usually symbolize friendship be-
tween two individuals, in an airport network they symbolize flights and in a finan-
cial network transactions between two companies. This allows us to draw the net-
work as seen in Figure 3.1. Notice that the nodes are drawn in two distinct colours.
In general one can use the colour of the nodes to represent some properties of the
node, in that case it is done to symbolize the two main factions that co-exist inside
the club.

Given a network structure with nodes and edges one can differentiate between
several networks,

• Undirected/Directed:If the edge (the relation) between the two nodes is inde-
pendent of the direction of such relation we have an undirected complex net-
work with edges that resemble lines. However, if the direction matters, like is
the case in a financial network, where the edges symbolize monetary transac-
tion flowing from one company to the other, then, we have a directed network
with edges that resemble arrows.

• Weighted/Unweighted complex network: In an unweighted complex network
all edges have the same value for the involved nodes (again, is the case of a
social network). However, if the edges are different ones from the others a
number (weight) is assigned to symbolize that difference. For instance, in a
financial network the weight is the value of the monetary transaction between
the companies. Clearly the higher the value of the weight the more important
is that edge over the rest for a given node.

To sum up, a financial network is a directed weighted complex network.
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FIGURE 3.1: Prototypical complex network where the nodes repre-
sent the members of a karate club and the edges (lines) friendship

between them.

Given a node we can define:

• Degree (k): The number of edges that connect the node with the rest.

In the case of a directed network we need to differentiate between in-degree and
out-degree.

• In-degree (kin): The number of edges whose ending point is the node.

• Out-degree (kout): The number of edges whose starting point is the node.

For a financial network the in-degree symbolizes for how many companies the
node is a supplier, and the out-degree symbolizes how many suppliers the node has.

Obs 3.1 Since default contagion goes from suppliers up, the higher the in-degree
the higher the chances the company spreads the default and the higher the out-
degree the less susceptible is a company of getting infected when one of his suppliers
goes into default. With this information now tables 2.2 and 2.1 should be clear. Look-
ing at them we can start to think which sectors will be more susceptible to default
contagion and which sectors have the higher risk for the network. More information
about default contagion, failure cascades and risk will be introduced and developed
in sections 5,6.

Most complex networks, as is the case for a financial network, are what is called
scale-free networks. A scale-free network is such that the degree distribution of the
nodes follows a power law.

P(k) = k−γ (3.1)

Meaning, nodes whose degree is at several different scales can be found and thus,
there is no characteristic scale. That is why they are called scale-free networks. The
nodes with the higher degree scale in this type of networks are what we call Hubs.
Most of the strange and unexpected dynamical behaviours and topological features
have their root in the Hubs. Figure 3.2 shows that both the BBVA and the generated
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data follow a similar power law distribution. The first values of the curve are the
only ones that seem to differ, suggesting our generated data has fewer companies
with degrees 1,2,3 than it should. Otherwise it is a pretty accurate fit. Also, notice
that the Hubs have a much lower degree in this case, as a result of having a much
smaller network. However, the fact that they follow a similar power law gives us
confidence that the relative magnitude of the Hubs remains equivalent.

FIGURE 3.2: Degree distribution of the BBVA data (left) and our sim-
ulated metadata (right) in log-log scale.

One of the main models that generates a scale-free network is the proposed by
Barabási-Albert. On the other hand, a model such as the Erdós-Rènyi one, for which
all nodes have closely the same degree, is an example of a single scale network.
In section 7 a comparison between a financial network following both models is
performed.

3.2 Barabási–Albert (BA) model

The BA model generates a scale-free network using what is called preferential at-
tachment, which essentially is the common rule of the rich gets richer and the poor,
poorer.

The hypothesis of preferential attachment are that there is a simple initial ran-
dom graph and the true complex network arises from introducing more nodes to
the preexisting graph. Every new node enters the network with x edges and the
probability of connecting those edges to each node depends on the actual degree of
every node. Thus, nodes with higher degree have a higher probability of gaining
even more connections, generating the so cold Hubs, while the lower degree nodes
will remain mostly untouched.

The algorithm goes as follows, given a connected random graph with n0 nodes
and m0 edges. Every new node enters with x edges, and the probability to attach to
every other node pi is:

pi =
ki

∑j k j
(3.2)
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The result of applying this algorithm is a scale-free network with γ ' 3. An
example of the behaviour of this algorithm can be found in Figure 3.3.

FIGURE 3.3: Illustrative example of the growth of a network follow-
ing the BA algorithm as it can be found in (Barabási, 2016). The white
node in each image symbolizes the new entering node which enters

with two edges.

To know more about scale-free networks as well as a deeper analysis of the BA
algorithm go to (Barabási, 2016).

3.3 Random Network, the Erdós–Rényi (ER) model

There are two main definitions of random network,

• G(N, M) model: Where the network has N nodes and M links randomly dis-
tributed among the N nodes. An alternative definition would be that the graph
is chosen uniformly at random from the collection of all graphs which have N
nodes and M edges.

• G(N, p) model: Where the network has once again N nodes and every pair of
nodes can be connected with probability p.

The G(N, M) model was introduced in (P.Erdós, 1959), while the G(N, p) model
was introduced in (Gilbert, 1959). Both approaches, and more generally all random
graphs/networks generated in a similar fashion, receive the name of Erdós–Rényi
network in honor to their contributions to the field.

The actual algorithm of the ER model follows the second approach. It follows
the guidelines:

• Start with N isolated nodes (0 edges).

• Given a node pair, generate a random number in [0, 1], if the number is below
the probability p then an edge is introduced between the nodes.

• Repeat the second point for every pair of nodes possible. Remember that by
combinatorics theory that is (N

2 ) =
N(N−1)

2 .

3.3.1 Properties of G(N, p)

In order to compare both models in section 7 both graphs should have an almost
equal number of nodes and edges. Furthermore, one of the main differences between
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both the BA and the ER models is the fact that a BA network is scale-free whereas
an ER network is single scale. The study of some properties of G(N, p), the expected
number of edges given a probability p and the degree distribution of the ER network
is therefore required.

Expected number of Links

Let our final graph g ∈ G(N, p) be such that g has exactly L edges. This had hap-
pened if and only if:

• L times an edge has been drawn between a pair of nodes.

• The rest (N
2 )− L of times an edge has not been drawn.

The probabilities that both this events had happened are pL and (1− p)
N(N−1)

2 −L

respectively. Moreover, we need to account for the total number of different combi-

nations of L edges that can be placed in the network ((
N
2 )
L ).

Thus, the probability that our network has exactly L edges is

pL = pL
(N(N−1)

2
L

)
(1− p)

N(N−1)
2 −L (3.3)

which corresponds to a binomial distribution. Therefore, a graph g ∈ G(N, p)
has on average (N

2 )p edges.

Degree distribution

Similar to the procedure done when analyzing the total number of edges in the
whole network, if instead we look to the number of edges that one particular node
has, we have that it will have precisely k links if and only if k edges had been drawn
and (N − 1)− k edges had not been drawn. Again, we need to account for all the
possible combinations of k links. This yield, just as expected, that the degree distri-
bution follows a binomial:

P(k) =
(

N − 1
k

)
pk(1− p)N−1−k (3.4)

where N is the total number of nodes in the graph. Thus, the expected value of
the degree is 〈k〉 = (N − 1)p.

Assuming the limit N � 〈k〉 we have that the binomial distribution is well ap-
proximated by a Poisson distribution, see Figure 3.4

P(k) −→N→∞
〈k〉e−〈k〉

k!
(3.5)

Notice how in both cases, binomial and Poisson distributions, that clearly makes
the ER degree distribution single-scale in contrast with the scale-free BA. As it has
been explained before most real networks follow a scale-free approach and thus a ER
model fails to fit reality. Nevertheless. for the hypothetical case of a true communist
financial network we will assume it would behave as a random ER graph.

To properly see the mathematical proof of 3.5 go to Advanced Topic 3.A. in
(Barabási, 2016). If the reader is interested in knowing more about random graphs



14 Chapter 3. Complex Networks

FIGURE 3.4: Figure that illustrates how both distributions converge
when N � 〈k〉 as it is shown in (Barabási, 2016)

and their evolution we suggest (P.Erdós, 1959; P.Erdós, 1960; P.Erdós, 1961) or fol-
lowing section 3 in (Barabási, 2016).
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Chapter 4

Study Design

In this study, we take advantage of the theory of complex networks to shed some
light on the mechanisms behind default propagation. We propose a computational
model, based on the dynamics of default contagion, that allows us to assess the main
statistics of default diffusion at individual and network levels. We study several
different topologies that resemble real financial client-supplier networks. The model
enables to investigate the functioning of the default propagation and to assess the
economic health of the full structure, providing some insights in which topologies
are more resistant towards default propagation and which yield a higher overall risk
of collapse. Furthermore, the model can give some intuitions about the systemic risk
of companies of interest.

