


- $\delta^{15}$ N,  $\delta^{18}$ O<sub>NO3</sub> and  $\delta^{11}$ B confirm pig manure as the main vector of NO<sub>3</sub>-pollution.
- SO<sub>4</sub><sup>2-</sup> and B isotopes indicate also contributions from sewage and mineral fertilizers.
- $NO_3^-$  isotopes show that  $NO_3^-$  undergoes natural attenuation.
- $SO_4^{2-}$  isotopes confirm that denitrification is not controlled by pyrite oxidation.
- The multi-isotope approach provides a unique and comprehensive approach that allows to characterise the origin of NO<sub>3</sub><sup>-</sup> pollution as well as the processes involved.

- 1 Characterizing sources and natural attenuation of nitrate contamination in the
- 2 **Baix Ter aquifer system (<u>NE</u>Spain) using a multi-isotope approach**
- 4 Roger Puig<sup>a</sup>, Albert Soler<sup>a</sup>, David Widory<sup>b</sup>, Josep Mas-Pla<sup>c, d</sup>, Neus Otero<sup>a</sup> and Cristina
  5 Domènech<sup>a</sup> and Neus Otero<sup>a</sup>
- 6

- 7 <sup>a</sup>Grup de Mineralogia Aplicada i Geoquímica de Fluids, Dept. de Mineralogia, Petrologia i
- 8 Geologia Aplicada, Facultat de GeologiaCiències de la Terra, Universitat de Barcelona (UB), c/
- 9 Martí i Franquès s/n, 08028 Barcelona, Spain.
- <sup>b</sup>Département des Sciences de la Terre et de l'Atmosphère, Geotop/UQAM, Montréal, Canada.
- <sup>11</sup> <sup>c</sup>Grup de Geologia Aplicada i Ambiental, Centre de Geologia i Cartografia Ambiental, Dept. de
- 12 Ciències Ambientals, Universitat de Girona, 17003 Girona, Spain.
- 13 <sup>d</sup>Catalan Institute for Water Research, c/ Emili Grahit 101, 17003 Girona, Spain.
- 14 **Corresponfing author:** Cristina Domenech (cristina.domenech@ub.edu)
- 15 Graphical abstract



Formatted: Font: 12 pt, Bold

|          | MULTI-ISOTOPE APPROACH                                                                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------------------|
|          | Hydrological data B <sup>2</sup> H Hydrochemical data                                                                            |
|          | δ <sup>11</sup> B δ <sup>18</sup> O <sub>δ<sup>34</sup>S</sub> δ <sup>13</sup> C                                                 |
|          | Sources                                                                                                                          |
|          |                                                                                                                                  |
| 17       | Less ambiguity and more precision. Better water management policies                                                              |
| 18<br>19 | Highlights                                                                                                                       |
| 20       | We applied a multi-isotope approach to characterize nitrate contamination in a large-                                            |
| 21       | scale polluted aquifer system.                                                                                                   |
| 22       | - $\delta^{15}$ N, $\delta^{18}$ O <sub>NO3</sub> and $\delta^{11}$ B confirm pig manure as the main vector of NO <sub>3</sub> - |
| 23       | pollution.                                                                                                                       |
| 24       | - $SO_4^{2-}$ and B isotopes indicate also contributions from sewage and mineral                                                 |
| 25       | fertilizers.                                                                                                                     |
| 26       | - $NO_3^-$ isotopes show that $NO_3^-$ undergoes natural attenuation.                                                            |
| 27       | <u>-</u> SO <sub>4</sub> <sup>2-</sup> isotopes reveal that confirm that denitrification is not controlled by pyrite             |
| 28       | oxidation.                                                                                                                       |
| 29       | - The multi-isotope approach provides a unique and comprehensive approach that                                                   |
| 30       | allows to characterise the origin of $NO_3^-$ pollution as well as the processes                                                 |
| 31<br>32 | involved.                                                                                                                        |
| 33       | Abstract                                                                                                                         |
|          |                                                                                                                                  |
| 34       | Nitrate pollution is a widespread issue affecting global water resources with                                                    |
| 35       | significant economic and health effects. Knowledge of both the corresponding pollution                                           |
| 36       | sources and of processes naturally attenuating them is thus of crucial importance in                                             |
| 37       | assessing water management policies and the impact of anthropogenic activities. In this                                          |
| 38       | study, an approach combining hydrodynamic, hydrochemical and multi-isotope                                                       |
| 39       | systematics (8 isotopes) is used to characterise the sources of nitrate pollution and                                            |
| 40       | potential natural attenuation processes in a polluted basin of NE Spain. $\delta^2 H$ and $\delta^{18} O$                        |

| 41                                                                                                                     | isotopes were used to further characterize the sources of recharge of the aquifers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42                                                                                                                     | Results show that NO <sub>3</sub> <sup>-</sup> is not homogeneously distributed and presents a large range of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 43                                                                                                                     | concentrations, from no NO <sub>3</sub> <sup>-</sup> to up to 480 mg L <sup>-1</sup> . $\delta^{15}$ N and $\delta^{18}$ O of dissolved NO <sub>3</sub> <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 44                                                                                                                     | identified manure as the main source of nitrate, although sewage and mineral fertilizers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 45                                                                                                                     | can also be isotopically detected using boron isotopes ( $\delta^{11}B$ ) and $\delta^{34}S$ and $\delta^{18}O$ of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 46                                                                                                                     | dissolved sulphate, respectively. The multi-isotope approach proved that natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 47                                                                                                                     | denitrification is occurring, especially in near-river environments or in areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48                                                                                                                     | hydrologically related to fault zones. $\delta^{34}$ S and $\delta^{18}$ O indicated that denitrification is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 49                                                                                                                     | driven by pyrite oxidation but rather by the oxidation of organic matter. This could not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50                                                                                                                     | be confirmed by the study of $\delta^{13}C_{HCO3}$ that was buffered by the entanglement of other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 51                                                                                                                     | processes and sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 52                                                                                                                     | Keywords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 53                                                                                                                     | Stable isotopes, nitrate contamination, boron, denitrification, groundwater, manure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54<br>55                                                                                                               | 1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                        | <b>1. Introduction</b><br><u>Nitrate (NO<sub>3</sub><sup>-</sup>) contamination of groundwater is a problem affecting groundwater</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 55                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 55<br>56                                                                                                               | Nitrate (NO <sub>3</sub> <sup>-</sup> ) contamination of groundwater is a problem affecting groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 55<br>56<br>57                                                                                                         | <u>Nitrate (NO<sub>3</sub><sup>-</sup>) contamination of groundwater is a problem affecting groundwater</u><br><u>quality worldwide (Xu et al., 2016 and references therein)</u> that has proved to affect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55<br>56<br>57<br>58                                                                                                   | <u>Nitrate (NO<sub>3</sub><sup>-</sup>) contamination of groundwater is a problem affecting groundwater</u><br><u>quality worldwide (Xu et al., 2016 and references therein) that has proved to affect</u><br><u>human health (Bryan et al., 2012; Ward et al., 2005). Because of this, considerable</u>                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 55<br>56<br>57<br>58<br>59                                                                                             | Nitrate (NO <sub>3</sub> <sup>-</sup> ) contamination of groundwater is a problem affecting groundwater<br>quality worldwide (Xu et al., 2016 and references therein) that has proved to affect<br>human health (Bryan et al., 2012; Ward et al., 2005). Because of this, considerable<br>efforts have been made by the European authorities to promote both the reduction of                                                                                                                                                                                                                                                                                                                                                            |
| 55<br>56<br>57<br>58<br>59<br>60                                                                                       | Nitrate (NO <sub>3</sub> <sup>-</sup> ) contamination of groundwater is a problem affecting groundwater<br>quality worldwide (Xu et al., 2016 and references therein) that has proved to affect<br>human health (Bryan et al., 2012; Ward et al., 2005). Because of this, considerable<br>efforts have been made by the European authorities to promote both the reduction of<br>$NO_3^-$ inputs and the enhancement of attenuation processes in groundwater.                                                                                                                                                                                                                                                                            |
| 55<br>56<br>57<br>58<br>59<br>60<br>61                                                                                 | Nitrate (NO <sub>3</sub> <sup>-</sup> ) contamination of groundwater is a problem affecting groundwater<br>quality worldwide (Xu et al., 2016 and references therein) that has proved to affect<br>human health (Bryan et al., 2012; Ward et al., 2005). Because of this, considerable<br>efforts have been made by the European authorities to promote both the reduction of<br>NO <sub>3</sub> <sup>-</sup> inputs and the enhancement of attenuation processes in groundwater.<br>However, no decreasing trends in average European nitrate concentration in                                                                                                                                                                          |
| <ul> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> </ul>             | Nitrate (NO <sub>3</sub> <sup>-</sup> ) contamination of groundwater is a problem affecting groundwater<br>quality worldwide (Xu et al., 2016 and references therein) that has proved to affect<br>human health (Bryan et al., 2012; Ward et al., 2005). Because of this, considerable<br>efforts have been made by the European authorities to promote both the reduction of<br>NO <sub>3</sub> <sup>-</sup> inputs and the enhancement of attenuation processes in groundwater.<br>However, no decreasing trends in average European nitrate concentration in<br>groundwater have been observed during the last 15 years (EEA, 2015). Thus,                                                                                            |
| <ul> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> </ul> | Nitrate (NO <sub>3</sub> <sup>-</sup> ) contamination of groundwater is a problem affecting groundwater<br>quality worldwide (Xu et al., 2016 and references therein) that has proved to affect<br>human health (Bryan et al., 2012; Ward et al., 2005). Because of this, considerable<br>efforts have been made by the European authorities to promote both the reduction of<br>NO <sub>3</sub> <sup>-</sup> inputs and the enhancement of attenuation processes in groundwater.<br>However, no decreasing trends in average European nitrate concentration in<br>groundwater have been observed during the last 15 years (EEA, 2015). Thus,<br>Groundwater contamination arising from long-standing agricultural practices is a global |

| 66 | $\frac{\text{conmitrateNO_3}}{\text{concentrations}}$ in groundwater $\frac{\text{casily}}{\text{coften}}$ exceeds the 50 mg L <sup>-1</sup> legal |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 67 | threshold-guideline value set for drinking water (EC, 1998). NO <sub>3</sub> is currently one of the                                               |
| 68 | According to the European Environmental Agency (EEA, 2015), the European average                                                                   |
| 69 | concentration of nitrate in groundwater in 2012 was 19.1 mg $L^{-1}$ , equivalent to the                                                           |
| 70 | previous average of 2000. In Spain, corresponding mean values are significantly higher:                                                            |
| 71 | $32.3 \text{ mg L}^{-1}$ in 2000 and $34.5 \text{ mg L}^{-1}$ in 2012. NO <sub>3</sub> <sup>-</sup> is thus, one of the main                       |
| 72 | contaminants that may hinder the achievementing of the goals of the Water Framework                                                                |
| 73 | (EC, 2000) and of the European Groundwater (EC, 2006) directives. This arises the                                                                  |
| 74 | need for a better knowledge on the overall nitrogen, including nitrate species cycle in                                                            |
| 75 | surface water and groundwater.                                                                                                                     |
| 76 | Because of this, significant efforts are done to minimise nitrate concentration in                                                                 |
| 77 | groundwater either by reducing its incorporation and/or by enhancing its attenuation                                                               |
| 78 | (Archna et al. 2012).                                                                                                                              |
| 79 | Nitrogen is mainly itrate contamination mainly arises from the biological                                                                          |
| 80 | transformation of the nitrogen incorporated into the soil as a nutrient through mineral                                                            |
| 81 | fertilizers or manure, each of these sources accounting for. Each of these two sources                                                             |
| 82 | accounts from nearly 50% of all-the N input into the European agricultural soils (EEA,                                                             |
| 83 | 2012). However, other minor $\underline{N}$ sources have been reported such as the leakage of                                                      |
| 84 | sewage from sewer networks in urban environments (Barroso et al. 2015; Aravena and                                                                 |
| 85 | Mayer, 2010; <u>Barroso et al., 2015;</u> Sacchi et al., 2013; Vane et al., 2010) have been                                                        |
| 86 | reported for groundwater.                                                                                                                          |
| 87 | Once in the soil, nitrogen is transformed Nitrogen transformation through may                                                                      |
| 88 | occur through different microbially mediated redox reactions (nitrogen fixation,                                                                   |
| 89 | nitrification, denitrification, dissimilatory $NO_3^-$ reduction to ammonium, anammox;                                                             |
| 90 | Borch et al., 2010). Nitrification, represents the oxidation of nitrogen (as-under the form                                                        |

| 91                                                   | of ammonia) into nitrate. It, frequently occurs in the unsaturated zone given the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 92                                                   | availability of where oxygen is available, and explains why most of the nitrogen that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 93                                                   | reaches groundwater appears as NO <sub>3</sub> <sup>-</sup> . <u>Denitrification is </u> <b>F</b> the transformation of nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 94                                                   | into $N_2(g)$ -and it. It is called denitrification and is considered the main natural process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95                                                   | attenuating nitrate concentration in groundwater. This requires The required conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 96                                                   | for natural denitrification include 1) the presence of denitrifying bacteria and electron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 97                                                   | donors (organic carbon, reduced sulphur and/or reduced iron), -2) abundant presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 98                                                   | NO <sub>3</sub> <sup>-</sup> and <del>3)</del> an anaerobic environment (Koba et al., 1997; dissolved oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 99                                                   | concentrations below 2 mg L <sup>-+</sup> ; Rivett et al., 2008) or an anaerobic microsite within an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100                                                  | otherwise oxygenated water body (Koba et al., 1997). Denitrification can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 101                                                  | heterotrophic if linked to the oxidation of an organic compound (eq.1) or autotrophic, if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 102                                                  | linked to the oxidation of an inorganic compound, such as iron sulphide (eq.2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 103                                                  | $4NO_3^- + 5CH_2O \rightarrow 2N_2 + 4HCO_3^- + CO_2 + 3H_2O$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 104                                                  | $14NO_{3}^{-} + 5FeS_{2} + 4H^{+} \rightarrow 7N_{2} + 10SO_{4}^{2-} + 5Fe^{2+} + 2H_{2}O$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 105                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                      | Dilution and dispersion are other processes that can Similar to natural attenuation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 106                                                  | Dilution and dispersion are other processes that can Similar to natural attenuation,<br>the processes of dilution and dispersion can also result in a decrease of groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 106                                                  | the processes of dilution and dispersion can also result in a decrease of groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 106<br>107                                           | the processes of dilution and dispersion can also result in a decrease of groundwater nitrate concentration, but contrarily to - However, only-natural attenuation, they do not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 106<br>107<br>108                                    | the processes of dilution and dispersion can also result in a decrease of groundwater nitrate concentration, but contrarily to - However, only natural attenuation, they do not lead to leads to the mass-reduction of the contaminant within the aquifer making it the                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 106<br>107<br>108<br>109                             | the processes of dilution and dispersion can also result in a decrease of groundwater<br>nitrate concentration, but contrarily to - However, only-natural attenuation, they do not<br>lead to leads to the mass-reduction of the contaminant within the aquifer making it the<br>most interesting process to achieve water quality management goals.                                                                                                                                                                                                                                                                                                                                                                    |
| 106<br>107<br>108<br>109<br>110                      | the processes of dilution and dispersion can also result in a decrease of groundwater<br>nitrate concentration, but contrarily to - However, only-natural attenuation, they do not<br>lead to -leads to the mass-reduction of the contaminant within the aquifer making it the<br>most interesting process to achieve water quality management goals.<br>Knowledge of both the sources of nitrogen contamination and the processes                                                                                                                                                                                                                                                                                      |
| 106<br>107<br>108<br>109<br>110<br>111               | the processes of dilution and dispersion can also result in a decrease of groundwater<br>nitrate concentration, but contrarily to . However, only natural attenuation; they do not<br>lead to leads to the mass-reduction of the contaminant within the aquifer making it the<br>most interesting process to achieve water quality management goals.<br>Knowledge of both the sources of nitrogen contamination and the processes<br>affecting nitrogen once in the aquifer is thus of the utmost importance to better design                                                                                                                                                                                           |
| 106<br>107<br>108<br>109<br>110<br>111<br>112        | the processes of dilution and dispersion can also result in a decrease of groundwater<br>nitrate concentration, but contrarily to -However, only-natural attenuation, they do not<br>lead to -leads to the mass-reduction of the contaminant within the aquifer making it the<br>most interesting process to achieve water quality management goals.<br>Knowledge of both the sources of nitrogen contamination and the processes<br>affecting nitrogen once in the aquifer is thus of the utmost importance to better design<br>strategies to ultimately decrease nitrate pollution. The study of the isotope composition                                                                                              |
| 106<br>107<br>108<br>109<br>110<br>111<br>112<br>113 | the processes of dilution and dispersion can also result in a decrease of groundwater<br>nitrate concentration, but contrarily to . However, only natural attenuation; they do not<br>lead to leads to the mass-reduction of the contaminant within the aquifer making it the<br>most interesting process to achieve water quality management goals.<br>Knowledge of both the sources of nitrogen contamination and the processes<br>affecting nitrogen once in the aquifer is thus of the utmost importance to better design<br>strategies to ultimately decrease nitrate pollution. The study of the isotope composition<br>of nitrogen compounds has proved to be a viable tool to tackle both issues (e.g. Amiri et |

| 116 | residual nitrate leading to an causing an enrichment in its heavy isotopes <sup>15</sup> N and <sup>18</sup> O                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 117 | (Aravena and Robertson, 1998; Fukada et al., 2003; Kendall et al., 2007; Mariotti et al.,                                                                   |
| 118 | 1988). The study of the $\delta^{15}$ N and $\delta^{18}$ O isotope compositions and nitrate concentrations                                                 |
| 119 | (eq. 3 and 4) allow to determine the corresponding . Residual $\delta^{15}$ N and $\delta^{18}$ O are related                                               |
| 120 | to the sources initial isotope compositions and to the nitrate concentration according to                                                                   |
| 121 | equations 3 and 4, respectively (Böttcher et al., 1990; Fukada et al., 2003; Mariotti et                                                                    |
| 122 | al., 1981), where c is the isotopic enrichment factor (c), used to characterise the                                                                         |
| 123 | extension of the attenuation processes depending on the aquifer characteristics (Böttcher                                                                   |
| 124 | et al., 1990; Fukada et al., 2003; Mariotti et al., 1981). Also, as the initial NO3 <sup>-</sup> isotope                                                    |
| 125 | compositions differ between the different nitrate sources (inorganic fertilizers, manure,                                                                   |
| 126 | soil,), the $\delta^{15}$ N and $\delta^{18}$ O compositions of nitrate have been used to identify its origin                                               |
| 127 | in groundwater (Aravena et al., 1993; Aravena and Mayer, 2010; Clark and Fritz, 1997;                                                                       |
| 128 | Kendall et al., 2007; Panno et al., 2001).                                                                                                                  |
| 129 | $\delta^{15} N_{residual} = \delta^{15} N_{initial} + \varepsilon_N \ln \left( [NO_3]_{residual} / [NO_3]_{initial} \right) $ (3)                           |
| 130 | $\delta^{18}O_{\text{residual}} = \delta^{18}O_{\text{initial}} + \varepsilon_0 \ln \left( [NO_3]_{\text{residual}} / [NO_3]_{\text{initial}} \right) $ (4) |
| 131 | Moreover, as the initial $\delta^{15}$ N and $\delta^{18}$ O composition differs within the different                                                       |
| 132 | nitrate sources (inorganic fertilizers, manure, soil organic), the isotopic composition                                                                     |
| 133 | of nitrate has been proved to be a useful tool to distinguish between them (e.g. Curt et                                                                    |
| 134 | al., 2004; Kendall et al., 2007).                                                                                                                           |
| 135 | This two-fold information the isotope composition of nitrate ( $\delta^{15}$ N and $\delta^{18}$ O)                                                         |
| 136 | provides, 1) the origin of nitrate and 2) the occurrence (and extension) of natural                                                                         |
| 137 | attenuation and other processes affecting nitrogen compounds, reveals the importance of                                                                     |
| 138 | using isotopic tools in assessing nitrate pollution in groundwater (Aravena et al., 1993;                                                                   |
| 139 | Aravena and Mayer, 2010; Clark and Fritz, 1997; Kendall, 1998; Kendall et al. 2007;                                                                         |
| 140 | Panno et al., 2001).                                                                                                                                        |
| l   |                                                                                                                                                             |

| 141 | However, in areas characterized by a complex groundwater flow systems and                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 142 | exposed to multiple potential sources of nitrogen, the use of the sole $\delta^{15}$ N and $\delta^{18}$ O of                                |
| 143 | <u>NO<sub>3</sub> and nitrate concentrations may result in not it is usually difficult to c</u> onclusively                                  |
| 144 | results. identify the main origin and processes controlling the nitrogen budget based on                                                     |
| 145 | the sole study of $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> .                                                      |
| 146 | To overcome this difficulty, as the redox transformations affecting nitrate also affect                                                      |
| 147 | the electron donor, some authors have coupled $\delta^{15}N$ and $\delta^{18}O$ of $NO_3^-$ data with the                                    |
| 148 | isotope composition of the electron donors or with other types of hydrochemical data,                                                        |
| 149 | such as conservative elements (Xu et al., 2016). Some authors combined chloride                                                              |
| 150 | concentration (a conservative element) with $\delta^{15}N$ and $\delta^{18}O$ of NO <sub>3</sub> <sup>-</sup> to identify nitrate            |
| 151 | sources and transformation processes (Silva et al. 2002, Vitòria et al. 2008). Some                                                          |
| 152 | others used the $\delta^{34}$ S and $\delta^{18}$ O of sulphate or $\delta^{13}C_{HCO3}$ to evaluate if sulphide or organic                  |
| 153 | matter oxidation processes could be linked to denitrification processes (Aravena and                                                         |
| 154 | Robertson, 1998; Otero et al., 2009; Rock and Mayer, 2002; Saccon et al., 2013; Vitòria                                                      |
| 155 | <u>et al. 2005, 2008).</u>                                                                                                                   |
| 156 | several studies proposed a multi-isotope approach coupling hydrochemical data and                                                            |
| 157 | $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> with the isotope compositions of ions involved in the                    |
| 158 | denitrification reactions (eq. 1 and 2): $\delta^{34}S$ , $\delta^{18}O_{SO4}$ and $\delta^{13}C_{HCO3}$ (Aravena and                        |
| 159 | Robertson, 1998; Cravotta, 1997; Otero et al., 2009; Rock and Mayer, 2002; Saccon et                                                         |
| 160 | al., 2013; Vitòria, 2004; Vitòria et al., 2005, 2008), obtaining satisfactorily results.                                                     |
| 161 | Moreover, in the last decade, some studies have also used the isotope composition                                                            |
| 162 | of boron ( $\delta^{11}B$ ) in combination with the $\delta^{15}N$ and $\delta^{18}O$ of NO <sub>3</sub> <sup>-</sup> to trace the origin of |
| 163 | NO <sub>3</sub> <sup>-</sup> in water (Delconte et al., 2014; Komor, 1997; Saccon et al., 2013; Seiler, 2005;                                |
| 164 | Widory et al., 2004, 2005, and 2013). B is usually found in natural ground- and surface                                                      |
| 165 | water as a minor constituent ( $<0.05 \text{ mg B } \text{L}^{-1}$ ) whereas contaminant sources are                                         |

