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Abstract

The assessment of task-independent functional connectivity (FC) after a lesion causing

hemianopia remains an uncovered topic and represents a crucial point to better understand

the neural basis of blindsight (i.e. unconscious visually triggered behavior) and visual aware-

ness. In this light, we evaluated functional connectivity (FC) in 10 hemianopic patients and

10 healthy controls in a resting state paradigm. The main aim of this study is twofold: first of

all we focused on the description and assessment of density and intensity of functional con-

nectivity and network topology with and without a lesion affecting the visual pathway, and

then we extracted and statistically compared network metrics, focusing on functional segre-

gation, integration and specialization. Moreover, a study of 3-cycle triangles with prominent

connectivity was conducted to analyze functional segregation calculated as the area of each

triangle created connecting three neighboring nodes. To achieve these purposes we applied

a graph theory-based approach, starting from Pearson correlation coefficients extracted

from pairs of regions of interest. In these analyses we focused on the FC extracted by

the whole brain as well as by four resting state networks: The Visual (VN), Salience (SN),

Attention (AN) and Default Mode Network (DMN), to assess brain functional reorganization

following the injury. The results showed a general decrease in density and intensity of func-

tional connections, that leads to a less compact structure characterized by decrease in func-

tional integration, segregation and in the number of interconnected hubs in both the Visual

Network and the whole brain, despite an increase in long-range inter-modules connections

(occipito-frontal connections). Indeed, the VN was the most affected network, characterized

by a decrease in intra- and inter-network connections and by a less compact topology, with

less interconnected nodes. Surprisingly, we observed a higher functional integration in the

DMN and in the AN regardless of the lesion extent, that may indicate a functional reorgani-

zation of the brain following the injury, trying to compensate for the general reduced connec-

tivity. Finally we observed an increase in functional specialization (lower between-network
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connectivity) and in inter-networks functional segregation, which is reflected in a less com-

pact network topology, highly organized in functional clusters. These descriptive findings

provide new insight on the spontaneous brain activity in hemianopic patients by showing an

alteration in the intrinsic architecture of a large-scale brain system that goes beyond the

impairment of a single RSN.

Introduction

Hemianopia is a visual field defect resulting in loss of vision in half of the visual field of both

eyes, as consequence of a contralateral post-chiasmatic lesion of the visual pathways and occip-

ital cortex. Depending on the specific lesion site and extent, the visual defect could affect one

entire hemifield (lateral homonymous hemianopia) or a single visual quadrant (quadrantano-

pia) [1]. Functional recovery usually occurs within 2–3 months and is unlikely after 6 months

following brain injury [2]. Importantly, some patients retain residual visual sensitivity without

conscious perception in their otherwise blind hemifield. This phenomenon has been termed

“blindsight” that is, the ability to detect, localize or discriminate visual stimuli without being

aware of them [3]. Over the past 30 years, task-related brain activity [4] and electrophysiologi-

cal signals [5] have been recorded during visual stimulus presentation to the blind hemifield of

these patients with the aim of exploring the neural mechanisms of unconscious vision. In these

experiments, patients are asked to give a response even if they cannot consciously perceive

anything in the blind visual field. Moving stimuli have often been used to study blindsight as

visual motion has been shown to be a perceptual feature that can increase the probability of

finding this phenomenon.

Diffusion Tensor Imaging (DTI) has been widely employed to assess structural connectivity

[6,7] by evaluating the integrity of white matter fibers interconnecting cortical and subcortical

structures. This technique helps in assessing the neural bases of blindsight and enables the

rapid and non-invasive construction of structural brain connectivity maps. Partial integrity of

white matter fibers connecting subcortical structures as the Lateral Geniculate Nucleus (LGN)

with ipsi- and contra-lateral extrastriate visual areas as the human Motion Complex (area

hMT) have been observed in hemianopic patients with but not in those without blindsight.

Therefore, this subcortico-cortical white matter fiber can represent a possible anatomical pre-

requisite of this phenomenon.

An important aspect that has to be considered when studying brain damaged patients is

represented by functional recovery, that represents the behavioural compensation following

brain injury, mediated by brain plasticity [8]. Neuroplasticity is the ability of the nervous sys-

tem to change its structural and functional organization during the whole life and to react by

optimizing the neural network in response to a brain injury [9]. As an example, motor recov-

ery after a stroke represents a plastic phenomenon by which focal injuries determine intra- or

inter-hemispheric alterations and changes in the connections between brain nodes within the

motor network [10,11]. Reorganization of the visual system following brain damage has been

widely demonstrated. Different mechanisms can mediate neuroplasticity. They can be repre-

sented by changes in the ipsilesional primary visual cortex in terms of disinhibition or creation

of new long-range connections [12,13], in the contralesional hemisphere [14], in some visual

areas in the ipsilesional hemisphere [15] or in the functional connections among extrastriate

areas and V1 [16]. (For a review see [17,18]).

A graph theory-based connectivity study of resting fMRI signal in hemianopic patients
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New rehabilitation techniques aim to take advantage of neuroplasticity to help patients

recovering some impaired cognitive skills (e.g. Visual Restoration Therapy for hemianopic

patients).[18] Therefore, the assessment of brain plasticity following a stroke by means of a

connectivity-based approach could help in understanding the functional reorganization of the

brain, providing new insights into brain strategies for recovery based on the conception of the

brain as a complex system [19].

Functional connectivity represents the undirected statistical dependency between time

courses extracted from different brain regions during the execution of a task or during resting

state [20]. Neuroimaging techniques allow to measure functional connectivity by assessing the

level of co-activation and similarity of spontaneous low-frequency oscillations [21,22]. These

techniques have widely demonstrated that the temporal correlation between regions of interest

reproduces the ongoing functional interconnectivity [23]. Resting state (RS) fMRI focuses on

synchronous, spontaneous, low frequency fluctuations (<0.1 Hz) in the BOLD signal, occur-

ring when participants are instructed to relax without engaging in a specific task.

Few studies have been carried out on the assessment of brain functional reorganization in

hemianopic patients, most of them using multichannel electroencephalography [24,25]. In

contrast, the impact of different diseases on functional connectivity has been widely studied in

patients with neurodegenerative disorders, as Alzheimer [26], psychiatric disorders such as

schizophrenia [27,28], depression [29,30] and obsessive compulsive disorder [31]; and, neuro-

developmental disorders such as autism [32] and attention deficit hyperactivity [33]. In these

studies, RS functional connectivity represents an ideal tool to assess the remote physiological

effects of a lesion on distant but functionally connected areas of the brain (“distributed injury
hypothesis”) by evaluating alterations in their synchronization as a consequence of the disease

[19]. These changes in brain synchronization caused by the lesion can constrain specific

behavioral outputs, influencing the way in which regions are recruited and communicate dur-

ing behavior [34].

Group RS studies have shown the existence of reliable and stable functionally linked net-

works during rest, referred as resting-state networks or RSN [35–37] mostly “named” on the

basis of the spatial similarity between resting state networks and activation patterns during

task-dependent fMRI experiments. The most fundamental and clearly identified RSN in the

literature is represented by the Default Mode Network (DMN), which activates during rest

and deactivates during the execution of a task [38]. It is mainly linked to core processes of

human cognition such as integration of cognitive and emotional processes and mind-wander-

ing. The main areas of the DMN are the medial posterior frontal cortex, the posterior cingulate

cortex, the inferior parietal lobe and the hippocampus. DMN alterations have been reported in

many neurological and neuropsychiatric disorders such as Alzheimer disease [39] and Schizo-

phrenia [40]. Other resting state networks in the brain are the salience, auditory, basal ganglia,

higher and primary visual, visuospatial, language, executive and sensorimotor network [41].

The assessment of neuroplasticity as well as of task-independent functional connectivity

after a stroke causing hemianopia remains an uncovered topic to be explored. Therefore, the

main aim of our study is twofold: first of all we explored and described in detail the RS func-

tional connectivity in an heterogeneous group of patients who share the same diagnosis of per-

manent hemianopia, and then we assessed the difference with a group of age-matched healthy

participants in the synchronization of brain activation during RS through the extraction of

graph summary measures.

According to the specific lesion location and patients’ symptoms, we focused on the evalua-

tion of intra- and inter-networks functional connectivity considering four main RSNs: the

Visual Network (VN), directly damaged by the lesion and that determines the phenotype of

our clinical population; the Salience (SN) and the Attentional network (AN) [42], as the injury

A graph theory-based connectivity study of resting fMRI signal in hemianopic patients
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of some of our patients involves fronto-parieto-temporal areas, despite the absence of symp-

toms directly related to their damage, and the Default Mode Network (DMN) [43], a control

network, not related to the specific phenotype of the experimental group.

Among the different methods that can be applied to study RS functional connectivity, we

decided to use a graph theory-based connectivity approach as it provides a way to assess the

network topology by reducing the brain network to a simplified set of nodes and edges [44–

47]. It enables the extraction and comparison of summary measures of brain topology and effi-

ciency in healthy and in clinical populations [48]. For all these reasons, this approach has been

widely used to assess the intrinsic network organization in psychiatric and neurological syn-

dromes [37,49,50]. Furthermore, it allows to assess between-groups differences in functional

segregation, that is the organization of functionally related brain regions in modules with high

within-modules and low between-modules density, and functional integration, that is the

strong coupling between modules. Balanced levels of functional segregation and integration

have demonstrated to be necessary to maintain high cognitive functions. [51–53].