4.1 Financial client-supplier networks

Financial client-supplier networks are a combination of financial and client-supplier
networks. In a financial network the objective is to simulate money flows between
financial instances. Examples of these financial instances can be, but are not limited
to people, companies, firms, banks. Financial networks give insight in the strength
of economic relationships between instances and macro effects in financial systems.
The applications extend to far ranges in the finance field. With client-supplier net-
works the intent is to simulate relationship between instances, in terms of supply
and demand of goods or services. In this project, the network is based on transac-
tion data between business clients of the BBVA, hence using money flows. How-
ever, it differs from a pure financial network in the sense that the money flows
are not directly simulated. Instead, money flows are used to model client-supplier
relationships. Using the combination of the principles of both types of networks
makes it that a financial client-supplier network inherently simulates financial states
as well as economic strength. Moreover, money flows are more difficult to model
than solid business relationships, due to the relatively erratic behaviour of money
flows. Through the use of financial client-supplier networks we obtain insights in
contagion and system risk. These insights are obtained by looking at default density,
but more importantly, by looking at cascades, which will be explained later in this
section.

4.1.1 Network construction

The exact construction of our financial client-supplier networks depends on the
implementation. In this work two methods are used to construct the networks.
The first method consists of quasi-random generated weighted bidirectional graphs.
These networks are generated using well-known models, the Barabási–Albert and
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Erdós–Rényi models, which are explained in detail in the previous chapter. There
are many more models to generate weighted bidirectional graphs, the reason of us-
ing specifically these models stems from the desire to simulate sharing economy and
liberal markets.

The second method bases the network on the statistics of the BBVA network.
This imitation network is sectorial, meaning that for different clusters of nodes, the
characteristics change; incoming and outgoing connections. The exact process goes
as follows. We set a desired number of nodes. The we partition these nodes into
sectors according to the relative sizes of each sector, Ss. Next, for each of the desired
number of nodes in the graph, a number of outgoing connections is drawn from a
normal distribution

Nn ∼ N (ks
out, ks

out/10)

Here N is the number of outgoing connections for node n and ks
out is the mean num-

ber of outgoing connections for sector s. Now we find Nn nodes to connect to. Since
we want to satisfy the mean number of incoming nodes per sector, we have to take
this into account connecting to nodes. We do this by randomly selecting a number
of sectors equal to Nn, according to the sector probability Ps.

Ps =
ks

inSs

∑s(ks
inSs)

We now draw a random node from the sector for each of the drawn sectors. We end
up with a network attaining the provided statistics of the BBVA network.

The imitation network is not completely representative of the BBVA network,
since it is randomly generated using only the mean incoming and outgoing connec-
tions per sector. In order to get a more representative network, the complex client-
supplier structures within the network are of extreme importance. Unfortunately,
we were not able to remodel this. The reason for not using the full BBVA network
directly is due to computational limitations and confidentiality.

4.2 Cascading failure

A cascading failure is a process in a system of interconnected parts in which the
failure of one or few parts can trigger the failure of other parts and so on. Such fail-
ure may happen in many types of systems, including power transmission, computer
networking, finance, human body systems, and transportation systems. Cascading
failures may occur when one part of the system fails. When this happens, other parts
must then compensate for the failed component. This in turn overloads these nodes,
causing them to fail as well, prompting additional nodes to fail one after another.

The size of cascades is greatly affected by the topology of the network. For exam-
ple, completely random networks are more resilient than networks with reinforced
loops, which occur, among others, in energy distribution systems. The cascade sizes
vary significantly between the three networks used in this paper. The cascade sizes
between the imitation BBVA network and the actual BBVA network will vary too,
since the imitation network lacks the complex structures present in the BBVA net-
work.
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Terms frequently used in financial and client-supplier networks are "too big to
fail" (TBTF) and "too interconnected to fail" (TICTF). These terms refer, respectively,
to instances/nodes that are so big, they have so much money flow, or have so many
connections that the likelihood of them defaulting is extremely small. In finan-
cial client-supplier networks, these terms are roughly interchangeable, since many
strong connections imply strong money flow. In a liberal market, there will be some
TBTF nodes, while in a sharing economy these nodes are absent. The BBVA network
is more similar to a liberal market system, but with the addition of partitioning.
Some of these sectors are more connected than other sectors, making the system
more resilient to total collapse and default of a large node. However, this system is
just as prone to collapse as the liberal market system in case of a large node default-
ing. More information about this topic can be found on Chapter 6

4.3 Systemic risk

In finance, systemic risk is the risk of collapse of an entire financial system or entire
market, as opposed to risk associated with any one individual entity, group or com-
ponent of a system, that can be contained therein without harming the entire system.
Whenever a company becomes systemic risk, it means that they are too big to fail.
In the very unlikely case of failure of these companies, the entire financial system
is endangered to collapse. Governments can use systemic risk as a justification for
intervening in the economy, trying to prevent economic collapse, usually indicating
a financial crisis.

In this project, systemic risk is investigated for the three networks; liberal mar-
ket, sharing economy and BBVA imitation. This is done by investigating cascades
after purposely defaulting nodes with many connections and comparing the results
with the results from simulations without defaulting these nodes. The larger the dif-
ference in most likely and maximum cascade size, the more susceptible the network
is to systemic risk. Besides the insight it gives on systemic risk in the entire system, it
can also be used to analyze the systemic risk posed on the network by any company
of interest.

4.3.1 Sharing economy

Sharing economy is a term for a way of distributing goods and services, a way
that differs from the traditional model of corporations hiring employees and sell-
ing products to consumers. In the sharing economy, individuals are said to rent or
"share" things like their cars, homes and personal time to other individuals in a peer-
to-peer fashion. To analyze the part of sharing economy we will follow the model of
Erdós–Rényi. In the mathematical field of graph theory, the Erdós–Rényi model is
either of two closely related models for generating random graphs. They are named
after mathematicians Paul Erdős and Alfréd Rényi, who first introduced one of the
models in 1959, while Edgar Gilbert introduced the other model contemporaneously
and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs
on a fixed vertex set with a fixed number of edges are equally likely; in the model
introduced by Gilbert, each edge has a fixed probability of being present or absent,
independently of the other edges. These models can be used in the probabilistic
method to prove the existence of graphs satisfying various properties, or to provide
a rigorous definition of what it means for a property to hold for almost all graphs.
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4.3.2 Liberal market

Liberal market is an economic system based on the private ownership of the means
of production and their operation for profit. Characteristics central to liberal mar-
ket include private property, capital accumulation, wage labor, voluntary exchange,
a price system, and competitive markets. In a liberal market economy, decision-
making and investment are determined by every owner of wealth, property or pro-
duction ability in financial and capital markets, whereas prices and the distribution
of goods and services are mainly determined by competition in goods and services
markets. To analyze the part of liberal markets we will follow the model of the
Barabási–Albert (BA) model. This is an algorithm for generating random scale-free
networks using a preferential attachment mechanism. Several natural and human-
made systems, including the Internet, the world wide web, citation networks, and
some social networks are thought to be approximately scale-free and certainly con-
tain few nodes (called hubs) with unusually high degree as compared to the other
nodes of the network. The BA model tries to explain the existence of such nodes in
real networks. The algorithm is named for its inventors Albert-László Barabási and
Réka Albert and is a special case of a more general model called Price’s model.
More information about this topic is on 3.3, 3.2
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Chapter 5

SIS - Agent-based models

In this section the SIS epidemiology model is introduced as well as different agent-
based models and their policies following the structure of the SIS model.

5.1 SIS model

The SIS model is a basic epidemiology model where all individuals are susceptible
of becoming infected and can recover from such infection. When an individual re-
covers from the infection it is immediately susceptible to becoming infected again.
This is a key difference from other epidemiology models such as SIR/SIRS where
the recovered individual is resistant to becoming infected for a while (SIRS) or flat
out immune (SIR).

Given a constant population of N individuals, and denoting I as the number
of infected individuals and S = N − I as the number of individuals susceptible
of becoming infected, the first order differential equations (ODE’s) governing the
system are:

dS
dt

= −βSI
N

+ µI

dI
dt

=
βSI
N
− µI = −dS

dt

(5.1)

where β represents the infectious rate and µ the recovery rate, β, µ ≥ 0.

One might be interested in knowing when the system reaches an equilibrium (i.e.
dI
dt = 0). A quick look into 5.1 gives us:

dI
dt

= 0⇐⇒ I = 0, or I =
(

1− µ

β

)
N. (5.2)

Thus, it makes sense to define the reproductive number as R0 = β
µ .

• At the limR0−→0 we have I −→ −∞, but since the number of infected individu-
als is positive (I ≥ 0) we recover I = 0, meaning the infection disappears from
the population. This limits corresponds to the case µ � β, i.e. the recovery
rate is much higher than the infectious rate.