| 166                                                         | enriched in B (>0.1 mg B $L^{-1}$ ; Tirez et al., 2010). Besides the fact that groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 167                                                         | affected by anthropogenic activities may present elevated B contents (Vengosh et al.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 168                                                         | 1994), $\delta^{11}$ B values are significantly discriminated between manure and wastewater. As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 169                                                         | for nitrate isotopic composition, $\delta^{11}B$ of dissolved B can be modified by different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 170                                                         | processes. However, the processes that can shift B isotopic composition are aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 171                                                         | matrix interaction (dissolution of B-bearing silicates) and adsorption-desorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 172                                                         | interactions with clay minerals, iron and aluminium oxide surfaces, and/or organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 173                                                         | matter (Yingkai and Lan, 2001). No effects on $\delta^{11}B$ composition are caused by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 174                                                         | volatilization and oxidation-reduction reactions (Bassett et al., 1995). Thus, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 175                                                         | incorporation of $\delta^{11}$ B in the multi-isotope approach of nitrate polluted areas may be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 176                                                         | useful for a better identification of $NO_3^-$ sources (manure or sewage), especially in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 177                                                         | semirural zones where agricultural and farming practices cohabitate with industrial and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 178                                                         | urban activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 179                                                         | However, to our knowledge no study trying to combine these chemical/isotope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 179<br>180                                                  | <u>However, to our knowledge no study</u> trying to combine these chemical/isotope<br>approaches has ever been reported so far. Here, we aim at assessing the added value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 180                                                         | approaches has ever been reported so far. Here, we aim at assessing the added value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 180<br>181                                                  | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi-isotope parameter approach in which, besides the classical $\delta^{15}$ N and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 180<br>181<br>182                                           | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi-isotope parameter approach in which, besides the classical $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> , combined with hydrochemical and hydrodynamic data (e.g. Cl <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 180<br>181<br>182<br>183                                    | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi- <u>isotope</u> parameter approach in which, besides the classical $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> , combined with <u>hydrochemical and hydrodynamic data (e.g. Cl</u> concentration), $\delta^{2}$ H and $\delta^{18}$ O of water, $\delta^{34}$ S and $\delta^{18}$ O of dissolved sulphate, $\delta^{13}$ C of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 180<br>181<br>182<br>183<br>184                             | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi-isotopeparameter approach in which, besides the classical $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> , combined with hydrochemical and hydrodynamic data (e.g. Cl <sup>-</sup> concentration), $\delta^{2}$ H and $\delta^{18}$ O of water, $\delta^{34}$ S and $\delta^{18}$ O of dissolved sulphate, $\delta^{13}$ C of HCO <sub>3</sub> <sup>-</sup> and $\delta^{11}$ B of dissolved B are used simultaneously to both identify both-the                                                                                                                                                                                                                                                                                                                                                                  |
| 180<br>181<br>182<br>183<br>184<br>185                      | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi-isotopeparameter approach in which, besides the classical $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> , combined with hydrochemical and hydrodynamic data (e.g. CI concentration), $\delta^{2}$ H and $\delta^{18}$ O of water, $\delta^{34}$ S and $\delta^{18}$ O of dissolved sulphate, $\delta^{13}$ C of HCO <sub>3</sub> <sup>-</sup> and $\delta^{11}$ B of dissolved B are used simultaneously to both identify both-the sources and the natural attenuation processes of nitrate pollution from samples from                                                                                                                                                                                                                                                                                          |
| 180<br>181<br>182<br>183<br>184<br>185<br>186               | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi-isotopeparameter approach in which, besides the classical $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> , combined with hydrochemical and hydrodynamic data (e.g. Cl <sup>-</sup> concentration), $\delta^2$ H and $\delta^{18}$ O of water, $\delta^{34}$ S and $\delta^{18}$ O of dissolved sulphate, $\delta^{13}$ C of HCO <sub>3</sub> <sup>-</sup> and $\delta^{11}$ B of dissolved B are used simultaneously to both identify both the sources and the natural attenuation processes of nitrate pollution from samples from exploitation wells in an alluvial aquifer system contamination and to characterise                                                                                                                                                                                            |
| 180<br>181<br>182<br>183<br>184<br>185<br>186<br>187        | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi-isotopeparameter approach in which, besides the classical $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> , combined with hydrochemical and hydrodynamic data (e.g. Cl <sup>-</sup> concentration), $\delta^{2}$ H and $\delta^{18}$ O of water, $\delta^{34}$ S and $\delta^{18}$ O of dissolved sulphate, $\delta^{13}$ C of HCO <sub>3</sub> <sup>-</sup> and $\delta^{11}$ B of dissolved B are used simultaneously to both identify both the sources and the natural attenuation processes of nitrate pollution from samples from exploitation wells in an alluvial aquifer system contamination and to characterise processes affecting the nitrate budget of a given watershed. The proposed multi-isotope                                                                                                               |
| 180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>188 | approaches has ever been reported so far. Here, we aim at assessing the added value validity of a multi-isotopeparameter approach in which, besides the classical $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> , combined with hydrochemical and hydrodynamic data (e.g. CI concentration), $\delta^{2}$ H and $\delta^{18}$ O of water, $\delta^{34}$ S and $\delta^{18}$ O of dissolved sulphate, $\delta^{13}$ C of HCO <sub>3</sub> <sup>-</sup> and $\delta^{11}$ B of dissolved B are used simultaneously to both identify both-the sources and the natural attenuation processes of nitrate pollution from samples from exploitation wells in an alluvial aquifer system contamination and to characterise processes affecting the nitrate budget of a given watershed. The proposed multi-isotope approach includes the simultaneous study of eight isotopes systematics: $\delta^{2}$ H and $\delta^{18}$ O of |

Spain), declared vulnerable to NO<sub>3</sub><sup>-</sup> pollution in 1998 by the local government 191 following the 91/676/EC European Nitrate Directive (EC, 1991). NO<sub>3</sub><sup>-</sup> contents in 192 groundwater exceeds the 50 mg  $NO_3^{-}L^{-1}$  threshold (ACA, 2007) due to the large 193 amount of fertilizers used by local agriculture (Mas-Pla et al., 1998; Montaner et al. 194 195 2010) and pig raising practices that started in the 80's and intensified during the last decades (ACA, 2007; EEA, 1999). This aquifer is subjected to several anthropogenic 196 197 pressures such as additional nitrate sources or groundwater exploitation that increases 198 the complexity of the aquifer behaviour.

199

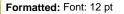
The assessment of the impact and occurrence of natural attenuation processes is of the utmost importance in the design of management strategies for groundwater quality 200 201 policies.

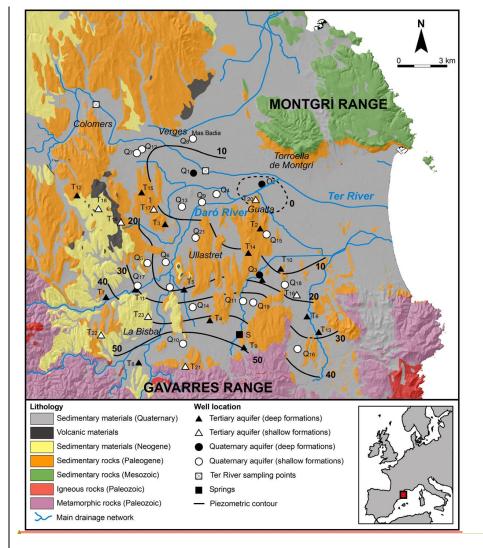
2. Study area 202


203 The Baix Ter basin is located in the Baix Empordà tectonic basin (NE Catalonia, Spain) (Fig. 1). The study zone encompasses a 200 km<sup>2</sup> area characterized by the Ter 204 205 River alluvial plain delimited by the Montgrí Range to the north (Mesozoic limestone 206 formations) and by the Gavarres Range to the south (Paleozoic igneous and 207 metamorphic rocks) that turns into a fluvio-deltaic environment in its eastern margin. 208 The foothills of the Gavarres Range, as well as the basin basement present Paleogene 209 sedimentary materials (sandstone and limestone formations) that are severely affected by fractures (Mas-Pla and Vilanova, 2001). 210 211 The Baix Empordà basin was formed during the distensive period of the Alpine orogenesis. Detritic, fine-grained and silty formations were sedimented during the 212

213 Neogene. The Quaternary fluvio-deltaic deposits originated from the Ter River as well

214 as from some minor tributaries from the Gavarres Range (i.e., Daró River, Fig. 1). They


constitute the main aquifers of the area, and lay on the Neogene sediments in the 215


western area, and on the Paleogene in the eastern part of the basin. Fluvial deposits
reach a maximum depth of 50-60 m in the central part of the basin and are constituted
by three main distinguishable units according to the Holocene sedimentary sequence
(Montaner et al. 2010): a deep level formed by alluvial coarse detritic material, gravel
and sand; an intermediate level, formed by sandy lenticular bodies in a silty-sandy level;
and a shallow level, mainly sandy formed by the present prograding alluvial deposits
that transform into marsh and coastal deposits near the coast line.



Formatted: Font: 12 pt

Formatted: Font: 12 pt





| 226 | Figure 1. Geological map of the Baix Ter basin, sampling point locations labelled        |
|-----|------------------------------------------------------------------------------------------|
| 227 | according to the hydrogeological formation where they are located. Potentiometric        |
| 228 | contour lines of the unconfined aquifer, mainly in the shallow Quaternary formations,    |
| 229 | correspond to the August 2004 survey. Dashed line represents the zero elevation          |
| 230 | potentiometric level in the deep quaternary formations (mainly leaky aquifers) affected  |
| 231 | by intensive withdrawal rates in the central area of the basin. Geology from ICGC        |
| 232 | (http:// www.icgc.cat).Figure 1. Baix Ter basin map showing the geology and sampling     |
| 233 | points, labelled according to their hydrogeological formation (round and triangle shapes |

distinguish between Quaternary and Tertiary aquifers, respectively, and light and bold
 points, between shallow and deep formations, respectively; square refers to the sampled
 spring). Potentiometric contour lines correspond to the water table measurements of the
 Quaternary unit (August 2004).

238

Because of this lithological diversity, three distinct aquifer units are differentiated, 239 from bottom to top: a leaky aquifer formed by the deeper coarse sediment layer, a leaky 240 241 aquifer formed by the intermediate sandy layer, and an upper unconfined aquifer formed 242 by the prograding deposits. All of them present significant lateral variations, especially the upper aquifer that reflects the fluvio-deltaic, marsh and coastal areas presently 243 occurring in the plain. These aquifer units are separated by loamy layers that constitute 244 245 low permeability units that act as aquitards. Nevertheless, all three aquifer layers overlap in the westernmost part of the area, between Colomers and Verges. 246 247 According to Montaner et al. (2010) these aquifers are mainly recharged by local precipitation, seasonal contribution from the Ter and Daró rivers (whether natural or 248 249 induced by pumping), and by irrigation returns. Moreover, igneous and metamorphic 250 rocks at the Gavarres Range act as regional recharge areas that discharge into the fluvio-251 deltaic Quaternary aquifers through the preferential upward vertical flow paths of the limestone and carbonate Paleogene aquifers and, more importantly, through the 252 fractures that affect them (Vilanova and Mas Pla, 2004; Vilanova et al., 2008). 253 Potentiometric, hydrochemical and isotope data indicate that these different aquifers are 254 hydraulically connected (Vilanova, 2004Vilanova et al., 2008). 255 256 Potentiometric maps reveal an influent (losing stream) behaviour of the Ter River in 257 its western reach, between Colomers and Verges, and an effluent (gaining stream)

behaviour of the Ter and Daró rivers downstream of Verges down to the coast line.

| 259 | However, intense groundwater withdrawal from these aquifers started in the 60's with                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 260 | the agricultural and touristic development of the area that modified the natural flow                                                                   |
| 261 | field causing a noticeable depression cone in the centre of the formation, between the                                                                  |
| 262 | villages of Gualta and Torroella de Montgrí (Fig. 1). This cone creates a downward                                                                      |
| 263 | flow from the upper unconfined aquifer, also capturing the Ter River discharge, which                                                                   |
| 264 | recharges the supply wells located in the lower aquifer levels. The total groundwater                                                                   |
| 265 | abstraction is around 21 $\text{hm}^3/\text{yr}$ , from which 62% are for domestic use (including the                                                   |
| 266 | touristic season), 36% for agriculture activities and 2% for the industry (ACA, 2007).                                                                  |
| 267 | The Baix Ter basin area supports rural agriculture and livestock activities, industrial                                                                 |
| 268 | activities and several small to medium-sized urban areas that drastically increase their                                                                |
| 269 | population during summer due to their intense touristic activity. About 60% of the                                                                      |
| 270 | surface is covered by herbaceous dry-farmed and irrigated crops (mainly maize,                                                                          |
| 271 | sunflower and rice), 20% by forest and pasture and 7% by fruit growing (ACA, 2007).                                                                     |
| 272 | The total nitrogen produced by livestock in the study zone is around 500 tons of N                                                                      |
| 273 | year <sup>-1</sup> . 60% of this amount are from intensive pig rising (460 pigs/km <sup>2</sup> ; 50 m <sup>3</sup> ha <sup>-1</sup> year <sup>-1</sup> |
| 274 | of pig manure are applied onto maize crops; ACA, 2007). However, leakage from                                                                           |
| 275 | manure ponds or inappropriate spillages may also contribute to the increase of nitrogen,                                                                |
| 276 | which is unassimilated by crops and incorporated into the saturated zone, ultimately                                                                    |
| 277 | raising $NO_3^-$ concentrations in the groundwater. The "La Bisbal" water treatment plant                                                               |
| 278 | discharges downstream of Daró River and produces mud that is eventually applied onto                                                                    |
| 279 | the fields, although some corrective measures were adopted to avoid wastewater spills.                                                                  |
| 280 | 3. Methodology                                                                                                                                          |
| 281 | 3.1. Sampling                                                                                                                                           |
| 282 | Two sampling campaigns were conducted in the right bank alluvial plain of the                                                                           |

Baix Ter basin in January 2004 (24 wells) and in August 2004 (40 wells) to cover both

the wet season with fertilization and growing of dry land cereals and the dry season with cultivation of spring cereals, respectively.

286 All samples were taken from private wells supplied by the shallow Quaternary hydrogeological formation and the upper unconfined aquifer  $(Q_S)$ , in the deep 287 Quaternary formation and the lower unconfined aquifers  $(Q_D)$ , and in the shallow  $(T_S)$ 288 289 and deep  $(T_D)$  Tertiary formations located in the Paleogene materials (Fig.1). Most of 290 the locations were sampled during both campaigns. 291 After measuring groundwater hydraulic head, wells were pumped until the water Eh 292 stabilized. Then, temperature, pH and electrical conductivity (EC) were measured in situ and groundwater samples were collected in bottles that were previously rinsed several 293 294 times with groundwater. Samples were stored at 4°C in a dark environment before 295 analysis.

**3.2. Analytical techniques** 

297 Temperature, pH, EC and Eh were measured using a flow cell to avoid contact with the atmosphere. Aqueous concentrations of chloride, nitrite, nitrate and sulphate were 298 299 determined by high-performance liquid chromatography (HPLC), HCO<sub>3</sub><sup>-</sup> aqueous 300 concentration by volumetric titration, and total aqueous concentration of Na, K, Ca, Mg, 301 Fe, Mn and B by inductive-coupled plasma optical emission spectrometry (ICP-OES). 302 Ammonia aqueous concentration was determined by colorimetry (flow injection analysis), and total organic C (TOC) concentration by the organic matter combustion 303 304 method. All these analyses were done at the Centres Científics i Tecnològics of the 305 Universitat de Barcelona (CCiT-UB).  $\delta^2$ H and  $\delta^{18}$ O of water were measured using the H<sub>2</sub> and CO<sub>2</sub> equilibration 306 techniques respectively. H and O isotope compositions were measured by DI-IRMS on 307

a Delta S Finnigan Mat.  $\delta^{15}$ N and  $\delta^{18}$ O of dissolved NO<sub>3</sub><sup>-</sup> were measured using the

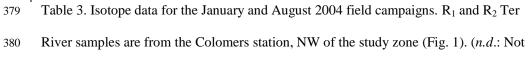
| 309 | AgNO <sub>3</sub> method (modified from Silva et al. (2000)) with an Elemental Analyser (Carlo                          |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 310 | Erba 1108) coupled with an Isochrom Continuous Flow IRMS in the case of $\delta^{15}N$ and                              |
| 311 | with a Thermo-Chemical Elemental Analyser (TC/EA Thermo-Quest Finnigan) coupled                                         |
| 312 | with a Delta C Finnigan Mat IRMS in the case of $\delta^{18}$ O (duplicate analyses). To measure                        |
| 313 | $\delta^{34}S$ and $\delta^{18}O$ of SO4 $^{2\text{-}},$ aqueous sulphate was precipitated as BaSO4 by acidifying the   |
| 314 | sample with HCl, boiling it, and adding an excess of BaCl <sub>2</sub> ·2H <sub>2</sub> O. $\delta^{34}$ S was measured |
| 315 | using an Elemental Analyser (Carlo Erba 1108) coupled with a Delta C Finnigan Mat,                                      |
| 316 | while $\delta^{18}O$ was measured with the same methodology (TC/EA-IRMS) as $\delta^{18}O$ of                           |
| 317 | nitrate. In order to measure $\delta^{11}$ B, sample volume was determined to ultimately yield 6 to                     |
| 318 | 10 $\mu$ g of B. Samples then underwent a two-step chemical purification using Amberlite                                |
| 319 | IRA-743 selective resin (method adapted from Gaillardet and Allègre (1995)). First, the                                 |
| 320 | sample (pH~7) was loaded on a Teflon $PFA^{(B)}$ column filled with a 1 ml resin,                                       |
| 321 | previously cleaned with ultrapure water and 2N ultrapure NaOH. After cleaning again                                     |
| 322 | the resin with water and NaOH, the purified B was collected with 15 ml of sub-boiled                                    |
| 323 | HCl 2N. After neutralisation of the HCl by Superpur NH <sub>4</sub> OH (20%), the purified B was                        |
| 324 | loaded again on a small 100 ml resin Teflon PFA® column. B was collected with 2 ml                                      |
| 325 | of HCl 2N. An aliquot corresponding to 2 mg of B was then evaporated below $70^{\circ}$ C                               |
| 326 | with mannitol $(C_6H_8(OH)_6)$ in order to avoid B loss during evaporation (Ishikawa and                                |
| 327 | Nakamura,1990). The dry sample was loaded onto a tantalum (Ta) single filament with                                     |
| 328 | graphite (C), mannitol and caesium (Cs). $\delta^{11}B$ was determined on the Cs <sub>2</sub> BO <sup>2+</sup> ion      |
| 329 | (Spivack and Edmond, 1986) by negative-ion Thermal-Ionization Mass Spectrometry                                         |
| 330 | (TIMS). The analysis was run in dynamic mode by switching between masses 308 and                                        |
| 331 | 309. Each analysis corresponded to 10 blocks of 10 ratios. Samples were always run                                      |
| 332 | twice. Total B blank was less than 10 ng corresponding to a maximum contribution of                                     |
| 333 | 0.2%, which was negligible. Seawater (IAEA-B1) was purified regularly in the same                                       |

| 334 | way, in order to check for a possible chemical fractionation due to an uncompleted                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 335 | recovery of B, and to evaluate the accuracy and reproducibility of the overall procedure.                                                  |
| 336 | Reproducibility was obtained by repeated measurements of the NBS951 and the                                                                |
| 337 | accuracy was controlled with the analysis of the IAEA-B1 seawater standard ( $\delta^{11}B =$                                              |
| 338 | 38.6 $\pm$ 1.7‰). The <sup>11</sup> B/ <sup>10</sup> B ratio of replicate analyses of the NBS951 boric acid standard                       |
| 339 | (after oxygen correction) was 4.05045 $\pm$ 0.00130 (2 $\sigma$ , n=183). The reproducibility of the                                       |
| 340 | $\delta^{11}B$ was $\pm 0.32\%$ (2 $\sigma$ ). The mean value obtained on $\delta^{11}B$ of seawater was                                   |
| 341 | 39.21±0.31‰ (2 $\sigma$ ; n=20). In order to analyse the $\delta^{13}$ C of inorganic carbon, water                                        |
| 342 | samples were acidified with ortho-phosphoric acid and shaken for at least two hours to                                                     |
| 343 | convert all bicarbonate into $CO_2$ and to reach equilibrium between the dissolved and                                                     |
| 344 | gaseous phases. Gas samples were then diluted with helium to facilitate the analysis.                                                      |
| 345 | $\delta^{13}$ C was measured on a Gas Chromatograph-Combustion-Isotopic Ratio Mass                                                         |
| 346 | Spectrometer (GC-C-IRMS). All isotope notations are expressed as $\delta$ per mil relative to                                              |
| 347 | their respective international standards: Vienna Standard Mean Ocean Water (V-                                                             |
| 348 | SMOW), atmospheric $N_2$ (AIR), Vienna Canyon Diablo Troilite (V-CDT), NBS951 and                                                          |
| 349 | Vienna Pee Dee Belemnite (V-PDB) standards. Reproducibility is $\pm 1.5\%$ for $\delta^2 H$ ,                                              |
| 350 | $\pm 0.2\%$ for $\delta^{18}O_{H2O},\pm 0.3\%$ for $\delta^{15}N,\pm 0.2\%$ for $\delta^{34}S,\pm 0.5\%$ for both $\delta^{18}O_{NO3}$ and |
| 351 | $\delta^{18}O_{SO4},\pm0.3\%$ for $\delta^{11}B,$ and $\pm0.3\%$ for $\delta^{13}C_{HCO3}.$                                                |
| 352 | For isotope analyses, samples were prepared at the laboratory of the Mineralogia                                                           |
| 353 | Aplicada i Geoquimica de Fluids research group of the Universitat de Barcelona and the                                                     |
| 354 | analyses were performed at the Centres Científics i Tecnològics of the Universitat de                                                      |
| 355 | Barcelona (CCiT-UB), except those of $\delta^{11}$ B that were analysed at the BRGM (France)                                               |
| 356 | and those of $\delta^{13}C$ that were analysed at the Environmental Isotope Laboratory (EIL) of                                            |
| 357 | the University of Waterloo (Canada).                                                                                                       |
| 358 | 4. Results and discussion                                                                                                                  |

| 359 | Groundwater hydraulic head, hydrochemical and isotope data of the two campaigns             |
|-----|---------------------------------------------------------------------------------------------|
| 360 | are reported in Tables 1, 2 and 3.                                                          |
| 361 |                                                                                             |
| 362 |                                                                                             |
| 363 |                                                                                             |
| 364 | Table 1. Hydrogeological formation, $X$ and $Y$ UTM coordinates, depth (m), hydraulic       |
| 365 | head (m.a.s.l.), and physico-chemical parameters measured in situ for the sampled           |
| 366 | points of each field campaign. See Fig. 1 for sampling locations in the Baix Ter basin.     |
| 367 | $R_1$ and $R_2$ Ter River samples are from the Colomers station, NW of the study zone (Fig. |
| 368 | 1). ( <i>n.d.</i> : Not determined).                                                        |

