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Abstract
The description of brain networks as graphs where nodes represent different brain regions and

edges represent a measure of connectivity between a pair of nodes is an increasingly used

approach in neuroimaging research. The development of powerful methods for edge-wise group-

level statistical inference in brain graphs while controlling for multiple-testing associated false-

positive rates, however, remains a difficult task. In this study, we use simulated data to assess the

properties of threshold-free network-based statistics (TFNBS). The TFNBS combines threshold-

free cluster enhancement, a method commonly used in voxel-wise statistical inference, and

network-based statistic (NBS), which is frequently used for statistical analysis of brain graphs.

Unlike the NBS, TFNBS generates edge-wise significance values and does not require the a priori

definition of a hard cluster-defining threshold. Other test parameters, nonetheless, need to be set.

We show that it is possible to find parameters that make TFNBS sensitive to strong and topologi-

cally clustered effects, while appropriately controlling false-positive rates. Our results show that

the TFNBS is an adequate technique for the statistical assessment of brain graphs.
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1 | INTRODUCTION

The brain is a complex network, and its function is dependent on the

interactions between distributed regions (Sporns, 2016). In parallel

with the development of novel acquisition and analytic strategies,

interest in studying functional and structural brain networks through

neuroimaging has greatly increased in the last few years in an

attempt to understand the organizational principles underlying nor-

mal brain functioning (Mill, Ito, & Cole, 2017; Misic & Sporns, 2016),

and the alterations underlying neural deficits in different pathological

processes (Pievani, de Haan, Wu, Seeley, & Frisoni, 2011; Shi &

Toga, 2017). One novel approach made possible by these recent

technical improvements is the comprehensive description of brain

functional or structural connections in the brain, that is, the connec-

tome (Fornito, Zalesky, & Breakspear, 2015; Sporns, Tononi, &

K€otter, 2005).*Hugo C. Baggio and Alexandra Abos contributed equally to this manuscript.
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The study of large data sets such as the human connectome

requires systematic approaches that provide relevant and reproducible

parameters. In this context, graph theory, describing brain networks as

a set of nodes interconnected by edges (characterized by structural or

functional connections), has been widely adopted as a strategy for the

study of these highly complex networks (Fornito, Zalesky, & Breakspear,

2013). Summary measures derived from graph theory provide informa-

tion about whole-brain or regional, node-centric, topological network

organization (Rubinov & Sporns, 2010). The connectome can also be

analyzed at the connection level. Connection-level group analyses have

the desirable ability of describing local effects in the connectome, thus

providing easily interpretable information that complements the more

abstract graph-theoretical topological parameters (Zalesky, Fornito, &

Bullmore, 2010). This is especially interesting considering that certain

brain regions are vulnerable to specific disorders (Meyer, 1936), imply-

ing that some portions of the connectome will be more vulnerable to

specific pathological mechanisms than other regions. Topographical pat-

terns of structural and functional connectivity disruption have indeed

been shown to be associated with clinical phenotypes in diseases such

as frontotemporal dementia and Alzheimer’s disease (Pievani, Filippini,

van den Heuvel, Cappa, & Frisoni, 2014). Connection-wise approaches,

however, are usually hindered by the high dimensionality of connectom-

ics data sets. Conventional mass-univariate testing repeated for every

connection may suffer from low statistical power if appropriate

correction for the high number of tests is performed (Fornito et al.,

2013; Meskaldji et al., 2013).

Some neurobiological assumptions, however, may prove to be useful

for the development of statistical methods for assessing brain graphs.

Recent evidence indicates that connectivity disruptions in brain disorders

progress along specific networks (Greicius & Kimmel, 2012; Jones et al.,

2016). Even localized brain pathologies lead to more global network alter-

ations (Stam, 2014), as might be expected in an interconnected system.

Focal neuronal dysfunction can lead to changes in the firing patterns of

postsynaptic cells, possibly manifesting as downstream functional con-

nectivity alterations. Neuronal degeneration, on the other hand, can lead

to deafferentation of its target cells and loss of trophic support to

presynaptic neurons (Reier & Velardo, 2003), which might manifest as

downstream and upstream structural connectivity abnormalities.

In the context of neurodegenerative diseases, furthermore, it is

currently believed that the accumulation of toxic, misfolded proteins in

highly susceptible neurons is followed by the transneuronal spread to

other vulnerable cells to which they are connected (Campbell et al.,

2015; Fornito et al., 2015; Raj, Kuceyeski, & Weiner, 2012; Saxena &

Caroni, 2011). Analytical approaches with enhanced sensitivity to

effects involving topologically neighboring connections might combine

the ability to detect biologically plausible pathological alterations, while

minimizing the possibility of finding disconnected, potentially spurious

results related to the noisy nature of MRI measures used for connectivity

estimation (Bright & Kevin, 2017; Liu, 2016; Polders et al., 2011; Zalesky

& Fornito, 2009).