• At the limR0−→∞ we have I −→ N, so all the population becomes infected. This
limits corresponds to the case β� µ i.e. the infectious rate is much higher than
the recovery rate. Observe how both limits behave exactly as one would expect
they should.
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• Moreover, for the infection to spread it is required that R0 > 1 ⇐⇒ β >
µ. Since the amount of infected individuals at the equilibrium state is found
by 5.2, notice how, for R0 < 1(⇐⇒ β < µ), the total number of infected
individuals at equilibrium would be negative and, since that is not possible,
would essentially be 0. Meaning, the infection would die. Also, note that if
µ = 0, β > 0 the infection spreads to all the population. Thus, both extreme
cases, fully recovered and fully infected, can be obtained without the need to
go to the limits µ� β, β� µ, see Figure 5.1.

• Notice that whenever µ = β, equation 5.2 would give us I = 0 and dI/dt = 0
which is incompatible with a set of initial conditions where for instance I0 6= 0.

FIGURE 5.1: Simulations that show the two extreme SIS behaviours,
all infected (left) and all cured (right).

Let’s discretize the first order differential equations. Given two consecutive mea-
sures of time ti, ti+1 equations 5.1 become:

S(ti+1) = S(ti)

(
1− β∆t

I(t)
N

)
+ µI(t)

I(ti+1) = I(ti)

(
1 + β∆t

S(t)
N

)
− µI(t) = −S(ti+1)

(5.3)

where ∆t = ti+1 − ti. Redefining the rates as β′ = β∆t, µ′ = µ∆t, one can write

ρ(ti+1) = ρ(ti)− µρ(t) + βρ(t)(1− ρ(t)) (5.4)

where the primes (′) have been omitted and ρ(ti) =
I(ti)

N is the fraction of infected
individuals at instant ti.

In a microscopic approximation the fraction of infected individuals becomes a
good estimator of the probability of infection. Of course, in our interpretation we
need to account also for the weights of the edges between the nodes, making the
probability of the infection being spread from your neighbours to you proportional
to the weight. To keep the probability sense we need to normalize the out-degree
weights to 1 for every node.
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The resultant equation that governs the system is:

pi(t + 1) = (1− qi(t))(1− pi(t))︸ ︷︷ ︸
(1)

+ (1− µ)pi(t)︸ ︷︷ ︸
(2)

+ µ(1− qi(t))pi(t)︸ ︷︷ ︸
(3)

(5.5)

where
qi(t) = ΠN

j=1(1− βrji pj(t)) (5.6)

Then, (1− qi) accounts for the probability that your neighbours infect you. More
precisely, each term in 5.5 can be interpreted as follows,

• (1): Is the probability that your neighbours infect you given that you were not
infected in the previous iteration.

• (2): Is the probability that you remain infected given that you were infected in
the previous iteration.

• (3): Is the probability that your neighbours infect you given that you were
infected in the previous iteration and you healed yourself in this one.

Finally, note that r is the matrix of weights between nodes, thus rji is the weight
of the edge connecting nodes j and i. If those nodes are not connected the weight
between them is 0.

5.1.1 Stochastic approach

In our approach we will follow a stochastic (0, 1) rule for the probability of a com-
pany being defaulted at each iteration i. We will still use equation 5.5 but at the end
of each iteration we transform the continuous probabilities p into either 0 or 1. This
is done by generating a random number between 0 and 1. If the generated num-
ber lies below the continuous probability pi then the company becomes defaulted
pi = 1, otherwise pi = 0.

The main difference between this case and the continuous probabilistic one is on
the edge rewiring. Thus, the policies our agents followed may not work properly
anymore. Remember the policies are the criteria that a business (node) follows to
look for a new supplier when the previous provider has entered default. Let’s look
at how each policy used in the previous work 5.2.1 behaves in the stochastic scenario.

• The hard or strict policy will force all companies to change their defaulted
suppliers to non-defaulted ones. Thus, it will become stagnant after the first
iteration. All companies will become non-defaulted if the recovery rate (µ) is
non-zero and constant otherwise.

• The random policy is always an option and we will still consider it viable.
Nevertheless, since at the beginning there are much more non-defaulted com-
panies than defaulted ones and the edge-rewiring only takes place when the
supplier is defaulted, it is much more likely that the new supplier is not de-
faulted.The end result is that this policy will also become stagnant after a short
while.

• The soft policy simply differs from the strict one in the sense that two defaulted
companies would still do business with one another. Since an infected com-
pany can not get infected again this policy is as irrelevant as the strong or
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random one and will become stagnant in a short time. See for instance Figure
5.2.

FIGURE 5.2: Comparison of the evolution of the default in a financial
network for the stochastic and continuous cases applying the soft pol-
icy given µ > 0, µ

β = 0.25. Includes a Zoom into the stochastic curve
to see the behaviour.

Thus, new policies regarding edge rewiring need to be defined.

5.2 Agents and policies

The agents move through the financial network following different policies. This
policies are guidelines to change suppliers. It is important to note that a business
will only attempt to change suppliers when one of them becomes defaulted.

5.2.1 Previous work policies

In the continuous case, a node considers that one of his suppliers is defaulted when-
ever the defaulted probability of that supplier is higher than its own defaulted prob-
ability. The previously used policies were:

• Random: The business chooses it’s new supplier randomly. That means a
healthy node can be reconnected to either healthy or infected nodes.

• Soft: The business only chooses suppliers whose probability of infection is
equal to or lower than that of itself. That means, a healthy node will be recon-
nected to healthy nodes and an infected node will be connected to infected or
healthy nodes.
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• Strong: A business only chooses suppliers whose probability of infection is
strictly lower than that of itself. In essence, the literal interpretation would
make, in a stochastic case, healthy nodes unable to reconnect. Nevertheless,
the interpretation should be that all nodes will only reconnect to healthy nodes.

where it has been included a brief discussion of what happens in the stochastic
approach as it has been previously discussed in 5.1.1. Since there are only 2 states
(0, 1), defaulted and non defaulted, the companies that enter default are quickly
isolated for all the previous policies. Then, if the system has a recovery rate higher
than 0, the system will be fully recovered and, if the recovery rate is 0, there will be
for the entire process a constant number of infected companies. See Figure 5.2.

5.2.2 New Policies

For defining the new policies what it is proposed is to create some added modifi-
cations to complement the previous policies. This modifications are the following
ones:

• Delay: The delay represents the number of steps a company waits to change
suppliers by following one of the above policies. In essence, delay measures
the patience of a company with its suppliers. Clearly, when the delay is 0
one encounters the stagnation that was described before and when the delay
parameter systematically increases it becomes more similar to not doing edge
rewiring at all.

• Weight transfer: If a company has two or more suppliers of the same sector
it transfers weight from the defaulted connection to the non-defaulted connec-
tions in the same sector. If the company has no more suppliers in that sector
then, it creates a new edge into another company in the sector (using one of
the previous criteria) but keeps the previous connection and, then, transfers
weight. The amount of weight transferred can be 1/4, 1/6, ...1/η of the total
weight such that after η weight transactions the edge disappears.

Then, the resultant policies our agents will follow will be of the form: soft + delay
3, random + Weight-transfer,...

One interesting question is how much patient, loyal, a company can be to its
suppliers without compromising itself and/or the complete financial network? This
issue will be discussed for some particular financial networks in 7.

Observation 5.1 The weight transfer modification is too expensive in computa-
tional time and will not be implemented extensively. This happens because as the
infection spreads through the financial network more and more suppliers are de-
faulted, making a huge amount of companies look for new suppliers. However,
they keep the connection to the previous ones, at least for a while. Then, the num-
ber of edges grows fast making the algorithm increasingly slower in the following
iterations.
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Chapter 6

Failure Cascades

When looking at the dynamics of the system one of the most interesting points is
to analyse the existence and, if so, the behaviour of failure cascades. That is, the
analysis on how a node failing (entering default, becoming infected) can trigger a
succession of failures in neighboring nodes that can ultimately collapse the whole
network, or a great portion of it. This analysis may show which nodes have a deeper
influence in the network and which connections can then be a potential risk for the
company as well as for the whole network.

6.1 Properties/Attributes

Let us define:

• Cascade Depth (Cd): How many levels the default propagates down to.

• Cascade Size (Cs): How many nodes become defaulted. Note we will not
consider the original node as part of the final cascade.

For instance, the failure cascade for a simple network consisting on 3 companies
the first pointing to the other two where all three companies become defaulted when
the first company defaults, has size 2 and depth 1.

When looking at the failure cascades in a directed complex network one can fol-
low two basic approaches:

• Back-propagation: Find a node in default that points to no other node in de-
fault and backtrack the origin of the failure cascade obtaining the cascade’s
size and depth.

• Forward propagation: Find a defaulted node not pointed by any defaulted
node and go forward in the direction of the edges to find the cascade size and
depth.

Observation 6.1: An interesting point about the default propagation in a finan-
cial network is that it follows the inverse of the edge directions. A business can
become defaulted if one of his suppliers is defaulted. Remember edges go in the
direction of cash flow so, they point towards the suppliers. As a result, for a net-
work where default propagates in the inverse direction of the edges, the notion of
back-propagation becomes forward propagation and vice versa.