| ample                                                                                                                                                                                                                                                                                                      | Field<br>campaign                                                                                | Hydrogeological<br>formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X (UTM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y (UTM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth<br>(m)                                                                                                                                                                                                                                                                                                                             | Hydraulic head<br>(m.a.s.l.)                                                                                                                                                                                 | T (°C)                                                                                                                                                                                                                                                                                                                                                                       | EC (25 °C)<br>(μS/cm)                                                                                                                                                                                 | pН                                                                                                                                                                                        | Eh<br>(m\                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Q <sub>1</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                | Q <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 504970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4654520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                       | 13.1                                                                                                                                                                                                         | 14.0                                                                                                                                                                                                                                                                                                                                                                         | 787                                                                                                                                                                                                   | 7.9                                                                                                                                                                                       | 89                                                                                                                                              |
| Q <sub>2</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                | Qp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4653880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46                                                                                                                                                                                                                                                                                                                                       | -1.4                                                                                                                                                                                                         | 14.4                                                                                                                                                                                                                                                                                                                                                                         | 596                                                                                                                                                                                                   | 8.0                                                                                                                                                                                       | 46                                                                                                                                              |
| Q <sub>3</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                | Q <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 508790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4648620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72                                                                                                                                                                                                                                                                                                                                       | 16.9                                                                                                                                                                                                         | 16.7                                                                                                                                                                                                                                                                                                                                                                         | 955                                                                                                                                                                                                   | 7.7                                                                                                                                                                                       | 39                                                                                                                                              |
| Q <sub>2</sub>                                                                                                                                                                                                                                                                                             | 2                                                                                                | Qp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4653880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46                                                                                                                                                                                                                                                                                                                                       | -3.0                                                                                                                                                                                                         | 18.3                                                                                                                                                                                                                                                                                                                                                                         | 812                                                                                                                                                                                                   | 7.8                                                                                                                                                                                       | 18                                                                                                                                              |
| Q3                                                                                                                                                                                                                                                                                                         | 2                                                                                                | Q <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 508790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4648620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72                                                                                                                                                                                                                                                                                                                                       | 15.6                                                                                                                                                                                                         | 18.2                                                                                                                                                                                                                                                                                                                                                                         | 1225                                                                                                                                                                                                  | 7.7                                                                                                                                                                                       | 39                                                                                                                                              |
| Q4                                                                                                                                                                                                                                                                                                         | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 506280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4653300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                        | 10.8                                                                                                                                                                                                         | 15.0                                                                                                                                                                                                                                                                                                                                                                         | 1594                                                                                                                                                                                                  | 7.4                                                                                                                                                                                       | 27                                                                                                                                              |
| Q5                                                                                                                                                                                                                                                                                                         | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 502300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4649320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                       | 27.4                                                                                                                                                                                                         | 16.0                                                                                                                                                                                                                                                                                                                                                                         | 1640                                                                                                                                                                                                  | 7.6                                                                                                                                                                                       | 37                                                                                                                                              |
| $Q_6$                                                                                                                                                                                                                                                                                                      | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 503340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4649390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                       | 22.4                                                                                                                                                                                                         | 14.6                                                                                                                                                                                                                                                                                                                                                                         | 899                                                                                                                                                                                                   | 7.6                                                                                                                                                                                       | 33                                                                                                                                              |
| Q <sub>7</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 501670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4655680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                                                                                                                                                                                                                                       | 13.4                                                                                                                                                                                                         | 17.0                                                                                                                                                                                                                                                                                                                                                                         | 843                                                                                                                                                                                                   | 7.7                                                                                                                                                                                       | 36                                                                                                                                              |
| Q <sub>8</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4656490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                       | 10.9                                                                                                                                                                                                         | 16.9                                                                                                                                                                                                                                                                                                                                                                         | 862                                                                                                                                                                                                   | 7.9                                                                                                                                                                                       | 36                                                                                                                                              |
| Q <sub>9</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 505460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4652860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                       | 12.6                                                                                                                                                                                                         | 14.0                                                                                                                                                                                                                                                                                                                                                                         | 772                                                                                                                                                                                                   | 7.9                                                                                                                                                                                       | 26                                                                                                                                              |
| Q <sub>10</sub>                                                                                                                                                                                                                                                                                            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4644620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                        | 60.3                                                                                                                                                                                                         | 16.3                                                                                                                                                                                                                                                                                                                                                                         | 1180                                                                                                                                                                                                  | 7.7                                                                                                                                                                                       | 42                                                                                                                                              |
| Q <sub>11</sub>                                                                                                                                                                                                                                                                                            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 507820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4647100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                        | 32.0                                                                                                                                                                                                         | 13.3                                                                                                                                                                                                                                                                                                                                                                         | 722                                                                                                                                                                                                   | 8.2                                                                                                                                                                                       | 36                                                                                                                                              |
| Q <sub>12</sub>                                                                                                                                                                                                                                                                                            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 501970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4655900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                       | 12.3                                                                                                                                                                                                         | 16.1                                                                                                                                                                                                                                                                                                                                                                         | 773                                                                                                                                                                                                   | 7.9                                                                                                                                                                                       | 34                                                                                                                                              |
| Q <sub>13</sub>                                                                                                                                                                                                                                                                                            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4652570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                       | 13.1                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                         | 836                                                                                                                                                                                                   | 7.8                                                                                                                                                                                       | 44                                                                                                                                              |
| Q <sub>14</sub>                                                                                                                                                                                                                                                                                            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4646740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                        | 37.7                                                                                                                                                                                                         | 13.2                                                                                                                                                                                                                                                                                                                                                                         | 886                                                                                                                                                                                                   | 8.2                                                                                                                                                                                       | 37                                                                                                                                              |
| Q <sub>15</sub>                                                                                                                                                                                                                                                                                            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 509180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4650980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                        | 5.2                                                                                                                                                                                                          | 15.3                                                                                                                                                                                                                                                                                                                                                                         | 2523                                                                                                                                                                                                  | 7.6                                                                                                                                                                                       | 40                                                                                                                                              |
| Q <sub>16</sub>                                                                                                                                                                                                                                                                                            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 510970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4644350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                        | 36.4                                                                                                                                                                                                         | 14.7                                                                                                                                                                                                                                                                                                                                                                         | 1004                                                                                                                                                                                                  | 7.8                                                                                                                                                                                       | 39                                                                                                                                              |
| Q <sub>5</sub>                                                                                                                                                                                                                                                                                             | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 502300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4649320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                       | 24.8                                                                                                                                                                                                         | 16.8                                                                                                                                                                                                                                                                                                                                                                         | 2359                                                                                                                                                                                                  | 7.6                                                                                                                                                                                       | 38                                                                                                                                              |
| Q <sub>6</sub>                                                                                                                                                                                                                                                                                             | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 503340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4649390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                       | n.d.                                                                                                                                                                                                         | 17.3                                                                                                                                                                                                                                                                                                                                                                         | 1125                                                                                                                                                                                                  | 7.8                                                                                                                                                                                       | 31                                                                                                                                              |
| Q7                                                                                                                                                                                                                                                                                                         | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 501670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4655680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                                                                                                                                                                                                                                       | 10.2                                                                                                                                                                                                         | 17.1                                                                                                                                                                                                                                                                                                                                                                         | 1164                                                                                                                                                                                                  | 7.5                                                                                                                                                                                       | 41                                                                                                                                              |
| Q <sub>8</sub>                                                                                                                                                                                                                                                                                             | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4656490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                       | 10.7                                                                                                                                                                                                         | 17.7                                                                                                                                                                                                                                                                                                                                                                         | 1383                                                                                                                                                                                                  | 7.8                                                                                                                                                                                       | 33                                                                                                                                              |
| Q9                                                                                                                                                                                                                                                                                                         | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 505460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4652860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                       | n.d.                                                                                                                                                                                                         | 16.2                                                                                                                                                                                                                                                                                                                                                                         | 1070                                                                                                                                                                                                  | 7.7                                                                                                                                                                                       | 39                                                                                                                                              |
| Q <sub>10</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4644620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                        | 60.4                                                                                                                                                                                                         | 16.2                                                                                                                                                                                                                                                                                                                                                                         | 1320                                                                                                                                                                                                  | 7.4                                                                                                                                                                                       | 42                                                                                                                                              |
| Q <sub>13</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4652570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                       | 8.7                                                                                                                                                                                                          | 16.2                                                                                                                                                                                                                                                                                                                                                                         | 1219                                                                                                                                                                                                  | 7.4                                                                                                                                                                                       | 39                                                                                                                                              |
| Q <sub>14</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4646740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                       | 36.1                                                                                                                                                                                                         | 17.6                                                                                                                                                                                                                                                                                                                                                                         | 949                                                                                                                                                                                                   | 7.5                                                                                                                                                                                       | 36                                                                                                                                              |
| Q <sub>15</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 509180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4650980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                        | 3.8                                                                                                                                                                                                          | 17.3                                                                                                                                                                                                                                                                                                                                                                         | 2993                                                                                                                                                                                                  | 8.0                                                                                                                                                                                       | 38                                                                                                                                              |
| Q <sub>16</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 510970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4644350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                        | 35.7                                                                                                                                                                                                         | 22.9                                                                                                                                                                                                                                                                                                                                                                         | 1007                                                                                                                                                                                                  | 7.8                                                                                                                                                                                       | 44                                                                                                                                              |
| Q <sub>16</sub><br>Q <sub>17</sub>                                                                                                                                                                                                                                                                         | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 501720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4647990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.d.                                                                                                                                                                                                                                                                                                                                     | 29.5                                                                                                                                                                                                         | 17.6                                                                                                                                                                                                                                                                                                                                                                         | 809                                                                                                                                                                                                   | 7.9                                                                                                                                                                                       | 38                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 510230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4648070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                        | 14.2                                                                                                                                                                                                         | 17.9                                                                                                                                                                                                                                                                                                                                                                         | 875                                                                                                                                                                                                   | 7.5                                                                                                                                                                                       | 40                                                                                                                                              |
| Q <sub>18</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4648070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                       | 32.8                                                                                                                                                                                                         | 16.4                                                                                                                                                                                                                                                                                                                                                                         | 999                                                                                                                                                                                                   | 7.6                                                                                                                                                                                       | 40<br>34                                                                                                                                        |
| Q <sub>19</sub>                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                 |
| Q <sub>20</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | Qs<br>Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 503580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4647920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17<br>17                                                                                                                                                                                                                                                                                                                                 | 19.0                                                                                                                                                                                                         | 15.8                                                                                                                                                                                                                                                                                                                                                                         | 661                                                                                                                                                                                                   | 7.8<br>7.5                                                                                                                                                                                | 72                                                                                                                                              |
| Q <sub>21</sub>                                                                                                                                                                                                                                                                                            | 2                                                                                                | spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 505090<br>507650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4650800<br>4645200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                        | 15.0<br>55.0                                                                                                                                                                                                 | 16.2<br>15.0                                                                                                                                                                                                                                                                                                                                                                 | 980<br>629                                                                                                                                                                                            | 7.5                                                                                                                                                                                       | 44                                                                                                                                              |
| s                                                                                                                                                                                                                                                                                                          | 2                                                                                                | spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 507650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4645200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                         | 15.4                                                                                                                                                                                                                                                                                                                                                                         | 748                                                                                                                                                                                                   | 7.9                                                                                                                                                                                       | 33                                                                                                                                              |
| T <sub>1</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                | Tp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4648350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                                                                                                                                                                                                                                                                                                                                       | 21.6                                                                                                                                                                                                         | 19.5                                                                                                                                                                                                                                                                                                                                                                         | 552                                                                                                                                                                                                   | 8.0                                                                                                                                                                                       | 34                                                                                                                                              |
| $T_2$                                                                                                                                                                                                                                                                                                      | 1                                                                                                | Тр                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4651340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                      | 7.2                                                                                                                                                                                                          | 14.9                                                                                                                                                                                                                                                                                                                                                                         | 908                                                                                                                                                                                                   | 8.0                                                                                                                                                                                       | 36                                                                                                                                              |
| T3                                                                                                                                                                                                                                                                                                         | 1                                                                                                | Tp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 503340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4651590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                      | 27.7                                                                                                                                                                                                         | 17.5                                                                                                                                                                                                                                                                                                                                                                         | 1176                                                                                                                                                                                                  | 7.8                                                                                                                                                                                       | 37                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                      | 27.4                                                                                                                                                                                                         | 16.6                                                                                                                                                                                                                                                                                                                                                                         | 725                                                                                                                                                                                                   | 8.1                                                                                                                                                                                       | n.c                                                                                                                                             |
| T <sub>4</sub>                                                                                                                                                                                                                                                                                             | 1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 505912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4646025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          | 27.4                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 1005                                                                                                                                                                                                  | 7.0                                                                                                                                                                                       | 34                                                                                                                                              |
| T <sub>4</sub><br>T <sub>5</sub>                                                                                                                                                                                                                                                                           |                                                                                                  | Tp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              | 16.5                                                                                                                                                                                                                                                                                                                                                                         | 1325                                                                                                                                                                                                  | 7.8                                                                                                                                                                                       |                                                                                                                                                 |
| $T_5$                                                                                                                                                                                                                                                                                                      | 1                                                                                                | T⊳<br>T⊳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 504420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4647820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          | 27.1                                                                                                                                                                                                         | 16.5                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736                                                                                                                                                                                           | 7.8<br>7.8                                                                                                                                                                                | 36                                                                                                                                              |
| Τ <sub>5</sub><br>Τ <sub>6</sub>                                                                                                                                                                                                                                                                           |                                                                                                  | T⊳<br>T⊳<br>T⊳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 504420<br>511510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125<br>110<br>90                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              | 736                                                                                                                                                                                                   | 7.8                                                                                                                                                                                       |                                                                                                                                                 |
| T <sub>5</sub><br>T <sub>6</sub><br>T <sub>1</sub>                                                                                                                                                                                                                                                         | 1<br>1<br>2                                                                                      | Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 504420<br>511510<br>508930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4647820<br>4646260<br>4648350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110<br>90                                                                                                                                                                                                                                                                                                                                | 27.1<br>-4.5<br>21.6                                                                                                                                                                                         | 16.5<br>18.5<br>20.0                                                                                                                                                                                                                                                                                                                                                         | 736<br>935                                                                                                                                                                                            | 7.8<br>7.7                                                                                                                                                                                | 36                                                                                                                                              |
| T <sub>5</sub><br>T <sub>6</sub><br>T <sub>1</sub><br>T <sub>2</sub>                                                                                                                                                                                                                                       | 1<br>1<br>2<br>2                                                                                 | T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 504420<br>511510<br>508930<br>508830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4647820<br>4646260<br>4648350<br>4651340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110<br>90<br>100                                                                                                                                                                                                                                                                                                                         | 27.1<br>-4.5<br>21.6<br>11.4                                                                                                                                                                                 | 16.5<br>18.5<br>20.0<br>19.8                                                                                                                                                                                                                                                                                                                                                 | 736<br>935<br>1095                                                                                                                                                                                    | 7.8<br>7.7<br>7.7                                                                                                                                                                         | 36<br>42                                                                                                                                        |
| T <sub>5</sub><br>T <sub>6</sub><br>T <sub>1</sub><br>T <sub>2</sub><br>T <sub>3</sub>                                                                                                                                                                                                                     | 1<br>1<br>2<br>2<br>2<br>2                                                                       | To<br>To<br>To<br>To<br>To<br>To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 504420<br>511510<br>508930<br>508830<br>503340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4647820<br>4646260<br>4648350<br>4651340<br>4651590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110<br>90                                                                                                                                                                                                                                                                                                                                | 27.1<br>-4.5<br>21.6                                                                                                                                                                                         | 16.5<br>18.5<br>20.0                                                                                                                                                                                                                                                                                                                                                         | 736<br>935                                                                                                                                                                                            | 7.8<br>7.7                                                                                                                                                                                | 36<br>42<br>37                                                                                                                                  |
| $T_5$<br>$T_6$<br>$T_1$<br>$T_2$<br>$T_3$<br>$T_5$                                                                                                                                                                                                                                                         | 1<br>1<br>2<br>2<br>2<br>2<br>2                                                                  | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 504420<br>511510<br>508930<br>508830<br>503340<br>504420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>90<br>100<br>100<br>125                                                                                                                                                                                                                                                                                                           | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4                                                                                                                                                                 | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1                                                                                                                                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330                                                                                                                                                                    | 7.8<br>7.7<br>7.7<br>7.7<br>7.9                                                                                                                                                           | 36<br>42<br>37<br>30                                                                                                                            |
| $T_5$<br>$T_6$<br>$T_1$<br>$T_2$<br>$T_3$<br>$T_5$<br>$T_6$                                                                                                                                                                                                                                                | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                        | Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4646260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110<br>90<br>100<br>100<br>125<br>110                                                                                                                                                                                                                                                                                                    | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5                                                                                                                                                         | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0                                                                                                                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600                                                                                                                                                             | 7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2                                                                                                                                                    | 36<br>42<br>37<br>30<br>32                                                                                                                      |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ \end{array}$                                                                                                                                                                                                                     | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                         | То<br>То<br>То<br>То<br>То<br>То<br>То<br>То<br>То<br>То                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>499910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4646260<br>4647360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110<br>90<br>100<br>100<br>125<br>110<br>70                                                                                                                                                                                                                                                                                              | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0                                                                                                                                                 | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2                                                                                                                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164                                                                                                                                                     | 7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7                                                                                                                                             | 36<br>42<br>37<br>30<br>32<br>42                                                                                                                |
| $\begin{array}{c} T_5 \\ \hline T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ \hline T_6 \\ \hline T_7 \\ T_8 \\ \end{array}$                                                                                                                                                                                  | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               | Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647360<br>4647360<br>4643590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110<br>90<br>100<br>125<br>110<br>70<br>156                                                                                                                                                                                                                                                                                              | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.                                                                                                                                         | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1                                                                                                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374                                                                                                                                             | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0                                                                                                                                             | 36<br>42<br>37<br>30<br>32<br>42<br>35                                                                                                          |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \end{array}$                                                                                                                                                                                                          | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790<br>507880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4646260<br>4647360<br>4643590<br>4644460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85                                                                                                                                                                                                                                                                                        | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br><i>n.d.</i><br>53.9                                                                                                                          | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4                                                                                                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971                                                                                                                                      | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9                                                                                                                                      | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15                                                                                                    |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \end{array}$                                                                                                                                                                                                | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790<br>507880<br>510025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4647820<br>4647820<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647820<br>4647360<br>4643590<br>46445900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125                                                                                                                                                                                                                                                                                 | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.                                                                                                                         | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7                                                                                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053                                                                                                                              | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9                                                                                                                               | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18                                                                                              |
| $\begin{array}{c} T_5 \\ \hline T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ \hline T_6 \\ \hline T_7 \\ T_8 \\ \hline T_9 \\ \hline T_{10} \\ \hline T_{11} \end{array}$                                                                                                                                     | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790<br>507880<br>510025<br>501590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647800<br>4643590<br>46445900<br>4644810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130                                                                                                                                                                                                                                                                          | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8                                                                                                                 | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4                                                                                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824                                                                                                                       | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0                                                                                                                        | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91                                                                                        |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \end{array}$                                                                                                                                                                            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>508930<br>508930<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790<br>507880<br>510025<br>501590<br>498230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4646260<br>46447360<br>46443590<br>4644460<br>4643590<br>4644460<br>4649000<br>4647810<br>4653260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110                                                                                                                                                                                                                                                                   | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>nd.<br>53.9<br>nd.<br>23.8<br>nd.                                                                                                            | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3                                                                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994                                                                                                                | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8                                                                                                          | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45                                                                                  |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \end{array}$                                                                                                                                                                  | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To                                                                                                                                                                                                                                                                                                                                                                | 504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>49910<br>501790<br>507880<br>510025<br>501590<br>498230<br>512180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4647820<br>4648260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647360<br>4647360<br>4644590<br>46446400<br>4647810<br>4653260<br>4645340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175                                                                                                                                                                                                                                                            | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>nd.<br>53.9<br>nd.<br>23.8<br>nd.<br>nd.<br>nd.                                                                                              | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1                                                                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137                                                                                                        | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6                                                                                                   | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39                                                                            |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \end{array}$                                                                                                                                                        | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To                                                                                                                                                                                                                                                                                                            | 504420<br>504420<br>511510<br>508930<br>508830<br>508830<br>50420<br>511510<br>511510<br>501790<br>501790<br>501790<br>51025<br>501590<br>498230<br>512180<br>508150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4647820<br>4646260<br>4648350<br>4651340<br>4651340<br>4647820<br>4647820<br>4647860<br>4643590<br>4643590<br>4644460<br>4649000<br>4647810<br>4653260<br>4645340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60                                                                                                                                                                                                                                                      | 27.1<br>4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>nd.<br>53.9<br>nd.<br>23.8<br>nd.<br>23.8<br>nd.<br>19.3                                                                                      | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0                                                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449                                                                                                | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.6                                                                                            | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15                                                                      |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{15} \end{array}$                                                                                                                                              | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To                                                                                                                                                                                                                                                                                                            | 504420<br>504420<br>508930<br>508830<br>50340<br>504420<br>511510<br>499910<br>501790<br>507880<br>510025<br>501590<br>498230<br>512180<br>508150<br>501970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647360<br>4647360<br>4647810<br>4647810<br>46453260<br>46453260<br>46453420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80                                                                                                                                                                                                                                                | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>4.2.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>n.d.<br>n.d.<br>n.d.<br>19.3<br>n.d.                                                                | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1                                                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>11330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389                                                                                       | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.8                                                                                     | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33                                                                |
| $\begin{array}{c} T_5 \\ T_6 \\ T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{15} \\ T_{16} \end{array}$                                                                                                                                    | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To           To | 504420<br>504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790<br>501790<br>501790<br>510225<br>501590<br>498230<br>512180<br>501970<br>501970<br>501930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4647820<br>4646260<br>4648350<br>4651590<br>4647820<br>4647820<br>4647820<br>4644780<br>4644780<br>46447810<br>4653260<br>4645340<br>4645340<br>465320<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>465350<br>465350<br>465350<br>465350<br>465350<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>465550<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>46555000<br>46555000<br>46555000<br>465550000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22                                                                                                                                                                                                                                          | 27.1<br>4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>4.5<br>42.0<br>nd.<br>53.9<br>nd.<br>23.8<br>nd.<br>23.8<br>nd.<br>19.3<br>nd.<br>19.3<br>nd.<br>19.3                                                         | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1                                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1499<br>1389<br>1006                                                                                | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.6<br>7.8<br>7.9                                                                       | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33<br>33<br>36                                                    |
| $\begin{array}{r} T_5 \\ T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ \hline T_{16} \end{array}$                                                                                              | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>504420<br>508930<br>508930<br>508330<br>503340<br>504420<br>511510<br>499910<br>501790<br>501790<br>501790<br>501790<br>501790<br>501590<br>498230<br>512180<br>508150<br>501970<br>501930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4647820<br>4646260<br>4648350<br>4651340<br>4655340<br>4647820<br>4647820<br>4644260<br>464780<br>46443590<br>4644460<br>4649300<br>4645340<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>4653420<br>465340<br>465340<br>465320<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465340<br>465360<br>465340<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465360<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465350<br>465550<br>465550<br>465550<br>465550<br>465550<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>4655500<br>46555000<br>46555000<br>46555000<br>465550000000000 | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22                                                                                                                                                                                                                                    | 27.1<br>4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>4.5<br>42.0<br>nd.<br>53.9<br>nd.<br>23.8<br>nd.<br>19.3<br>nd.<br>19.3<br>nd.<br>19.3<br>6.5<br>-5.8                                                         | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1<br>16.8                                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>971<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>938<br>94<br>1137<br>1449<br>1389<br>1006<br>1219                                    | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.6<br>7.8<br>7.9<br>7.5                                                                | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33<br>36<br>40                                                    |
| $\begin{array}{c} T_5 \\ T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ T_{17} \end{array}$                                                                                                     | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>49910<br>501790<br>507880<br>51025<br>501790<br>507880<br>51025<br>511580<br>498230<br>512180<br>512180<br>512180<br>510930<br>510930<br>510930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647820<br>4647800<br>46447810<br>4643260<br>4647810<br>4645260<br>46453420<br>4645500<br>4652480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40                                                                                                                                                                                                                        | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>nd.<br>23.8<br>nd.<br>23.8<br>nd.<br>23.8<br>nd.<br>19.3<br>nd.<br>-6.5<br>-5.8<br>23.7                                                      | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1<br>16.8<br>19.2                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>994<br>1143<br>994<br>11449<br>1389<br>1006<br>2414                                                 | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.8<br>7.9<br>7.5<br>7.5<br>7.6                                                         | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33<br>36<br>40<br>32                                              |
| $\begin{array}{c} T_5 \\ \hline T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ T_{17} \\ T_{18} \end{array}$                                                                                    | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>504420<br>511510<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790<br>501790<br>501790<br>51025<br>501590<br>498230<br>512180<br>501970<br>501970<br>501970<br>501930<br>510930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4647820<br>4646260<br>4643350<br>4651540<br>4651540<br>4647820<br>4647820<br>4643590<br>4644560<br>4643590<br>4644540<br>46453260<br>4645340<br>4645340<br>4645340<br>4653450<br>4653450<br>4653480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40<br>34                                                                                                                                                                                                                  | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>-6.5<br>-5.8<br>23.7<br>126.0                                                        | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1<br>16.8<br>19.2<br>18.0                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>994<br>1137<br>1389<br>1389<br>1389<br>1389<br>2414<br>837                                  | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.6<br>7.8<br>7.9<br>7.5<br>7.6<br>8.0                                    | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33<br>36<br>40<br>32<br>35                                        |
| $\begin{array}{c} T_5 \\ T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ T_{17} \end{array}$                                                                                                     | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>504420<br>511510<br>508930<br>508830<br>503340<br>504420<br>511510<br>49910<br>501790<br>507880<br>51025<br>501790<br>507880<br>51025<br>511580<br>498230<br>512180<br>512180<br>512180<br>510930<br>510930<br>510930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647820<br>4647800<br>46447810<br>4643260<br>4647810<br>4645260<br>46453420<br>4645500<br>4652480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40                                                                                                                                                                                                                        | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>nd.<br>23.8<br>nd.<br>23.8<br>nd.<br>23.8<br>nd.<br>19.3<br>nd.<br>-6.5<br>-5.8<br>23.7                                                      | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1<br>16.8<br>19.2                                                                                                                                                                                                                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>994<br>1143<br>994<br>11449<br>1389<br>1006<br>2414                                                 | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.8<br>7.9<br>7.5<br>7.5<br>7.6                                                         | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33<br>36<br>40<br>32<br>35                                        |
| $\begin{array}{c} T_5 \\ \hline T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ T_{17} \\ T_{18} \end{array}$                                                                                    | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>504420<br>511510<br>508830<br>503340<br>504420<br>511510<br>499910<br>501790<br>501790<br>501790<br>51025<br>501590<br>498230<br>512180<br>501970<br>501970<br>501970<br>501930<br>510930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4647820<br>4646260<br>4643350<br>4651540<br>4651540<br>4647820<br>4647820<br>4643590<br>4644560<br>4643590<br>4644540<br>46453260<br>4645340<br>4645340<br>4645340<br>4653450<br>4653450<br>4653480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40<br>34<br>10<br>9                                                                                                                                                                                                       | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br><u>n.d.</u><br>-6.5<br>-5.8<br>23.7<br>126.0<br>106.3<br>9.0                                 | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1<br>16.8<br>19.2<br>18.0                                                                                                                                                                                                                 | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>994<br>1137<br>1389<br>1389<br>1389<br>1389<br>2414<br>837                                  | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>8.0<br>8.0<br>8.0<br>7.7                                                  | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>39<br>15<br>33<br>36<br>40<br>32<br>35<br>35                      |
| $\begin{array}{c} T_5 \\ \hline T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ \hline T_{10} \\ \hline T_{11} \\ \hline T_{12} \\ \hline T_{13} \\ \hline T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ \hline T_{17} \\ \hline T_{18} \\ \hline T_{19} \end{array}$                  | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>511510<br>508830<br>503340<br>504420<br>511510<br>501790<br>501790<br>501790<br>501790<br>510025<br>501590<br>498230<br>512180<br>501570<br>501970<br>510930<br>501930<br>501930<br>501930<br>502550<br>499460<br>500770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4647820<br>4646260<br>4648350<br>4651590<br>4647820<br>4647820<br>4647820<br>4647820<br>4643590<br>46447800<br>4643280<br>46453260<br>4645340<br>4653260<br>46547500<br>4653420<br>46547500<br>4652480<br>4652480<br>4652480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>80<br>22<br>22<br>22<br>40<br>34<br>10                                                                                                                                                                                                      | 27.1<br>4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>4.5<br>42.0<br>nd.<br>53.9<br>nd.<br>23.8<br>nd.<br>19.3<br>nd.<br>19.3<br>nd.<br>19.3<br>nd.<br>19.3<br>2.7<br>25.7<br>26.0<br>106.3                         | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>17.8                                                                                                                                                                                         | 738<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>2414<br>1219<br>2414<br>837<br>944                                                  | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>7.8<br>7.6<br>7.6<br>7.6<br>7.8<br>7.9<br>7.5<br>7.6<br>8.0<br>8.0<br>8.0                             | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33<br>36<br>40<br>32<br>35<br>35<br>35                            |
| $\begin{array}{r} T_5 \\ \hline T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ \hline T_6 \\ T_7 \\ T_8 \\ T_9 \\ \hline T_{10} \\ \hline T_{11} \\ T_{12} \\ \hline T_{13} \\ \hline T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ \hline T_{17} \\ \hline T_{18} \\ \hline T_{19} \\ \hline T_{20} \end{array}$ | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>504420<br>511510<br>508830<br>508830<br>503340<br>504420<br>511510<br>501790<br>507880<br>501790<br>507880<br>501790<br>507880<br>501590<br>498230<br>512180<br>508150<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>510930<br>511510<br>510950<br>511510<br>50850<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>50150<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>500550<br>5 | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647820<br>4647820<br>4647800<br>4647810<br>4649900<br>4647810<br>46453420<br>4647500<br>4652480<br>4652480<br>4652480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40<br>34<br>10<br>9                                                                                                                                                                                                       | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br><u>n.d.</u><br>-6.5<br>-5.8<br>23.7<br>126.0<br>106.3<br>9.0                                 | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>19.0<br>21.2<br>18.1<br>19.0<br>21.2<br>18.4<br>19.3<br>17.1<br>19.4<br>19.3<br>17.1<br>16.1<br>16.8<br>19.2<br>18.0<br>17.8<br>17.7                                                                                                                                                                 | 738<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>994<br>1149<br>1389<br>1006<br>1219<br>2414<br>837<br>1219<br>2414                                  | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>8.0<br>8.0<br>8.0<br>7.7                                                  | 36<br>42<br>37<br>30<br>32<br>42<br>35<br>15<br>18<br>91<br>45<br>39<br>15<br>33<br>36<br>40<br>32<br>35<br>35<br>35<br>35<br>38                |
| $\begin{array}{r} T_5 \\ T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ T_{17} \\ T_{18} \\ T_{19} \\ T_{20} \\ T_{21} \end{array}$                                                                                     | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>511510<br>508830<br>508830<br>503440<br>504420<br>511510<br>499910<br>501780<br>507880<br>510025<br>501580<br>488230<br>512180<br>501970<br>510930<br>510930<br>510930<br>510930<br>510930<br>504505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4647820<br>4646260<br>4648350<br>4651340<br>4651340<br>4651590<br>4647820<br>4647820<br>4647820<br>4647820<br>4647820<br>4647820<br>4647820<br>46447810<br>4643240<br>4653420<br>4653420<br>4653450<br>4652480<br>4652480<br>4652480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110           90           100           100           125           110           125           110           125           110           125           110           125           125           126           125           130           175           60           80           22           24           0           9           5 | 22.1<br>4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>19.3<br>n.d.<br>19.3<br>n.d.<br>-6.5<br>-5.8<br>23.7<br>126.0<br>106.3<br>9.0<br>102.5                                 | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>19.0<br>21.2<br>18.1<br>19.0<br>21.2<br>18.1<br>19.0<br>21.2<br>18.1<br>19.4<br>19.3<br>17.1<br>17.0<br>19.4<br>19.3<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>19.1<br>19.3<br>17.1<br>17.2<br>20.7<br>19.4<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5                         | 736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>944<br>11389<br>1449<br>1389<br>1006<br>2414<br>2414<br>837<br>944<br>1528<br>649                   | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>8.0<br>7.5<br>7.6<br>8.0<br>8.0<br>7.7<br>7.7                                    | 366<br>421<br>377<br>300<br>324<br>425<br>355<br>183<br>355<br>333<br>366<br>400<br>322<br>355<br>355<br>355<br>355<br>355<br>355<br>355<br>355 |
| $\begin{array}{c} T_5 \\ \hline T_6 \\ \hline T_1 \\ T_2 \\ T_3 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ \hline T_{16} \\ T_{19} \\ T_{20} \\ T_{21} \\ T_{22} \end{array}$                                                      | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>To<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504420<br>504420<br>511510<br>508830<br>508830<br>50340<br>504420<br>511510<br>499910<br>501780<br>577880<br>51025<br>501890<br>498230<br>512180<br>501850<br>501970<br>510930<br>502650<br>49940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4647820<br>4646260<br>4648350<br>4651340<br>4651590<br>4647820<br>4647820<br>4647820<br>4647820<br>4647800<br>4647810<br>4643260<br>4647810<br>46453420<br>46453420<br>46457800<br>4652480<br>46552480<br>46552480<br>46552480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>60<br>110<br>175<br>60<br>80<br>80<br>22<br>22<br>40<br>34<br>10<br>9<br>9<br>5<br><i>n.d.</i>                                                                                                                                                                               | 27.1<br>4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>4.5<br>42.0<br>nd.<br>53.9<br>nd.<br>23.8<br>nd.<br>19.3<br>nd.<br>19.3<br>nd.<br>19.3<br>nd.<br>19.3<br>5.8<br>23.7<br>126.0<br>106.3<br>9.0<br>102.5<br>nd. | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>19.1<br>19.0<br>21.2<br>18.4<br>19.3<br>18.4<br>20.7<br>19.4<br>19.3<br>19.4<br>19.3<br>17.7<br>19.4<br>19.3<br>17.2<br>19.4<br>19.3<br>17.2<br>19.4<br>19.3<br>17.2<br>19.4<br>19.5<br>19.4<br>19.5<br>19.4<br>19.5<br>19.4<br>19.5<br>19.4<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5 | 738<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>2414<br>1137<br>1219<br>2414<br>1219<br>2414<br>1219<br>2414<br>1528<br>649<br>1055 | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>7.5<br>7.6<br>7.6<br>7.6<br>7.6<br>8.0<br>7.9<br>7.5<br>7.6<br>8.0<br>7.7<br>7.5<br>7.6 | 363<br>364<br>374<br>300<br>324<br>429<br>355<br>155<br>188<br>391<br>400<br>325<br>355<br>355<br>355<br>355<br>355<br>388<br>322<br>377        |

| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                         | са         | Field<br>mpaign                                                                                  | Hydrogeological<br>formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth<br>(m)                                                                                                                                                                             | Hydraulic head<br>(m.a.s.l.)                                                                                                                                                                  | T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC (25 °C)<br>(μS/cm)                                                                                                                                                       | pН                                                                                                                                                                                 | Eh<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2          | 1                                                                                                | QD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                       | 13.1                                                                                                                                                                                          | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 787                                                                                                                                                                         | 7.9                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2          | 1                                                                                                | QD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                                                                                                                                                                                       | -1.4                                                                                                                                                                                          | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 596                                                                                                                                                                         | 8.0                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>   | 1                                                                                                | QD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72                                                                                                                                                                                       | 16.9                                                                                                                                                                                          | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 955                                                                                                                                                                         | 7.7                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $Q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷.,        | 2                                                                                                | QD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                                                                                                                                                                                       | -3.0                                                                                                                                                                                          | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 812                                                                                                                                                                         | 7.8                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $Q_3$                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۳.         | 2                                                                                                | QD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72                                                                                                                                                                                       | 15.6                                                                                                                                                                                          | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1225                                                                                                                                                                        | 7.7                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q4                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                        | 10.8                                                                                                                                                                                          | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1594                                                                                                                                                                        | 7.4                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q5                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۳.,        | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                       | 27.4                                                                                                                                                                                          | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1640                                                                                                                                                                        | 7.6                                                                                                                                                                                | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $Q_6$                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۳.,        | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                       | 22.4                                                                                                                                                                                          | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 899                                                                                                                                                                         | 7.6                                                                                                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q7                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۳.,        | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                       | 13.4                                                                                                                                                                                          | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 843                                                                                                                                                                         | 7.7                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۳.,        | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                       | 10.9                                                                                                                                                                                          | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 862                                                                                                                                                                         | 7.9                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q9                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۳.         | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                       | 12.6                                                                                                                                                                                          | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 772                                                                                                                                                                         | 7.9                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | ۳.         | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                        | 60.3                                                                                                                                                                                          | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1180                                                                                                                                                                        | 7.7                                                                                                                                                                                | 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                        | 32.0                                                                                                                                                                                          | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 722                                                                                                                                                                         | 8.2                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |                                                                                                  | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                       | 12.3                                                                                                                                                                                          | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 773                                                                                                                                                                         | 7.9                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>13</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                       | 13.1                                                                                                                                                                                          | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 836                                                                                                                                                                         | 7.8                                                                                                                                                                                | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>14</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | 2          | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                        | 37.7                                                                                                                                                                                          | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 886                                                                                                                                                                         | 8.2                                                                                                                                                                                | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠.         | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                        | 5.2                                                                                                                                                                                           | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2523                                                                                                                                                                        | 7.6                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | × .        | 1                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                        | 36.4                                                                                                                                                                                          | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1004                                                                                                                                                                        | 7.8                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | *          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                       | 24.8                                                                                                                                                                                          | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2359                                                                                                                                                                        | 7.6                                                                                                                                                                                | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | •          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                       | n.d.                                                                                                                                                                                          | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1125                                                                                                                                                                        | 7.8                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q7                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۳.         | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                       | 10.2                                                                                                                                                                                          | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1164                                                                                                                                                                        | 7.5                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۳.         | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                       | 10.2                                                                                                                                                                                          | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1383                                                                                                                                                                        | 7.8                                                                                                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 2                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                       |                                                                                                                                                                                               | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1363                                                                                                                                                                        | 7.8                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | •          |                                                                                                  | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          | n.d.                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             |                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                        | 60.4                                                                                                                                                                                          | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1320                                                                                                                                                                        | 7.4                                                                                                                                                                                | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>13</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                       | 8.7                                                                                                                                                                                           | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1219                                                                                                                                                                        | 7.4                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q <sub>14</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | 2          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                       | 36.1                                                                                                                                                                                          | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 949                                                                                                                                                                         | 7.5                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | ٢.         | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                        | 3.8                                                                                                                                                                                           | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2993                                                                                                                                                                        | 8.0                                                                                                                                                                                | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | × .        | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                        | 35.7                                                                                                                                                                                          | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1007                                                                                                                                                                        | 7.8                                                                                                                                                                                | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>17</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.d.                                                                                                                                                                                     | 29.5                                                                                                                                                                                          | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 809                                                                                                                                                                         | 7.9                                                                                                                                                                                | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>18</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                        | 14.2                                                                                                                                                                                          | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 875                                                                                                                                                                         | 7.7                                                                                                                                                                                | 4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>19</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                       | 32.8                                                                                                                                                                                          | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 999                                                                                                                                                                         | 7.6                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q <sub>20</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                       | 19.0                                                                                                                                                                                          | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 661                                                                                                                                                                         | 7.8                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 2                                                                                                | Qs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 980                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q <sub>21</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                       | 15.0<br>55.0                                                                                                                                                                                  | 16.2<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 629                                                                                                                                                                         | 7.5                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| s                                                                                                                                                                                                                                                                                                                                                                                                                                              | *          | 2                                                                                                | spring<br>spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                        | 55.0                                                                                                                                                                                          | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 748                                                                                                                                                                         | 7.9                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1                                                                                                | T <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                                                                                                                                                                                       | 21.6                                                                                                                                                                                          | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 552                                                                                                                                                                         | 8.0                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>r</b> - | 1                                                                                                | TD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                      | 7.2                                                                                                                                                                                           | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 908                                                                                                                                                                         | 8.0                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| т.                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          | 27.7                                                                                                                                                                                          | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1176                                                                                                                                                                        | 7.8                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T2<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                                  | т.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1170                                                                                                                                                                        | 1.0                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $T_3$                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1                                                                                                | T <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T₃<br>T₄                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1                                                                                                | TD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110                                                                                                                                                                                      | 27.4                                                                                                                                                                                          | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 725                                                                                                                                                                         | 8.1                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T₃<br>T₄<br>T₅                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1<br>1                                                                                           | T⊳<br>T⊳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>125                                                                                                                                                                               | 27.1                                                                                                                                                                                          | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325                                                                                                                                                                        | 7.8                                                                                                                                                                                | 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T <sub>3</sub><br>T₄<br>T₅<br>T <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                   |            | 1<br>1<br>1                                                                                      | T⊳<br>T⊳<br>T⊳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             |                                                                                                                                                                                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T <sub>3</sub><br>T <sub>4</sub><br>T <sub>5</sub><br>T <sub>6</sub><br>T <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                         |            | 1<br>1<br>1<br>2                                                                                 | T₀<br>T₀<br>T₀<br>T₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110<br>125<br>110<br>90                                                                                                                                                                  | 27.1                                                                                                                                                                                          | 16.5<br>18.5<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325                                                                                                                                                                        | 7.8<br>7.8<br>7.7                                                                                                                                                                  | 3-<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| T <sub>3</sub><br>T₄<br>T₅<br>T <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                   |            | 1<br>1<br>1                                                                                      | T⊳<br>T⊳<br>T⊳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110<br>125<br>110                                                                                                                                                                        | 27.1<br>-4.5                                                                                                                                                                                  | 16.5<br>18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736                                                                                                                                                                 | 7.8<br>7.8                                                                                                                                                                         | 3-<br>31<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T <sub>3</sub><br>T <sub>4</sub><br>T <sub>5</sub><br>T <sub>6</sub><br>T <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                         |            | 1<br>1<br>1<br>2                                                                                 | T₀<br>T₀<br>T₀<br>T₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110<br>125<br>110<br>90                                                                                                                                                                  | 27.1<br>-4.5<br>21.6                                                                                                                                                                          | 16.5<br>18.5<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935                                                                                                                                                          | 7.8<br>7.8<br>7.7                                                                                                                                                                  | 3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $T_3$<br>$T_4$<br>$T_5$<br>$T_6$<br>$T_1$<br>$T_2$<br>$T_3$                                                                                                                                                                                                                                                                                                                                                                                    |            | 1<br>1<br>2<br>2                                                                                 | T₀<br>T₀<br>T₀<br>T₀<br>T₀<br>T₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110<br>125<br>110<br>90<br>100                                                                                                                                                           | 27.1<br>-4.5<br>21.6<br>11.4                                                                                                                                                                  | 16.5<br>18.5<br>20.0<br>19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095                                                                                                                                                  | 7.8<br>7.8<br>7.7<br>7.7                                                                                                                                                           | 3.<br>31<br>31<br>42<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $T_3$<br>$T_4$<br>$T_5$<br>$T_6$<br>$T_1$<br>$T_2$<br>$T_3$<br>$T_5$                                                                                                                                                                                                                                                                                                                                                                           |            | 1<br>1<br>2<br>2<br>2<br>2<br>2                                                                  | Τ <sub>Ρ</sub><br>Τ <sub>Ρ</sub><br>Τ <sub>Ρ</sub><br>Τ <sub>Ρ</sub><br>Τ <sub>Ρ</sub><br>Τ <sub>Ρ</sub><br>Τ <sub>Ρ</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110<br>125<br>110<br>90<br>100<br>100<br>125                                                                                                                                             | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4                                                                                                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095<br>1500<br>1330                                                                                                                                  | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9                                                                                                                                             | 3.<br>31<br>31<br>42<br>31<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ \hline T_{6} \\ \end{array}$                                                                                                                                                                                                                                                                                                           |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                        | T₀<br>T₀<br>T₀<br>T₀<br>T₀<br>T₀<br>T₀<br>T₀<br>T₀<br>T₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>125<br>110<br>90<br>100<br>100                                                                                                                                                    | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5                                                                                                                                          | 16.5<br>18.5<br>20.0<br>19.8<br>17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1095<br>1500                                                                                                                                          | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2                                                                                                                                      | 3-<br>3-<br>4:<br>3-<br>3-<br>3-<br>3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ \end{array} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \end{array}$                                                                                                                                                                                                                                                                                                           |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                         | T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>125<br>110<br>90<br>100<br>100<br>125<br>110<br>70                                                                                                                                | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0                                                                                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164                                                                                                                   | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7                                                                                                                        | 3.<br>31<br>42<br>31<br>31<br>31<br>31<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \end{array}$                                                                                                                                                                                                                                                                                                   |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub><br>T <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>125<br>110<br>90<br>100<br>100<br>125<br>110<br>70<br>156                                                                                                                         | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.                                                                                                                          | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374                                                                                                           | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0                                                                                                                        | 3.<br>31<br>4.<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \end{array}$                                                                                                                                                                                                                                                                                          |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>125<br>110<br>90<br>100<br>100<br>125<br>110<br>70<br>156<br>85                                                                                                                   | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9                                                                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971                                                                                                    | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9                                                                                                                 | 3.<br>31<br>4:<br>33<br>34<br>34<br>33<br>4.<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \end{array}$                                                                                                                                                                                                                                                                                       |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub><br>Τ <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>125<br>110<br>90<br>100<br>100<br>125<br>110<br>70<br>156<br>85<br>125                                                                                                            | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.                                                                                                          | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053                                                                                            | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>7.9                                                                                                   | 3.<br>31<br>4:<br>32<br>33<br>33<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \end{array}$                                                                                                                                                                                                                                                                             |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130                                                                                                            | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8                                                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824                                                                                     | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>8.0                                                                                     | 3.<br>3.<br>4:<br>3.<br>3.<br>3.<br>3.<br>4.<br>3.<br>3.<br>1.<br>1.<br>1.<br>1.<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \end{array}$                                                                                                                                                                                                                                                                   |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110                                                                                                     | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.                                                                                          | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994                                                                                      | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8                                                                                     | 3.<br>3.<br>4.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>1.<br>1.<br>1.<br>9.<br>4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \end{array}$                                                                                                                                                                                                                                                                |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>130<br>110<br>110                                                                                       | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>n.d.                                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137                                                                      | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6                                                                | 3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>1-<br>1-<br>1-<br>1-<br>1-<br>4-<br>3-<br>3-<br>3-<br>3-<br>1-<br>1-<br>1-<br>1-<br>1-<br>3-<br>3-<br>3-<br>3-<br>3-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3- |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \end{array}$                                                                                                                                                                                                                                                                   |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110                                                                                                     | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.                                                                                          | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994                                                                                      | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8                                                                                     | 3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>1-<br>1-<br>1-<br>1-<br>1-<br>4-<br>3-<br>3-<br>3-<br>3-<br>1-<br>1-<br>1-<br>1-<br>1-<br>3-<br>3-<br>3-<br>3-<br>3-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>1-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3-<br>3- |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \end{array}$                                                                                                                                                                                                                                               |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Τ <sub>0</sub><br>Τ <sub>0</sub><br>Τ <sub>0</sub><br>Τ <sub>0</sub><br>Τ <sub>0</sub><br>Τ <sub>0</sub><br>Τ <sub>0</sub><br>Τ <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>130<br>110<br>110                                                                                       | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>n.d.                                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449                                                                      | 7.8<br>7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6                                                                | 3.<br>3.<br>4.<br>3.<br>3.<br>3.<br>3.<br>4.<br>3.<br>1.<br>9.<br>4.<br>3.<br>9.<br>4.<br>3.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{15} \end{array}$                                                                                                                                                                                                                                              |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub><br>Τ <sub>ο</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>110<br>175<br>60                                                                                 | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>23.8<br>n.d.<br>19.3                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.4<br>19.3<br>17.1<br>17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137                                                                      | 7.8<br>7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6                                                                | 3.<br>3.<br>4.<br>3.<br>3.<br>3.<br>3.<br>3.<br>4.<br>3.<br>1.<br>9.<br>4.<br>3.<br>9.<br>4.<br>3.<br>1.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ \hline T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{15} \\ \hline T_{16} \\ \end{array}$                                                                                                                                                                                                          |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το<br>Το                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>125<br>110<br>900<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>00<br>22                                                                     | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br><u>n.d.</u><br>19.3<br><u>n.d.</u><br>-6.5                                    | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389                                                              | 7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.8<br>7.6<br>7.8<br>7.9                                    | 3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>1<br>1<br>1<br>4<br>3<br>4<br>3<br>1<br>1<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{15} \\ \hline T_{16} \\ \hline T_{16} \\ \end{array}$                                                                                                                                                                                                  |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | To           To | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>22<br>22                                                                            | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>19.3<br>n.d.<br>19.3<br>n.d.<br>5.8                                   | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219                                              | 7.8<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.8<br>7.6<br>6<br>7.6<br>7.8<br>7.9<br>7.5                               | 33<br>36<br>42<br>33<br>33<br>33<br>33<br>42<br>42<br>33<br>42<br>44<br>33<br>31<br>44<br>44<br>44<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{15} \\ T_{16} \\ T_{16} \\ T_{17} \end{array}$                                                                                                                                                                                                                       |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | Το           Το | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>80<br>22<br>22<br>22<br>22<br>22                                              | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>-6.5<br>-5.8<br>23.7                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.4<br>19.4<br>19.4<br>19.5<br>17.1<br>17.0<br>19.1<br>16.1<br>16.8<br>19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414                              | 7.8<br>7.7<br>7.7<br>7.7<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>7.9<br>7.6<br>7.6<br>7.6<br>7.9<br>7.5<br>7.6                      | 33<br>34<br>42<br>33<br>33<br>33<br>34<br>42<br>44<br>33<br>31<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ T_{16} \\ T_{17} \\ T_{18} \end{array}$                                                                                                                                                                               |            | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                          | Το           Το | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>80<br>22<br>22<br>22<br>40<br>34                                              | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>19.3                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>19.4<br>19.3<br>17.1<br>17.0<br>19.4<br>19.3<br>17.1<br>17.0<br>19.4<br>18.5<br>18.5<br>18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414<br>837                               | 7.8<br>7.7<br>7.7<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>7.9<br>7.9<br>7.8<br>7.6<br>7.6<br>7.8<br>7.6<br>7.8<br>7.6<br>7.6<br>7.6<br>8.0                                    | 33<br>34<br>42<br>33<br>34<br>33<br>35<br>34<br>44<br>41<br>31<br>31<br>33<br>33<br>34<br>34<br>33<br>33<br>34<br>34<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} {\rm T}_{3} \\ {\rm T}_{4} \\ {\rm T}_{5} \\ {\rm T}_{6} \\ {\rm T}_{1} \\ {\rm T}_{2} \\ {\rm T}_{3} \\ {\rm T}_{5} \\ {\rm T}_{6} \\ {\rm T}_{7} \\ {\rm T}_{6} \\ {\rm T}_{7} \\ {\rm T}_{10} \\ {\rm T}_{11} \\ {\rm T}_{12} \\ {\rm T}_{13} \\ {\rm T}_{14} \\ {\rm T}_{15} \\ {\rm T}_{16} \\ {\rm T}_{17} \\ {\rm T}_{18} \\ {\rm T}_{18} \\ {\rm T}_{19} \end{array}$                                                |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | To           To | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>125<br>130<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40<br>34<br>40                                             | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d<br>53.9<br>n.d<br>23.8<br>n.d<br>19.3                                                                                     | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>18.4<br>19.3<br>17.1<br>16.1<br>16.8<br>19.2<br>18.2<br>18.2<br>19.1<br>19.1<br>18.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.5<br>19.1<br>19.4<br>19.5<br>19.5<br>19.4<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5 | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414<br>837<br>944                | 7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.6<br>7.8<br>7.6<br>7.5<br>7.6<br>8.0<br>7.5<br>7.5<br>8.0<br>7.5        | 33<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ \hline T_{6} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ \hline T_{16} \\ \hline T_{16} \\ T_{16} \\ T_{17} \\ T_{18} \end{array}$                                                                                                                                                                               |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | Το           Το | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>125<br>125<br>130<br>175<br>60<br>80<br>22<br>22<br>22<br>22<br>22<br>40<br>34<br>34<br>99<br>99                                   | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>19.3                                                                  | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>19.4<br>19.3<br>17.1<br>17.0<br>19.4<br>19.3<br>17.1<br>17.0<br>19.4<br>18.5<br>18.5<br>18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414<br>837                               | 7.8<br>7.7<br>7.7<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>7.9<br>7.9<br>7.8<br>7.6<br>7.6<br>7.8<br>7.6<br>7.8<br>7.6<br>7.6<br>7.6<br>8.0                                    | 33<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} {\rm T}_{3} \\ {\rm T}_{4} \\ {\rm T}_{5} \\ {\rm T}_{6} \\ {\rm T}_{1} \\ {\rm T}_{2} \\ {\rm T}_{3} \\ {\rm T}_{5} \\ {\rm T}_{6} \\ {\rm T}_{7} \\ {\rm T}_{6} \\ {\rm T}_{7} \\ {\rm T}_{10} \\ {\rm T}_{11} \\ {\rm T}_{12} \\ {\rm T}_{13} \\ {\rm T}_{14} \\ {\rm T}_{15} \\ {\rm T}_{16} \\ {\rm T}_{17} \\ {\rm T}_{18} \\ {\rm T}_{18} \\ {\rm T}_{19} \end{array}$                                                |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | Το           Το | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>125<br>130<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40<br>34<br>40                                             | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d<br>53.9<br>n.d<br>23.8<br>n.d<br>19.3                                                                                     | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>18.4<br>19.3<br>17.1<br>16.1<br>16.8<br>19.2<br>18.2<br>18.2<br>19.1<br>19.1<br>18.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.3<br>17.0<br>19.4<br>19.5<br>19.1<br>19.4<br>19.5<br>19.5<br>19.4<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5 | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414<br>837<br>944                | 7.8<br>7.7<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>8.0<br>7.9<br>8.0<br>7.8<br>7.6<br>7.6<br>7.6<br>7.8<br>7.6<br>7.5<br>7.6<br>8.0<br>7.5<br>7.5<br>8.0<br>7.5        | 34<br>36<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} {\rm T}_{3} \\ {\rm T}_{4} \\ {\rm T}_{5} \\ {\rm T}_{6} \\ {\rm T}_{1} \\ {\rm T}_{2} \\ {\rm T}_{3} \\ {\rm T}_{5} \\ {\rm T}_{7} \\ {\rm T}_{8} \\ {\rm T}_{7} \\ {\rm T}_{8} \\ {\rm T}_{7} \\ {\rm T}_{11} \\ {\rm T}_{12} \\ {\rm T}_{13} \\ {\rm T}_{11} \\ {\rm T}_{12} \\ {\rm T}_{13} \\ {\rm T}_{16} \\ {\rm T}_{16} \\ {\rm T}_{17} \\ {\rm T}_{18} \\ {\rm T}_{19} \\ {\rm T}_{20} \\ {\rm T}_{22} \end{array}$ |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | To           Ts           Ts           Ts           Ts           Ts           Ts           Ts           Ts                                                                                                                                                | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>125<br>125<br>130<br>175<br>60<br>80<br>22<br>22<br>22<br>22<br>22<br>40<br>34<br>34<br>99<br>99                                   | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>19.3<br>n.d.<br>19.3<br>-6.5<br>-5.8<br>23.7<br>126.0<br>106.3<br>9.0 | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.1<br>16.1<br>16.8<br>19.2<br>18.0<br>17.8<br>17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1500<br>1300<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414<br>837<br>944<br>1528                       | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>7.9<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.0<br>7.7 | 34<br>36<br>30<br>30<br>30<br>30<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>32<br>31<br>32<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} {\rm T}_{3} \\ {\rm T}_{4} \\ {\rm T}_{5} \\ {\rm T}_{6} \\ {\rm T}_{1} \\ {\rm T}_{2} \\ {\rm T}_{3} \\ {\rm T}_{5} \\ {\rm T}_{7} \\ {\rm T}_{8} \\ {\rm T}_{7} \\ {\rm T}_{8} \\ {\rm T}_{7} \\ {\rm T}_{11} \\ {\rm T}_{12} \\ {\rm T}_{13} \\ {\rm T}_{11} \\ {\rm T}_{12} \\ {\rm T}_{13} \\ {\rm T}_{16} \\ {\rm T}_{16} \\ {\rm T}_{17} \\ {\rm T}_{18} \\ {\rm T}_{19} \\ {\rm T}_{20} \\ {\rm T}_{22} \end{array}$ |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | Το           Το | 110<br>125<br>100<br>100<br>100<br>125<br>110<br>70<br>156<br>85<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22   | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>-6.5<br>-5.8<br>23.7<br>126.0<br>106.3<br>9.0<br>102.5                | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>17.0<br>19.4<br>19.3<br>17.1<br>17.0<br>19.4<br>19.3<br>17.7<br>19.4<br>19.3<br>17.7<br>19.4<br>19.3<br>17.2<br>19.4<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1325<br>736<br>935<br>1095<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414<br>837<br>944<br>4528<br>649 | 7.8<br>7.7<br>7.7<br>7.9<br>8.2<br>7.7<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>7.9<br>8.0<br>7.6<br>7.6<br>7.8<br>7.6<br>7.8<br>7.6<br>8.0<br>8.0<br>8.0<br>8.0<br>7.7<br>7.7        | 33<br>30<br>44<br>43<br>33<br>30<br>42<br>42<br>42<br>42<br>33<br>30<br>44<br>43<br>33<br>30<br>44<br>44<br>33<br>33<br>30<br>30<br>44<br>44<br>33<br>33<br>33<br>30<br>33<br>30<br>33<br>30<br>33<br>33<br>33<br>33<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{2} \\ T_{3} \\ T_{5} \\ T_{7} \\ T_{8} \\ T_{7} \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{15} \\ T_{16} \\ T_{17} \\ T_{18} \\ T_{19} \\ T_{17} \\ T_{18} \\ T_{19} \\ T_{20} \\ T_{21} \end{array}$                                                                                                                                                           |            | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | Το           Τς           Τς | 110<br>125<br>110<br>90<br>100<br>125<br>110<br>70<br>125<br>125<br>125<br>125<br>130<br>110<br>175<br>60<br>80<br>22<br>22<br>22<br>40<br>34<br>40<br>34<br>10<br>9<br>5<br><i>n.d.</i> | 27.1<br>-4.5<br>21.6<br>11.4<br>22.1<br>24.4<br>-4.5<br>42.0<br>n.d.<br>53.9<br>n.d.<br>23.8<br>n.d.<br>19.3<br>n.d.<br>-6.5<br>-5.8<br>23.7<br>126.0<br>106.3<br>9.0<br>102.5<br>n.d.        | 16.5<br>18.5<br>20.0<br>19.8<br>17.2<br>19.1<br>19.0<br>21.2<br>18.1<br>18.4<br>20.7<br>19.4<br>19.3<br>17.1<br>16.3<br>17.1<br>16.1<br>16.8<br>19.2<br>18.0<br>17.8<br>18.0<br>17.8<br>17.7<br>22.2<br>17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325<br>736<br>935<br>1500<br>1330<br>600<br>1164<br>1374<br>971<br>1053<br>824<br>994<br>1137<br>1449<br>1389<br>1006<br>1219<br>2414<br>837<br>944<br>1528<br>649<br>1055 | 7.8<br>7.7<br>7.7<br>7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>7.9<br>8.0<br>7.8<br>7.6<br>7.8<br>7.6<br>7.8<br>7.6<br>7.8<br>7.6<br>8.0<br>8.0<br>7.7<br>7.7<br>7.7                      | n<br>34<br>36<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |


Table 2. Hydrochemical data for the January and August 2004 field campaigns ("\*" = DOC concentrations instead of TOC concentrations). R<sub>1</sub> and R<sub>2</sub> Ter River samples are

from the Colomers station, NW of the study zone (Fig. 1). (*n.d.*: Not determined; *u.d.l.*:

376 under detection limit).

| Sample                                                                                      | Field<br>campaign | Hydrogeological<br>formation                       | HCO 3 <sup>-</sup><br>(mg/L) | SO 4 <sup>2-</sup><br>(mg/L) | Cl <sup>-</sup><br>(mg/L) | NO 3 <sup>-</sup><br>(mg/L) | Na*<br>(mg/L) | K*<br>(mg/L)     | Ca <sup>2+</sup><br>(mg/L) | Mg²+<br>(mg/L) | NH₄*<br>(mg/L) | TOC<br>(mg/L) | Mn<br>(mg/L) | Fe<br>(mg/L)     | B<br>(mg/L     |
|---------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------|------------------------------|------------------------------|---------------------------|-----------------------------|---------------|------------------|----------------------------|----------------|----------------|---------------|--------------|------------------|----------------|
| Q1<br>Q2                                                                                    | 1<br>1            | Q <sub>D</sub><br>Q <sub>D</sub>                   | 413<br>349                   | 66<br>48                     | 138<br>51                 | u.d.l.<br>u.d.l.            | 43<br>44      | u.d.l.<br>3      | 157<br>90                  | 23<br>19       | 0.15<br>0.47   | 1.2<br>1.0    | 0.056        | 0.015            | и.a<br>и.a     |
| Q <sub>2</sub><br>Q <sub>3</sub>                                                            | •                 | QD                                                 | 361                          | 117                          | 79                        | 115                         | 37            | u.d.l.           | 181                        | 18             | 0.15           | 1.0           | 0.002        | 0.010            | u.c            |
| Q <sub>2</sub>                                                                              | 2                 | QD                                                 | 341                          | 41                           | 61                        | u.d.l.                      | 45            | 3                | 99                         | 19             | 0.41           | 0.6           | 0.335        | 0.016            | и.             |
| Q3                                                                                          | 2                 | QD                                                 | 335                          | 129                          | 79                        | 144                         | 36            | u.d.l.           | 184                        | 17             | 0.14           | 0.9           | 0.002        | u.d.l.           | и.             |
| Q4                                                                                          | 1                 | Qs                                                 | 473                          | 227                          | 269                       | 6                           | 92            | 4                | 239                        | 40             | 0.25           | 2.3           | 4.380        | 0.019            | 0.1            |
| Q5                                                                                          | 1<br>•            | Qs                                                 | 463                          | 223                          | 200                       | 215                         | 88            | u.d.l.           | 291                        | 28             | 0.13           | 2.1           | 0.002        | 0.019            | и.             |
| Q6<br>Q7                                                                                    | 1<br>• 1          | Qs<br>Qs                                           | 388<br>353                   | 71<br>111                    | 62<br>76                  | 88<br>48                    | 31<br>30      | 2<br>u.d.l.      | 153<br>159                 | 18<br>22       | 0.15<br>0.13   | 1.6<br>1.0    | 0.003        | 0.015            | и.<br>и.       |
| Q <sub>8</sub>                                                                              | • 1               | Qs                                                 | 353                          | 136                          | 99                        | 40                          | 60            | 3                | 128                        | 25             | 0.13           | 1.4           | 0.783        | 0.013            | u.<br>u.       |
| Q <sub>9</sub>                                                                              | • 1               | Qs                                                 | 372                          | 86                           | 84                        | 25                          | 63            | 4                | 120                        | 17             | 0.12           | 1.4           | 0.002        | 0.012            | 0.2            |
| Q <sub>10</sub>                                                                             | 1                 | Qs                                                 | 384                          | 114                          | 60                        | 325                         | 41            | u.d.l.           | 245                        | 15             | 0.18           | 1.3           | 0.001        | 0.014            | 0.1            |
| Q11                                                                                         | 1                 | Qs                                                 | 253                          | 60                           | 52                        | 31                          | 31            | 3                | 94                         | 13             | 0.17           | 3.3           | 0.003        | 0.018            | и.             |
| Q <sub>12</sub>                                                                             | 1                 | Qs                                                 | 324                          | 134                          | 81                        | 12                          | 43            | 2                | 141                        | 20             | 0.18           | 1.1           | 0.001        | 0.011            | 0.0            |
| Q13                                                                                         | 1                 | Qs                                                 | 401                          | 89                           | 106                       | 51                          | 44            | u.d.l.           | 167                        | 20             | 0.15           | 1.9           | 0.001        | 0.017            | 0.0            |
| Q <sub>14</sub>                                                                             | 1                 | Qs                                                 | 210                          | 77                           | 52                        | 147                         | 29            | u.d.l.           | 128                        | 12             | 0.15           | 1.7           | 0.002        | u.d.l.           | и.             |
| Q <sub>15</sub>                                                                             | 1                 | Qs                                                 | 427                          | 277                          | 294                       | 387                         | 94            | 72               | 283                        | 76             | 0.14           | 3.2           | 0.001        | 0.011            | 0.1            |
| Q <sub>16</sub>                                                                             | 2                 | Qs<br>Qs                                           | 351<br>483                   | 124                          | 76                        | 168                         | 57            | u.d.l.           | 183<br>331                 | 19<br>30       | 0.17           | 1.9           | 0.001        | u.d.l.<br>u.d.l. | u.<br>u.       |
| Q5<br>Q6                                                                                    | 2                 | Qs<br>Qs                                           | 483<br>366                   | 321<br>88                    | 226<br>59                 | 328<br>129                  | 123<br>28     | u.d.l.<br>2      | 331                        | 30<br>18       | 0.14           | 1.6<br>0.6    | 0.001        | u.a.ı.<br>u.d.l. | u.<br>u.       |
| Q <sub>7</sub>                                                                              | 2                 | Qs                                                 | 399                          | 112                          | 79                        | 129                         | 30            | u.d.l.           | 201                        | 26             | 0.10           | 0.5           | 0.000        | 0.011            | u.<br>u.       |
| Q <sub>8</sub>                                                                              | 2                 | Qs                                                 | 337                          | 204                          | 139                       | 51                          | 71            | 3                | 174                        | 31             | 0.08           | 1.1           | 0.971        | u.d.l.           | и.             |
| Q9                                                                                          | 2                 | Qs                                                 | 358                          | 86                           | 84                        | 26                          | 58            | 4                | 130                        | 17             | 0.11           | 0.6           | 0.002        | u.d.l.           | 0.2            |
| Q <sub>10</sub>                                                                             | 2                 | Qs                                                 | 440                          | 76                           | 50                        | 241                         | 45            | u.d.l.           | 225                        | 13             | 0.12           | 0.9           | 0.002        | 0.012            | 0.1            |
| Q <sub>13</sub>                                                                             | 2                 | Qs                                                 | 405                          | 120                          | 86                        | 66                          | 44            | 2                | 178                        | 21             | 0.08           | 1.2           | 0.001        | u.d.l.           | 0.1            |
| Q <sub>14</sub>                                                                             | 2                 | Qs                                                 | 195                          | 66                           | 55                        | 201                         | 29            | u.d.l.           | 140                        | 13             | 0.08           | 0.5           | 0.002        | 0.011            | и.             |
| Q <sub>15</sub>                                                                             | 2                 | Qs                                                 | 413                          | 371                          | 362                       | 480                         | 111           | 68               | 345                        | 85             | 0.14           | 3.4           | 0.001        | u.d.l.           | 0.1            |
| Q <sub>16</sub>                                                                             | 2                 | Qs                                                 | 356<br>301                   | 93<br>29                     | 55<br>28                  | 65<br>60                    | 47<br>18      | u.d.l.<br>u.d.l. | 143<br>116                 | 14<br>12       | 0.14           | 0.6<br>0.4    | 0.001        | u.d.l.<br>u.d.l. | и.<br>и.       |
| Q <sub>17</sub><br>Q <sub>18</sub>                                                          | 2                 | Q <sub>S</sub><br>Q <sub>S</sub>                   | 301                          | 29<br>102                    | 28<br>47                  | 60<br>83                    | 18            | u.a.i.<br>6      | 116                        | 12             | 0.13           | 0.4           | 0.001        | u.a.i.<br>u.d.i. | и.<br>и.       |
| Q <sub>18</sub>                                                                             | 2                 | Qs                                                 | 304                          | 55                           | 52                        | 205                         | 24            | u.d.l.           | 166                        | 14             | 0.15           | 0.7           | 0.001        | 0.022            | u.<br>u.       |
| Q <sub>20</sub>                                                                             | 2                 | Qs                                                 | 177                          | 52                           | 52                        | 50                          | 29            | 5                | 83                         | 11             | 0.12           | 0.9           | 0.001        | 0.012            | 0.0            |
| Q <sub>21</sub>                                                                             | 2                 | Qs                                                 | 313                          | 95                           | 71                        | 45                          | 55            | 4                | 124                        | 16             | 0.21           | 0.6           | 0.002        | 0.011            | 0.2            |
| S                                                                                           | 1                 | spring                                             | 298                          | 64                           | 47                        | 37                          | 29            | u.d.l.           | 110                        | 12             | 0.18           | 1.4           | 0.001        | 0.011            | и.             |
| S<br>T1                                                                                     | 2                 | spring<br>T <sub>D</sub>                           | 268<br>417                   | 58<br>68                     | 50<br>43                  | 68<br>10                    | 31<br>42      | u.d.l.<br>3      | 117                        | 13<br>13       | 0.15           | 1.0           | 0.001        | 0.013            | и.<br>и.       |
| T <sub>2</sub>                                                                              | 1                 | TD                                                 | 470                          | 156                          | 87                        | 9                           | 51            | 3                | 129                        | 54             | 0.13           | 1.3           | 0.018        | 0.012            | u.             |
| T <sub>3</sub>                                                                              | 1                 | TD                                                 | 276                          | 116                          | 123                       | 222                         | 55            | u.d.l.           | 185                        | 22             | 0.15           | 1.9           | 0.001        | 0.014            | и.             |
| T4                                                                                          | 1                 | TD                                                 | 383                          | 110                          | 60                        | 15                          | 33            | 49               | 118                        | 24             | 0.16           | 1.2           | 0.025        | 0.016            | 0.0            |
| T <sub>5</sub>                                                                              | 1                 | TD                                                 | 430                          | 152                          | 119                       | 222                         | 105           | 12               | 178                        | 36             | 0.20           | 2.8           | 0.007        | 0.012            | 0.0            |
| T <sub>6</sub>                                                                              | 1                 | TD                                                 | 382                          | 59                           | 76                        | 46                          | 57            | 3                | 118                        | 20             | 0.14           | 1.2           | 0.007        | 0.014            | и.             |
| T <sub>1</sub>                                                                              | 2                 | TD                                                 | 402                          | 55                           | 41                        | 23                          | 35            | 3                | 136                        | 12             | 0.16           | 0.4           | 0.001        | u.d.l.           | и.             |
| T2                                                                                          | 2                 | TD                                                 | 435                          | 157                          | 74                        | 11                          | 44            | 3                | 127                        | 51             | 0.12           | 0.7           | 0.026        | u.d.l.           | 0.0            |
| T3<br>T                                                                                     | 2                 | TD                                                 | 376<br>514                   | 91                           | 180                       | 221<br>61                   | 68<br>162     | 4                | 214                        | 30<br>23       | 0.12           | 1.7           | 0.001        | u.d.l.           | 0.0            |
| Τ <sub>5</sub><br>Τ <sub>6</sub>                                                            | 2                 | T <sub>D</sub><br>T <sub>D</sub>                   | 354                          | 118<br>34                    | 99<br>70                  | 3                           | 54            | 11<br>3          | 94<br>100                  | 23             | 0.18<br>0.14   | 0.6<br>0.3    | 0.010        | u.d.l.<br>u.d.l. | 0.1            |
| 16<br>T <sub>7</sub>                                                                        | 2                 | TD                                                 | 368                          | 83                           | 66                        | 139                         | 34            | u.d.l.           | 183                        | 14             | 0.14           | 0.9           | 0.007        | u.d.l.           | u.             |
| T <sub>8</sub>                                                                              | 2                 | TD                                                 | 222                          | 107                          | 135                       | 265                         | 58            | 9                | 181                        | 24             | 0.12           | 1.1           | 0.007        | 0.016            | и.             |
| T <sub>9</sub>                                                                              | 2                 | TD                                                 | 384                          | 31                           | 118                       | u.d.l.                      | 75            | 5                | 81                         | 39             | 0.16           | 0.9           | 0.197        | 0.013            | 0.0            |
| T <sub>10</sub>                                                                             | 2                 | TD                                                 | 533                          | 74                           | 52                        | u.d.l.                      | 63            | 2                | 168                        | 16             | 0.10           | 0.4           | 0.064        | 0.013            | 0.0            |
| T <sub>11</sub>                                                                             | 2                 | TD                                                 | 323                          | 32                           | 46                        | 69                          | 41            | 3                | 106                        | 16             | 0.11           | 0.8           | 0.001        | 0.013            | и.             |
| T <sub>12</sub>                                                                             | 2                 | TD                                                 | 379                          | 52                           | 62                        | 71                          | 33            | 3                | 104                        | 45             | 0.12           | 0.4           | 0.002        | 0.013            | и.             |
| T <sub>13</sub>                                                                             | 2                 | TD                                                 | 392                          | 86                           | 96                        | 46                          | 55            | 2                | 146                        | 28             | 0.12           | 0.7           | 0.001        | 0.010            | 0.0            |
| T <sub>14</sub>                                                                             | 2                 | T <sub>D</sub>                                     | 619                          | 87<br>95                     | 126                       | u.d.l.                      | 74<br>114     | 4                | 102<br>110                 | 94<br>42       | 0.33           | 0.5           | 0.042        | 0.016            | 0.0            |
| T <sub>15</sub><br>T <sub>16</sub>                                                          | 2                 | T <sub>D</sub><br>T <sub>S</sub>                   | 401<br>388                   | 95<br>149                    | 130<br>93                 | 152<br>63                   | 114<br>55     | 3                | 110                        | 42             | 0.21           | 1.2           | 0.002        | 0.014            | 0.             |
| T <sub>16</sub>                                                                             | 2                 | Ts                                                 | 300                          | 149                          | 102                       | 71                          | 49            | u.d.l.           | 162                        | 37             | 0.12           | 0.9           | 0.002        | 0.014            | u.<br>u.       |
|                                                                                             | 2                 | Ts                                                 | 372                          | 245                          | 231                       | 419                         | 122           | 59               | 223                        | 70             | 0.23           | 2.6           | 0.002        | u.d.l.           | 0.0            |
| T <sub>17</sub>                                                                             | 2                 | Ts                                                 | 249                          | 30                           | 31                        | 147                         | 15            | u.d.l.           | 121                        | 19             | 0.14           | 0.6           | 0.001        | u.d.l.           | u              |
| T <sub>17</sub><br>T <sub>18</sub>                                                          |                   |                                                    | 348                          | 56                           | 39                        | 89                          | 33            | 7                | 137                        | 13             | 0.14           | 1.2           | 0.003        | u.d.l.           | u              |
|                                                                                             | 2                 | Ts                                                 |                              |                              |                           | 212                         | 56            | 6                | 200                        | 38             | 0.17           | 2.2           | 0.001        | u.d.l.           | 0.             |
| T <sub>18</sub>                                                                             |                   | T <sub>s</sub>                                     | 350                          | 210                          | 108                       | 212                         |               |                  |                            |                |                |               |              |                  |                |
| T <sub>18</sub><br>T <sub>19</sub>                                                          | 2                 |                                                    |                              | 210<br>30                    | 108<br>36                 | 6                           | 22            | u.d.l.           | 104                        | 9              | 0.14           | 1.0           | 0.002        | 0.012            | и.             |
| T <sub>18</sub><br>T <sub>19</sub><br>T <sub>20</sub><br>T <sub>21</sub><br>T <sub>22</sub> | 2<br>2<br>2<br>2  | T <sub>S</sub><br>T <sub>S</sub><br>T <sub>S</sub> | 350<br>300<br>371            | 30<br>81                     | 36<br>49                  | 6<br>153                    | 22<br>29      | u.d.l.           | 193                        | 8              | 0.16           | 1.1           | 0.002        | 0.012            | и.             |
| T <sub>18</sub><br>T <sub>19</sub><br>T <sub>20</sub><br>T <sub>21</sub>                    | 2<br>2<br>2       | T <sub>s</sub><br>T <sub>s</sub>                   | 350<br>300                   | 30                           | 36                        | 6                           | 22            |                  |                            |                |                |               |              |                  | u.<br>u.<br>u. |