Different statistical methods have been developed to perform

inference on brain graphs (Fornito et al., 2013; Meskaldji et al., 2013;

Varoquaux & Craddock, 2013). One of the most frequently used edge-

wise methods is the network-based statistic (NBS) (Zalesky et al.,

2010). The NBS is designed to identify clustered effects in brain

graphs, and has been used in different study settings (Ab�os et al., 2017;

Cocchi et al., 2012; Conti et al., 2017; McColgan et al., 2017; Rigon,

Voss, Turkstra, Mutlu, & Duff, 2017; Roberts et al., 2017a). Specifically,

the NBS is a technique that aims to identify connected components,

consisting of neighboring edges that display statistical effects above

a predetermined threshold (Zalesky et al., 2010). The statistical

significance of the connected components found is then established by

estimating the likelihood of finding connected components with equal

or greater extent (i.e., number of edges comprised in the connected

component) or intensity (also considering test statistic values in the

component) by chance. In the presence of statistical effects spanning

adjacent edges, the NBS tends to show improved statistical power

when compared with mass-univariate testing controlling for multiple

testing, while still providing control over the family-wise error (FWE)

rate in the weak sense (Meskaldji et al., 2013; Zalesky et al., 2010).

In this study, we describe a technique called threshold-free net-

work-based statistics (TFNBS), designed to assess the presence of sta-

tistical effects in brain graphs. The TFNBS combines the NBS with a

method commonly used in voxel-wise analyses, threshold-free cluster

enhancement (TFCE) (Smith & Nichols, 2009). TFCE is a standard

cluster-defining approach employed by FSL (https://fsl.fmrib.ox.ac.uk/

fsl/), one of the main software packages in neuroimaging. TFNBS

enhances effects occurring in neighboring network edges, accounting

for the topological dependency in the data, while maintaining sensitiv-

ity to strong localized effects and providing adequate control of the

FWE rates. Our objective in this study is to test the TFNBS algorithm

using different types of simulated data and different test parameters,

with the goal of providing principled and evidence-based criteria for

parameter choice.

2 | METHODS

To test the properties of the TFNBS algorithm, we use synthetic data

containing different ground-truth effects and data containing only

random noise. As detailed below, the initial topological structure of the

ground-truth effects used was derived from the comparison between a

group of healthy controls and a group of Parkinson’s disease patients

with mild cognitive impairment using resting-state functional connectiv-

ity. In contrast with the original implementation of the NBS, TFNBS obvi-

ates the need for the a priori definition of a “hard” component-defining

threshold. Other parameters, however, need to be specified, as explained

below.

2.1 | TFNBS general algorithm

The first step of the TFNBS algorithm, as in NBS, is the computation of

individual subjects’ symmetric N3N connectivity matrices M, where N

is the total number of brain regions defined as nodes (Figure 1). Entry i,

j in M describes the strength of structural or functional connection

between nodes i and j, in a total of N3 N21ð Þ=2 unique internodal

connection values if M is fully connected. Subsequently, the desired
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group test statistic is calculated for each entry, producing a group N3N

raw test statistics matrixMstat.

In the NBS, a cluster-defining threshold is then applied to Mstat.

Connections that survive this initial threshold are grouped with topo-

logically neighboring suprathreshold edges into connected components.

In the most commonly used variant of the NBS (NBS extent), the

extent of each component (i.e., the number of connections comprised)

is stored, and an FWE-corrected p value is ascribed to each component

through permutation testing (by comparing actual component sizes

with the null distribution of sizes across permutations). Optionally, the

magnitude of the effect of a component can be calculated using its

intensity (sum of test statistic values across the edges comprised in the

connected component—NBS intensity).

In the TFNBS, Mstat undergoes a transformation whereby the

value of each edge is replaced by its TFNBS score (Figure 1). As this

score is determined by the strength of statistical effect (height) at

this connection and by the heights of its neighboring edges, final

TFNBS scores will be influenced by how topologically “clustered”

these effects are. Specifically, in the TFNBS transformation, several

thresholds h are applied to Mstat, from a baseline value up to the

maximum height in the matrix. At each thresholding step, suprathres-

hold connected components are identified, and the values of all con-

nections contained in a component are replaced by e hð ÞE3hH, where

h is the height of the current threshold, e(h) is the component size at

threshold h, and E and H are the extension and height enhancement

parameters, respectively. All other edges are set to zero. This results

in an N3N3 t matrix, where t is the number of thresholding steps.

This transformed-scores matrix is then summed across the third

dimension, producing the N3N final TFNBS score matrix. The goal

of this computation is to find the TFNBS-transformed score of edge

i,j by solving

TFNBS i; jð Þ5
ðh i;jð Þ

h5ho
e hð ÞEhHdh

where dh is the interval between thresholding steps. In our algorithm,

parameter dh was set at a hundredth of the maximum value in Mstat.

By setting h0 to zero, therefore, Mstat undergoes 101 thresholding

steps, whereas the number of steps in each Mstat-rand varies

according to its maximum height.

This nonlinear enhancement procedure is analogous to the

implementation of TFCE for voxel-wise analyses proposed by (Smith &

Nichols, 2009). To adapt it to graph analyses, however, the definition

of neighboring points at each thresholding step requires the identification

of connected components, which in the NBS is only performed at the

predefined threshold.