For each group we extracted five summary measures of functional integration and segrega-

tion, that allow to assess both small-world properties and network efficiency. Indeed, cluster-

ing coefficient and characteristic path length are small-world parameters [54], whilst local and

global efficiency are parameters of network efficiency [55] that allow to assess functional segre-

gation and integration, respectively. In addition, we extracted node degree as a measure of

node connectedness in the network [56].

In summary, the specific purpose of the present study is to shed light on alterations in brain

plasticity and in intrinsic cerebral functional architecture following different kinds of lesion

affecting the visual system and causing a similar visual impairment. In this respect, this study

represents a preliminary step toward the assessment of a general pattern of functional connec-

tivity in a specific clinical population.

Material and methods

Subjects

Ten hemianopic patients (3 females; mean age = 54.5 years, SD = 13.14; see Table 1), right-

handed, with long-standing post-chiasmatic lesions (median post-lesion time = 32.7 months)

causing visual field loss, and a group of 10 healthy participants (6 females; mean age = 54.9,

SD = 13.61) with no history of neurological disorders were recruited. No significant difference

was found between the two groups considering the years of schooling (Wilcoxon Test: μ
patients = 12, SD = 2.71; μ controls = 13.9, SD = 2.35; Z = -1.39; p = 0.1642). Patients were

recruited from the hospitals of Verona and Treviso. The visual field was examined with the

Humprey field analyser that assesses the monocular visual field using a flash detection task

(HFA 750i, Zeiss-Humprey, Leandro, CA, USA). The exclusion criteria included past or pres-

ent neurologic disorders other than those related to hemianopia, psychiatric disorders, drugs

or alcohol addiction, general cognitive impairment, and deficit of spatial attention (i.e. hemi-

neglect). All participants were right handed and had normal or corrected-to-normal visual

acuity. A brief description of patients’ lesion location, time and type of event can be found in

Table 1. Written informed consent was obtained after participants had been fully informed

about the testing procedures and their rights. The study was approved by the Ethics Commit-

tee of the European Research Council and of the Azienda Ospedaliera Universitaria Integrata

of Verona (AOUI).

Neuropsychological assessment. Cognitive functioning in relation to age and education,

and impairments of spatial attention were evaluated through a neuropsychological battery of

tests, including the Mini-Mental State Examination (MMSE) [57] the Line Bisection Test [58]
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Table 1. Patient’s clinical description.

Patient (birth

date/gender)

Lesion/Visual Deficit Time elapsed post injury–

T1-weighted image

Time elapsed post injury–

Resting State acquisition

PT01

(1967/F)

Neuroradiological Description: Lesion involving the median para-sagittal portion of

the left occipital lobe. The lesion involves the lingual gyrus, with peri-calcarine

fissure distribution.

Visual Defect: Right lateral homonymous hemianopia.

Ischemic Stroke: 04/2009

T1-weighted image: 02/2017

92 months 100 months

PT02

(1966/F)

Neuroradiological Description: Lesion involving the right temporal, parietal and

occipital lobe. In the occipital lobe, the lesion involves the superior and a portion of

the middle occipital gyri with interruption of the right optic radiation.

Visual Defect: Left lateral homonymous hemianopia.

Hemorrhagic head injury: 06/2014

T1-weighted image: 03/2017

33 months 38 months

PT03

(1965/F)

Neuroradiological Description: Ischemic lesion involving the grey matter of the

anterior half of right calcarine fissure up to the origin of parieto-occipital fissure.

Visual Defect: Upper left homonymous quadrantanopia.

Ischemic Stroke: 07/2012

T1-weighted image: 04/2017

57 months 62 months

PT04

(1948/M)

Neuroradiological Description: Lesion involving the medial portion of right occipital

lobe, with an extension over the parieto-occipital fissure. An important involvement

of the lingual and fusiform gyri till the occipital pole, with alterations of the calcarine

fissure is observed.

Visual Defect: Lower left homonymous quadrantanopia.

Ischemic Stroke: 08/2016

T1-weighted image:05/2017

9 months 13 months

PT05

(1961/M)

Neuroradiological Description: Lesion involving the left infero-lateral part of the

occipital lobe with extension in the lingual and fusiform giri. Laterally, the lesions is

below the lateral occipital sulcus.

Visual Defect: Upper right homonymous quadrantanopia.

Hemorrhagic head injury: 06/2016

T1-weighted image: 10/2017

16 months 17 months

PT06

(1996/M)

Neuroradiological Description: Large ischemic lesion in all vascular territory of right

middle cerebral artery, involving frontal, temporal and parietal lobes on this side.

Visual Defect: Left lateral homonymous hemianopia with a greater visual deficit in

the lower quadrant.

Hemorrhagic head injury: 04/2014

T1-weighted image: 09/2017

41 months 41 months

PT07

(1952/M)

Neuroradiological Description: Ischemic lesion of part of the vascular territory of

right posterior cerebral artery. The alteration involves the calcarine fissure, the

lingual and the fusiform giri.

Visual Defect: Left lateral homonymous hemianopia

Ischemic Stroke: 10/2017

T1weighted image: 05/2018

7 months 7 months

PT08

(1961/M)

Neuroradiological Description: Lesion involving the left temporo-parietal lobe, with

extension to the occipital lobe in the superior and middle occipital gyri. The

alteration of the white matter in the occipital lobe suggests an involvement of the

upper part of left optic radiation.

Visual Defect: Right lateral homonymous hemianopia.

Hemorrhagic head injury: 11/2013

T1-weighted image: 04/2017

41 months 47 months

PT09

(1965/M)

Neuroradiological Description: Ischemic lesion of part of the vascular territory of the

left posterior cerebral artery. The alteration involves the anterior and middle portion

of calcarine fissure, the lingual gyrus and the posterior part of fusiform gyrus.

Visual Defect: Right lateral homonymous hemianopia.

Ischemic Stroke: 02/2017

T1-weighted image: 07/2017

5 months 17 months

(Continued)
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the Diller letter H cancellation Test and the Bell Cancellation Test [59,60]. The Unilateral

Neglect Syndrome is a neuropsychological condition characterized by the impairment in shift-

ing the attention toward the contralateral side of the body or of the environment without visual

loss. It could be merged or confused with Lateral Homonymous Hemianopia as some clinical

symptoms appear similar. For this reason, it is important to differentially diagnose these two

neuropsychological impairments. Therefore, we carried out an assessment of the presence of

unilateral spatial neglect by using: Line Bisection test taken from the Behavioural Inattention

Test [58] where a score > 7 indicates the presence of Neglect, the Diller letter H cancellation

[59] and the Bell Cancellation Test [60] where a score of 5 unmarked elements indicates the

presence of Neglect. The MMSE is a 30-item screening tool designed to quickly evaluate the

integrity of normal cognitive functioning according to age and years of education [57]. The

maximum score obtained is 30 and 24 is the established cut-off point to determine the pres-

ence of deterioration [61]. These tests were performed with the general aim of excluding

patients with cognitive decline and neuropsychological impairments other than hemianopia.

For this reason, no statistical analysis was performed on these data. No patient showed cogni-

tive decline (median = 29.24, std = 1.79) or other neuropsychological impairments apart from

hemianopia. Finally, patient’s subjective impressions on their visual abilities in everyday life

were assessed with the Visual Function Questionnaire (VFQ25) [62].

Lesion details. Considering the heterogeneity of our sample and the availability of a

1mm3 isotropic T1-weighted image acquired for each patient, we created a mask of each lesion

to better visualize and quantify its location and extent. Thus, starting from the bias-field cor-

rected T1-weighted image, we created a mask of each lesion using the software ITK-SNAP

[63]. Once created, the lesion mask was normalized to the standard MNI space with a spatial

resolution of 1mm, using linear transformation (FLIRT). The software MRICron [64] was

used to create two images representing the overlap between left or right brain lesions on the

ch2.nii template brain [65] (see Fig 1). Lesion volumes, total intracranial volume and the per-

centage of damaged voxels are shown in Table 2.

Thus, we extracted lateralized regions of interest from the MNI structural atlas of fsl [66,67]

corresponding to the occipital, temporal, parietal and frontal lobe and to the insula, putamen

and thalamus. These ROIs were thresholded to avoid the overlap between regions that could

overestimate the real size of the lesion. The overlap between these masks and the lesion was

quantified as the percentage of voxels (see Fig 1) and a visual inspection was performed based

on the AAL Atlas to better describe which regions were directly affected by the lesion.

As can be seen from Fig 1, all patients except PT02, PT06 and PT08 have a lesion mainly

involving the occipital lobe and, more in detail, the calcarine cortex, the cuneus, the lingual

gyrus and the fusiform gyrus. In addition to that in occipital lobe, PT08 has a lesion involving

Table 1. (Continued)

Patient (birth

date/gender)

Lesion/Visual Deficit Time elapsed post injury–

T1-weighted image

Time elapsed post injury–

Resting State acquisition

PT10

(1954/F)

Neuroradiological Description: Ischemic lesion in the vascular portion of the left

posterior cerebral artery, involving the entire occipital lobe, including the left

calcarine fissure.

Visual Defect: Lower right homonymous quadrantanopia.

Ischemic Stroke: 05/2016

T1-weighted image: 07/ 2018

26 months 26 months

Neuroradiological description of the lesion, type and onset of the injury, date of the acquisition of the T1-weighted image used for the neuroradiological description,

time elapsed from the injury to the structural scanning session and from the injury to the resting state data acquisition.

https://doi.org/10.1371/journal.pone.0226816.t001
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a portion of the parietal lobe, including areas as the supramarginal gyrus, angular gyrus and

parietal lobe. PT06 and 02 showed a very large lesion involving in the former a widespread net-

work of areas of the fronto-parieto-temporal lobes, the insula and the putamen and the right

temporo-parietal lobe in the latter.