381 determined).

| Sample                             | Field<br>campaign | Hydrogeological<br>formation     | δ <sup>18</sup> 0-H <sub>2</sub> 0<br>(‰) | $\delta^2 H$ (‰) | δ <sup>15</sup> Ν<br>(‰) | δ <sup>18</sup> O-NO <sub>3</sub><br>(‰) | δ <sup>34</sup> S<br>(‰) | δ <sup>18</sup> O-SO <sub>4</sub><br>(‰) | δ <sup>13</sup> C-DIC<br>(‰) | δ <sup>11</sup> Β<br>(‰) |
|------------------------------------|-------------------|----------------------------------|-------------------------------------------|------------------|--------------------------|------------------------------------------|--------------------------|------------------------------------------|------------------------------|--------------------------|
| Q <sub>1</sub>                     | 1                 | QD                               | -5.2                                      | -35.8            | n.d.                     | n.d.                                     | 14.7                     | 16.1                                     | -14.9                        | n.d.                     |
| Q <sub>2</sub>                     | 1                 | QD                               | -5.5                                      | -37.8            | n.d.                     | n.d.                                     | 13.9                     | 13.6                                     | -13.7                        | n.d.                     |
| Q <sub>3</sub>                     | 1                 | QD                               | -5.4                                      | -35.4            | 11.6                     | 8.3                                      | 0.4                      | 5.6                                      | -13.6                        | n.d.                     |
| Q <sub>2</sub>                     | 2                 | QD                               | -5.9                                      | -37.6            | n.d.                     | n.d.                                     | 10.3                     | 12.4                                     | -13.8                        | n.d.                     |
| Q <sub>3</sub>                     | 2                 | QD                               | -5.5                                      | -34.9            | 12.3                     | 8.4                                      | 0.9                      | 5.5                                      | -13.7                        | n.d.                     |
| Q4                                 | 1                 | Qs                               | -5.1                                      | -33.6            | 32.5                     | 18.1                                     | 8.2                      | 13.0                                     | -13.2                        | 34.5                     |
| Q5                                 | 1                 | Qs                               | -5.3                                      | -34.6            | 15.9                     | 8.9                                      | 12.2                     | 10.1                                     | -12.9                        | n.d.                     |
| Q <sub>6</sub>                     | 1                 | Qs                               | -5.3                                      | -33.9            | 11.3                     | 6.8                                      | 6.2                      | 6.8                                      | -13.2                        | n.d.                     |
| Q7                                 | 1                 | Qs                               | -6.0                                      | -40.8            | 12.2                     | 7.7                                      | 6.3                      | 7.8                                      | -11.3                        | n.d.                     |
| Q <sub>8</sub>                     | 1                 | Qs                               | -6.5                                      | -44.1            | 20.5                     | 13.7                                     | 9.1                      | 10.1                                     | -12.7                        | n.d.                     |
| Q9                                 | 1                 | Qs                               | -5.4                                      | -35.3            | 19.1                     | 10.1                                     | 6.8                      | 8.9                                      | -14.0                        | 23.3                     |
| Q <sub>10</sub>                    | 1                 | Qs                               | -5.8                                      | -39.5            | 10.4                     | 4.4                                      | 5.9                      | 4.8                                      | -12.5                        | 25.7                     |
| Q <sub>11</sub>                    | 1                 | Qs                               | -6.3                                      | -39.6            | 13.6                     | 8.7                                      | 5.1                      | 7.8                                      | -16.0                        | n.d.                     |
| Q <sub>12</sub>                    | 1                 | Qs                               | -6.3                                      | -41.9            | 13.3                     | 8.1                                      | 8.2                      | 8.9                                      | -12.4                        | 26.0                     |
| Q <sub>13</sub>                    | 1                 | Qs                               | -5.3                                      | -35.9            | 14.7                     | 9.2                                      | 6.3                      | 8.2                                      | -13.9                        | 28.3                     |
| Q <sub>14</sub>                    | 1                 | Qs                               | -5.6                                      | -36.8            | 7.7                      | 5.5                                      | 4.0                      | 5.4                                      | -11.3                        | n.d.                     |
| Q <sub>15</sub>                    | 1                 | Qs                               | -4.8                                      | -31.8            | 13.5                     | 7.5                                      | 2.6                      | 5.8                                      | -14.6                        | 30.4                     |
| Q <sub>16</sub>                    | 1                 | Qs                               | -5.5                                      | -36.9            | 8.7                      | 4.2                                      | 5.3                      | 5.3                                      | -14.0                        | n.d.                     |
| Q <sub>5</sub>                     | 2                 | Qs                               | -5.3                                      | -33.5            | 18.9                     | 5.3                                      | 12.7                     | 10.2                                     | -15.5                        | n.d.                     |
| $Q_6$                              | 2                 | Qs                               | -5.3                                      | -33.8            | 12.3                     | 7.2                                      | 6.1                      | 7.0                                      | -13.6                        | n.d.                     |
| Q7                                 | 2                 | Qs                               | -5.3                                      | -36.3            | 12.3                     | 6.5                                      | 3.0                      | 6.0                                      | -12.0                        | n.d.                     |
| Q <sub>8</sub>                     | 2                 | Qs                               | -6.6                                      | -43.9            | 16.3                     | 9.5                                      | 8.0                      | 7.8                                      | -11.8                        | n.d.                     |
| Q <sub>9</sub>                     | 2                 | Qs                               | -5.5                                      | -34.8            | 21.6                     | 10.6                                     | 7.7                      | 9.9                                      | -14.1                        | n.d.                     |
| Q <sub>10</sub>                    | 2                 | Qs                               | -6.0                                      | -40.6            | 13.4                     | 4.6                                      | 6.4                      | 5.1                                      | -16.0                        | n.d.                     |
| Q <sub>13</sub>                    | 2                 | Qs                               | -5.3                                      | -33.8            | 15.7                     | 9.1                                      | 5.9                      | 8.5                                      | -13.6                        | n.d.                     |
| Q <sub>14</sub>                    | 2                 | Qs                               | -5.2                                      | -34.8            | 9.9                      | 4.4                                      | 4.6                      | 5.0                                      | -14.7                        | n.d.                     |
| Q <sub>15</sub>                    | 2                 | Qs                               | -4.9                                      | -31.8            | 16.2                     | 4.6                                      | 3.3                      | 5.3                                      | -14.1                        | n.d.                     |
| Q <sub>16</sub>                    | 2                 | Qs                               | -5.8                                      | -37.3            | 7.2                      | 4.3                                      | 4.7                      | 6.1                                      | -14.1                        | n.d.                     |
| Q <sub>17</sub>                    | 2                 | Qs                               | -5.4                                      | -35.6            | 8.4                      | 4.8                                      | 7.2                      | 6.6                                      | -15.0                        | n.d.                     |
| Q <sub>18</sub>                    | 2                 | Qs                               | -5.6                                      | -38.0            | 8.2                      | 4.5                                      | -1.4                     | 6.3                                      | -12.2                        | n.d.                     |
| Q <sub>19</sub>                    | 2                 | Qs                               | -5.5                                      | -38.2            | 10.5                     | 5.5                                      | 3.1                      | 4.9                                      | -13.4                        | n.d.                     |
| Q <sub>20</sub>                    | 2                 | Qs                               | -5.6                                      | -36.2            | 13.6                     | 7.4                                      | 5.6                      | 6.6                                      | -14.9                        | 9.0                      |
| Q <sub>21</sub>                    | 2                 | Qs                               | -5.6                                      | -36.9            | 16.6                     | 9.9                                      | 5.4                      | 7.5                                      | -14.7                        | 1.4                      |
| S                                  | 1                 | spring                           | -5.8                                      | -37.4            | 8.6                      | 5.0                                      | 5.3                      | 7.3                                      | -14.3                        | n.d.                     |
| S                                  | 2                 | spring                           | -5.9                                      | -37.7            | 9.6                      | 6.8                                      | 5.4                      | 7.2                                      | -13.5                        | n.d.                     |
| T1                                 | 1                 | T <sub>D</sub>                   | -5.6                                      | -37.8            | 8.9                      | 6.8                                      | 1.6                      | 8.2                                      | -10.2                        | n.d.                     |
| T <sub>2</sub>                     | 1                 | T <sub>D</sub>                   | -5.2                                      | -35.1            | 16.0                     | 8.0                                      | -13.5                    | 3.8                                      | -9.0                         | n.d.                     |
| T <sub>3</sub>                     | 1                 | T <sub>D</sub>                   | -5.1                                      | -33.1            | 7.6                      | 4.7                                      | 4.9                      | 6.0                                      | -13.7                        | n.d.                     |
| $T_4$                              | 1                 | T <sub>D</sub>                   | -5.5                                      | -36.3            | 14.9                     | 10.1                                     | 4.9                      | 10.1                                     | -13.3                        | 31.7                     |
| T <sub>5</sub>                     | 1                 | TD                               | -5.3                                      | -34.7            | 11.1                     | 5.3                                      | 4.2                      | 4.8                                      | -12.5                        | 23.9                     |
| T <sub>6</sub>                     | 1                 | TD                               | -5.6                                      | -35.7            | 12.8                     | 6.9                                      | 2.3                      | 8.0                                      | -12.0                        | n.d.                     |
| T <sub>1</sub>                     | 2                 | TD                               | -5.8                                      | -36.4            | 10.8                     | 6.8                                      | 1.5                      | 7.6                                      | -11.2                        | n.d.                     |
| T <sub>2</sub>                     | 2                 | TD                               | -5.3                                      | -35.3            | 22.6                     | 10.9                                     | -13.4                    | 4.2                                      | -9.1                         | n.d.                     |
| T <sub>3</sub>                     | 2                 | TD                               | -5.2                                      | -36.1            | 11.0                     | 7.0                                      | 5.5                      | 6.2                                      | -13.9                        | n.d.                     |
| T <sub>5</sub>                     | 2                 | TD                               | -5.9                                      | -37.5            | 13.7                     | 6.5                                      | 5.8                      | 7.9                                      | -8.5                         | n.d.                     |
| T <sub>6</sub>                     | 2                 | T <sub>D</sub>                   | -5.9                                      | -37.1            | 12.1                     | 9.1                                      | -2.6                     | 11.1                                     | -11.9                        | n.d.                     |
| T7                                 | 2                 | TD                               | -5.5                                      | -36.3            | 10.8                     | 5.2                                      | 5.2                      | 6.6                                      | -13.4                        | n.d.                     |
| T <sub>8</sub>                     | 2                 | T <sub>D</sub>                   | -5.6                                      | -35.7            | 13.8                     | 6.1                                      | 5.3                      | 4.6                                      | -15.4                        | n.d.                     |
| T <sub>9</sub>                     | 2                 | T <sub>D</sub>                   | -6.1                                      | -39.0            | n.d.                     | n.d.                                     | 14.2                     | 12.0                                     | -11.5                        | n.d.                     |
| T <sub>10</sub>                    | 2                 | T <sub>D</sub>                   | -5.7                                      | -37.6            | n.d.                     | n.d.                                     | 10.0                     | 10.6                                     | -10.2                        | n.d.                     |
| T <sub>11</sub>                    | 2                 | T <sub>D</sub>                   | -5.4                                      | -39.7            | 11.6                     | 6.6                                      | 6.3                      | 6.2                                      | -13.0                        | n.d.                     |
| T <sub>12</sub>                    | 2                 | T <sub>D</sub>                   | -5.2                                      | -37.5            | 13.8                     | 7.1                                      | -1.8                     | 4.5                                      | -12.1                        | n.d.                     |
| T <sub>13</sub>                    | 2                 | TD                               | -5.7                                      | -37.6            | 11.9                     | 5.6                                      | 1.7                      | 5.8                                      | -12.5                        | n.d.                     |
| T <sub>14</sub>                    | 2                 | TD                               | -5.4                                      | -36.4            | n.d.                     | n.d.                                     | -16.0                    | 4.9                                      | -6.5                         | n.d.                     |
| T <sub>15</sub>                    | 2                 | TD                               | -5.4                                      | -36.6            | 12.2                     | 5.0                                      | 6.2                      | 5.2                                      | -13.1                        | n.d.                     |
| T <sub>16</sub>                    | 1                 | Ts                               | -5.4                                      | -34.8            | 10.7                     | 8.5                                      | -4.1                     | 5.8                                      | -11.3                        | n.d.                     |
| T <sub>16</sub>                    | 2                 | Ts                               | -5.0                                      | -35.1            | 13.3                     | 9.4                                      | -1.7                     | 5.5                                      | -11.9                        | n.d.                     |
| T <sub>17</sub>                    | 2                 | Ts                               | -5.1                                      | -34.3            | 16.1                     | 1.8                                      | 5.9                      | 6.3                                      | -14.5                        | 29.5                     |
| T <sub>18</sub>                    | 2                 | Ts                               | -5.0                                      | -33.9            | 6.3                      | 3.5                                      | 4.1                      | 5.0                                      | -13.5                        | n.d.                     |
| T <sub>19</sub>                    | 2                 | Ts                               | -5.9                                      | -38.1            | 9.3                      | 6.2                                      | 7.3                      | 9.2                                      | -16.2                        | n.d.                     |
| T <sub>20</sub>                    | 2                 | Ts                               | -5.4                                      | -36.0            | 12.2                     | 5.1                                      | 3.3                      | 5.6                                      | -13.2                        | 25.5                     |
| •20                                | 2                 | Ts                               | -6.2                                      | -36.8            | 5.0                      | 6.3                                      | 6.9                      | 5.1                                      | -14.9                        | n.d.                     |
| T <sub>21</sub>                    | -                 |                                  |                                           |                  | 44.5                     | 6.2                                      | 6.6                      | 4.9                                      | -15.6                        | n.d.                     |
|                                    | 2                 | Ts                               | -5.7                                      | -36.2            | 11.5                     | 0.2                                      | 6.6                      | 4.9                                      | -15.0                        |                          |
| T <sub>21</sub>                    |                   | T <sub>S</sub><br>T <sub>S</sub> | -5.7<br>-5.6                              | -36.2<br>-38.2   | 11.5                     | 6.1                                      | 9.4                      | 4.9                                      | -13.0                        | n.d.                     |
| T <sub>21</sub><br>T <sub>22</sub> | 2                 |                                  |                                           |                  |                          |                                          |                          |                                          |                              |                          |

## **4.1. Hydrodynamic data and potentiometric map**

385 Hydraulic head measurements in the Quaternary aquifer conducted during the August

campaign were used to draw the potentiometric contour lines shown in Fig.1, as this

| 387 | represents the largest pressure in the groundwater system resources. The generated              |
|-----|-------------------------------------------------------------------------------------------------|
| 388 | potentiometric map shows that groundwater flow lines were mainly oriented along a               |
| 389 | south to north trend (from the Gavarres massif to the Ter River) (Fig. 1) although close        |
| 390 | to the Ter River, groundwater flow changed to a west-to-east direction towards the sea.         |
| 391 | This is in agreement with the conceptual flow model described in previous studies (e.g.,        |
| 392 | Vilanova and Mas-Pla, 2004). The potentiometric map also reflects the depression cone           |
| 393 | of the Gualta village resulting from the intense groundwater withdrawal activity of its         |
| 394 | supply wells. However, it was not possible to draw a consistent potentiometric plot of          |
| 395 | the Tertiary aquifer that was able to corroborate the upward vertical flow line                 |
| 396 | connecting the underlying confined fractured Tertiary unit to the shallow Quaternary            |
| 397 | aquifer that was suggested by Vilanova and Mas-Pla (2004 et al. (2008). Potentiometric          |
| 398 | levels in the Tertiary aquifer may vary seasonally due to groundwater pumping,                  |
| 399 | controlling the recharge relation with the Ter River alluvial aquifer.                          |
| 400 | 4.2. $\delta^2$ H and $\delta^{18}$ O data. Sources of recharge                                 |
| 401 | Fig. 2 shows that $\delta^{2}$ H and $\delta^{18}$ O of groundwater samples from both campaigns |
| 402 | mostly plot <del>ted under against the the</del> annual local Local Mmeteoric Wwater Lline      |

403 (LMWL, (Vilanova, et al., 200<u>8</u>4). Samples mostly plot under the LMWL.

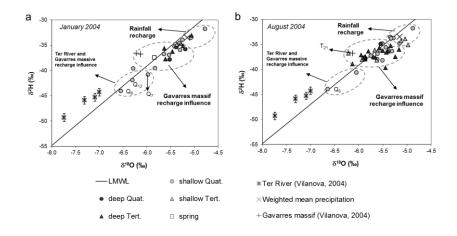





Figure 2.  $\delta^{18}O_{H2O}$  and  $\delta^{2}H$  of the Baix Ter groundwater samples collected in January 2004 (a) and August 2004 (b). The annual\_-Local Meteoric Water Line (LMWL) follows the equation  $\delta^{2}H = 7.98(\pm 2.71) \delta^{18}O + 7.85(\pm 0.47)$  (r<sup>2</sup>=0.924, n=23) (Vilanova et al., 200<u>8</u>4), whose slope is equal to that of the neighbouring areas ( $\delta^{2}H = 7.9 \delta^{18}O +$ 9.8; Neal et al., 1992).