FIGURE 1 TFNBS algorithm. Initially, the raw F statistics matrix Mstat (Panel 1) is thresholded at a series of steps h (Panel 2). The step
interval dh was defined as a hundredth of the maximum value in Mstat. At each thresholding step, suprathreshold connected components are
identified (Panel 3). The value of each matrix element belonging to a connected component is replaced by the component’s topological size
(number of connections) raised to the power E, multiplied by the component’s height (equal to the current threshold) raised to the power H
(3). The matrices obtained at each step are subsequently summed, giving the final TFNBS score for every network edge (Panel 4). Statistical
significance is established through permutation testing (Panel 5). At each permutation, group membership is shuffled across subjects, and the

steps above are repeated. Raw statistics are obtained from the whole connectivity matrix at each permutation, thus preserving topological
dependencies among connections. Whole-connectome FWE-corrected p values are obtained by comparing each connection’s TFNBS score
with the null distribution of maximal connectome-wise scores at each permutation. Figure by Baggio, 2017; available at https://doi.org/10.
6084/m9.figshare.5188753.v1 under a CC-BY4.0 license [Color figure can be viewed at wileyonlinelibrary.com]
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Through permutation testing, a p value can be ascribed to each

entry in the TFNBS-enhanced matrix. At each iteration of the permuta-

tion procedure, subjects can be randomly relabeled (e.g., by reshuffling

group membership), and the resulting raw statistics matrix Mstat-rand

undergoes TFNBS scoring. The resulting p values can be corrected for

multiple testing across the connectome (by comparing a connection’s

scores to the distribution of maximum scores across the matrix under

the null hypothesis) or uncorrected (by comparing a connection’s score

to its own distribution of scores under the null).

2.2 | Parameter selection

For three-dimensional voxel-wise analyses using TFCE, the recom-

mended E and H parameters are 0.5 and 2, respectively (Smith & Nichols,

2009). Values that are appropriate for smoothed, three-dimensional voxel

matrices cannot be directly extrapolated to connectomics data, however.

Here we initially test a range of 13 E (0.125 and 0.25–3 at intervals of

0.25) and 20 H parameter values (0.25–5 at intervals of 0.25), in a total of

260 E/H combinations. These combinations were tested using synthetic

data with three different effect sizes and contrast-to-noise ratios (CNR),

and two different types of topological organization, as described in the

section Initial parameter search below. The results of the assessment of

sensitivity and specificity of these initial simulations were then used to

select a narrower range of E and H values, subsequently used to test

simulated subject groups containing signal with different topologies and

variable effect sizes/CNR (Section 3.2), and data containing only random

noise to assess the occurrence of false positives in the absence of

ground-truth signals. These analyses were used to more accurately assess

test properties such as sensitivity, specificity, number of false-positives,

and FWE rates. Figure 2 illustrates the analysis pipeline followed,

described in detail below.

2.3 | Ground-truth effects matrix

We initially generated a ground-truth matrix containing a pattern of con-

nections defined as “altered,” to be used in the simulated connectivity

matrices. To make these ground-truth effects reflect a somewhat realistic

topology, we performed univariate comparisons between a sample of

Parkinson’s disease patients with mild cognitive impairment (n527) and

a group of healthy controls (n538), seen in a previous study by our group

to have significant resting-state functional connectivity differences (Ab�os

et al., 2017). Data acquisition and image preprocessing were identical to

those used in that study. FreeSurfer v5.1.0 (http://surfer.nmr.mgh.

harvard.edu/) was used to divide the cerebral gray matter into 68 cortical

and 14 subcortical regions based on the Desikan-Killiany atlas (Desikan

et al., 2006). Entry i,j in a subject’s 82382 connectivity matrix was

defined by the correlation coefficient between the first eigenvariates of

the time series of voxels contained in regions i and j.

Two-tailed independent-samples t tests were then applied to each

matrix entry, comparing the two subject groups. Connections that sur-

vived a liberal threshold of p< .003, uncorrected for multiple compari-

sons, were included in the ground-truth matrix. This matrix finally

included 32 “altered” connections, divided into five connected

components: the largest containing 20 connections (linked to 20

nodes), the second with seven connections (linked to eight nodes), the

third with three connections (linked to four nodes), and the two small-

est with one connection each (Figure 3 shows the schematic represen-

tation of these components). These components were acyclic trees,

that is, comprising linear and branching segments, but no cycles (i.e.,

the maximum number of paths of ground-truth edges between any

pair of nodes was one).

2.4 | Simulated data

Three sets of synthetic data were generated:

1. Single-CNRmatrices: In this step, three sets of 100 simulated subject

groups were created, with each group composed of 200 “subjects”

divided into 100 “healthy subjects” and 100 “disrupted connectivity

subjects.” Connectivity matrices were sized 82382 and fully con-

nected. Healthy subjects’ matrices contained only noise (sampled

from a normal distribution with mean �X50 and standard deviation

r51). For subjects with disrupted connectivity, matrices contained

Gaussian noise (�X50, r51) in all connections except the 32 edges

previously defined as ground-truth effects. These ground-truth-

signal connections were set by randomly selecting from a normal dis-

tribution of values with �X520.5 (r51) in the first set, �X520.75

(r51) in the second set, and �X521 (r51) in the third set. This

procedure therefore produced effects with respective average CNR

(as well as a Cohen’s d effect size) of 0.5, 0.75, and 1.