Fig 1. Representation of each patients’ lesion. Overlapped lesions of left (A) and right (B) damaged patients on the

ch2.nii template of MRICron, represented on multislices. Each color represents one patient. (C). Quantification of the

percentage of overlap between each patient’s lesion and the MNI Structural Atlas of fsl. TH: Thalamus;

PUT = Putamen; INS = Insula; FRONT = Frontal Lobe; TEMP = Temporal Lobe; PAR = Parietal Lobe;

OCC = Occipital Lobe.

https://doi.org/10.1371/journal.pone.0226816.g001

Table 2. Patient lesion details.

PATIENT Total Lesion Volume (mm3) Intracranial Volume Brain Damage (%)

PT01 27770 1958323 1.42

PT02 254848 1959137 13.01

PT03 3108 1998194 0.16

PT04 39912 1942996 2.05

PT05 38217 1955847 1.95

PT06 752786 1955749 38.49

PT07 26573 2013290 1.32

PT08 85802 2008821 4.27

PT09 22067 1919340 1.15

PT10 39344 1980551 1.99

Lesion volumes, total intracranial volume and the percentage of damaged voxels.

https://doi.org/10.1371/journal.pone.0226816.t002
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MRI Image acquisition and preprocessing

Scanning took place in a 1.5 Tesla Philips scanner at the Borgo Roma Hospital in Verona,

using a 15-channels head coil. A whole brain high-resolution (1x1x1 mm3) 3D T1-weighted

image with magnetization-prepared rapid acquisition gradient echo (MPRAGE) was acquired

for all patients to locate the lesion and to allow the registration of functional data together with

the anatomical image of each patient. A resting state dataset was acquired covering the whole

brain by recording from slices parallel to the bi-commissural line with subjects instructed to

lay down with eyes open trying not to think about anything and to stay still as much as possi-

ble. This ensures a higher spontaneous activity in occipital attentional regions than in sensori-

motor areas [68] and a high reliability in the visual network [69]. One hundred sixty volumes

were acquired with TR = 2500ms, Echo Time = 50ms; 30 slices with slice thickness of 4mm,

Field of View = 224x224mm, time duration = 6.47m and echo train length = 39. Raw data is

available at the link http://hdl.handle.net/2445/136617. Structural T1-weighted as well as func-

tional images were reviewed to identify any possible abnormality such as scanner spikes, incor-

rect orientation or poor contrast, before inclusion in the statistical analysis. No structural

abnormalities other than the presence of the lesion were found.

Structural and functional images were pre-processed using FSL (FMRIB Software Library

v5.0) with a pre-processing pipeline adapted from Diez et al.(2015) [70] with parameters

adjusted to fit the experimental data. The structural image was reoriented to match the tem-

plate and a resampled AC-PC aligned image with 6 degrees of freedom was created. The non-

brain tissue was removed, and the resulted brain mask was used to segment the brain. The seg-

mented and parcelled brain was finally co-registered to the Montreal Neurological Institute

(MNI) Reference Brain [71] using FMRIB linear Image Registration Tool (FLIRT) function.

For functional images, slice time correction was performed using the specific slices acquisition

order (ascending) to obtain 30 contiguous slices in the AC-PC plane. The resulting images

were reoriented to match the template. Motion correction was applied by co-registering all the

volumes to the central one, in order to visualize the brain movements along the three axes (x,y,

z). Motion statistics as DVARS, Framewise Displacement and Jenkinson’s Framewise Dis-

placement [72] were calculated. The non-brain tissue was removed using the BET function

and all volumes were smoothed with a 6-mm FWHM isotropic Gaussian kernel to increase the

signal-to-noise ratio. The resulted signal intensity was normalized and a band pass filtering

between 0.01 and 0.08 Hz was applied to fit with the main focus of interest in the resting state

analysis, i.e. fluctuations of low-frequency signal. Finally, the resulting functional images were

registered and normalized to the MNI standard space and the effects of both white matter and

cerebrospinal fluid were removed.

Data analysis: Graph theory-based connectivity analysis

One of the most compelling ways to efficiently illustrate connectivity data sets is by character-

izing them as networks defined as a set of neural elements (nodes) and relations among them

(edges). In a macroscale brain network, nodes can be defined as regions of interest (ROIs)

derived from anatomical atlases and edges as temporal correlations among nodes. Graph the-

ory-based connectivity analyses, as a form of graph-based connectivity modelling, represent a

useful way to analyse the strength of functional connections and to assess group differences

(for a review see [73]).

Regions of interest (ROI) estimation. A commonly used partitioning scheme is atlas-

based and uses standard coordinates or anatomical landmarks on the cortical surface to divide

the Brain into regions of interest (ROI). In this study ROIs were defined using the Automatic

Anatomical Labelling (AAL) atlas [74] that contains 90 cortical and subcortical ROIs, 45 for
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each hemisphere, that are alternatively interspersed (see Table 3). The mean time-series

approach was used to extract time-courses from all ROIs. As mentioned in the Introduction,

we assessed the functional connectivity extracted from four RSNs and from the whole brain.

The VN was composed by bilateral striate and extrastriate visual areas; the DMN included the

hippocampus, the parahippocampal, fusiform and angular gyrus, the precuneus and the MTG;

the AN included the frontal eye fields, MFG, IFG, Superior Parietal Lobes, IPL and STG; the

SN was composed by the prefrontal cortex, the insula and the cingulate cortex.

Network matrix. The simplest way to investigate similarities between two regions of

interest is by looking at their time-series correlation using Pearson’s correlation coefficient

(“full correlation” approach). The Pearson Correlation is a matrix of N x N dimensions, where

N = 90 (number of ROIs) and each value of the matrix represents the strength of correlation

coefficient between the time-series of two ROIs. The autocorrelations and the anti-correlations

were set to zero. Indeed, according to the literature, the neural basis of negative correlations

during rest remains a topic under debate and can be related to neurobiological information as

well as to pre-processing artifact or noise [75]. Moreover, negative coefficients extracted were

close to 0 in both groups indicating the absence of a significant effect. Correlation coefficients

were transformed to Z-statistics using Fisher’s r-to-Z transformation before performing graph

theory analysis. We created correlation matrices considering both the whole brain and the

RSNs mentioned in the introduction separately.

Graph theory analysis. Graph theoretic techniques can provide useful information by

extracting higher level summary measures from network matrix to describe aspects of network

functioning. Therefore, adjacent weighted undirected matrices were created by thresholding

the correlation coefficients to graphically represent density and intensity of functional links on

the cortical surface, maintaining the magnitudes of correlational interactions, using the soft-

ware BrainNet Viewer (http://www.nitrc.org/projects/bnv/) [76]. The application of a thresh-

old to the correlation matrices is fundamental to delete weak correlation coefficients that

could represent spurious connections without biological relevance [77] and alter the topology

of the network. Indeed, it has been demonstrated that the inclusion of low random connec-

tions possibly representing false positive can lead to a high probability of modifying the net-

work metrics in terms of increase of global efficiency and decrease of network clustering.

Considering that our clinical population showed a general lower overall functional connectiv-

ity, we decided not to apply a proportional threshold that could bring to the inclusion of spuri-

ous connections to maintain a fixed network cost, increasing the possibility of including false

positive (error type I), that have demonstrated to be more detrimental than false negative

(error type II) to the computation of network metrics [78,79]. For all these reasons, we chose

to apply a range of absolute thresholds (r = 0.4–0.5 in steps of 0.01), that would allow to

minimize the bias in the threshold selection and to control for error types I and II. Adjacent

unweighted undirected matrices were created maintaining information on the presence or

absence of functional connections, by binarizing the thresholded adjacent weighted matrix of

both groups separately, as described by Rubinov and Sporns in 2010 [80]. These matrices were

used first of all to visualize the topology of the brain network and then to extract graph theo-

retic summary measures to assess significant differences in the functional network structure

using the Brain Connectivity Toolbox of Matlab [80]. Graph metrics included indices of func-

tional integration as the characteristic path length (the average shortest path length between all

possible pairs of nodes in a network) and the global efficiency (the reciprocal of the harmonic

mean of the path length) as well as indices of functional segregation as the nodal clustering

coefficient (normalized number of pairs of each node’s neighbors that are connected with

each other) and local efficiency (index of integration of a node with its immediate neighbors).

Nodal metrics included the node degree which indicates the number of edges connecting one
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Table 3. List of the 90 regions that compose the AAL Atlas.