However, the wide range of  $\delta^2 H$  and  $\delta^{18} O$  values from the Quaternary aquifer 410 indicates the implication of several recharge flow systems affecting the aquifer, with 411 distinct hydrogeological characteristics, affecting the aquifer. Some of the samples fall 412 very close to the weighted mean precipitation ( $\delta^2 H = -33.5\%$ ,  $\delta^{18} O = -5.2\%$ ) calculated 413 414 from the Mas Badia station data (located in the Baix Ter basin; Fig. 2) showing the influence of the infiltration of rainfall into the basin. 415 Three <u>S</u>-samples located at the NW of the shallow Quaternary aquifer  $(Q_7, Q_8 and$ 416 Q<sub>12</sub>) yielded lighter isotope compositions with values similar to those of the Ter River 417 reported by Vilanova (2004;  $\delta^2$ H from -50 to -45‰,  $\delta^{18}$ O from -8 to -7‰), indicating a 418 contribution from the Ter River to the alluvial aquifer groundwater. These  $\delta^2 H$  and 419  $\delta^{18}$ O from the Ter River waters are the lightest observed in the area, explained by the 420 421 fact that the Ter River discharge originates at a higher recharge altitude in the Pyrenees

| 422 | Mountains. Thus, the isotope compositions of the water molecule identify a contribution          |
|-----|--------------------------------------------------------------------------------------------------|
| 423 | from the Ter River to the alluvial aquifer groundwater in the NW part of the study zone.         |
| 424 | Finally, some other samples from the Quaternary aquifer present $\delta^2 H$ and $\delta^{18} O$ |
| 425 | compositions intermediate between those influenced by the rainfall and those influenced          |
| 426 | by the Ter river water (Fig. 2) but also close to - H and O Isotope compositions of these        |
| 427 | samples, however, are very close to those of sample $T_{21}$ , located in the Gavarres massif    |
| 428 | foothill (south of the study area, Fig. 1). Thus, Fthese samples can be geochemically            |
| 429 | and isotopically considered as representative of the recharge from the Gavarres massif,          |
| 430 | given its very low mineralization and its isotope composition (Fig.2). As irrigation             |
| 431 | demand is fully covered by groundwater in the sampled area, the potential effects of             |
| 432 | irrigation returns on groundwater isotopic composition would not in any case modify              |
| 433 | the recharge model herein proposed. that is very similar to the groundwater from the             |
| 434 | Paleozoic materials in the Gavarres massif (Vilanova, 2004; Fig. 2).                             |
| 435 | In Tertiary aquifers, Mmost of the groundwater samples from the Tertiary aquifers                |
| 436 | fell between the weighted mean precipitation signature and the isotope composition of            |
| 437 | groundwater from the Gavarres massif (Fig. 2). They present a narrower range of $\delta^2 H$     |
| 438 | and $\delta^{18}O$ compositions, although they overlap with the intermediate isotopic            |
| 439 | composition of the Quaternary aquifer groundwater samples (Fig. 2). This overlap                 |
| 440 | suggests that both aquifers share a common source of recharge or are somehow                     |
| 441 | connected. This is consistent with the conceptual model described by Vilanova and                |
| 442 | Mas-Plaet al. (20084) in which an upward groundwater flow was proposed connecting                |
| 443 | the Tertiary aquifer to the deep Quaternary aquifer in the northern part of the area.            |
| 444 | Therefore, the contribution from the Tertiary units towards the Quaternary aquifer               |
| 445 | cannot be discarded despite the fact that this could not be supported by the                     |
| 446 | potentiometric map.                                                                              |

## **4.3. Hydrochemical data**

| 448 | Chemical data for groundwater samples collected in the Baix Ter basin (Tables 1                                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 449 | and 2) showed a $HCO_3^{-}-Ca^{2+}-Mg^{2+}$ facies, in accordance with the hydrochemistry being                                         |
| 450 | controlled by carbonate dissolution reactions that occur throughout the Tertiary                                                        |
| 451 | materials and alluvial formations. The rapid kinetic of carbonate dissolution hides the                                                 |
| 452 | hydrochemical characteristics acquired from the igneous and metamorphic rocks of the                                                    |
| 453 | Gavarres massif (Vilanova et al., 2008). Groundwater pH values were all above 7.4,                                                      |
| 454 | $HCO_3^-$ concentrations were between 177 and 619 mg $L^{\text{-1}}$ and EC varied from 552 $\mu S$                                     |
| 455 | $cm^{-1}$ to 2993 µS cm <sup>-1</sup> .                                                                                                 |
| 456 | In all the studied area, NO <sub>3</sub> <sup>-</sup> concentrations presented a wide range of values in both                           |
| 457 | the Quaternary and Tertiary aquifers, from samples with NO3 <sup>-</sup> below the detection limit                                      |
| 458 | $(0.1 \text{ mg L}^{-1})$ to concentrations up to 480 mg L <sup>-1</sup> . 60% of the studied samples had NO <sub>3</sub> <sup>-1</sup> |
| 459 | levels above the legal threshold of 50 mg $L^{-1}$ for drinking water (EC, 1998). No $NO_2^{-1}$                                        |
| 460 | was detected. Ammonium concentration ranged between 0.08 mg $L^{-1}$ and 0.47 mg $L^{-1}$ . It                                          |
| 461 | <u>can be observed that The NO<sub>3</sub><sup>-</sup> concentrations of the river samples presented values of 9</u>                    |
| 462 | and 7 mg $L^{-1}$ , consistent with surface water nitrate values and lower than the monthly                                             |
| 463 | NO <sub>3</sub> <sup>-</sup> average for the Ter River (15 mg L <sup>-1</sup> ; $\sigma$ = 5.1, n = 37) between 2003 and 2006           |
| 464 | (ACA, 2015). However, nitrate concentration in aquifers showed a diffuse spatial                                                        |
| 465 | distribution.                                                                                                                           |
| 466 | Nitrate spatial distribution shows a diffuse regional pattern: iIn shallow aquifers (Qs                                                 |
| 467 | and $T_s$ ), nitrate concentrations ranged from 6 to 480 mg L <sup>-1</sup> , while in deeper aquifers                                  |
| 468 | they went from values below detection limit up to 265 mg $L^{-1}$ . This distribution does not                                          |
| 469 | seem to be linked to any specific groundwater flow direction nor limit of the aquifer                                                   |
| 470 | units. It can be explained by the highly complex hydrogeology of the study zone and its                                                 |
| 471 | distinct recharge areas, and by the mixing of waters from distinct origins and qualities                                                |

| 472 | within the well borehole. Several factors such as the intended exploitation of different                                                          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 473 | levels to increase the well efficiency, the possible lack of well casing derived from an                                                          |
| 474 | incomplete borehole construction, and/or the presence of preferential flow paths through                                                          |
| 475 | fractures or fault zones that connect local and regional flow systems, i.e. Quaternary and                                                        |
| 476 | Tertiary aquifers could account for the mixing of waters. Moreover, the intensive                                                                 |
| 477 | pumping during irrigation and low rainfall periods can also enhance re-circulation                                                                |
| 478 | between aquifer levels, mainly from the shallow to deeper ones, resulting in a decrease                                                           |
| 479 | of the quality of the water resources stored in the deeper aquifer layers. It should then be                                                      |
| 480 | noticed that nitrate concentrations are more representative of the unknown well                                                                   |
| 481 | characteristics than of the hydrogeological layer where the borehole is drilled.                                                                  |
| 482 | The lowest $NO_3^-$ contents in the Quaternary aquifer were observed near the Ter                                                                 |
| 483 | River suggesting some influence from induced stream recharge; and in the SE area, near                                                            |
| 484 | the Gavarres Range, in the Tertiary aquifer.                                                                                                      |
| 485 | During the first sampling campaign, two samples from the shallow Quaternary                                                                       |
| 486 | aquifer (Q <sub>4</sub> and Q <sub>8</sub> , Table 2) presented NO <sub>3</sub> <sup>-</sup> concentrations of 6 mg $L^{-1}$ and 13 mg $L^{-1}$ , |
| 487 | respectively, coupled with high levels of Mn (4.4 and 0.8 mg Mn $L^{-1}$ ) and around 2 mg                                                        |
| 488 | $L^{-1}$ of total organic carbon. Two samples in the $Q_D$ ( $Q_1$ and $Q_2$ ) and three samples in $T_D$                                         |
| 489 | aquifers (T <sub>9</sub> , T <sub>10</sub> and T <sub>14</sub> ) had $NO_3^-$ below detection limit, an Eh value below 200 mV                     |
| 490 | and showed the highest ammonium and manganese concentrations (Tables 1 and 2,                                                                     |
| 491 | Fig.3). Moreover, $NO_3^-$ in $Q_2$ has been monitored through time and has always been                                                           |
| 492 | below detection limit. In our study, the ammonium content in Q2 displayed the highest                                                             |
| 493 | value $(0.47 \text{ mg L}^{-1})$ . These characteristics are typical of groundwater under reducing                                                |
| 494 | conditions, and would suggest that they are undergoing denitrification processes.                                                                 |
|     |                                                                                                                                                   |
| 495 | However, measured TOC concentrations for $Q_1$ , $Q_2$ , $T_9$ , $T_{10}$ and $T_{14}$ (between 0.4 and                                           |

497 oxidation of organic matter in anaerobic conditions (Rivett et al., 2008), but they may

498 indicate the presence of organic matter that could represent a residual content after

499 previous consumption by heterotrophic denitrifying bacteria.

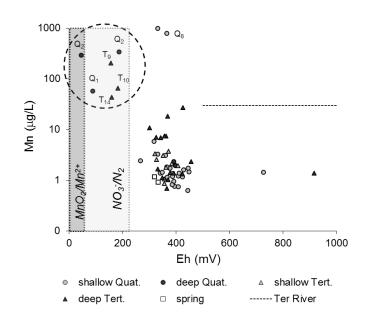
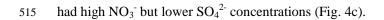






Figure 3. Mn concentrations plotted against the Eh values of the groundwater samples. Eh ranges of  $MnO_2/Mn^{2+}$  and  $NO_3^-/N_{2(g)}$  redox pairs are taken from Rivett et al. (2008).

| 505 | Some of the samples with high $NO_3^-$ concentration (Q <sub>5</sub> , Q <sub>10</sub> , Q <sub>15</sub> and Q <sub>16</sub> from Q <sub>8</sub> , |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 506 | $T_{17}$ and $T_{20}$ from $T_S$ , and $T_3$ , $T_5$ and $T_8$ from $T_D$ ) also presented high sulphate and                                       |
| 507 | chloride concentrations (up to 371 and 362 mg $L^{-1}$ , respectively) (Fig. 4a, b).                                                               |
| 508 | Considering that Cl <sup>-</sup> is a conservative element largely unaffected by physical, chemical                                                |
| 509 | and microbiological processes occurring in the groundwater (Altman and Parizek,                                                                    |
| 510 | 1995), the $[NO_3^-]/[Cl^-]$ ratio can be used to eliminate the potential effect of dilution. In                                                   |
| 511 | Fig. 4c, sulphate concentration is plotted against the [NO <sub>3</sub> <sup>-</sup> ]/[Cl <sup>-</sup> ] ratio. Groundwater                       |
| 512 | $SO_4^{2-}$ varied between 29 and 371 mg L <sup>-1</sup> , with an average value of 108 mg L <sup>-1</sup> (n = 64).                               |
| 513 | But a set of samples, with $1 < [NO_3^-]/[Cl^-] < 2$ , present moderate $SO_4^{2^-}$ concentrations but                                            |



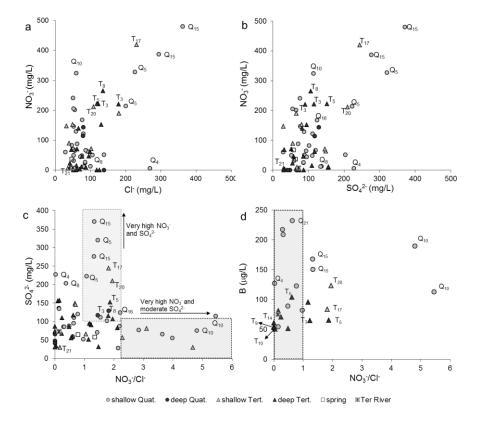
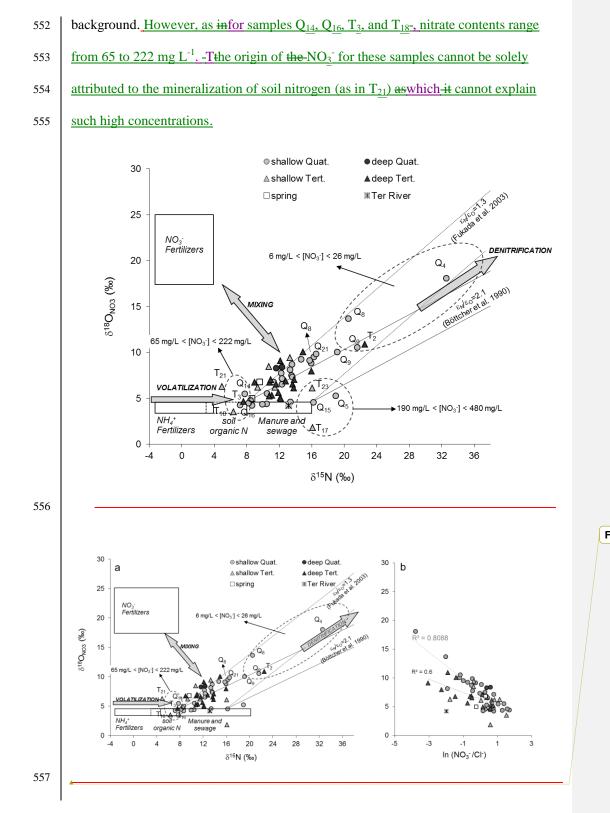




Figure 4. a) NO<sub>3</sub><sup>-</sup> concentration versus Cl<sup>-</sup> concentration, b) NO<sub>3</sub><sup>-</sup> concentration versus SO<sub>4</sub><sup>2-</sup> concentration, c) SO<sub>4</sub><sup>2-</sup> concentration versus (NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup>) ratio, and d) B concentration versus (NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup>) ratio.

519 520

Since no evaporitic or gypsum outcrops nor disseminated pyrite exist in the study area, these  $SO_4^{2-}$  concentrations must originate from anthropogenic sources such as manure, synthetic fertilizers or sewage. High Cl<sup>-</sup> concentrations can be caused by the input of organic fertilizers since they generally show elevated chloride concentrations (Karr et al., 2001; Menció et al. 2016). All these observations suggest that both the mineral and the organic fertilizers are the major vectors of contamination.

| 527                                                                                                                             | In most of samples, B concentration was below the detection limit. However, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 528                                                                                                                             | concentrations around 0.1-0.2 mg $L^{-1}$ have been measured in samples with high nitrate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 529                                                                                                                             | sulphate and chloride concentrations (e.g. Q10 and Q15, Fig. 4d) suggesting sewage and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 530                                                                                                                             | manure as other potential contamination sources. However, as seen in Fig. 4d, samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 531                                                                                                                             | with the highest B concentration (up to 232 $\mu$ g/L) presented intermediate nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 532                                                                                                                             | concentrations (25-45 mg $NO_3^{-1}L^{-1}$ ), showing that the presence of B in groundwater is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 533                                                                                                                             | not necessarily linked to high $NO_3^-$ concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 534                                                                                                                             | Thus, our results show that groundwater is probably affected by more than one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 535                                                                                                                             | source of contamination and that natural denitrification may be acting in some areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 536                                                                                                                             | However, , but an the unambiguous identification of these sources and processes based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 537                                                                                                                             | on the sole hydrochemical data is somewhat difficult as the signal may be hindered by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 538                                                                                                                             | the mixing of groundwaters from different layers and recharge flow systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 539                                                                                                                             | 4.4. Isotope data. Pollution sources and attenuation processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 559                                                                                                                             | 4.4. Isotope data: I onution sources and attendation processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 540                                                                                                                             | 4.4.1. $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 540                                                                                                                             | 4.4.1. $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 540<br>541                                                                                                                      | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 540<br>541<br>542                                                                                                               | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for $\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 540<br>541<br>542<br>543                                                                                                        | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for $\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for $\delta^{18}$ O, with an average value of +7.1‰ (n = 58) (Table 3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>540</li> <li>541</li> <li>542</li> <li>543</li> <li>544</li> </ul>                                                     | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for<br>$\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for<br>$\delta^{18}$ O, with an average value of +7.1‰ (n = 58) (Table 3).<br>As seen in Fig. 5 <u>a</u> , five groundwater samples (Q <sub>14</sub> and Q <sub>16</sub> from Q <sub>8</sub> , T <sub>3</sub> from T <sub>D</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>540</li> <li>541</li> <li>542</li> <li>543</li> <li>544</li> <li>545</li> </ul>                                        | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for<br>$\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for<br>$\delta^{18}$ O, with an average value of +7.1‰ (n = 58) (Table 3).<br>As seen in Fig. 5 <u>a</u> , five groundwater samples (Q <sub>14</sub> and Q <sub>16</sub> from Q <sub>8</sub> , T <sub>3</sub> from T <sub>D</sub> ,<br>and T <sub>18</sub> and T <sub>21</sub> from T <sub>8</sub> ) presented $\delta^{15}$ N values <u>compatible with comparable to those of</u>                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>540</li> <li>541</li> <li>542</li> <li>543</li> <li>544</li> <li>545</li> <li>546</li> </ul>                           | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for<br>$\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for<br>$\delta^{18}$ O, with an average value of +7.1‰ (n = 58) (Table 3).<br>As seen in Fig. 5 <u>a</u> , five groundwater samples (Q <sub>14</sub> and Q <sub>16</sub> from Q <sub>5</sub> , T <sub>3</sub> from T <sub>D</sub> ,<br>and T <sub>18</sub> and T <sub>21</sub> from T <sub>8</sub> ) presented $\delta^{15}$ N values <u>compatible with comparable to those of</u><br>soil organic nitrogen (from +3 to +8‰ <del>, Table 4</del> ), fertilizers (-4 to +8‰) and sewage (+5                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>540</li> <li>541</li> <li>542</li> <li>543</li> <li>544</li> <li>545</li> <li>546</li> <li>547</li> </ul>              | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for<br>$\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for<br>$\delta^{18}$ O, with an average value of +7.1‰ (n = 58) (Table 3).<br>As seen in Fig. 5 <u>a</u> , five groundwater samples (Q <sub>14</sub> and Q <sub>16</sub> from Q <sub>5</sub> , T <sub>3</sub> from T <sub>D</sub> ,<br>and T <sub>18</sub> and T <sub>21</sub> from T <sub>5</sub> ) presented $\delta^{15}$ N values <u>compatible with comparable to those of</u><br>soil organic nitrogen (from +3 to +8‰, <u>Table 4</u> ), fertilizers (-4 to +8‰) and sewage (+5<br><u>to +20‰)</u> ; ( <u>Table 4</u> ). Within these samples, only sample T <sub>21</sub> presented low nitrate,                                                                                                                                                                                                    |
| <ul> <li>540</li> <li>541</li> <li>542</li> <li>543</li> <li>544</li> <li>545</li> <li>546</li> <li>547</li> <li>548</li> </ul> | <b>4.4.1.</b> $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for<br>$\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for<br>$\delta^{18}$ O, with an average value of +7.1‰ (n = 58) (Table 3).<br>As seen in Fig. 5 <u>a</u> , five groundwater samples (Q <sub>14</sub> and Q <sub>16</sub> from Q <sub>8</sub> , T <sub>3</sub> from T <sub>D</sub> ,<br>and T <sub>18</sub> and T <sub>21</sub> from T <sub>8</sub> ) presented $\delta^{15}$ N values <u>compatible with comparable to those of</u><br>soil organic nitrogen (from +3 to +8‰, <u>Table 4</u> ), fertilizers (-4 to +8‰) and sewage (+5<br>to +20‰) <sub>7</sub> . ( <u>Table 4</u> ). Within these samples, only sample T <sub>21</sub> presented low nitrate,<br>sulphate and chloride concentration (6 mg L <sup>-1</sup> NO <sub>3</sub> <sup>-</sup> , 36 mg L <sup>-1</sup> Cl <sup>-</sup> and 30 mg L <sup>-1</sup> SO <sub>4</sub> <sup>2-</sup> ). |



Formatted: Font: 12 pt

| 558 | Figure 5. <u>a)</u> Variations of the $\delta^{15}$ N and $\delta^{18}$ O of dissolved NO <sub>3</sub> <sup>-</sup> in groundwater according |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 559 | to their hydrogeological unit. Isotope ranges of the main $NO_3^-$ sources listed in Table 4                                                 |
| 560 | are also represented. The extreme isotopic fractionation ratios from the literature are                                                      |
| 561 | $\epsilon_N/\epsilon_O = 2.1$ (Böttcher et al., 1990) and $\epsilon_N/\epsilon_O = 1.3$ (Fukada et al., 2003). b) $\delta^{18}O_{NO3}$       |
| 562 | values plotted against $ln(NO_3^-/Cl^-)$ according to their hydrogeological unit. R <sup>2</sup> values                                      |
| 563 | corresponding to the linear regressions for shallow Quat. and deep Tert. Units are also                                                      |
| 564 | reported.                                                                                                                                    |
| 565 |                                                                                                                                              |
| 566 | However, as in samples $Q_{14}$ , $Q_{16}$ , $T_3$ , and $T_{18}$ nitrate contents range from 65 to 222                                      |
| 567 | $mg L^{-1}$ the origin of the NO <sub>3</sub> <sup>-</sup> for these samples cannot be solely attributed to the                              |
| 568 | mineralization of soil nitrogen (as in $T_{24}$ ) as it cannot explain such high concentrations.                                             |
| 569 | Thus, other sources of NO3 <sup>-</sup> must be considered though a small contribution of soil                                               |
| 570 | organic nitrogen is possible (Wassenaar, 1995). Nitrate derived from ammonium                                                                |
| 571 | fertilizers present $\delta^{15}$ N values between -4 and +4‰ (Table 4). This value can be                                                   |
| 572 | enriched in <sup>15</sup> N by volatilization processes leading to values in the range of soil                                               |
| 573 | nitrogen, as it was observed by Vitòria (2004) in the Maresme region (Catalonia, NE                                                          |
| 574 | Spain), where mineral fertilizers were shown to be the only source of NO <sub>3</sub>                                                        |
| 575 | $\delta^{15}$ N value of NO <sub>3</sub> <sup>-</sup> produced after nitrification would be similar to that of the                           |
| 576 | former ammonium affected by volatilization because of the large isotopic fractionation                                                       |
| 577 | occurring when nitrification is stimulated by e.g. large amounts of available $\mathbf{NH}_4^+$                                              |
| 578 | (Kendall 2007 and references therein). This would explain the lack of nitrite in the area.                                                   |
| 579 | Therefore, synthetic ammonium fertilizers could be the source of $NO_3^-$ for $Q_{14}$ , $Q_{16}$ , $T_3$                                    |
| 580 | and T <sub>18</sub> samples. Nevertheless, as seen in Fig. 5, nitrate in these samples could also                                            |
| 581 | result from a mixing between NO3 <sup>-</sup> derived from synthetic fertilizers and NO3 <sup>-</sup> derived                                |
| 582 | from manure or sewage (+8 to + 20‰, Table 4). Therefore, although a small                                                                    |
|     |                                                                                                                                              |

| 583 | contribution of soil organic nitrogen is possible (Wassenaar, 1995), measured isotope                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 584 | values may originate from synthetic fertilizers or sewage/manure sources or from a                                          |
| 585 | mixing of both (Fig. 5a).                                                                                                   |
| 586 |                                                                                                                             |
| 587 | However, the main group of samples presented $\delta^{15}$ N ranging between +8 and                                         |
| 588 | $\pm 16\%$ , indicating that NO <sub>3</sub> <sup>-</sup> may originate from <sup>15</sup> N enriched anthropogenic organic |
| 589 | matter (manure or sewage) (Fig. 5).                                                                                         |
|     |                                                                                                                             |

- Table 4. Ranges of nitrate, sulphate, boron and dissolved inorganic carbon isotope
- 591 compositions of the main potential sources of nitrate obtained from the literature.