The TFNBS algorithm is sensitive to signal extent and intensity, not

to the topological characteristics of the components detected at

each step. As such, the final TFNBS score is not primarily determined

by whether the effects display cyclic or tree topologies. The pres-

ence of noise, however, might have a differential impact on the

detection of effects that do not contain cycles; the random reduction

in statistical effect of a central edge in a linear segment can “break” a

component into two smaller ones. If a similar effect reduction affects

an edge contained in a cycle, on the other hand, the component will

have its extent reduced by one edge, but will otherwise retain its

extension.

To assess the effect of signal organized in a topology containing

cycles, we generated additional single-CNR matrices, with identical

effect sizes, number of components, and component extents, but

with ground-truth edges connected to the minimum number of

nodes possible, forming cliques (see Figures 222 and 3; components

4 and 5, comprising a single edge each, were identical in the two

cases). In the remainder of this article, these ground-truth effects will

be referred to as having a cyclic topology, as opposed to the tree

topology derived from the comparison of actual healthy controls and

Parkinson’s disease patients.

2. Mixed-CNR matrices: Here, 103 data set groups containing true

effects plus random noise were generated, each with 200 simu-

lated 82382 individual subject matrices. Again, 100 subjects cor-

responded to a “healthy” group, with data consisting of random

noise (normally distributed, �X50 and r51). The remaining 100
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subjects in each group consisted of disrupted connectivity sub-

jects. The same ground-truth effect structures defined above (32

edges distributed into five connected components—half groups

with the original tree topology, and half with the cyclic topology)

were used, but a different magnitude of connectivity reduction

was assigned to each component. Edges in the largest component

(Component 1) were randomly sampled from a normal distribution

of values with �X520.75 (r51), yielding a mean CNR of 0.75; in

Component 2, edge values were chosen from a normal distribution

with �X521 (r51), with a mean CNR of 1; and edge values in

Component 3 were sampled from a normal distribution with
�X520.5 (r51), yielding a mean CNR of 0.5. Finally, the values

FIGURE 2 Schematic representation of analysis pipeline. Individual functional connectivity matrices of a sample of healthy subjects and patients
with Parkinson’s disease and mild cognitive impairment were initially generated. Intergroup comparisons (two-tailed independent-samples Stu-
dent’s t test, a50.003) were performed to define ground-truth effect edges (Panel 1). Panel 2: Actual intergroup differences displayed a tree
topology; additional ground-truth connected components with identical number of edges but forming cliques were generated (cyclic topology).
Panel 3: Simulated subject groups (consisting of 100 “normal” and 100 “reduced connectivity” subjects each) containing ground-truth effects (tree
or cyclic topology) with single contrast-to-noise ratios (CNR50.5, 0.75, or 1) were compared with TFNBS using 260 E/H parameter combina-
tions. Panel 4: Simulated subject groups (100 “normal” vs 100 “reduced connectivity” subjects) containing ground-truth effects (tree or cyclic
topology) with mixed CNR (0.5, 0.75, and 1) were compared with TFNBS using a subset of 44 E/H parameter combinations. Panel 5: Simulated
subject groups (200 individual matrices containing random noise) were compared using TFNBS (44 E/H parameter combinations). Panel 6: Simu-
lated subject groups (100 “normal” and 100 “reduced connectivity” subjects) were generated, each with a single ground-truth component with
size ranging from 4 to 30 edges (at steps of 2), a single CNR (0.5 or 0.75), and either tree (linear) or cyclic topology. The number of simulated
comparisons in each box refers to each of the conditions described therein [Color figure can be viewed at wileyonlinelibrary.com]
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for the two smallest components (each made up of a single edge)

were randomly sampled from normal distributions, Component 4

with �X521 (r51), and Component 5 with �X520.5 (r51),

with respective CNR of 1 and 0.5.

3. Random-noise matrices: In this step, 500 subject groups were gen-

erated, each with 200 subjects. Individual data consisted of 823

82 matrices with values randomly sampled from a normal distribu-

tion with �X50 and r51.

4. Growing ground-truth component matrices: Finally, we systematically

assessed the properties of the NBS using simulated data sets, consisting

of 82382 matrices containing random noise, and ground-truth compo-

nents with sizes ranging from 4 to 30 edges (at steps of 2). These

ground-truth components displayed CNR of either 0.5 or 0.75, and

linear (tree) or cyclic (forming cliques) topologies. For each CNR,

ground-truth component size, and ground-truth topology, 75 simu-

lated group matrices were generated, in a total of 4,200

comparisons.

2.5 | Statistical testing

For statistical inference, permutation testing (3,000 permutations) was

performed using the F statistic obtained through a general linear model

(GLM). At each permutation, subjects’ group membership was randomly

reshuffled and the F statistic was computed by comparing the 100 sub-

jects assigned to the “healthy” group and the 100 subjects assigned to

the “disrupted connectivity” group. In the analysis of random-only data,

FIGURE 3 Ground-truth connected components. Schematic anatomical representation of the five connected components used as ground-
truth effects in simulated data for the tree topology (left) and cyclic topology (right). Components 4 and 5, each comprising a single edge,
were identical in both topologies. Brain plots were created with Surf Ice (https://www.nitrc.org/projects/surfice/) [Color figure can be
viewed at wileyonlinelibrary.com]
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half of the 200 subjects were randomly assigned to each group. Edges

that displayed FWE-corrected p values below the significance thresh-

old of .05 were considered as positive results.