A slightly different way to look at the failure cascades to make sure the whole
network is properly analysed would be the following:
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• Controlled propagation: The initial companies that enter default are not se-
lected at random but instead they are fixed and in successive simulations dif-
ferent starting defaulted companies are selected until all of them have been
chosen at least once.

Note that one has to be very careful with which companies sets into default
because one of them could be in the path of another and thus contribute to the
failure cascade becoming larger when, for instance, it wouldn’t have grown
so much. Then, the only sure way for a general complex network to actually
perform this analysis is to set them initially one by one to default in succes-
sive simulations or to select companies that are not connected to each other
following any possible path.

6.2 Cascades with Edge Rewiring

What happens when we allow edge rewiring in our financial network?

The general hypothesis is that one expects the cascade sizes and depths to be
significantly reduced. More precisely, one expects the probability of the cascade size
to be smaller than a certain value Cs, P(cs < Cs) (i.e. the cumulative distribution) to
increase for lower values of Cs. Meaning, edge rewiring stops failure cascades from
reaching higher values than they would.

Looking at the policies that will be used in the study, 5.2, this effect should be
more significant for the soft policy than the random one. Of course, as it was shown
in 5.1.1, for the stochastic approach the difference between random or soft is minimal
and this difference may not be observed. Moreover, edge rewiring without delay
stops default contagion almost immediately and therefore failure cascades do not
occur. As delay increases, cascades should become more prominent, since we get
closer to the no edge rewiring case.

Observation 6.2 Looking at the details of the algorithm, clearly one needs to
keep track of all the nodes (business) that had been connected to every other node
in the past in order to be able to deconstruct how the cascades had originated. Fur-
thermore, the first iteration for which the node becomes defaulted should also be
kept. This extra information stored indirectly provides us a nice piece of knowledge,
which are the origin nodes that can potentially form a cascade.

Therefore, edge rewiring clearly will help to reduce the cascades size and the
higher the delay parameter is, the larger the expected cascades should be. Also, the
higher the reproductive number R0 = β

µ the larger this cascades will be. However,
there are still answer to be obtained. For example, which model, ER or BA, works
better in this front? Which financial sector is more susceptible to generate a failure
cascade? Which less? We will try to answer all this questions in 7.

6.3 Risk in a financial network

Failure cascades are one of, if not the main, option to evaluate the risk in a financial
network. In this section we propose different approaches to assess the risk in a gen-
eral financial network. Note that the computational cost of risk assessment tends to
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by considerably huge since multiple repetitions need to be performed for the results
to be statistically significant.

6.3.1 Basic risks

Let’s start by defining some basic risks that do not require failure cascade computa-
tion.

• Personal risk (Rp): Accounts for the risk for a certain node (business) to be-
come defaulted given a set of initial conditions. This can be assessed in a strict
way, looking only to the end result, have I became defaulted at some iteration?
Or in a softer way, taking into consideration at which iteration the company
entered default and reducing the risk as the iterations increase. The proposed
equations are:

Rp =
Nde f aulted

Ntotal
(strict)

Rp =
1

Ntotal
∑

j

(
1−

ij

itotal

)
(soft)

(6.1)

where Nde f aulted is the number of repetitions for which the node has being de-
faulted at some point, Ntotal are the total number of repetitions and ij, itotal , are
the first defaulted iteration and the total number of iterations of repetition j.

• Network risk Rn: Accounts for the risk for the overall network of default prop-
agation given a set of initial conditions. Again, two approaches (strict,soft) can
be implemented. The proposed equations are:

Rn =
Neq

Ntotal
(strict)

Rp =
1

Ntotal
∑

j

(
1−

ij

itotal

)
(soft)

(6.2)

where in this case Neq represents the amount of simulations that have achieved
the defaulted equilibrium ρ = (1− µ

β ), and ij the iteration for which the system
has first arrived to that equilibrium.

6.3.2 Cascade related risks

Moving on from the basic risks, lets define some new risks that take into consid-
eration the failure cascades generated in the financial network. The risks in this
approach will be represented by a pair of values (x, y) where x will be the expected
size of the cascade and y the maximum size.

• Individual risk, Ri: Accounts for the risk for the overall network of one node
becoming defaulted.

• Sectorial risk, Rs: Accounts for the risk for the overall network of one sector
entering partially in default. It assesses the potential risk of one sector, for
instance transportation, reacting to an outrageous increase of the petroleum
cost, which results in a small but significant percentage of the sector entering
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default. May show some light into the importance of each sector in the net-
work.

Knowing the risk of a failure cascade originating and the expected size of it may
provide critical knowledge for financial institutions and governments to act accord-
ingly before they occur in order to prevent them. Also, from a business standpoint,
one company might be interested in knowing the risk he is taking by changing or
acquiring a certain supplier or by not doing so. Some risk assessment will be done
in section 7 but it will be kept mostly general.
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Chapter 7

Results

In this section we show the obtained results throughout the study. First, we will
focus on the analysis of a Sharing Economy (Cooperative) Market, here represented
by an Erdós-Rényi network topology, vs a Liberal Market, here represented by a
Barabási-Albert network topology (see sections 3.2, 3.3, for more information about
these models). Afterwards, we will show the results obtained with the simulated
BBVA client-supplier network (see Table 2.2).

All studies for both datasets were carried out with the two re-connection policies,
namely random + delay and soft + delay, for different values of the Delay parameter,
as they were defined in Section 5.2.

Data management and statistical analysis were performed using Python 3.6.5
with the following libraries:

• Numpy

• Matplotlib

• Pickle

• Sys

• Networkx

• Joblib

For all statistical tests a nominal significance level 5% was fixed.

7.1 ER model

The first analysis attempts to create a random sample to verify how a financial net-
work would work without having a hierarchical structure among entities with dif-
ferent status and without predefined sectors having different default distribution.
This network resembles an ER topology.

sector size(%) kin kout default ( %)
1 20.700 6.188 5.778 0.966
2 21.300 5.986 6.000 0.000
3 19.100 5.927 5.990 0.000
4 20.100 5.831 6.045 0.498
5 18.800 6.032 6.176 1.064

TABLE 7.1: ER network information.

Figure 7.1 shows ρ(β, µ) for each economical sector. As this client-supplier net-
work is created randomly it can be observed that all sectors behave in the same way
regarding default dynamics. Notice that the fact some sectors are initially defaulted,
and some are not, does not affect at all the behaviour of the end result for each sector
for any ratio.1 Also, notice that up to ratio 3 propagation does not kick off. This is

1Ratio = Reproductive number = β
µ
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FIGURE 7.1: Average sectorial default density at equilibrium for the
random Erdos-Renyi graph with a recovery rate µ = 0.1.

due to the stochastic effect as this would not happen in a continuous default proba-
bilities setting. This effect was shown for delay 0 in Figure 5.2 and will be studied in
further detail for higher delays in the next section.

7.1.1 Study of critical delay

Here, given a value of µ = 0.2 we will analyze for some values of β = 0.4, 0.6 (i.e.
reproductive number R0 = 2, 3) which is the critical value of the delay, for several
different delays. That is, for which delay the network shifts from full recovery, ρ =

0, to the upper defaulted equilibrium, ρ =
(

1− µ
β

)
. An extensive analysis of the

probability of reaching each one of the equilibrium states is also included.

First scenario. β = 0.4

Figure 7.2 shows for which delay the upper equilibrium is reached. Since we are
assuming that the only two possible states of equilibrium are ρ = 0 and ρ = 1− µ

β ,
then, whenever the average default density of the 30 simulations becomes stable
for a non zero value this automatically implies that the upper equilibrium has been
reached for some of the simulations 2. The delay that first behaves as just described
is delay 4. Thus, 4 is the so called critical delay.

It is important to observe that, as expected, every delay increases the average de-
fault density until delays 9 − 11, which are around the expected equilibrium, are
reached. Both underlying policies (soft & random) do not seem to matter in an
stochastic setting. For the same delay both default density curves are pretty close
one with the other. The random ones seem slightly higher for some curves but lower
for others. More repetitions should be performed to obtain a more robust result. To
mitigate this issue, an extensive study for each delay is performed below.