Labels Abbr. X Y Z

1. Precentral_L PreCG.L -38.65 -5.68 50.94

2. Precentral_R PreCG.R 41.37 -8.21 52.09

3. Frontal_Sup_L SFGdor.L -18.45 34.81 42.2

4. Frontal_Sup_R SFGdor.R 21.9 31.12 43.82

5. Frontal_Sup_Orb_L ORBsup.L -16.56 47.32 -13.31

6. Frontal_Sup_Orb_R ORBsup.R 18.49 48.1 -14.02

7. Frontal_Mid_L MFG.L -33.43 32.73 35.46

8. Frontal_Mid_R MFG.R 37.59 33.06 34.04

9. Frontal_Mid_Orb_L ORBmid.L -30.65 50.43 -9.62

10. Frontal_Mid_Orb_R ORBmid.R 33.18 52.59 -10.73

11. Frontal_Inf_Oper_L IFGoperc.L -48.43 12.73 19.02

12. Frontal_Inf_Oper_R IFGoperc.R 50.2 14.98 21.41

13. Frontal_Inf_Tri_L IFGtriang.L -45.58 29.91 13.99

14. Frontal_Inf_Tri_R IFGtriang.R 50.33 30.16 14.17

15. Frontal_Inf_Orb_L ORBinf.L -35.98 30.71 -12.11

16. Frontal_Inf_Orb_R ORBinf.R 41.22 32.23 -11.91

17. Rolandic_Oper_L ROL.L -47.16 -8.48 13.95

18. Rolandic_Oper_R ROL.R 52.65 -6.25 14.63

19. Supp_Motor_Area_L SMA.L -5.32 4.85 61.38

20. Supp_Motor_Area_R SMA.R 8.62 0.17 61.85

21. Olfactory_L OLF.L -8.06 15.05 -11.46

22. Olfactory_R OLF.R 10.43 15.91 -11.26

23. Frontal_Sup_Medial_L SFGmed.L -4.8 49.17 30.89

24. Frontal_Sup_Medial_R SFGmed.R 9.1 50.84 30.22

25. Frontal_Med_Orb_L ORBsupmed.L -5.17 54.06 -7.4

26. Frontal_Med_Orb_R ORBsupmed.R 8.16 51.67 -7.13

27. Rectus_L REC.L -5.08 37.07 -18.14

28. Rectus_R REC.R 8.35 35.64 -18.04

29, Insula_L INS.L -35.13 6.65 3.44

30. Insula_R INS.R 39.02 6.25 2.08

31. Cingulum_Ant_L ACG.L -4.04 35.4 13.95

32. Cingulum_Ant_R ACG.R 8.46 37.01 15.84

33. Cingulum_Mid_L DCG.L -5.48 -14.92 41.57

34. Cingulum_Mid_R DCG.R 8.02 -8.83 39.79

35. Cingulum_Post_L PCG.L -4.85 -42.92 24.67

36. Cingulum_Post_R PCG.R 7.44 -41.81 21.87

37. Hippocampus_L HIP.L -25.03 -20.74 -10.13

38. Hippocampus_R HIP.R 29.23 -19.78 -10.33

39. ParaHippocampal_L PHG.L -21.17 -15.95 -20.7

40. ParaHippocampal_R PHG.R 25.38 -15.15 -20.47

41. Amygdala_L AMYG.L -23.27 -0.67 -17.14

42. Amygdala_R AMYG.R 27.32 0.64 -17.5

43. Calcarine_L CAL.L -7.14 -78.67 6.44

44. Calcarine_R CAL.R 15.99 -73.15 9.4

45. Cuneus_L CUN.L -5.93 -80.13 27.22

46. Cuneus_R CUN.R 13.51 -79.36 28.23

47. Lingual_L LING.L -14.62 -67.56 -4.63

(Continued)
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Table 3. (Continued)

Labels Abbr. X Y Z

48. Lingual_R LING.R 16.29 -66.93 -3.87

49. Occipital_Sup_L SOG.L -16.54 -84.26 28.17

50. Occipital_Sup_R SOG.R 24.29 -80.85 30.59

51. Occipital_Mid_L MOG.L -32.39 -80.73 16.11

52. Occipital_Mid_R MOG.R 37.39 -79.7 19.42

53. Occipital_Inf_L IOG.L -36.36 -78.29 -7.84

54. Occipital_Inf_R IOG.R 38.16 -81.99 -7.61

55. Fusiform_L FFG.L -31.16 -40.3 -20.23

56. Fusiform_R FFG.R 33.97 -39.1 -20.18

57. Postcentral_L PoCG.L -42.46 -22.63 48.92

58. Postcentral_R PoCG.R 41.43 -25.49 52.55

59. Parietal_Sup_L SPG.L -23.45 -59.56 58.96

60. Parietal_Sup_R SPG.R 26.11 -59.18 62.06

61. Parietal_Inf_L IPL.L -42.8 -45.82 46.74

62. Parietal_Inf_R IPL.R 46.46 -46.29 49.54

63. SupraMarginal_L SMG.L -55.79 -33.64 30.45

64. SupraMarginal_R SMG.R 57.61 -31.5 34.48

65. Angular_L ANG.L -44.14 -60.82 35.59

66. Angular_R ANG.R 45.51 -59.98 38.63

67. Precuneus_L PCUN.L -7.24 -56.07 48.01

68. Precuneus_R PCUN.R 9.98 -56.05 43.77

69. Paracentral_Lobule_L PCL.L -7.63 -25.36 70.07

70. Paracentral_Lobule_R PCL.R 7.48 -31.59 68.09

71. Caudate_L CAU.L -11.46 11 9.24

72. Caudate_R CAU.R 14.84 12.07 9.42

73. Putamen_L PUT.L -23.91 3.86 2.4

74. Putamen_R PUT.R 27.78 4.91 2.46

75. Pallidum_L PAL.L -17.75 -0.03 0.21

76. Pallidum_R PAL.R 21.2 0.18 0.23

77. Thalamus_L THA.L -10.85 -17.56 7.98

78. Thalamus_R THA.R 13 -17.55 8.09

79. Heschl_L HES.L -41.99 -18.88 9.98

80. Heschl_R HES.R 45.86 -17.15 10.41

81. Temporal_Sup_L STG.L -53.16 -20.68 7.13

82. Temporal_Sup_R STG.R 58.15 -21.78 6.8

83. Temporal_Pole_Sup_L TPOsup.L -39.88 15.14 -20.18

84. Temporal_Pole_Sup_R TPOsup.R 48.25 14.75 -16.86

85. Temporal_Mid_L MTG.L -55.52 -33.8 -2.2

86. Temporal_Mid_R MTG.R 57.47 -37.23 -1.47

87. Temporal_Pole_Mid_L TPOmid.L -36.32 14.59 -34.08

88. Temporal_Pole_Mid_R TPOmid.R 44.22 14.55 -32.23

89. Temporal_Inf_L ITG.L -49.77 -28.05 -23.17

90. Temporal_Inf_R ITG.R 53.69 -31.07 -22.32

Labels and abbreviation of the 90 regions composing the AAL Atlas. The last three columns represent the MNI coordinates of the centre of each region of interest.

https://doi.org/10.1371/journal.pone.0226816.t003
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node with all the others (for a detailed description of the graph theory analysis see [81,82]).

Once the graph measures were extracted, we evaluated the statistical difference between

groups comparing values of clustering coefficient, local efficiency and node degree extracted

from each node of the group adjacent binary matrices. Then we applied the Wilcoxon rank

test for independent samples, where each row represented the graph value extracted from a

specific node. FDR was applied to correct for multiple comparisons. Moreover, we extracted

the average characteristic path length and the mean global efficiency from each group matrix

to describe the main difference in the functional integration of the group network.

Functional segregation. Functional segregation assumes that brain regions have the abil-

ity to develop specialized processing tasks and then integrate all the information into complex

processing stages [20]. It defines the ability for specialized processes to involve densely inter-

connected groups of brain regions arranged within modules or clusters. The network matrix

can be used to infer the intensity of the ROIs’ signal correlation. Moreover, if we consider each

pairwise correlation coefficient as the side of a triangle connecting 3 edges represented by 3

ROIs, we can compute the area of the triangle between neighbouring ROIs. The result repre-

sents an index of the intensity of pairwise correlations among ROIs, meaning that it would be

an index of the strength of functional connectivity. The areas of the cycles can be calculated

using Heron’s expression, which is:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs � aÞðs � bÞðs � cÞ

p

Where a, b and c are the side lengths of the triangle and s is the semi perimeter, which is:

s ¼
ðaþ bþ cÞ

2

The areas of all possible triangles were calculated and a threshold represented by the area of

an hypothetical triangle whose sides were rxy> 0.6, was applied to each 3-cycle triangles, in

order to assess only the most representative functional networks. This criterion allows the

reduction of type I error since the selected threshold implies a significant value of p<0.0001.

Its validity has been already demonstrated by similar data reported by Farràs-Permanyer et al.,

2019 [83]. In the results, bigger triangles indicate a more intense functional correlation among

nodes (ROI’s). The frequency of significant triangles and their mean area can be used as an

informative tool to evaluate the strength of functional connectivity. Therefore, we extracted

statistical estimators of triangles (number, mean, median, skeweness, std and range) to give a

more precise description of functional connectivity in each group. The Wilcoxon rank test for

independent samples was applied to highlight group differences in the frequency distribution

of 3-cycles triangles and the Chi-Square Test for given probabilities was applied to evaluate dif-

ferences in the number of significant triangles.

Results

The trend of networks’ density with different absolute thresholds (Fig 2) showed that the dif-

ference tended to reduce when applying the highest absolute threshold (r = 0.5), mainly when

considering the Attentional and Default Mode Networks, as well as the inter-networks and the

whole brain functional connectivity. For this reason, in addition to the attempt to reduce the

inclusion of false positive and the exclusion of false negative, we decided to extract correlation

coefficients higher than 0.5 from the group adjacent weighted undirected matrix and to repre-

sent the above threshold connections on the cortical surface in the anatomical space.