To assess the test properties, the N3N matrices P containing sig-

nificant results (where edges surviving the statistical significance

threshold were coded as 1, and all other edges as 0) and the ground-

truth matrices T (where ground-truth edges were coded as 1 and all

other edges as 0) were used to calculate the following parameters for

each simulated group comparison:

� Number of false positives FPð Þ5 PN
i51

PN
j5i 12 Tij

� �
3Pij

� �
� Number of false negatives FNð Þ5 PN

i51

PN
j5i Tij3 12Pij

� �� �
� Number of true positives TPð Þ5 PN

i51

PN
j5i Tij3Pij

� �
� Number of true negatives TNð Þ5 PN

i51

PN
j5i 12Tij

� �
3 12 Pij
� �� �

� Sensitivity5 TP
TP1FN

� Specificity5 TN
TN1FP

� False positive rate512specificity

� FWE rate: a family-wise error was defined as the presence of one or

more false-positive edges across the connectivity matrix. For each

simulated group comparison, therefore, FWE50 or FWE51.

Average sensitivity, specificity, false-positive rates, and FWE rates were

calculated by averaging across corresponding simulated group compari-

sons (e.g., across the 500 mixed-CNR group comparisons with the tree

topology). Results are shown as curves plotting sensitivity against false-

positive rates and sensitivity against FWE rate, parameterized by E/H

combination for TFNBS and primary F-threshold for NBS. We choose

this presentation over traditional receiver operating characteristic

curves to facilitate the comparison of test properties across the range of

parameters that need to be set a priori.

3 | RESULTS

3.1 | Initial parameter search

This initial analysis was performed using the single-CNR matrices, and

was designed to assess the impact of different E and H parameter com-

binations on sensitivity and specificity to statistical effects with different

magnitudes. As expected, the presence of stronger effects was associ-

ated with higher sensitivity. Specificity also tended to be higher in data

sets with larger effect sizes. Figure 4 shows the sensitivity and specific-

ity of different E/H combinations in the three CNR levels tested using

the tree ground-truth topology. Increasing H and decreasing E led to

more conservative hypothesis testing, that is, higher specificity and

lower sensitivity. A similar overall pattern was observed with the cyclic

topology (Supporting Information, Figure 1). For subsequent analyses,

we aimed to select a range of E/H parameter combinations that were

less vulnerable to false-positives. We therefore chose a set of 44 combi-

nations of conservative parameters, consisting of lower E and higher H

values (E parameter range: 0.25–1, at intervals of 0.25; H parameter

range: 2.25–4.75, at intervals of 0.25), to be further assessed in the next

section.

3.2 | Focused parameter assessment

In this step, the mixed-CNR matrices and random-noise matrices were

analyzed with TFNBS using the 44 E/H parameter combinations

described above. The same data were also assessed with NBS, using 25

component-defining F-statistic thresholds (4–16, at intervals of 0.5, cor-

responding to p values of 0.0469–0.0001, respectively). Figure 5-1

shows the overall specificity and sensitivity, averaged across all edges in

the five ground-truth connected components with a tree topology, for

the four E parameters tested as a function of H. Again, lower E values

FIGURE 4 Initial parameter search. Heatmaps display mean sensitivity and specificity levels for each of the 260 E/H parameter combinations
for the simulated data with the tree topology, with contrast-to-noise ratios (CNR) of 0.5 (left panels), 0.75 (middle panels), and 1 (right panels)

[Color figure can be viewed at wileyonlinelibrary.com]
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and higher H values led to stricter testing. Supporting Information, Fig-

ure 2 shows the corresponding results for the cyclic ground-truth pat-

tern. With this topology, overall differences between more liberal and

more conservative E/H combinations tended to be smaller than with

the cyclic topology. This was mainly due to lower sensitivities and

higher specificities at higher E combined with lower H combinations.

FIGURE 5 Mixed-CNR matrices: TFNBS sensitivity and specificity analysis (tree topology). Panel 1: Curve plots show mean sensitivity (left) and
specificity (right) for the four TFNBS E parameter values assessed as a function of H value, across all ground-truth edges. Panel 2: Plots show the
sensitivity to edges in each of the five ground-truth connected components, for the four E parameter values assessed as a function of H value.
Components’ contrast-to-noise ratios (CNR) are indicated. The y-axes have been rescaled according to the range of values displayed [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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Sensitivity per connected component was, as expected, strongly