2The mean between a simulation reaching the upper equilibrium and another fully recovered is a
curve that mimics the stable behaviour of the first one but only reaches half the value.
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FIGURE 7.2: Average default density evolution for 30 simulations
given different values of the delay for random and soft policies

It was done a Monte-Carlo procedure to have a better idea about how the default
density is really distributed after replicating the experiment n = 100 times for the
previous values of the parameters. After this procedure we want to analyze how
many of them really go to the upper equilibrium point (after 200 iterations) and how
many remain at the end by an intermediate point (meaning that they have not yet
converged). These results are shown with some plots, see Figure 7.3, and within a
table, see Table 7.2. The table will contain the percentages of how many times at the
end of the simulation the density ends at the point of balance or in the 0. Therefore,
this percentage will not add up to 1 in some cases, because on the intermediate de-
lays some simulations will not converge after 200 iterations. The plots will represent
the average values of the default density plus the confidence interval of 95% of the
average in order to have a better idea of how it differs during the whole process.

soft
Delay = 3 Delay = 4 Delay = 5 Delay = 6
(1.00,0.00) (0.90,0.00) (0.27,0.17) (0.11,0.71)
Delay = 7 Delay = 8 Delay = 9 Delay = 10
(0.06,0.92) (0.09,0.91) (0.07,0.93) (0.03,0.97)

random
Delay = 3 Delay = 4 Delay = 5 Delay = 6
(1.00,0.00) (1.00,0.00) (0.20,0.12) (0.10,0.70)
Delay = 7 Delay = 8 Delay = 9 Delay = 10
(0.08,0.90) (0.07,0.93) (0.09,0.91) (0.03,0.97)

TABLE 7.2: Percentages of the density (lower, upper) that reaches
each respective equilibrium point for different values of beta and de-

lays taking into account the policies applied.

From Table 7.2 it is observed that when the delay increases the percentage of
values that goes to the upper equilibrium also increases as it was expected. This
trend continues until the delay is high enough such that it resembles the non edge
rewiring case. At first, one could think that without edge rewiring (i.e. ∞ delay),
the expected result is that all of the simulations will reach the upper equilibrium.
Actually, this is not entirely the case always as we will see in 7.3.

Looking more closely at the values of the policies, it can be observed that the ran-
dom policy does not work particularly worse than the soft. In fact, for many results
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FIGURE 7.3: 100 simulation the mean of the density with the IC of the
mean for different values of the delay(3 to 10) from right to left and

for the policy soft
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the random policy actually behaved slightly better, which is a clear indicator that
both underlying policies seem to produce the same effect on the network dynamics.

Moreover, we can detect how for delay 5 we have almost all the simulations still
in a middle ground and for delay 4 almost all of them are down. Therefore, the most
interesting delay is by far 5. A comment on this strange balance obtained for delay
5 is done in the Second scenario, β = 0.6, for comparison purposes.
Similar conclusions are elucidated from figures 7.3.

Second Scenario. β = 0.6

Again we start by studying for which delay a simulation reaches the upper equilib-
rium first, i.e. the critical delay.

FIGURE 7.4: Average default density evolution for 30 simulations
given different values of the delay for random and soft policies

In this case the critical delay is equal to 3. Moreover, now for delay 4 the aver-
age default density is already significantly close to the upper equilibrium. Meaning
there are not that many intermediate delays which are the more interesting to study.

The difference between following a random or a soft policy seems greater in this
case, although may not be significant. To study if in fact the random policy yields
greater default densities as average than the soft let us move to the same study we
have already did for β = 0.4.

soft
Delay = 2 Delay = 3 Delay = 4 Delay = 5
(1.00,0.00) (0.17,0.83) (0.03-0.97) (0.02,0.98)

random
Delay = 2 Delay = 3 Delay = 4 Delay = 5
(1.00,0.00) (0.05,0.94) (0.04,0.96) (0.00,1.00)

TABLE 7.3: Percentages of the density (lower, upper) that reaches
each respective equilibrium state for different values of the delay.

From table 7.3, we see that the upper equilibrium point is reached much faster
than in the case of β = 0.4. Meaning, the upper equilibrium is reached for a lower
delay. Moreover, there are no real intermediate delays, as delay 5 was before, where
the default density has not reached any of the two possible equilibrium states after
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FIGURE 7.5: 100 simulation the mean of the density with the IC of the
mean for different values of the delay(2 to 5) from right to left and for

the policy soft

the 200 iterations. This is due to the higher ratio/reproductive number H0 = β
µ .

Let’s explore why.

The effect the re-connection policies have in our stochastic setting is to reduce the
speed of the default spreading. Alternatively, it could be viewed as an increase of
the overall recovery . This effect depends on the amount of companies re-connecting
and the ratio. Thus, depends on the parameters µ, β, and delay.
For delay 5 it existed sort of a balance between the speed at which companies ac-
tually became defaulted and the amount of companies that could heal themselves.
On paper, this is not an isolated result, as other possible combinations of delays and
ratios might yield the same intermediate behaviour. A change in delay implies an
automatic change on the amount of companies re-connecting. Therefore, given a ra-
tio, this balance can only exist for one delay. However, as we see in Table 7.3, for
ratio 3 no value of the delay is able to achieve the balance. It should be pointed out
that this false balance is highly unstable, and the higher are the forces involved (re-
covery and default spreading) the harder is to achieve that balance. Thus, the higher
the reproductive ratio, the harder this balance exists.

For this higher ratio, the soft policy works better than the random one, espe-
cially for the only intermediate delay, 3. Remember that the soft policy will only
reconnect healthy nodes with healthy nodes, but in the random policy they can be
reconnected to anybody. That behaviour,given a higher ratio, produces a bigger dif-
ference between the policies than a lower ratio would as it penalizes each wrong
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re-connection harshly.

From Figure 7.5 we see that even for a very small delay (delay 2) it takes much
longer to reach ρ = 0 than it did in Figure 7.3. Moreover, we can see that when
the default spreads through the network, the amount of infected companies quickly
exceeds the expected upper equilibrium and then slowly converges to it.

The same plots have also been made for the random policy, for more information
check the Appendix A.

7.1.2 Default cascades study

In this section, the random policy is omitted because, as seen in the previous section,
results were very similar to the ones obtained with the soft policy. Moreover, the soft
policy may represent a more realistic scenario.

Therefore, for the same values of the delay and the reproductive number H0 as
in the previous study, we will examine how the failure cascades behave in the Erdós
Rényi model network with soft policy.

β = 0.4
Delay E(Cs) max(Cs)

2 1.22 14
3 4.07 50
4 87.39 845
5 145.04 947
6 184.71 968
7 184.19 956
8 172.72 953
9 173.94 955
∞ 158.83 889

β = 0.6
Delay E(Cs) max(Cs)

1 1.18 8
2 16.66 659
3 189.39 989
4 197.62 984
5 197.00 982
6 190.22 977
∞ 156.72 848

TABLE 7.4: Expected and maximum cascade size, E(Cs), max(Cs),
for different values of the delay for the ER network with µ = 0.2.

From Table 7.4 we can see that even for low values of delay the maximum size of
the cascades is huge. For a delay of 4 and 2 for the ratios 2, 3 respectively the max-
imum cascade size already approaches the maximum possible, even if the expected
number of cascades, E(Cs), is not too big. This means that we have a long tail of the
distribution and a large concentration of values close to 0.

The most interesting result of the table however, is that if no edge rewiring is
performed the maximum size of the cascades and their expected value is lower than
for the higher considered delays. Meaning, waiting too much to do edge-rewiring
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is worse than not doing it at all. This is a really surprising result as not doing edge
rewiring is the same as delay → ∞. The root of this discrepancy is in the fact that
re-wiring connections allows two parts of the network, on paper separate, to become
connected. This might stops cascades that should reach a size of ∼ 100 in a size of
∼ 10 but allows others to reach a size of ∼ 900.

Figure 7.6 shows the inverse cumulative distribution of cascade sizes.

FIGURE 7.6: Inverse cumulative distribution of the cascade size (Cs)
for different delays, soft policy, µ = 0.2 and β = 0.4 (left) , β = 0.6

(right).

7.2 BA Model

Now we will follow the same procedure as in Section 7.1 for the structured, hierar-
chical network created following the Barabási-Albert model.

Let us start by showing the sectorial behaviour given Table 7.5. Notice that the
in and out-degree as well as the size(%) have been kept almost the same between
sectors. We have assigned the Hubs to the different sectors in order. Our goal is to
figure out if just the Hub structure by itself already results in a sectorial differentia-
tion.

sector size(%) kin kout default ( %) Hubs rank
1 18.900 6.265 6.265 1.587 1
4 20.500 5.615 5.615 0.488 4
5 20.200 5.401 5.401 0.495 5
3 21.700 6.217 6.217 1.843 3
2 18.700 6.455 6.455 0.535 2

TABLE 7.5: BA network information.

Figure 7.7 shows that the Hub structure just by itself does not prompt any secto-
rial differentiation. Of course, having one node blocking default propagation does
not influence the whole network/sector if the rest of the nodes have random con-
nections. In real client-supplier networks Hubs shield uneven parts of the network,
meaning, one Hub protects some sectors more than others and this, more than the
sector of the Hub itself, is what prompts the sectorial differentiation. A deeper dis-
cussion on the matter will take place in Section 8.
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FIGURE 7.7: Average sectorial evolution for the BA network given a
recovery rate µ = 0.1.