Then, the “spring” topology-based layout [84] of the qgraph package for R [85] was applied

on adjacent unweighted undirected matrices to evaluate the structure of the system and to
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represent the architecture behind the connectivity. This kind of force-directed layout allows to

visualize the distance between nodes according to their attractive and repulsive forces through

an iterative algorithm that leads the network to its stable equilibrium. The Brain Connectivity

Toolbox of Matlab was used to extract graph summary measures from adjacent unweighted

undirected matrices created for each group, considering the whole brain as well as each RSN

separately (for the visualization of the trend of graph measures extracted according to the

range of absolute threshold, see S1–S5 Figs). Finally, in order to highlight group differences in

functional segregation, the 3-cycle regions with edges, i.e. correlation coefficients, over the 0.6

threshold were plotted to obtain the frequency distribution of significant triangles extracted

from pairwise Pearson correlation matrices. Because of the heterogeneity of our experimental

group, due to the high variability in lesion site and extent, we present results considering both

the entire group of 10 patients and a subgroup of 7 patients, created excluding patients with

the biggest lesions involving areas not belonging to the occipital lobe (PT02, PT06, PT08).

Intra-network connectivity

First of all, we assessed the intra-network connectivity to visualize the main between-group

differences within each network. Therefore, we extracted the correlation coefficients higher in

controls than patients and vice versa, separately for each RSN (see Figs 3 and 4).

Considering each RS Network separately, we found a gradual decrease in the density and

intensity of functional connections in patients compared to healthy controls, with a higher

Fig 2. Sensitivity analysis of networks’ density. Sensitivity analysis showing changes in network density according to

the absolute threshold applied to the pairwise correlation coefficients, within the range of r = 0.4–0.5, considering

intra- and inter-network as well as the whole brain functional connectivity. VN = Visual Network; DMN = Default

Mode Network; AN = Attentional Network; SN = Salience Network; RSNs = Resting State Networks.

https://doi.org/10.1371/journal.pone.0226816.g002
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number of above threshold connections in controls (VN = 130; DMN = 30; AN = 38;

SN = 10), and gradually lower values in groups of 7 (VN = 80; DMN = 22; AN = 32; SN = no

connections) and 10 patients (VN = 68; DMN = 18; AN = 28; SN = no connections).

Considering the Visual Network, we found numerous more intense intra- and inter-hemi-

spheric connections between almost all visual areas in controls with respect to both groups of

patients. Nevertheless, few slightly higher connections were found in both groups of patients

with respect to controls, involving short-range connections between left occipital inferior and

calcarine cortex, right calcarine and lingual gyrus and bilateral occipital inferior and lingual

gyrus. Concerning the Attentional Network, we found higher intra- and inter-hemispheric

connections in controls with respect to patients, connecting homologous regions in different

hemispheres as well as areas close to each other in the same hemisphere. Inter-hemispheric

connections higher in the group of 7 patients with respect to controls can be found, connecting

left and right STG as well as left STG and right MFG.

Fig 3. Correlation coefficients higher in controls (A) or in the group of 10 patients (B). Cortical surface

representation of correlation coefficients extracted from the threshold (r>0.5) adjacent weighted undirected matrix,

higher in controls than patients and vice versa, considering each RSN separately. A: Higher connections in controls

than patients. B: Higher connections in the group of 10 patients than controls. VN = Visual Network; DMN = Default

Mode Network; AN = Attentional Network; SN = Salience Network.

https://doi.org/10.1371/journal.pone.0226816.g003

Fig 4. Correlation coefficients higher in controls (A) or in the group of 7 patients (B). Cortical surface

representation of correlation coefficients extracted from the threshold (r>0.5) adjacent weighted undirected matrix,

higher in controls than patients and vice versa, considering each RSN separately. A: Higher connections in controls

than patients. B: Higher connections in the group of 7 patients than controls. VN = Visual Network; DMN = Default

Mode Network; AN = Attentional Network; SN = Salience Network.

https://doi.org/10.1371/journal.pone.0226816.g004
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For what concerns the Salience Network, we observed some spared higher inter-hemi-

spheric connections in controls with respect to patients, mainly between left and right superior

medial frontal gyrus, anterior, median and posterior cingulate.

Finally, regarding the DMN, in controls we found stronger inter-hemispheric connections

between corresponding areas in right and left hemisphere (parahippocampal, fusiform, angu-

lar gyrus and precuneus) and intra-hemispheric connections mainly between bilateral MTG

and precuneus, right angular gryus and precuneus, right parahippocampal and fusiform gyrus,

left hippocampus and parahippocampal gyrus. In contrast, both groups of patients showed

some spared higher intra-hemispheric connections (i.e. fusiform gyrus and MTG), whilst only

the group of 7 patients showed higher inter-hemispheric connections between left and right

hippocampus.

The visualization of RS network topology (Fig 5) highlighted differences in the architecture

of each resting state network comparing both groups of patients with respect to controls. This

difference was higher when considering the VN and consisted of a gradual decrease in the

number of connections among nodes, with a more distributed structure and less interconnec-

ted nodes in patients. The extreme case was represented by the Salience Network, where no

connections among nodes could be extracted from the binary matrices of both groups of

patients.

From the adjacent binary matrix of each group and RSN, we extracted the graph measures

of functional segregation and integration, to assess differences between controls and clinical

population. They confirmed that the main differences was in the visual network. Indeed,

we extracted significant lower values of node degree (FDR-corrected p<0.001, Z = 4.31),

Fig 5. “Spring” topology-based layout in different RSNs separately. RSNs “spring” topology-based layout used to

represent the correlation coefficients extracted from the adjacent unweighted undirected matrix (r>0.5), in the group

of controls (HC), in the group of 10 patients (PT10) and in the group of 7 patients (PT7). SN = Salience Network;

DMN = Default Mode Network; AN = Attentional Network; VN = Visual Network.

https://doi.org/10.1371/journal.pone.0226816.g005
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clustering coefficient (FDR-corrected p<0.001, Z = 3.63) and local efficiency (FDR-corrected

p<0.001, Z = 3.63) in the group of 10 patients, indicating lower functional segregation and

lower number of highly-connected hubs. When excluding patients with the biggest lesions, we

observed the same trend with a significant difference only in the number of hubs (FDR-cor-

rected p<0.001, Z = 4.23), which was maintained significantly lower in patients than in con-

trols. In both groups of patients we observed lower values of global efficiency and a longer

characteristic path length, indicating a lower capacity to integrate information using shortest

path routing (Table 4). Considering values extracted from each node, we observed that in each

node belonging to the visual network contributed to the mean values extracted (no zero val-

ues), with lower node degrees in the superior occipital gyrus and lower clustering coefficient in

the middle occipital gyrus (S1 Table) in both groups of patients.

In the Attentional Network we observed a decrease in the number of interconnected hubs

(FDR-corrected p = 0.0708, Z = 2.26) when comparing the group of 10 patients with respect

to controls. All nodes contribute to the mean values (see S2 Table) as no zero values were

reported. We extracted lower values of functional segregation, even if this difference was not

significant, due to the fact that only few nodes created weak links with pairs of neighbors.

Instead, we observed an opposite pattern in the group of 7 patients, where we extracted higher

values of functional segregation with respect to controls. Indeed, in this group of patients we

extracted more numerous high values of clustering coefficients from those nodes that actually

had links (see S2 Table). The characteristic path length was shorter in both groups of patients

and the global efficiency was higher indicating a surprisingly higher capacity to integrate infor-

mation using shortest path routing within this network in patients. This trend was maintained

even when excluding patients with the biggest lesion, indicating that the higher functional

integration was not directly related to the lesion size (see Table 5).

In the Salience Network, we could not extract any graph measures in both groups of

patients, reflecting the topology of the RS Network, composed only by isolated nodes in

patients and by very few connections between pairs of nodes in controls (Fig 5).

Considering the DMN, we observed a lower number of interconnected nodes in the group

of patients (FDR-corrected p = 0.145, Z = 1.97). All nodes contribute to the mean values,

except for the left angular gyrus that showed no connections with other nodes (see S3 Table).

The characteristic path length was shorter in both groups of patients and the global efficiency

was higher, indicating a higher level of functional integration, faster information transfer and

a minimization of the metabolic cost associating with routing. Moreover, in the group of 10

patients we observed lower values of functional segregation whilst in the group of 7 patients

we found the inverse trend, with higher values of functional segregation in patients with

Table 4. Local and global measures: Visual Network.

GROUP CLUSTERING COEFFICIENT LOCAL EFFICIENCY CHARACTERISTIC

PATH LENGTH

GLOBAL EFFICIENCY NODE DEGREE

PATIENTS (7) Mean = 0.83

Std = 0.16

Mean = 0.9147

Std = 0.0838

1.44 0.79 Mean = 6.67

Std = 1.67

PATIENTS (10) Mean = 0.716

Std = 0.18

Mean = 0.84

Std = 0.1059

1.61 0.74 Mean = 5.67

Std = 1.15

CONTROLS Mean = 0.98

Std = 0.0071

Mean = 0.99

Std = 0.0035

1.015 0.99 Mean = 10.83

Std = 0.39

Visual Network. Graph measures extracted from the threshold adjacent unweighted matrices (r>0.5) of the group of controls, of 10 patients and of 7 patients. Mean and

standard deviation (std) are shown for clustering coefficient, local efficiency and node degree. The average characteristic path length and the index of global efficiency

are shown as single values extracted from the group matrix.

https://doi.org/10.1371/journal.pone.0226816.t004
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respect to controls (see Table 6). Indeed, in both groups of patients we observed a higher num-

ber of nodes with no relationships with pairs of neighbors (zero values) but in the group of 7

patients we extracted more numerous high values of clustering coefficients from those nodes

that actually had links.

Inter-network connectivity

Comparing the density and intensity of functional correlations extracted from threshold adja-

cent weighted matrices between different networks, we found a decrease in inter-network

connectivity in both groups of patients, as shown in Fig 6 representing intra- and inter-net-

works correlation matrices in controls, in the group of 10 patients and in the group of 7

patients (Fig 6).