determined by the component’s CNR (Figure 5-2 and Supporting Infor-

mation, Figure 2-2). Sensitivity to the two components with the

strongest effects (Components 2 and 4, CNR51; and Component 1,

CNR50.75) was high. Sensitivity to Components 3 and 5, both with

CNR50.5, on the other hand, was considerably lower. Again, these

FIGURE 6 Mixed-CNR matrices. TFNBS and NBS: sensitivity and specificity analysis (tree topology). Panel 1: Curve plot shows mean sensitivity
as a function of the mean false-positive rate (1-specificity) across all ground-truth edges. Panel 2: Curves show mean sensitivities for each of the
five ground-truth connected components as a function of the mean overall false-positive rate, for the four E parameter values assessed across 11
different H values. Components’ contrast-to-noise ratios (CNR) are indicated. Curves marked with circles are parameterized by TFNBS E/H
parameter value combinations. Each curve represents a different E parameter, and each point along the curves indicates a different value of H.
Some parameters (E51 combined with H<3.5) yielded specificities <0.997 and are not shown. Curves marked with triangles or diamonds indi-
cate values obtained with the two tested variants of the NBS, parameterized by the F-thresholds that displayed specificities �0.997. The y-axes
have been rescaled according to the range of values displayed [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 TFNBS and NBS family-wise error rates. Panels 1 and 2 show mean family-wise error (FWE) rates obtained using TFNBS with
random-noise matrices (Panel 1) and with mixed-CNR tree topology matrices (Panel 2). Different curves depict different E parameter values, as
a function of H parameter values. Panel 3: Relationship between sensitivity and FWE rates, obtained with mixed-CNR matrices and tree
topology. Curves marked with circles are parameterized by TFNBS E/H parameter combinations, and curves marked with triangles or
diamonds are parameterized by the 12 NBS F-thresholds (10.5–16) that yielded similar FWE rates [Color figure can be viewed at wileyonli-
nelibrary.com]

FIGURE 8 Growing ground-truth components: sensitivity and specificity analysis. Random-noise matrices containing ground-truth
connected components of sizes ranging from 4 to 30 edges (at steps of two) were assessed, with two different effect sizes (CNR50.5, top
row; and CNR50.75, bottom row) and two topologies (linear tree topology, left, and cyclic topology, right). Plots represent the relationship
between sensitivity and false-positive rates (1-specificity) averaged across networks with ground-truth connected components of different
sizes, parameterized by TFNBS E/H parameter combinations. Combinations consisting of E parameter value51 and low values of H yielded
specificities below 0.9985 and are not shown [Color figure can be viewed at wileyonlinelibrary.com]
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weaker effects were more consistently detected when clustered in a

larger component (Component 3) than when organized as a single con-

nection (Component 5).

Figure 6-1 (tree topology) and Supporting Information, Figure 3

(cyclic topology) show overall sensitivity as a function of the false-

positive rate for the different E/H combinations tested, and for the

NBS across the component-defining F thresholds that displayed similar

specificities. For parameters with similar specificities across techniques,

the TFNBS reached higher sensitivities than NBS-extent; NBS-inten-

sity, on the other hand, displayed an overall sensitivity similar to that

seen with the TFNBS for parameters with comparable specificities (Fig-

ure 6-1 and Supporting Information, Figure 3-1).

Figure 6-2 and Supporting Information, Figure 3-2 illustrate the

relationship between component-wise sensitivity and false-positive

rates obtained with NBS and TFNBS. For parameters with specificities

higher than 0.997, sensitivity tended to be higher with the TFNBS and

NBS-intensity (F-thresholds between 8.5 and 16). As expected,

considering how NBS-extent is designed, sensitivity (with F-thresholds

8.5–16) was very low (<0.1) to the two components comprised of a

single edge (Components 4 and 5), using this technique; the TFNBS

and NBS-intensity, on the other hand, showed high average

sensitivities (between 0.996 and 1; and between 0.990 and 0.994,

respectively) to Component 4 (CNR51) in all E/H combinations,

whereas for Component 5 (CNR50.5) sensitivity ranged between

0.18 and 0.59 for TFNBS, 0.18 and 0.25 for NBS-intensity, and 0.002

and 0.18 for NBS-extent.

For the analysis of FWE rates, three sets of simulated data

(random-noise matrices, and mixed-CNR matrices with tree and cyclic

topologies) were analyzed. To define the FWE rate across the connec-

tome, the presence or absence of any false-positive connections at

each comparison was registered. Averages across the 500 comparisons

for each E/H parameter combination are shown in Figure 721 and 22.

Average FWE rates in the data containing only random noise were

inferior to 0.035 at the 44 E/H combinations assessed. FWE rates for

the NBS, with F-threshold between 8.5 and 16, were 0.0375–0.0425

(NBS-intensity) and 0.0373–0.0020 (NBS-extent).

FWE rates found when analyzing the mixed-CNR matrices were

notably higher, surpassing the 0.05 threshold at most of the parameters

assessed with the TFNBS, and all parameters assessed with the NBS

(Figure 722 and 23 and Supporting Information, Figure 4). With the

TFNBS, these FWE rates were dependent on and positively related to

the E parameter, and negatively related to the H parameter.