7.2.1 Study of the critical delay

Again, given a value of µ = 0.2 we will see for some values of β which is the critical
value of the delay, for a battery of different delays. That is, for which delay the
network shifts from full recovery, ρ = 0, to some simulation achieving the upper
equilibrium of ρ =

(
1− µ

β

)
.

First scenario. β = 0.4

Figure 7.8 shows that for the BA network the critical delay is around 5. A deeper
study will be performed as we did before for the ER network.

FIGURE 7.8: Average default density evolution for 30 simulations
given different values of the delay for random and soft policies

From Table 7.6 it can be observed that when the delay increases the percentage
of values that goes to the equilibrium also increases, as expected. Looking closely
at the values of the random and soft policies, we see a major difference with the ER
network. The BA network seems to have a significant difference between both poli-
cies, with the random policy yielding worst results than the soft one for all delays,
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soft
Delay = 3 Delay = 4 Delay = 5 Delay = 6
(1.00,0.00) (1.00,0.00) (0.70,0.02) (0.58,0.27)
Delay = 7 Delay = 8 Delay = 9 Delay = 10
(0.24, 0.63) (0.11,0.87) (0.09,0.90) (0.04,0.96)

random
Delay = 3 Delay = 4 Delay = 5 Delay = 6
(1.00,0.00) (1.00,0.00) (0.48,0.06) (0.28,0.62)
Delay = 7 Delay = 8 Delay = 9 Delay = 10
(0.11,0.85) (0.1,0.9) (0.04,0.96) (0.00,1.00)

TABLE 7.6: Percentages of the density (lower, upper) that reaches the
equilibrium for different values of beta and delays taking into account

the policies applied in BA model

especially the intermediate ones. Moreover, in this case we do not seem to have a de-
lay for which the values remain mostly between the two points of equilibrium after
200 iterations. A deeper analysis of the differences between both model networks is
performed in section 7.3. Look at the plots in Figure 7.9.

Second scenario. β = 0.6

Figure 7.10 shows that the critical delay is clearly 3 as it was for the ER network.

soft
Delay = 2 Delay = 3 Delay = 4 Delay = 5
(1.00,0.00) (0.23,0.77) (0.03,0.97) (0.00-1.00)

random
Delay = 2 Delay = 3 Delay = 4 Delay = 5
(1.00,0.00) (0.27,0.72) (0.05,0.95) (0.02,0.98)

TABLE 7.7: Percentages of the density (lower, upper) that reaches the
equilibrium for different values of beta and delays taking into account

the policies applied in BA model

From Table 7.7 we observe mainly two things. First, that once again there is no
intermediate delay for which the simulations stay between both equilibrium states
after 200 iterations. Second, that the soft policy does not work better than the ran-
dom one in this case.

Looking at Figure 7.11 we can see some interesting behaviours when comparing
with the ER network. For delay 2 we observe that there is a small peak but then goes
straight to 0 with far less discrepancy. For the next delays the infection does not
spread above the upper-equilibrium in the first few iterations and simple converges
to it as usual.
The same plots have also been made for the random policy, for more information
you can check the appendix A.
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FIGURE 7.9: 100 simulation the mean of the density with the IC of the
mean for different values of the delay(3 to 10) from right to left and

for the policy soft.
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FIGURE 7.10: Average default density evolution for 30 simulations
given different values of the delay for random and soft policies

7.2.2 Default cascades study

In this section, the random policy is omitted as we did for the ER random network.
Note that for the BA network we have seen a significant difference between both
underlying policies for β = 0.4 but not for β = 0.6. For this reason, as well as
because the soft policy is more realistic we decided to exclude the random policy
from the default cascades study.

Lets examine how the failure cascades behave in this structured hierarchical net-
work. For random starting defaulted companies it is expected that the presence of
big companies (Hubs) will help reduce the cascade sizes significantly.

β = 0.4
Delay E(Cs) max(Cs)

2 1.11 9
3 2.35 47
4 12.89 627
5 36.57 902
6 52.79 939
7 80.97 942
8 94.97 925
9 96.68 961
∞ 73.16 821

β = 0.6
Delay E(Cs) max(Cs)

1 0.76 9
2 4.03 131
3 66.50 970
4 91.53 964
5 98.10 977
6 94.75 971
∞ 79.06 746

TABLE 7.8: Expected and maximum cascade size, E(Cs), max(Cs),
for different values of the delay for the BA network with µ = 0.2.

As expected, see Table 7.8, the expected cascade size is significantly smaller than
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FIGURE 7.11: 100 simulation the mean of the density with the IC of
the mean for different values of the delay(2 to 5) from right to left and

for the policy soft

for the ER network. As it should, the expected cascade size, E(Cs), and the maxi-
mum cascade size, max(Cs), increase with the delay until they stabilize. However,
the same behaviour for delay ∞ (i.e. no re-connection) is obtained. Meaning, there
must exist a certain value of the delay for which both values start going down con-
verging towards the no re-connection case.
A deeper comparison between both model networks, ER and BA, will be done in 7.3.
To see the actual inverse cumulative distributions of the cascade sizes for each value
of β see Figure 7.12.

7.3 Comparison between ER and BA networks.

First, let us compare the results obtained in Tables 7.2, 7.3, 7.6, and 7.7. Since we have
seen that even for a certain high delay there are some repetitions that still differ, they
end up in a different equilibrium state, we will compute the amount of repetitions
that achieve each equilibrium point, without edge rewiring, for a recovery rate of
µ = 0.2. That would be like having an infinite delay.

From Table 7.9 we can see that the upper equilibrium is not always reached for
a ratio of 2 (H0 = β

µ = 2). This is a behaviour intrinsic to the stochastic approach,
as in the continuous default probability case this would not happen. Remember the
result for delay 0 seen when describing the stochastic approach. (Figure 5.2).
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FIGURE 7.12: Inverse cumulative distribution of the cascade size(Cs)
for several different delays, soft policy and for H0 = 2 (left) and H0 =

3 = (right).

β 0.4 0.6
ER (0.04,0.96) (0.00,1.00)
BA (0.03,0.97) (0.00,1.00)

TABLE 7.9: Amount of repetitions that achieve the lower and upper
equilibrium respectively without edge rewiring for some values of β

for each model network.

The main differences we observe between the ER and the BA model results are
on the intermediate delays. For β = 0.4, delays 5, 6, 7 show a significant difference,
with the ER network achieving the upper equilibrium in a much higher number
of occasions, or what is the same, a BA network is much more resistant to default
propagation for intermediate delays. This is hint number one that a Liberal Market
network, with a clear hierarchical structure and companies with huge importance
(i.e. the Hubs), is much more resistant to default propagation than a Sharing Econ-
omy Market network.

Now, let us shift focus to the failure cascades observed in both networks. Look
back at Figures 7.6,7.12, as well as Tables 7.4,7.8. The first thing that is clearly ob-
served is that the expected cascade size, E(Cs), is much larger for the random ER
network than the BA one. This happens not just for the intermediate delays but
for all of them. The maximum cascade size is similar for both networks, yet for
small delays, meaning critical delay downwards, the random ER network has fail-
ure cascades that reach a significant larger size. This is the second hint/proof that
a network following a Liberal Market approach is more resistant towards default
propagation than a network following a Sharing Economy Market approach. The
presence of Hub structures (larger companies with high degree) act as barriers to
default propagation saving the system from large cascade failures in many cases.

Of course, if one of this Hubs is defaulted, then, the network will most certainly
face a huge failure cascade. Meaning, Hubs are two way agents, they shield the
network from default propagation when healthy but they act as their doom when
defaulted. To see this behaviour more clearly let us perform a risk analysis using
some of the risks defined in 6.3. Let us focus in the Individual risk, Ri, for both
networks. The analysed nodes are:

• The node with the highest degree and the node with the highest betweenness
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centrality3. Betweenness centrality measures how much nodes need to pass
through you to reach the rest. It is a measure of the importance of your location
inside the network.The chosen nodes where 0, 7 for BA and 871, 899 for ER.

• A node in BA with the same degree (or similar) to the node with highest degree
in ER, that is node 70.

See Table 7.10 for the results.

β = 0.4
node_id Network delay E(Cs) max(Cs)

0 BA 5 137.66 678
7 BA 5 106.23 644

70 BA 5 19.47 468
0 BA 6 251.98 725
7 BA 6 269.83 645

70 BA 6 105.55 600
871 ER 5 383.98 982
899 ER 5 671.15 981
871 ER 6 386.40 987
899 ERs 6 514.87 987

β = 0.6
node_id Network delay E(Cs) max(Cs)

0 BA 3 637.06 935
7 BA 3 658.21 923

70 BA 3 268.67 932
871 ER 3 608.06 994
899 ER 3 789.31 996

TABLE 7.10: Expected and maximum cascade size, E(Cs), max(Cs),
for different values of the delay for the BA,ER networks with µ = 0.2

when the only node that starts at default is node_id.

In the end, it turns out that the structured hierarchical network, BA, out-performs
the random ER model network even when the highest degree or the highest be-
tweenness node defaults for each network.