A greater number of positive connections was observed in controls with respect to patients

mainly between the DMN and the VN, mainly between the fusiform gyrus, the precuneus and

visual areas. To further analyse the density and intensity of inter-network connectivity across

groups, we visualized correlation coefficients higher in controls than in patients and vice versa,

considering both the four RSNs previously separately analysed, and the whole brain.

Concerning the RSNs, the representation onto the cortical surface showed a gradual

decrease in the density and intensity of functional connections in patients compared to healthy

controls, with the number of above threshold connections going from 372 in the group of con-

trols, to 334 in the group of 7 patients, to 272 in the group of 10 patients. This reduction was

mainly affecting intra- and inter-hemispheric connections among visual areas (see Figs 7 and

8, left). Moreover, we observed a gradual decrease in inter-hemispheric connections among

Table 5. Local and global measures: Attentional Network.

GROUP CLUSTERING COEFFICIENT LOCAL EFFICIENCY PATH LENGTH GLOBAL EFFICIENCY NODE DEGREE

PATIENTS (7) Mean = 0.81

Std = 0.26

Mean = 0.86

Std = 0.24

1.44 0.81 Mean = 1.78

Std = 0.73

PATIENTS (10) Mean = 0.56

Std = 0.38

Mean = 0.56

Std = 0.38

1.76 0.7 Mean = 1.56

Std = 0.7

CONTROLS Mean = 0.72

Std = 0.24

Mean = 0.82

Std = 0.21

2.25 0.62 Mean = 2.23

Std = 0.9

Attentional Network. Graph measures extracted from the threshold adjacent unweighted matrices (r>0.5) of the group of controls, of 10 patients and of 7 patients.

Mean and standard deviation (std) are shown for clustering coefficient, local efficiency and node degree. The average characteristic path length and the index of global

efficiency are shown as single values extracted from the group matrix.

https://doi.org/10.1371/journal.pone.0226816.t005

Table 6. Local and global measures: Default Mode Network.

GROUP CLUSTERING COEFFICIENT LOCAL EFFICIENCY PATH LENGTH GLOBAL EFFICIENCY NODE

DEGREE

PATIENTS (7) Mean = 0.71

Std = 0.4

Mean = 0.71

Std = 0.4

1.93 0.63 Mean = 2

Std = 1.18

PATIENTS (10) Mean = 0.5

Std = 0.44

Mean = 0.5

Std = 0.44

1.92 0.64 Mean = 1.8

Std = 1.03

CONTROLS Mean = 0.56

Std = 0.3

Mean = 0.59

Std = 0.3

2.38 0.55 Mean = 2.72

Std = 1

Default Mode Network. Graph measures extracted from the threshold adjacent unweighted matrices (r>0.5) of the group of controls, of 10 patients and of 7 patients.

Mean and standard deviation (std) are shown for clustering coefficient, local efficiency and node degree. The average characteristic path length and the index of global

efficiency are shown as single values extracted from the group matrix.

https://doi.org/10.1371/journal.pone.0226816.t006
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homotopic areas and among regions close to each other, belonging to the same network

(intra-network connectivity) or to different networks (between-network connectivity). Inter-

estingly, we observed an increase in long-range connections mainly between occipital and

frontal regions, thus connecting the inferior occipital gyrus, calcarine cortex and lingual gyrus

with the frontal superior (Attentional Network) and frontal superior medial (Salience Net-

work) areas.

Also when considering the Whole Brain (see Figs 7 and 8, right), the representation onto

the cortical surface revealed a general gradual decrease in both density and intensity of func-

tional correlations in damaged brains, with the number of above threshold connections going

from 686 in the group of controls, to 636 in the group of 7 patients, to 502 in the group of 10

Fig 6. Matrices of correlation coefficients including regions belonging to all RSNs, showing intra- and inter-

network correlations. Adjacent weighted undirected correlation matrices (r>0.5) of controls, of 10 patients and of 7

patients, representing intra- and inter-network connectivity. A greater number of positive between-networks

correlations was observed in the group of controls. SN (Salience Network): Superior Medial Frontal Cortex, Insula,

Anterior, Middle and Posterior Cingulate. DMN (Default Mode Network): Hippocampus, Parahippocampal Gyrus,

Fusiform Gyrus, Angular Gyrus, Precuneus, Middle Temporal Cortex. AN (Attentional Network): Middle Frontal

Gyrus, Middle Frontal Gyrus Orbital Part, Inferior Parietal, Superior Temporal Gyrus, Superior Frontal Gyrus

(dorsolateral), Inferior Frontal Gyrus (opercular, triangular and orbital part), Superior Parietal Gyrus. VN (Visual

Network): Calcarine, Cuneus, Lingual Cortex, Superior, Middle and Inferior Occipital Cortex.

https://doi.org/10.1371/journal.pone.0226816.g006

A graph theory-based connectivity study of resting fMRI signal in hemianopic patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0226816 January 6, 2020 18 / 33

https://doi.org/10.1371/journal.pone.0226816.g006
https://doi.org/10.1371/journal.pone.0226816


patients. This reduction was more evident in intra-hemispheric connections mainly in occipi-

tal and frontal areas, and in the inter-hemispheric connections mainly between homotopic

occipital and frontal areas. Nevertheless, we found some higher intra- and inter-hemispheric

connections between areas structurally distant from each other, as in occipito-frontal regions.

Moreover, we observed the same trend of differences in both groups of patients. These results

may indicate that the inclusion of patients with biggest lesions involving fronto-parieto-

Fig 7. Correlation coefficients higher in controls (A) and in the group of 10 patients (B). Cortical surface

representation of the correlation coefficients extracted from the threshold (r>0.5) adjacent weighted matrix, higher in

controls than patients and vice versa, considering all RSNs together (left) and the whole brain (right). A: Higher

connections in controls. B: Higher connections in the group of 10 patients. Red nodes indicate the Salience Network;

Yellow nodes indicate the Default Mode Network; Green nodes indicate the Attentional Network; Blue nodes indicate

the Visual Network.

https://doi.org/10.1371/journal.pone.0226816.g007

Fig 8. Correlation coefficients higher in controls (A) and in the group of 7 patients (B). Cortical surface

representation of the correlation coefficients extracted from the threshold (r>0.5) adjacent weighted matrix, higher in

controls than patients and vice versa, considering all RSNs together (left) and the whole brain (right). A: Higher

connections in controls. B: Higher connections in the group of 7 patients. Red nodes indicate the Salience Network;

Yellow nodes indicate the Default Mode Network; Green nodes indicate the Attentional Network; Blue nodes indicate

the Visual Network.

https://doi.org/10.1371/journal.pone.0226816.g008
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temporal areas could modulate the density and intensity of functional correlations without

changing the pattern of reorganization of functional connectivity in damaged brains.

The representation of the network architecture revealed the presence of a more compact

structure in controls than patients where nodes belonging to the same network are close to

each other and organized in well integrated functional clusters (see Fig 9). The less compact

structure of patients’ network is quite evident when considering the whole brain of the entire

group of patients, where the whole brain structure appeared less specialized, less integrated in

terms of interconnected hubs, more distributed and less segregated in functional modules (see

Fig 9B). Instead, when focusing on the RSNs inter-connectivity, the network appeared more

segregated in functional modules composed by areas belonging to different RSNs (see Fig 9A).

These results are confirmed by the extraction of graph summary measures. Indeed, consid-

ering the RSNs, we extracted lower number of interconnected hubs and higher values of func-

tional segregation in both groups of patients with respect to controls, with a bigger difference

when excluding patients with the biggest lesions. Indeed in this case we extracted more numer-

ous high values of clustering coefficient despite the presence of more numerous nodes report-

ing zero values (see S4 Table). Interestingly, we extracted the shortest characteristic path

length and the highest global efficiency in the group of 7 patients, indicating a higher capacity

to integrate information using less metabolic cost and shortest path routing (Table 7).

Fig 9. “Spring” topology-based layout in the four RSNs (upper) and in the Whole Brain (lower). “Spring”

topology-based layout used to represent the correlation coefficients extracted from the adjacent unweighted undirected

matrix of the RSNs (A) and of the whole brain (B), in the group of controls (HC), in the group of 10 patients (PT10)

and in the group of 7 patients (PT7). SN = Salience Network; DMN = Default Mode Network; AN = Attentional

Network; VN = Visual Network.

https://doi.org/10.1371/journal.pone.0226816.g009

Table 7. Local and global measures: RSNs.

GROUP CLUSTERING COEFFICIENT LOCAL EFFICIENCY PATH LENGTH GLOBAL EFFICIENCY NODE DEGREE

PATIENTS (7) Mean = 0.65

Std = 0.21

Mean = 0.77

Std = 0.2

2.83 0.48 Mean = 6.42

Std = 5.07

PATIENTS (10) Mean = 0.61

Std = 0.24

Mean = 0.73

Std = 0.21

3.22 0.42 Mean = 5.33

Std = 3.9

CONTROLS Mean = 0.58

Std = 0.2

Mean = 0.7

Std = 0.21

3.29 0.42 Mean = 7.29

Std = 5.52

RSNs. Graph measures extracted from the threshold adjacent unweighted matrices (r>0.5) of the group of controls, of 10 patients and of 7 patients. Mean and standard

deviation (std) are shown for clustering coefficient, local efficiency and node degree. The average characteristic path length and the index of global efficiency are shown

as single values extracted from the group matrix.

https://doi.org/10.1371/journal.pone.0226816.t007
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Concerning the whole brain we extracted higher values of functional segregation and inte-

gration in controls than in patients with a bigger difference when considering the group of 10

patients, where there was a significantly lower number of interconnected hubs (FDR-corrected

p = 0.0029, Z = 3.3). All nodal values contribute to the mean node degree extracted as we did

not find nodes with zero values. Moreover, in patients and controls we observed a similar

trend in the distribution of nodal clustering coefficients with higher values in controls (see S5

Table). In both groups of patients we observed lower values of global efficiency and a longer

characteristic path length, indicating a lower capacity to integrate information using shortest

path routing (Table 8).