The simulated matrices used in this study are fully connected and

noisy—as functional connectivity matrices often are. In this scenario, edge

i,j in a true-effect connected component with height hc, at a given slicing

threshold h� hc, can potentially be connected to up to N– nc11ð Þ other
nodes by chance (nc being the number of nodes to which node i,j is

connected in the true-effect connected component, and N is the total

number of network nodes). If one considers a connected component

such as tree-topology Component 2, with 8 nodes and 7 intervening links

(Figure 3), the total number of potential neighboring false-positives in an

82-node matrix is thus 634. Given that the probability of any such noise-

only connections, sampled from a normal distribution, to display an effect

size�0.5 in a simulated subject group is� 3:3331024, the probability of

such a “spurious” effect to be a neighbor of a node in Component 2 is

�0.21. This probability grows linearly with the number of nodes in the

component (provided that the component contains no cycles) and

reaches �0.53 for a component as large as Component 1. When the

number of nodes in the component is reduced, even if the number of

ground-truth edges remains the same (as in the cyclic topology), the FWE

rate becomes smaller (Figure 722 and 23 and Supporting Information,

Figure 4).

Due to factors inherent to the type of data, the risk of family-wise

errors is therefore high when true effects are present in noisy connec-

tivity matrices. The probabilities given above for a fully-connected

matrix, however, describe the “worst case scenario.” When matrices

are originally sparse or are thresholded prior to statistical testing, as in

structural connectivity studies (Roberts, Perry, Roberts, Mitchell, &

Breakspear, 2017b; Zalesky et al., 2016) and sometimes in functional

connectivity assessments (Yang et al., 2017), the reduced network den-

sity would decrease the risk of false-positives. Even considering the

probabilities described above, however, whenever any false-positives

occur, the total number of false-positives should be small. As shown in

Supporting Information, Figure 5, this was usually the case; except

when E parameter51, the average number of false-positives (in the

comparisons that displayed at least one false-positive using the mixed-

CNR matrices) tended to be below six for the tree topology and below

two for the cyclic topology. For parameters with comparable sensitiv-

ities, the NBS (especially NBS-extent) tended to yield higher FWE rates

(Figure 7-3 and Supporting Information, Figure 4-2) and more false-

positive edges (Supporting Information, Figure 5-3 and 24) than the

TFNBS in matrices containing true statistical effects.

Finally, we systematically assessed the properties of the TFNBS

with ground-truth effects of variable extension, topology (cyclic and

tree), and effect sizes (CNR of 0.5 and 0.75) using the growing ground-

truth component matrices. Figure 8 shows the relationship between

true-positive and false-positive rates averaged across the 14 evaluated

component extensions (4–30 edges, at steps of 2), using 44 E/H param-

eter combinations. Supporting Information, Figures 7 and 8 show the

results for each component size. As expected, sensitivity to effects

organized in a cyclic topology was higher than to linear effects; this dif-

ference was more evident in the matrices with the weaker effect size.

Also, it again becomes clear that E parameter values of 0.25 and 1

were, respectively, highly conservative and highly liberal.

4 | DISCUSSION

In this study, we assess the test properties of the TFNBS algorithm

using different parameters and in different types of simulated data.

TFNBS is a technique that enhances topologically clustered effects

without requiring a component-defining threshold. Our results show

that TFNBS is sensitive to statistical effects clustered into connected

components and to strong isolated signals, and appears to be a suitable

statistical approach for statistical inference in brain connectivity graphs.
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The widely used NBS is a technique designed to be sensitive to

statistical effects that are organized into connected components in

connectivity matrices (Zalesky et al., 2010). This aspect renders NBS

more powerful than edge-wise mass-univariate analyses followed by

correction for multiple testing (such as control of the false-discovery

rate; Benjamini, 2010), provided that effects are clustered (Zalesky

et al., 2010). As shown in this study, the test properties of NBS are

strongly dependent on the a priori component-defining threshold,

which is often chosen arbitrarily. Also, because inference is performed

at the component level, edge-wise significance levels are not obtained.

NBS is therefore analogous to cluster-based thresholding as used in

voxel-based neuroimaging analyses. The TFNBS, on the other hand, is

analogous to TFCE. Similar to TFCE (Smith & Nichols, 2009), the

TFNBS has the advantage of producing point-wise p values, and pre-

serving local maxima—retaining finer topological information than the

NBS—without the need to set a component-defining threshold.

Nonetheless, the adequacy of the TFNBS for assessing brain

graphs cannot be directly extrapolated from the demonstrated useful-

ness of TFCE in voxel-wise analyses. Three-dimensional voxel-wise

data are fundamentally different from connectivity matrices—especially,

for the topic at hand, concerning the definition of a point’s neighbors.

A cuboid voxel’s potential neighborhood is defined by physical adja-

cency, with upper limits usually ranging from 6 (if only adjacent faces

are considered) to 26 (if neighborhood can be established by adjacent

faces, edges, or vertices) voxels. By contrast, node i in a connectivity

matrix can potentially be connected to any other network node. As

TFNBS scores are determined not only by an edge’s height (i.e., magni-

tude of the statistic), but also by component extension (i.e., the heights

of its neighboring edges), without discarding subthreshold effects, sig-

nal bleeding from true-effect edges may affect extended areas of the

network.

In the last few years, the issue of replicability and reproducibility in

neuroimaging studies has gained considerable and justified interest (Pol-

drack et al., 2017). In this context, the adoption of statistical methods

that maximize both sensitivity and specificity is critical (Bennett, Wolf-

ord, & Miller, 2009). In this study, we demonstrate that the test proper-

ties of the TFNBS are strongly influenced by the choice of parameters

for the enhancement of signal height (H parameter) and component

extent (E parameter), and that it is possible to find parameter combina-

tions that display high specificity while maintaining sensitivity to effects

that are topologically clustered, or that have large magnitudes.