From Table 7.10 we can immediately deduce that the biggest difference is on
the maximum size that the cascades reach. For a random network, once default
propagates enough, it reaches almost the whole network. On the other hand, for the
hierarchical network with Hubs, it seems like the other big companies are able to
contain the default from reaching the rest of the network. Moreover, this effect only
happens when the reproductive number/ratio is small enough. As we can see from
the β = 0.6 table, no difference between the networks when this aforementioned
nodes default is easily spotted. Meaning, when default spreads fast enough not
even the Hubs are able to contain it.

A different approach to look at this results that does show that the hierarchical
network is more dependent on the biggest company than the random one is to com-
pare this result with the ones obtained in Tables 7.4,7.8. For delays 5, 6, β = 0.4,
the ER model doubles it’s expected cascade size when defaulting the highest degree

3When this node is the same, as happens for the BA network, we simply select the second node
with highest betweenness
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node, while the BA network more than triples the expected size for delay 5 and be-
comes five times more for delay 6, all of that while keeping the maximum cascade
size to 2

3 of the previous maximum. Thus, the effect of defaulting the highest degree
node for each network is relatively much higher for the BA network which goes
more in the line of the expected.

There where mainly two more results that were truly expected. First, when com-
paring the biggest company in the random ER network to a similar size company
in the hierarchical structured BA network, the structured network always behaves
much better in containing the default propagation. This difference is also observed
for the higher ratio. Second, in a network were all the companies are roughly equiv-
alent, such as ER, the company with the most central position in the network, node
899, has a stronger importance in the default propagation than the biggest company,
node 871.

7.4 BBVA Simulated Client-Supplier Network

In this section we will repeat the analysis we did for the random ER network and
the hierarchical structured BA network with the BBVA simulated client-supplier net-
work. We will only consider the underlying soft policy since it is the more realistic
scenario of the two. Moreover, we have seen that the random policy behaves pretty
similar to the soft policy in most of the cases.

Let us begin by checking the behaviour of the overall default density for different
values of the delay and β, as it is seen in Figure 7.13.
In this section we will not perform a deeper study of the critical delay and the prob-
ability of reaching each equilibrium state given a ratio and a delay. Therefore, we
opted to increase the number of simulations to produce Figure 7.13 up to 100.

FIGURE 7.13: Average default density comparison for different val-
ues of the delay for the soft policy with µ = 0.2 and β = 0.4 (left) ,

β = 0.6 (right).

• First scenario, β = 0.4. For the first three delays all simulations end at the
fully recovered state. The critical delay is 4, and as expected, for all the succes-
sive delays we see an increase in the average default density, meaning, more
simulations reach the upper equilibrium. One can also see how the curves
tend towards the upper-equilibrium but they still do not reach it. The over-
all behaviour is reminiscent of the ER and BA network with some differences.
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For instance, default propagates faster as it reaches the upper-equilibrium for
lower delays.

• Second scenario, β = 0.6. For the first two delays the re-connection is able to
stop the default contagion and both curves tend to the fully recovered state.
Notice how for delay 2 the curve is still trending towards that fully recovered
state, meaning, the re-connections are just barely able to overcome the default
speed. Therefore, for the next delay we see a huge jump towards the upper-
equilibrium since now most of the simulations will end there. Notice that for
delay 5 we seem to be slightly above the expected upper-equilibrium.

Once we know how the overall default density behaves for each value of the
delay, it is time to see if each financial sector behaves differently in this simulated
client-supplier network. Figure 7.14 shows that there is no clear difference between
the sectors. The only sector that behaves differently is Financial Institutions, how-
ever, this has more to do with the small size it has in the simulated network than
anything else. The main reason is, as we discussed in the hierarchical structured BA
network, that just knowing the degrees and/or the sectors of the Hubs provides no
clear sectorial differentiation. The root of this differentiation runs deeper in the net-
work structure with clustering being a major part of the equation. That is, knowing
how each company is tightly connected to others forming communities (or smaller
networks) inside the real big network that are only connected to the rest by few
nodes, most probably by a big Hub node that shields/protects the entire structure
from collapsing when default occurs outside it but that quickly collapses if default
occurs inside it.

FIGURE 7.14: Average sectorial default density at equilibrium given
a recovery rate µ = 0.1.
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7.4.1 Default Cascades

Let us analyse the failure cascades in our simulated BBVA network. Figure 7.15, as
well as table 7.11, show the obtained results. The obvious results, of the expected
cascade size, E(Cs), and the maximum cascade size, max(Cs), increasing as delay
increases are obtained. Moreover, the trend that failure cascades behave better for
the non edge rewiring case than for high delays continues.

Notice that, as well as it happened for the overall average default density, this
behaviour is more reminiscent of the previously simulated model networks than it
is of a real client-supplier network, where it is pretty difficult to obtain cascades of
such a large size. In fact, this is one of several proofs that our simulated network is
far from reality, since the clustering of the businesses and their intrinsic relation with
one another is far more systematic and non-random.

Another curious result is the one obtained for β = 0.6, where we see that for de-
lay 2 the probability of having a smaller cascade is actually less than for the bigger
delays.

The most amazing result of all of them is observed when comparing this failure
cascades with the ones obtained in the ER and BA model networks. The expected
size is closely the same as for the structured BA network but the overall size of
the network is 10 times larger. Thus, relatively speaking, the resistance to default
contagion is 10 times higher in this network than in the BA one. Of course, it is also
better than the ER network.

FIGURE 7.15: Inverse cumulative distribution of the cascade sizes(Cs)
for different values of the delay for β = 0.4(left) and β = 0.6 (right).

7.4.2 Risk assessment

The original purpose of this section was to analyze which financial sector posted a
higher risk for our network. However, as seen in Figure 7.14 , our simulated net-
work presents almost no sectorial differentiation. Therefore, instead of analyzing
the sectorial risk (Rs) we will simply look at the individual risk of some nodes as
we’ve done in section 7.3. The considered node will be:

• Node 1: Is the node with the highest degree and highest betweenness centrality
on the network.
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β = 0.4
Delay E(Cs) max(Cs)

1 0.60 9
2 1.45 41
3 4.45 194
4 38.62. 6290
5 47.74 7601
6 48.13 7706
7 48.01 7528
8 47.71 7401
∞ 39.50 2378

β = 0.6
Delay E(Cs) max(Cs)

1 1.02 13
2 27.80 5178
3 49.51 8723
4 49.55 8799
5 49.46 8550
∞ 34.63 1318

TABLE 7.11: Expected and maximum cascade size, E(Cs), max(Cs),
for different values of the delay for the BBVA simulated network with

µ = 0.2.

node_id β delay E(Cs) max(Cs)
1 0.4 5 1846.55 8847
1 0.4 6 3877.82 9243
1 0.6 3 6769.40 9777

TABLE 7.12: Expected and maximum cascade size, E(Cs), max(Cs),
for different values of the delay, β for the BBVA simulated network

with µ = 0.2.

From 7.12 one can see some very interesting results. When the biggest node de-
faults, the expected cascade size, E(Cs), becomes around 30 times larger for delay
5 and 60 times larger for delay 6 with β = 0.4. For β = 0.6, it becomes around
150 times larger for delay 3. Moreover, in all cases the maximum cascade size also
becomes larger. The relative increase is huge and is what we expected from a hierar-
chical structured network such as BA.

This massive difference has his root in the failure cascades behaviour in the orig-
inal state. If we look at the behaviour just when the highest degree node defaults, we
can see that actually the BBVA simulated network behaves poorly, with a higher per-
centage of nodes defaulting and a higher cascade size. The difference, as we stated,
is in the original state. For our simulated network the nodes with highest degree
are all non defaulted. In fact, the two sectors with highest average degree, Financial
Institutions and Services, are all fully healthy. The first sector with one defaulted
node is Institutions which is the third in importance. This might mean that there are
too many bigger healthy nodes that act as barriers for the default to expand through
the network containing most of the failure cascades at lower values.
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Discussion

The results line up with our hypothesis that the liberal market network will be much
more resilient to large cascades or even entire collapse of the system than the shared
economy network. The reason for this resilience is mainly due to the presence of
Hubs, large companies with high out-degree (many suppliers), which act as barriers
to the default propagation. This Hubs can shield the default from expanding from
one part of the network to another reducing the expected and maximum cascade
size. Of course, a Hub also tends to have a high in-degree (many clients) which
means that if the Hub becomes defaulted, the default may expand quickly through
the network, creating large cascades and thus, posting a high risk for the overall in-
tegrity of the network.

However, the simulated BBVA network does not follow our expectations. Figure
7.7 shows that the Hub structure just by itself does not prompt any sectorial dif-
ferentiation. We expect that this is due to the extreme simplification we applied in
the generation of the imitation network. Most likely, in the BBVA network there are
complex structures present like reinforced loops and clustering, which will not occur
(frequently) in the simulated network. The combination of this complex structures
with the presence of Hubs makes the expansion of the default less homogeneous
and yields the expected sectorial differentiation. In future research, regarding re-
modelling transaction data it is recommended to also gather the following statistics.