Functional segregation

In Table 9 we report the statistical estimators of the triangles for each RSN separately and for the

whole brain, to give a more precise description of functional connectivity in each group. The

number of triangles and the skewness/asymmetry of the distribution represent the parameters

Table 8. Local and global measures: Whole Brain.

GROUP CLUSTERING COEFFICIENT LOCAL EFFICIENCY PATH LENGTH GLOBAL EFFICIENCY NODE DEGREE

PATIENTS (7) Mean = 0.57

Std = 0.2

Mean = 0.71

Std = 0.02

3.79 0.35 Mean = 7.07

Std = 4.5

PATIENTS (10) Mean = 0.55

Std = 0.22

Mean = 0.67

Std = 0.22

4.08 0.33 Mean = 5.57

Std = 3.59

CONTROLS Mean = 0.58

Std = 1.9

Mean = 0.72

Std = 0.16

3.25 0.39 Mean = 7.88

Std = 4.71

Whole Brain. Graph measures extracted from the threshold adjacent unweighted matrices (r>0.5) of the group of controls, of 10 patients and of 7 patients. Mean and

standard deviation (std) are shown for clustering coefficient, local efficiency and node degree. The average characteristic path length and the index of global efficiency

are shown as single values extracted from the group matrix.

https://doi.org/10.1371/journal.pone.0226816.t008

Table 9. Statistical estimators of the triangles between ROIs.

GROUP N triangles MEAN MEDIAN SKEWNESS SD MIN MAX

HC_VN 138 0.193 0.183 1.2642 0.0331 0.1559 0.3161

PT(10)_VN 21 0.198 0.19 0.81 0.0036 0.1579 0.28

PT(7)_VN 21 0.19 0.2 0.7 0.03 0.16 0.26

HC_DMN 2 0.16 0.16 0 0.0074 0.16 0.17

PT(10)_DMN 0

PT(7)_DMN 2 0.16 0.16 0 0.0057 0.16 0.16

HC_AN 12 0.169 0.16 1.19 0.0149 0.157 0.198

PT(10)_AN 11 0.168 0.17 0.11 0.008 0.156 0.18

PT(7)_AN 13 0.174 0.17 0.82 0.011 0.157 0.2

HC_SN 9 0.18 0.179 0.78 0.0129 0.168 0.21

PT(10)_SN 4 0.167 0.17 -0.71 0.0081 0.156 0.17

PT(7)_SN 10 0.167 0.163 0.77 0.009 0.157 0.18

HC_WB 944 0.1759 0.1698 2.6657 0.0213 0.1559 0.3161

PT(10)_WB 643 0.1735 0.1681 2.79 0.0185 0.1559 0.2997

PT(07)_WB 870 0.175 0.17 2.51 0.02 0.16 0.32

Number of significant triangles extracted from the correlation matrices of controls (HC), of the group of 10 patients (PT10) and of the group of 7 patients (PT7).

Statistical estimators are extracted from each group and RSN as well as from the whole brain: mean, median, skewness, standard deviation (SD) and range.

https://doi.org/10.1371/journal.pone.0226816.t009
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that show the highest level of group variability. The former indicates an abrupt reduction in the

number of triangles in patients, meaning a reduction in the functional segregation mainly in the

whole brain and in the visual network; the latter indicates a different asymmetry in the distribu-

tion of probabilities mainly in the RSNs. The test highlights a significant group difference in

the frequency distribution of 3-cycles triangles in the whole brain (Z = 2.27; p = 0.0234) in

the entire group of patients, and in the Salience Network (Z = 2.24, p = 0.02) when excluding

patients with the biggest lesions. The number of triangles was not homogeneous between con-

trols and the group of 10 patients (Whole brain: χ2 = 57.09; DF = 1, p<0.001; VN: χ2 = 86.09;

DF = 1, p<0.001) with the former showing a significant increase in the overall counts.

Furthermore, we extracted the triangles’ area distribution to assess for differences between

the two groups. At first glance, they show a similar tendency in triangle’s area distribution

when considering the whole brain; in contrast, a clear difference emerges when considering

resting state networks (Fig 10) and mainly the VN.

Taken together, these results suggest that damaged brains are characterized by a reorganiza-

tion of the whole cerebral network expressed by a general decrease in density and intensity of

functional correlations, in the functional segregation and integration, with a more distributed

architecture characterized by less segregated and poorly integrated functional nodes. This is

more evident for the whole brain and the VN. Indeed, this subnetwork shows a significant

reduction in functional segregation and integration, regardless of the lesion extent, demon-

strating to be the subnetwork most affected by the lesion. Surprisingly, we observe a higher

global efficiency in the DMN and in the AN that indicates a more efficient integration of infor-

mation between nodes, independent from the lesion extent, and that may indicate a functional

reorganization of the brain following the injury. Moreover, looking at the inter-network con-

nectivity, we observe an increase in functional specialization mainly of DMN and VN (lower

between-network connectivity) and in functional segregation, that is reflected in a less com-

pact structure, highly organized in functional clusters.

Fig 10. 3-cycle triangles in the VN, AN, SN and in the whole brain. Representation of 3-cycle triangles area

distribution in the group of controls (A), of 10 patients (B) and of 7 patients (C), for the VN, AN, SN and the whole

brain.

https://doi.org/10.1371/journal.pone.0226816.g010
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Discussion

The present research provides new insight on the functional connectivity network in hemiano-

pic patients with different lesion sites and extents compared with a group of age-matched

healthy participants. Objectives of the study were two-fold: First, to extract and compare the

functional connectivity pattern by means of a full correlation analysis. Second, to assess func-

tional intra- and inter-network characteristics focusing mainly on modular integration and

segregation defined as the strengthening of within-network, weakening of between-network

connectivity and enhancement of global integration. Brain networks have been shown to have

a clear modular structure, that is some groups of nodes are strongly connected to each other

and weakly connected to other modules. This modular, yet integrated, topology may enable

both functional specialization and coordination across modules potentially reducing interfer-

ence among systems and therefore facilitating cognitive performance. High signal coherence

within a network renders its subcomponents more functionally coupled resulting in a greater

functional specialization [86]. The assessment of differences in these parameters during RS

represents the basis of a more complete understanding of differences in brain activation and

behavioural performance in task-related paradigms [49].

As to the first objective, the full correlation analysis revealed a general decrease in brain

synchronous activation in patients when extracting correlation coefficients among regions of

interest, thus demonstrating the involvement of a widespread network belonging not only to

the visual system.

As to the second objective, we applied network-based tools to describe the architecture of

functional connections with a graph representation that reflects the network’s functions for

both whole brain and different subnetworks separately.

As expected, the VN is the network where the main difference was observed with a general

decrease in the intra-network connectivity for both intra- and inter-hemispheric connections.

These results indicate a significant decrease in functional specialization of the visual system.

Significant lower levels of functional segregation and integration were extracted indicating an

abrupt impairment of its functioning, independent from lesion extent. Kim and colleagues

(2019) [87] linked the increase of inter-hemispheric connections within the VN with visual

field recovery in post-stroke patients with hemianopia, by performing serial RS fMRI,

within 1 week and at 1 or 3 months after ischemic stroke in the visual cortex. Therefore, they

highlighted the importance of inter-hemispheric intra-network connectivity as crucial for

visual field rehabilitation. Furthermore, a reduction of intra-network functional connectivity

within the VN was observed in a group of patients with acute optic neuritis [88]. Moreover, in

patients with primary angle-closure glaucoma (PACG), Chen and colleagues (2019) found a

decrease in the short-range functional connectivity density, mainly in visual and visual-associ-

ated areas thus confirming the alteration of spontaneous activity in the visual cortex [89]. In

contrast, no alteration in the inter-hemispheric functional connectivity within visual cortices

was found in patients with visuospatial impairment (neglect), in whom a breakdown of func-

tional connectivity in fronto-parietal networks was reported [90].

Considering the Attentional Fronto-Parietal Network, we observed a general decrease in

the inter-hemispheric connections between homotopic areas, despite some spared inter-hemi-

spheric connections that were stronger in patients than controls, mainly connecting left and

right STG as well as left STG and right MFG. Moreover, we found a lower mean node degree,

reflecting the topology of the network composed by nodes organized in linear clusters, with

only one connection between pairs of nodes. Interestingly, the results showed an inverse trend

in functional segregation in the two groups of patients that was lower than controls when

considering all patients and higher when excluding patients where these areas were actually
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lesioned. Conversely, we found an increase in functional integration in both groups of patients

indicating that the capacity to integrate information was independent from lesion extent. Con-

cerning the Salience Network, usually involved in filtering salient stimuli as well as in the

detection and integration of sensory stimuli, we observed few higher inter-hemispheric con-

nections in controls than in patients, as a consequence of the fact that only few strong connec-

tions survived after applying the absolute threshold. Moreover, we could not extract any

connection between pairs of nodes. This result confirms the SN topology, composed only by

isolated nodes. This alteration in functional connectivity was independent from the lesion

extent as was found even in patients whose lesions did not directly damage this network. Alter-

ation at the level of the salience network have been linked to the impairment of both cognition

and self-monitoring, compromising the ability to detect salient external and internal events

and causing different kinds of psychopathologies, such as anxiety disorders, schizophrenia,

drug addiction and pain [91,92].