The initial parameter search, exploring a wide range of E and H

parameters in different CNR and topology settings, showed that the

combination of lower E and medium to large H values led to conserva-

tive testing, but with high global sensitivity to effects with high CNR.

Further assessment of a more restricted range of E/H combinations

(E values between 0.25 and 1, and H values between 2.25 and 4.75)

showed that higher E values yield higher power, at the cost of more

false-positive edges. With the simulated data used in the mixed-CNR

matrices, high specificities could be obtained with all but the highest

E parameter value tested.

The assessment of sensitivity as a function of component extent

and height, using data containing signals with different CNR, confirmed

that TFNBS power is determined by both aspects (extent and magni-

tude) of the ground-truth effects. Sensitivity to low-CNR effects

(CNR50.5) tended to be below 0.5 for the component sizes tested

(with the exception of the excessively liberal E51). At higher CNR

(0.75 and 1), detection power was very high while still maintaining low

false-positive rates. Comparison with the NBS shows that NBS-

intensity produces an overall similar sensitivity versus false-positive

rate curve to that obtained with the TFNBS. NBS-extent, as expected,

displayed very low sensitivity to effects organized into small connected

components, even at high CNR.

The greater sensitivity of the TFNBS (and NBS-intensity) to detect

isolated edges is desirable if one assumes that effects with this topol-

ogy are neurobiologically plausible, an assumption that is difficult to

test formally. In the case of “small” networks, where nodes are defined,

for example, by a few intrinsic connectivity networks, this ability is

likely to be of interest. Irrespective of this, a significant single-edge

finding in the TFNBS can in fact be the reflection of a more extended

underlying signal. That is, it is possible for a single connection to be

identified as statistically significant due to the contribution of a broader

supporting component that nonetheless exceeds a given alpha level at

a single point of the matrix (as “the tip of the iceberg”). A second issue

is a caveat to the sensitivity of the TFNBS to isolated effects. Brain

connectivity graphs—either functional or structural—are inherently

noisy. Low signal-to-noise ratios may lead to strong group effects aris-

ing in a few isolated connections by chance. If TFNBS is sensitive to

such spurious effects, it might be vulnerable to false-positive findings.

Analysis of matrices containing only random noise, however, showed

that the TFNBS offers adequate control of the FWE rate when no true

effects are present.

Analyzing data containing mixed-CNR ground-truth effects plus

random noise, for the range of high-specificity test parameters

assessed, TFNBS and NBS FWE rates were similar. Nonetheless, the

TFNBS showed higher specificity and lower FWE rates than the NBS

for parameters with comparable sensitivity. This was especially true

when compared with NBS-extent, but also with NBS-intensity in the

case of the tree topology. These findings indicate that, as expected, the

presence of a noisy background does lead to false-positives; nonethe-

less, for parameters with similar sensitivities, the “signal bleeding”

potentially caused by the TFNBS procedure does not increase the

FWE rate or reduce the test specificity compared with the NBS.

Regarding the effects of topology on TFNBS and NBS test properties,

the higher specificities and lower FWE rates observed with the cyclic

topology emphasize the relationship between the number of nodes

linked to “actual” effects and the occurrence of false positives, as

described above. The spatial specificity of the TFNBS can therefore be

reduced if effects involve a high proportion of network nodes, espe-

cially if fully connected matrices are used. Nonetheless, the edge-wise

p values produced with the TFNBS allow exploring the data a posteriori

as information regarding the relative significance of effects is retained

in the statistical significance matrices.

One limitation of this study is the fact that edge values in the

simulated connectivity matrices were selected randomly from a normal

distribution. These networks therefore do not replicate the topological
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properties of actual human functional connectivity matrices such as

transitivity, modular structure, or small-world and scale-free character-

istics (Stam, 2014; Zalesky, Fornito, & Bullmore, 2012). Considering

that we assessed the effect of randomly distributed noise added to the

connectivity matrices, the underlying topology is unlikely to have an

impact on the results of the simulated data set analyses. Simulated

data incorporating organized noise, nonetheless, might provide useful

information regarding its effects on the sensitivity to ground-truth

effects. Additionally, the inclusion of other methods for statistical infer-

ence on brain graphs, although outside the scope of this study, might

have provided a more thorough comparative assessment of currently

available techniques.

In summary, we have demonstrated that the TFNBS algorithm can

be a valid approach for performing statistical inference on brain graphs.

Comparisons with the method it is based on, the NBS, reveal that the

TFNBS may display statistical power similar to the NBS-intensity vari-

ant, with possible advantages regarding FWE rates and number of

false-positive connections. The main advantage, however, is the possi-

bility of assigning edge-wise p values. Results obtained with different

TFNBS parameters show that high test specificity can be obtained

using E parameter values <1 alongside H parameter values �2.25. Sta-

tistical power, nonetheless, may be too low with values of E<0.5. We

therefore recommend E parameter values of 0.5 (combined with H

parameter values between 2.25 and 3) or 0.75 (combined with H

parameters between 3 and 3.5).
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