• Standard deviation of incoming and outgoing connections per sector

• Number of connections between each of the sectors

• Average weight of connections to each sector

• Clustering coefficient per sector

At the moment, there are no methods to incorporate all the statics in a fully sat-
isfiable way, since some statistics interfere with other statistics. Nonetheless, more
statistics can be incorporated, leading to more representative results. Of course, us-
ing real networks based on actual transaction data would deliver more interesting
results.

We discovered that for a stochastic probability a new feature had to be introduced
to make the algorithm work, called default delay. In essence the edge rewiring needs
to be retained for some iterations, otherwise the whole network heals itself almost
instantly. Meaning, the time a company waits to change suppliers when one of them
enters default can not be instantaneous. For this reason the delay parameter has
been introduced. Adding an extra parameter is not the only way, nor necessarily the
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best way, of circumventing the problem, since this parameter makes the computa-
tion more complex. For future research, we suggest to experiment with an apparent
stochastic approach. This approach does not set the default probabilities to 0 or 1
on the node itself, but instead keeps the continuous probabilities. However, when
nodes request the probabilities from other nodes, they get a 0 or 1 default probabil-
ity, based on the default probability of that node and the applied policy. In this way,
the system is still stochastic, but avoids the instant healing of the network without
the necessity of adding another parameter.

Nevertheless, the addition of the delay parameter has yielded mainly one sur-
prising result. Failure cascades behave better when there is no edge rewiring at
all than for medium-high delays. This means that hesitation is the worst possible
policy when dealing with a supplier entering default. The explanation for this be-
haviour is that re-connection to new suppliers allows two separate parts of the net-
work to become connected, in some cases, avoiding the protection of Hubs. If these
re-connections do not stop the default from propagating then they are worse than
not having them at all.

As for our objective of risk assessment, the results are quite promising. We have
seen that the behaviour of financial client-supplier networks is easily explainable
and, to some extent, verifiable. From the results in Section 7.3 we can see how the
simulations can be used to inspect systemic risk of individual companies. The results
show that in liberal market networks, if we default one large node, the expected and
maximum cascade sizes increase significantly, posing enormous risk for the system.
This result compares well with reality. Since we could not test the sectorial risk al-
gorithm on the actual BBVA data, further research will need to be done in order to
perfect it for risk assessment of actual companies. In order to test the network on
real life situations, known cases of a defaulted large company clearly affecting the
economic stability could be used. Simulations could be run initially defaulting that
large company and experimenting with setting different parameters. In this way the
functioning of the algorithm can be compared with reality, concluding in more in-
sights for usage of the algorithm in risk assessment in real scenarios.

The algorithm is very computationally heavy, even using a parallelized approach
on a machine with 64 2.3GHz single-core processors. Therefore, a different way of
calculating default probabilities could be created, so that is possible to calculate all
the updated default probabilities in parallel. This system can then be ran on a GPU,
making it run much faster. Another option, would be to rewrite the entire system so
that it is modelled just using probability distributions. This would enable the use of
Markov Chain Monte Carlo simulations, making the simulations much faster. How-
ever, this would most likely require an even further simplification of reality. Faster
algorithms are desired if analysis has to be done on many companies in the network.
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Conclusion

The problem of assessing systemic risk in a sectorial interconnected client-supplier
network is an interesting and complex task. This risk is commonly associated with
the size a failure cascades can and may reach in the network. In this project we
have used the bases of an epidemiology model such as SIS (Susceptible-Infected-
Susceptible) to approach default dynamics in two model networks, BA and ER, that
represent different economical markets, Liberal and Sharing Economy respectively,
and in a simulated network that tries to approach the real Spanish economical mar-
ket.

Let us do an overview of the main conclusions that have been extracted during
this project.

• In a stochastic setting the agent-based models need to be redefined to allow the
infection to spread. In essence the edge rewiring needs to be retained for some
iterations, otherwise the whole network heals itself almost instantly. Meaning,
the time a company waits to change suppliers when one of them enters default
can not be instantaneous. For this reason the delay parameter has been intro-
duced. Alternatively, an agent that based itself on weight transfer could also
exist.

• The hypothesis that the Liberal Markets perform better than the Sharing Econ-
omy Markets in terms of default dynamics is supported by the models. This
is highlighted by the fact that failure cascades achieve greater expected values
and larger maximum sizes in the ER than in the BA model network for the
same conditions. Moreover, despite being tightly dependent on their biggest
company, the BA network shows that even when this lead company enters de-
fault the overall failure cascades remains larger in the ER network given the
same circumstance.

In other words, the power that large companies (Hubs) have over smaller
companies is highlighted, showing that companies with great power present
a higher resistance towards entering default. Moreover, this big companies
shield a certain part of the network from defaulting. On the other hand, in
a random model with no clear lead company, such as in the ER model net-
work, once default starts spreading there are no intrinsic barriers that protect
parts of the network from defaulting giving room for the development of huge
cascades.

• The hypothesis that the financial sectors within a client-supplier network be-
have differently in terms of default dynamics was left unproved. Using the
metadata from the BBVA bank a network was created that approached the
given data. However, the sectors in the simulated network were still far from
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approaching reality. This prompted another conclusion an that is how diffi-
cult it is to simulate a real complex networks given all the variables that are in
place, number of connections, clustering, degree distribution,...
In fact, even if we had all that information of the original network generating
a simulated copy that matched all those variables would be almost unfeasible
as it is still an open problem in Complex Networks.

In the end our hope is that the acquired knowledge in systemic risk analysis will
be useful for the BBVA bank, associated companies and for future research on the
subject.
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Random policy plots

A.1 ER plots

Reproduction of the plots made for the BA for soft policy ,but for random policy and
β = 0.4 and β = 0.6 : As it can be observed from the plots A.1 we obtain more or

FIGURE A.1: 100 simulation the mean of the density with the IC of
the mean for different values of the delay(3 to 10) from right to left

and for the policy RANDOM

less same results as we obtain for soft policy. As it can be observed from the plots
A.1 we obtain more or less same results as we obtain for soft policy.
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FIGURE A.2: 100 simulation the mean of the density with the IC of
the mean for different values of the delay(2 to 5) from left to right and

for the policy RANDOM

A.2 BA plots.

Reproduction of the plots made for the BA for soft policy ,but for random policy:

FIGURE A.3: 100 simulation the mean of the density with the IC of
the mean for different values of the delay(3 to 10) from right to left

and for the policy RANDOM

As it can be observed from the plots A.1 we obtain more or less same results as
we obtain for soft policy.
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FIGURE A.4: 100 simulation the mean of the density with the IC of
the mean for different values of the delay(2 to 5) from left to right and

for the policy RANDOM
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Appendix B

Team member contribution

In this section we describe the contribution of each member to the overall project.
We will divide it in two groups, code and report.

B.1 Code

The code produced during the development of the project can be found in https:
//github.com/bbva-rfn/master-project. Also, a high level overview of the whole
project can be found there. We will only include the file name of the main contribu-
tions.
The contributions for the code have been:

• Philippe Van Ameronggen

– Main algorithm that simulates the SIS behaviour with the different agents
and policies described. (SecNet.py)

– BBVA simulated network generation. (BBVA/gen.py)

– Parallelization of all the functions to use the multiple cores of a machine.

– High level overview

– Agent-based model implementations

• Ramon Mir Mora

– Functions that use the main algorithm to compute some the results in 7.
Mainly, all the failure cascades/risk code (cascades.py), the average de-
fault density evolution compared over multiple delays (sis_delay_comparison.py)
and the sectorial behaviour (sectorial_density_functions.py and the secto-
rial part in plots_sis.py).

– ER and BA model networks generation. (gen.py in each folder)

– Agent-based model implementations

• Sergi Sánchez de la Blanca Contreras

– Code to perform the Monte-Carlo simulations and plots, part of the re-
sults (replicate_density.py and the rest of plots_sis.py)

– Simulation execution

– Agent-based model implementations

– Refining and cleaning code, adding modifications or functions in all main
scripts and secondary .

https://github.com/bbva-rfn/master-project
https://github.com/bbva-rfn/master-project
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B.2 Report

Here we stipulate the contributions of each member to the present report.

• Philippe Van Ameronggen

– Narrative parts (Abstract, Introduction, Study Design, Conclusions, Dis-
cussions)

• Ramon Mir Mora

– Theoretical parts (Complex Networks, SIS model,Failure Cascades)

– Results analysis (Cascades, risks and ER/BA comparison)

– Conclusions, Discussions and Appendix B

• Sergi Sánchez de la Blanca Contreras

– Database/previous work explanation/ Study Design/ Conclusions/ Dis-
cussions

– Results, execution & analysis (Study of critical delay ER/BA)

– Appendix A
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