As to the DMN, our results indicate a general decrease in patients of the intra-network con-

nectivity involving both intra and inter-hemispheric connections between homotopic areas,

with some spared stronger intra-hemispheric short-range connections mainly between the

MTG and the fusiform gyrus. These results reveal a decrease in the functional specialization as

a consequence of the reduction of signal coherence within the subnetwork. Importantly, when

considering the DMN in the subgroup of patients with the smallest lesion we observed some

spared stronger long-range inter-hemispheric connections mainly between left and right

hippocampus. The graph measures at the same time indicated a decrease in the number of

interconnected hubs and an increase in functional integration, with higher efficiency in the

capacity to integrate information, regardless of the lesion extent. Instead, functional segrega-

tion was affected by lesion extent being lower than in controls when considering the entire

sample but higher when considering the subgroup of patients with the smallest lesion. Alter-

ations of DMN functional connectivity have been reported in normal brain aging as well as in

patients with various disorders. Indeed, a decrease in intra-network functional connectivity

within the DMN has been also demonstrated in normal brain aging [93,94] generally associ-

ated with poor executive function, memory and processing speed [95] and reflecting a

progressive loss of functional specialization within brain networks related to higher cognitive

functions [96]. Furthermore, functional alterations in the DMN have been reported in patients

with Alzheimer and mild cognitive impairment [97,98], with a decrease in within-network

connectivity, and in patients with major depression [99], with an increase in within-network

connectivity. The decreased coupling between DMN and VN observed in hemianopic patients

regardless of the lesion extent, reflects an increase in segregation between networks and can be

attributed to a neuroplastic mechanism that likely depends on the intricate balance between

intra-network connectivity reduction (functional specialization) and inter-network coupling

(between network segregation). Probably, the inverse reduced segregation between DMN

(task-negative ICN) and task-positive networks might be the cause of the decreased regulation

in normal brain aging [100] or of the reduced functioning in many psychiatric disorders

[101,102]. A similar non adaptive, widespread, increased internetworks synchrony, probably

due to an impaired inhibitory circuitry, has been observed also in subjects with Down syn-

drome [103]. Our results are not in keeping with the increased connectivity reported by Bou-

card et al., 2016 [104] between two visual networks and the inferior posterior DMN in a blind

patient with degeneration of the visual pathway, probably underlying their patient’s vivid

visual imagery in absence of any visual input. However, the difference in the type of visual

impairment can explain the different results indicating a more adaptive compensative mecha-

nism activated in hemianopic patients whose vision is still preserved in a portion of the visual

field.
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In the assessment of RSN inter-connectivity and of the whole-brain functional connectivity

in patients we found stronger long-range connections mainly between the occipital and frontal

lobe of both hemispheres despite a decrease in the short-range intra-hemisphere and inter-

hemispheric connections between homotopic regions, which may play an important role in

maintaining a balance between excitation and inhibition across hemispheres [105]. It is rele-

vant to mention that this pattern of changes is independent from the lesion extent, as it was

present in both groups of patients. Interestingly, when considering the RSNs inter-connectiv-

ity, we extracted higher values of functional segregation and integration in both groups of

patients indicating a neuroplastic mechanism possibly activated to compensate for the reduced

intra-network connectivity and the decreased density and intensity of connections. Instead,

the architecture of the whole brain appeared less segregated, compact and integrated in terms

of number of interconnected nodes (hubs) when considering the entire group of patients. The

graph measures confirmed the presence of a less segregated (lower functional segregation) and

integrated (lower nodal degree) network with lower values of modular segregation and less

numerous inter-connected hubs, regardless of lesion extent. These results suggest that the

presence of the lesion may determine the impairment of a distributed network involving not

only visual areas.

Finally, the study of functional segregation by means of the 3-cycles triangles confirmed the

reduction of functional segregation in hemianopic patients when considering the whole brain

and the VN.

Taken together these results suggest that during the rest period the whole brain functioning

of patients is different from that of healthy controls, with higher long-range correlation across

distant regions in different lobes despite the general decrease in density and intensity of con-

nections, likely suggesting an attempt to compensate for the general synchronization loss

caused by the lesion.

A strong point of this study is represented by the population studied. As mentioned before,

the assessment of functional connectivity with fMRI in patients with a retro-chiasmatic lesion

is a novel enterprise. Few studies have been published, mainly using electroencephalography,

but, to our knowledge, very few fMRI studies focused on the assessment of task-independent

functional connectivity in this specific clinical population, mainly considering the functional

connectivity within the VN and not the whole brain system [87]. Furthermore, the assessment

of brain activity without an active task enabled us to avoid one of the main problems emerging

when performing cognitive tasks with hemianopic patients, namely the maintenance of the fix-

ation on the central point to avoid the displacement of the blind hemifield and guarantee the

location of the stimulus in the blind hemifield. Indeed, unlike the assessment of visual stimula-

tion related brain activity, the assessment of RS functional connectivity with eyes open takes

into account the possibility of spontaneously moving eyes in both populations, without carry-

ing the confounding effect produced by the shift of focal vision and the consequent increase of

visual awareness as no visual stimulus is shown. Importantly, we used 3-cycle regions to com-

plement the information extracted from correlation matrices and density maps. This method

is widely used in functional connectivity research because it greatly helps in the identification

of intra- and inter-network connections [106].

There are some limitations to be considered in this study. First, the sample size is quite

small and not homogeneous as brain damage is somewhat different in location and size. Sec-

ond, a technical problem of RS fMRI protocols is represented by the possible confounding of

automatic bodily motion or cardiac pulsations [107,108]. It has been reported that subject’s

movements can modulate functional connectivity determining artefactual increased local and

reduced long-range connectivity [72]. Moreover, the threshold applied to the 3-cycle segrega-

tion analysis was selected to highlight triangles whose side was greater than r = 0.6. However,
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further research could improve the optimization of this intensity threshold. Concerning the

results, we have to highlight that our conclusions depend mainly on descriptive results that

could be speculative and vulnerable to outliers included in the sample as well as influenced by

the difference in networks’ density among groups (as a consequence of the application of an

absolute threshold).

Conclusions

In conclusion, the present study provides new insight on the functional connectivity network

in a specific group of chronic patients characterized by visual impairment caused by ischemic

or haemorrhagic stroke. Our results show a significant alteration in the intrinsic architecture

of a large-scale brain system determining a general decrease in the whole brain intra- and

inter-hemispheric functional connectivity that goes beyond a significant impairment of syn-

chronous activation in the visual network. These results are in broad agreement with those by

Quigley et al., 2001 [109] in stroke patients where they found that large lesions affecting a dis-

tributed major neural network may decrease functional connectivity. Similar mechanisms

have been described in different clinical populations as in MS (multiple-sclerosis) patients

with a significant reduction in within-network coherence and modular segregation [110].

Interestingly, in our patients the main impairment was located in the visual network confirm-

ing prior investigations revealing that specific behavioural deficits are often associated with

decreased within-task related network but increased within-task unrelated networks connec-

tivity [111]. Future work needs to address the assessment of within-task unrelated networks

connectivity and extend these findings to hemianopic patients. In spite of this general decrease

in synchronization one can find some spared higher long-range correlations between regions

belonging to different modules, a decrease in inter-network connectivity mainly between

DMN and VN and an increase in the capacity to integrate information using shortest path

routing within the DMN and the AN, regardless of the size of the injury. These results may

represent underlying mechanisms of neuroplasticity consequent to an injury, operating to

compensate the general reduced functional connectivity.
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S1 Fig. Sensitivity analysis of graph measures in the Visual Network (VN). Sensitivity analy-

sis showing changes in the graph measures extracted from the adjacent unweighted undirected

matrices of the Visual Network (VN), according to the absolute threshold applied to the pair-

wise correlation coefficients, within the range r = 0.4–0.5.

(TIF)

S2 Fig. Sensitivity analysis of graph measures in the Attentional Network (AN). Sensitivity

analysis showing changes in the graph measures extracted from the adjacent unweighted undi-

rected matrices of the Attentional Network (AN), according to the absolute threshold applied

to the pairwise correlation coefficients, within the range r = 0.4–0.5.

(TIF)

S3 Fig. Sensitivity analysis of graph measures in the Default Mode Network (DMN). Sensi-

tivity analysis showing changes in the graph measures extracted from the adjacent unweighted

undirected matrices of the Default Mode Network (DMN), according to the absolute threshold

applied to the pairwise correlation coefficients, within the range r = 0.4–0.5.

(TIF)

S4 Fig. Sensitivity analysis of graph measured in the Resting State Networks (RSNs). Sensi-

tivity analysis showing changes in the graph measures extracted from the adjacent unweighted

undirected matrices considering the inter-network functional connectivity, according to the

absolute threshold applied to the pairwise correlation coefficients, within the range r = 0.4–0.5.

(TIF)

S5 Fig. Sensitivity analysis of graph measures in the whole brain. Sensitivity analysis show-

ing changes in the graph measures extracted from the adjacent unweighted undirected matri-

ces considering whole brain functional connectivity, according to the absolute threshold

applied to the pairwise correlation coefficients, within the range r = 0.4–0.5.

(TIF)
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