| NO <sub>3</sub> <sup>-</sup> source<br>Isotope ratio (‰) | Pig manure                                   | Mineral fertilizers                                                       | Sewage                                                                                      | Soil                                                              |
|----------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| $\delta^{15}N$                                           | +8 +16                                       | -4 +4                                                                     | +8 +20                                                                                      | +3 - +8                                                           |
|                                                          | Vitòria (2004)                               | Bateman and Kelly (2007), Kendall et<br>al. (2007), Vitòria et al. (2004) | Aravena and Mayer (2010), Vane et<br>al. (2010), Curt el al. (2004)                         | Aravena and Mayer (2010), Heaton<br>(1986), Kendall et al. (2007) |
| $\delta^{18}O_{NO3}$                                     | +3.4 +4.6                                    | +17 - +25                                                                 | +3.4 +4.6                                                                                   | +3.4 +4.6                                                         |
|                                                          | Estimated in this study according<br>to eq.5 | Aravena and Mayer (2010), Vitòria et<br>al. (2004), Xue et al. (2009)     | Estimated in this study according to eq.5                                                   | Estimated in this study according to eq.5                         |
| $\delta^{34}S$                                           | -0.9 -+ 5.8                                  | 0 +10                                                                     | +7.6 - +11.7                                                                                | 0 +6                                                              |
|                                                          | Cravotta (1997)                              | Vitòria et al. (2004)                                                     | Otero et al. (2008)                                                                         | Krouse and Mayer (2000)                                           |
| $\delta^{18}O_{SO4}$                                     | +3.8 - +6                                    | +9 - +15                                                                  | +9 - +11.1                                                                                  | 0 +6                                                              |
|                                                          | Otero et al. (2007), Vitòria (2004)          | Vitòria et al. (2004)                                                     | Otero et al. (2008)                                                                         | Krouse and Mayer (2000)                                           |
| $\delta^{11} B$                                          | +19.5 - +42.4                                | -9 -+ +15                                                                 | -7.7 - +12.9                                                                                | -                                                                 |
|                                                          | Widory et al. (2005)                         | Komor (1997),<br>Widory et al. (2005), (2013)                             | Bassett et al. (1995), Vengosh et al.<br>(1994), Widory et al. (2013), Xue et<br>al. (2009) | -                                                                 |
| $\delta^{13}C_{HCO3}$                                    | -23.8 16.4                                   | -35 — -24                                                                 | -2513                                                                                       | -23                                                               |
|                                                          | Cravotta (1997), Vitòria (2004)              | Vitòria et al. (2004)                                                     | Jurado et al. (2013), Li et al. (2010),<br>Waldron et al. (2001)                            | Clark and Fritz (1997)                                            |

| NO3 <sup>-</sup> source | Pig manure                                   | Mineral fertilizers                                                   | Sewage                                                                                      | Soil                                                              |
|-------------------------|----------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Isotope ratio (‰)       |                                              |                                                                       |                                                                                             |                                                                   |
| $\delta^{15}N$          | +8-+16                                       | -4 +8                                                                 | +5 +20                                                                                      | +3 +8                                                             |
|                         | Vitòria (2004)                               | Vitòria et al. (2004), Michalski et al.<br>(2015)                     | Aravena and Mayer (2010), Vane et<br>al. (2010), Curt el al. (2004)                         | Aravena and Mayer (2010), Heaton<br>(1986), Kendall et al. (2007) |
| $\delta^{18}O_{NO3}$    | +3.4 +4.6                                    | +17 - +25                                                             | +3.4 +4.6                                                                                   | +3.4 +4.6                                                         |
|                         | Estimated in this study according<br>to eq.5 | Aravena and Mayer (2010), Vitòria et<br>al. (2004), Xue et al. (2009) | Estimated in this study according to<br>eq.5                                                | Estimated in this study according to<br>eq.5                      |
| $\delta^{34}S$          | -0.9 +5.8                                    | 0 +10                                                                 | +7.6 - +11.7                                                                                | 0 +6                                                              |
|                         | Cravotta (1997)                              | Vitòria et al. (2004)                                                 | Otero et al. (2008)                                                                         | Krouse and Mayer (2000)                                           |
| $\delta^{18}O_{SO4}$    | +3.8 - +6                                    | +9+ 15                                                                | +9 +11.1                                                                                    | 0 +6                                                              |
|                         | Otero et al. (2007), Vitòria (2004)          | Vitòria et al. (2004)                                                 | Otero et al. (2008)                                                                         | Krouse and Mayer (2000)                                           |
| $\delta^{11}B$          | +19.5 - +42.4                                | -9 -+ +15                                                             | -7.7 - +12.9                                                                                | -                                                                 |
|                         | Widory et al. (2005)                         | Komor (1997),<br>Widory et al. (2005), (2013)                         | Bassett et al. (1995), Vengosh et al.<br>(1994), Widory et al. (2013), Xue et<br>al. (2009) | -                                                                 |
| $\delta^{13}C_{HCO3}$   | -23.8 16.4                                   | -35 — -24                                                             | -2513                                                                                       | -23                                                               |
|                         | Cravotta (1997), Vitòria (2004)              | Vitòria et al. (2004)                                                 | Jurado et al. (2013), Li et al. (2010),<br>Waldron et al. (2001)                            | Clark and Fritz (1997)                                            |

| 594 | Most of the samples presented $\delta^{15}$ N ranging between +8 and +16‰, indicating that                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 595 | NO <sub>3</sub> may originate from <sup>15</sup> N-enriched anthropogenic organic matter (manure or                                                                           |
| 596 | <u>sewage) (Fig. 5a).</u> Finally, 8 <sup>15</sup> N values higher than +16‰ were observed in eleven                                                                          |
| 597 | samples. Four of these samples (Q5 and Q15 from Q8, and $T_{17}$ and $T_{23}$ from $T_8$ ) can be                                                                             |
| 598 | explained by volatilization processes as they showed high NO3 <sup>-</sup> concentrations (between                                                                            |
| 599 | $190$ and $480 \text{ mg L}^{-1}$ ) and $\delta^{18}O_{NO3}$ values up to $+6\%$ . By contrast, Finally, some samples                                                         |
| 600 | (Q <sub>4</sub> , Q <sub>8</sub> and Q <sub>9</sub> , from Q <sub>5</sub> , and T <sub>2</sub> from T <sub>D</sub> ) presented five other samples with $\delta^{15}N$ values  |
| 601 | also-higher than +16‰, coupled to low NO <sub>3</sub> <sup>-</sup> contents (between 6 and 26 mg L <sup>-1</sup> , Table                                                      |
| 602 | 2) and high $\delta^{18}O_{NO3}$ values (close to +10‰). (Q <sub>4</sub> , Q <sub>8</sub> and Q <sub>9</sub> , from Q <sub>8</sub> , and T <sub>2</sub> from T <sub>D</sub> ) |
| 603 | have more likely been affected by denitrification since their NO3 <sup>-</sup> contents were low                                                                              |
| 604 | (between 6 and 26 mg L <sup>-1</sup> ) and their $\delta^{48}\Theta_{NO3}$ were close to +10%.                                                                                |
| 605 | The range of $\delta^{18}$ O of NO <sub>3</sub> <sup>-</sup> for NH <sub>4</sub> <sup>+</sup> fertilizers, soil nitrogen and manure and                                       |
| 606 | sewage provided in Table 4 and plotted in Fig. $5\underline{a}$ (+3.4‰ to +4.6‰), has been                                                                                    |
| 607 | estimated according to eq. 5 (Anderson and Hooper, 1983; Hollocher, 1984; Kendall et                                                                                          |
| 608 | al., 2007), where the $\delta^{18}O_{H2O}$ values are the highest and lowest groundwater $\delta^{18}O$                                                                       |
| 609 | measured in the Baix Ter basin, and the $\delta^{18}O_{O2}$ is that of the atmospheric $O_2$ (+23.5‰;                                                                         |
| 610 | Horibe et al., 1973).                                                                                                                                                         |
| 611 | $\delta^{18}O_{NO3} = 2/3(\delta^{18}O_{H2O}) + 1/3(\delta^{18}O_{O2}) $ (5)                                                                                                  |
| 612 | $\delta^{18}O_{NO3}$ values measured in the groundwater samples ranged from +1.8‰ to                                                                                          |
| 613 | +18.1% (Fig.5b). While nitrate fertilizers are currently applied onto local crops their                                                                                       |
| 614 | direct contribution to groundwater nitrate must be discarded as $\delta^{18}$ O and $\delta^{15}$ N of                                                                        |
| 615 | groundwater $NO_3^-$ fall very far from nitrate fertilizers values (Fig. 5 <u>a</u> ). Moreover, most                                                                         |
| 616 | of samples had $\delta^{18}O_{NO3}$ higher than the calculated values for full equilibrium with the                                                                           |
| 617 | $\delta^{18}O$ of groundwater. Both results could be interpreted as a consequence of three                                                                                    |

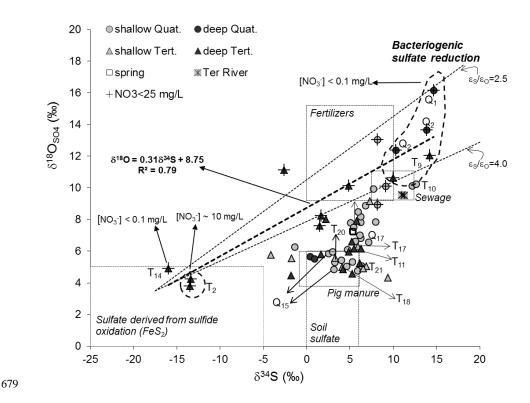
| 618 | different processes: i) the mineralization-immobilization-turnover (MIT) process, ii) the                             |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 619 | higher consumption of $NO_3^-$ from mineral fertilizers compared to that of ammonium in                               |
| 620 | the root zone and iii) the reduction of $NO_3^-$ via denitrifying bacteria. The MIT process                           |
| 621 | consists of a microbial-mediated immobilization of nitrate N as organic nitrogen, the                                 |
| 622 | subsequent mineralization of this organic nitrogen to ammonium, and finally the                                       |
| 623 | nitrification of this ammonium back to $NO_3^-$ (Mengis et al., 2001). This turnover                                  |
| 624 | process results in an important $^{18}\text{O}$ depletion of the initial $\delta^{18}\text{O}_{NO3}$ of the synthetic |
| 625 | fertilizers (+17‰ to +20‰, Table 4). As synthetic fertilizers are currently used in the                               |
| 626 | area, MIT process must be very active in order to explain why our results do not show                                 |
| 627 | the low $\delta^{15}$ N and high $\delta^{18}$ O values of nitrate from synthetic fertilizers. This indicates all     |
| 628 | NO <sub>3</sub> <sup>-</sup> from synthetic fertilizers that infiltrated underwent this process and that this         |
| 629 | source cannot be dismissed.                                                                                           |

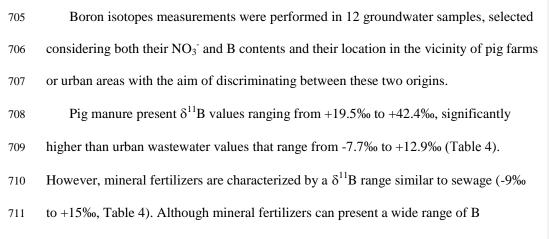
As pig manure is mainly liquid, the infiltration of ammonium from manure through 630 631 the non-saturated zone to the saturated one is faster than that of nitrate from solid synthetic fertilizers, which need to be dissolved by rain or irrigation. Ammonium soil 632 633 sorption capacity can be considered negligible as the soil is already saturated due to the 634 long-standing fertilization practices affecting the area. Ammonium is also fast and completely nitrified into nitrate in the non-saturated zone. All these elements favour 635 ammonium from pig manure to reach the saturated zone and to be incorporated as 636 nitrate into the polluting groundwater. On the contrary, nitrate from the slow release of 637 638 synthetic fertilizers remains slightly longer on the agricultural soil, increasing the possibility of being absorbed by roots or of being incorporated and stored in the soil 639 organic matter pool (by means of the MIT process). It could then be slowly rereleased 640 641 for either uptake by crops or export into the hydrosphere (Sebilo et al., 2013). Finally, the reduction of NO<sub>3</sub><sup>-</sup> via denitrifying bacteria, which is characterized by a heavy-642

| 643 | isotope enrichment of both the $\delta^{15}$ N and $\delta^{18}$ O of the residual nitrate, can overprint the                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 644 | mixing of potential end-members and can significantly alter both the NO3 <sup>-</sup> concentration                           |
| 645 | (i.e. attenuation) and corresponding N and O isotope compositions.                                                            |
| 646 | $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> from the Ter River samples were in agreement with a                    |
| 647 | wastewater origin.                                                                                                            |
| 648 | Ten of the samples had $\delta^{18}O_{NO3}$ and $\delta^{15}N$ higher than +8‰ and +15‰, respectively.                        |
| 649 | Fig. 5 <u>a</u> shows that these samples roughly aligned following a $\varepsilon_N$ : $\varepsilon_0$ ratio of 2, consistent |
| 650 | with natural denitrification (Kendall et al., 2007). This means that the nitrate isotopic                                     |
| 651 | compositions but also the low nitrate concentration measured in those samples result                                          |
| 652 | from natural denitrification processes occurring in the aquifers. This is confirmed by                                        |
| 653 | Fig. 5b, in which a negative linear correlation between $\delta^{18}O_{NO3}$ and $\ln(NO_3/C\Gamma)$ is                       |
| 654 | observed for these samples, indicating that denitrification is taking place (Vitòria et al.                                   |
| 655 | <u>2008).</u> The highest denitrified samples (i.e. with the higher coupled $\delta^{18}O_{NO3}$ and $\delta^{15}N$ )         |
| 656 | were observed either in the shallow Quaternary levels near the Ter River $(Q_4, Q_8, Q_9)$ or                                 |
| 657 | in the Tertiary aquifers ( $T_2$ ). Moreover, the NO <sub>3</sub> <sup>-</sup> concentration measured below the               |
| 658 | detection limit in the samples $Q_1$ , $Q_2$ , $T_9$ , $T_{10}$ and $T_{14}$ (Fig. 2) can also be interpreted as              |
| 659 | resulting of natural denitrification. Considering that no significant variations were                                         |
| 660 | identified in both the isotope and chemical compositions of our samples between both                                          |
| 661 | <u>campaigns,</u>                                                                                                             |
| 662 | During the second sampling campaign, 19 samples from the previous campaign were                                               |
| 663 | resampled, and among those only 4 showed a significant decrease in their NO3 <sup>-</sup>                                     |
| 664 | concentration. Among these only two showed corresponding significant shifts in their                                          |
| 665 | isotope and chemical compositions, in agreement with natural denitrification ( $Q_{10}$ , $T_5$ ).                            |
| 666 | This suggests that it can be inferred that natural denitrification had a moderate activity                                    |
| 667 | and/or that $NO_3^-$ attenuation was balanced by the input of new $NO_3^-$ into the aquifer.                                  |

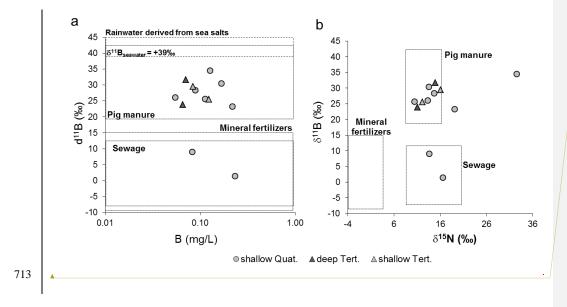
# 668 **4.4.2.** $\delta^{34}$ S and $\delta^{18}$ O of SO<sub>4</sub>

 $SO_4^{2-}$  isotope compositions ranged between -16.0 and +14.7% for  $\delta^{34}S$ , with an 669 average value of +4.5% (n = 64), and between +3.8 and +16.1% for  $\delta^{18}O_{SO4}$ , with an 670 average value of +7.2% (n = 64) (Table 3, Fig. 6). Most of the groundwater samples fall 671 within the area defined by the isotope signatures of local anthropogenic sources (Table 672 4) showing that  $SO_4^{2-}$  in the Baix Ter groundwater can be explained by a ternary mixing 673 between: 1) mineral fertilizers, 2) sewage and 3) pig manure (Fig. 6). This comforts the 674 conclusions from the study of sulphate and nitrate groundwater concentrations. 675 Still, the  $\delta^{34}S$  and a  $\delta^{18}O_{SO4}$  values measured between 0 and +6‰ of samples  $Q_{17},$ 676  $T_{11}$ ,  $T_{18}$  and  $T_{21}$  could indicate a soil origin (Table 4), in agreement with their low SO<sub>4</sub><sup>2-</sup> 677 concentrations (around 30 mg  $SO_4^{2-}L^{-1}$ ). 678



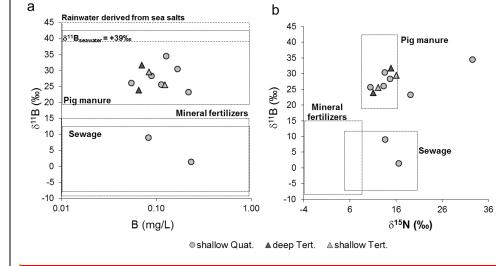


Figure 6.  $\delta^{34}$ S and  $\delta^{18}$ O of dissolved SO<sub>4</sub><sup>2-</sup> in groundwater according to their hydrogeological unit. Isotope ranges of natural and anthropogenic SO<sub>4</sub> sources listed in Table 4 are also represented. The area of sulphates derived from sulphide oxidation is from Van Stempvoort and Krouse (1994). Dashed lines define the isotopic fractionation range ( $\epsilon^{34}$ S/ $\epsilon^{18}$ O<sub>SO4</sub>) in SO<sub>4</sub> reduction reactions, varying between 2.5 and 4 (Mizutani and Rafter, 1973).

686


Two sampling sites (T<sub>2</sub> and T<sub>14</sub>) yielded the lowest negative  $\delta^{34}$ S values and had 687  $\delta^{18}O_{SO4}$  around +5%, revealing a SO<sub>4</sub><sup>2-</sup> contribution from a <sup>34</sup>S-depleted source of 688 reduced S (Fig. 6). Moreover, both  $T_2$  and  $T_{14}$  showed very low (9 mg L<sup>-1</sup>) or below 689 detection limit (0.1 mg L<sup>-1</sup>) nitrate concentrations, respectively. On the contrary, 690 samples  $Q_1$ ,  $Q_2$ ,  $T_9$  and  $T_{10}$ , with nitrate concentration below the detection limit (0.1 mg 691  $L^{-1}$ ) exhibited the highest  $\delta^{34}$ S and  $\delta^{18}O_{SO4}$  values (+14.7% and +16.1% respectively). 692 All these samples in which nitrate concentration is below detection limit, together 693 with other samples with very low nitrate aqueous concentration (NO<sub>3</sub><sup>-</sup> < 25 mg L<sup>-1</sup>) and 694  $\delta^{18}O_{SO4}$  higher than +8% define a linear trend with  $\varepsilon_s/\varepsilon_0 = 1/0.31 = 3.2$  compatible with 695 a bacteriogenic reduction of  $SO_4^{2-}$  (Mizutani and Rafter, 1973) (Fig. 6). This is 696 consistent with their corresponding low Eh values and high Mn concentrations (Fig. 3). 697 698 However, as the presence of pyrite and gypsum in the area is scarce, autotrophic denitrification can be discarded as the main denitrifying process occurring in the study 699 700 zone.  $\delta^{34}$ S and  $\delta^{18}O_{SO4}$  of the Ter River samples also indicated, in agreement with their 701  $\delta^{15}$ N and  $\delta^{18}O_{NO37}$  that the dissolved SO<sub>4</sub><sup>2-</sup> in surface waters originated from 702

703 wastewater.

704 **4.4.3.**  $\delta^{11}$ **B** 




concentrations they usually have lower B contents compared pig manure (Fig. 7a).



#### Formatted: Font: 12 pt

Formatted: Font: 12 pt



714

Figure 7.  $\delta^{11}$ B values plotted against B concentration (a) and  $\delta^{15}$ N values (b). Isotope ranges of the main NO<sub>3</sub><sup>-</sup> sources listed in Table 4 are also represented.  $\delta^{11}$ B<sub>seawater</sub> is taken from Vengosh et al. (1994).

 $\delta^{11}$ B composition of dissolved B in selected groundwater samples ranged between 719 720 +1.4% and +34.5%, with an average value of +24.1% (n = 12). B concentrations in these samples ranged between 0.055 and 0.232 mg L<sup>-1</sup>. No trends or enrichment in  $\delta^{11}$ B 721 composition of dissolved B with decreasing B content were observed (Fig. 7a). 722 indicating that B is not explained by binary mixing relationships and that no significant 723 724 sorption/desorption processes of B onto/from clay minerals are occurring. Most samples fell in the isotope range of pig manure (Fig. 7a and 7b). This is in agreement with the 725 conclusions drawn from the NO<sub>3</sub><sup>-</sup> and SO<sub>4</sub><sup>2-</sup> isotope data. Two of the samples showed 726  $\delta^{11}$ B values consistent with a wastewater origin. They correspond to groundwater 727 collected in La Bisbal  $(Q_{20})$  and Ullastret  $(Q_{21})$  water supply wells (Fig. 1), located 728 downstream the discharge of the La Bisbal water treatment plant into the Daró River. 729

Boron analyses, thus, suggest that pig manure is the main source of contamination
and that the influence of sewage and mineral fertilizers is lower than the contribution
from organic residues.

733 **4.4.4.** δ<sup>13</sup>C of HCO<sub>3</sub><sup>-</sup>

Samples presented  $\delta^{13}C_{HCO3}$  values between -6.5‰ and -16.2‰ (Table 3).  $\delta^{13}C_{HCO3}$ 734 values of marine marls in the study zone are  $\delta^{13}C \sim 0\%$ . Typical  $\delta^{13}C$  values for CO<sub>2</sub> 735 dissolved in the soil are between -14‰ and -16‰; for soil HCO<sub>3</sub><sup>-</sup>  $\delta^{13}$ C values are 736 around -23‰ and for pig manure, mineral fertilizers and sewage,  $\delta^{13}C$  values range 737 from -23.8‰ to -16.4‰, from -35‰ to -24‰ and from -25‰ to -13‰, respectively 738 (Table 4). 739 Denitrification catalysed by organic matter oxidation induces a decrease in  $NO_3$ 740 and in total organic carbon concentrations coupled with an increase in dissolved 741 inorganic carbon concentration (eq.1), causing an increase of  $\delta^{15}$ N and  $\delta^{18}O_{NO3}$  and a 742 decrease in  $\delta^{13}C_{HCO3}$  (Faure, 1977). 743 Fig. 8a shows the evolution of the  $\delta^{18}O_{NO3}$  as a function of  $\ln(NO_3/HCO_3)$ . A slight 744 increase in  $\delta^{18}O_{NO3}$  coupled to a decrease in  $\ln(NO_3^{-}/HCO_3^{-})$  can be observed that would 745 suggest that denitrification may occur. Nevertheless, we were not able to observe the 746 corresponding decrease in  $\delta^{13}C_{HCO3}$  in our results (Fig. 8b). As already discussed 747 porewaters presented HCO<sub>3</sub><sup>-</sup>-Ca<sup>2+</sup>-Mg<sup>2+</sup> facies, with saturation indices for Ca-Mg-748 749 carbonates between -1 and 1. This indicates that bicarbonate is in equilibrium with Ca-Mg-carbonates whose dissolution and precipitation will contribute to the buffering of 750 the  $\delta^{13}C_{HCO3}$  of our samples with a final isotope composition corresponding to 751 sedimentary rocks ( $\delta^{13}$ C around 0 ‰ after Travé et al., 1997). Besides these 752 dissolution/precipitation reactions,  $\delta^{13}C_{HCO3}$  can be also affected by other reactions such 753

as equilibrium with  $CO_2(g)$  and other sources such as manure or sewage (Clark and

#### 755 Fritz, 1997).

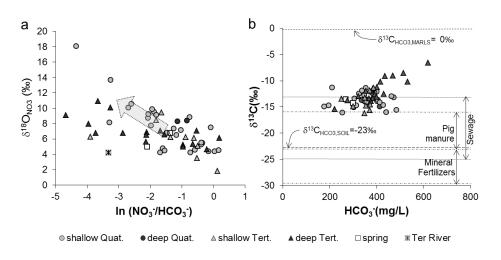





Figure 8. a)  $\delta^{18}O_{NO3}$  values plotted against ln(NO<sub>3</sub><sup>-</sup>/HCO<sub>3</sub><sup>-</sup>). b)  $\delta^{13}C_{HCO3}$  values plotted against HCO<sub>3</sub><sup>-</sup> concentration. Isotope ranges of the main NO<sub>3</sub><sup>-</sup> sources listed in Table 4 are also represented. Value for  $\delta^{13}C_{HCO3}$  for marls is from Travé et al. (1997).

#### 760 5. Conclusions

Here we have The coupled the study of hydrochemical and multi-isotope data in 761 relation with the hydrogeological framework information to identify provides a valuable 762 insight into the sources and to characterise processes controlling the budget of dissolved 763 NO<sub>3</sub> in ground- and surface water <u>, even</u> in a complex hydrogeological system (the 764 765 Baix Ter basin).- This approach has proved to be useful in providing both a better identification of the pollution sources and a better description of the natural attenuation 766 767 processes taking place. This is a very valuable information for the design of water quality management policies. 768 IWhen applied to the Baix Ter basin, isotope data have been useful to further define 769 770 shown that the sources of recharge of for both the Tertiary and the Quaternary aquifers are, namely the rainfall, the Ter River in the NW and a contribution from Les Gavarres 771

| 772 | Massif. Moreover, $\frac{it-they}{it-they}$ showed that dissolved NO <sub>3</sub> <sup>-</sup> in groundwater in the study area                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 773 | mainly comes from pig manure application onto the fields, with minor contributions                                                                        |
| 774 | from sewage and mineral fertilizers. The study of $\delta^{11}B$ confirmed pig manure as the                                                              |
| 775 | main vector of pollution but also identified an urban origin for two of the analysed                                                                      |
| 776 | wells. The dual-isotope ( $\delta^{15}$ N and $\delta^{18}$ O of NO <sub>3</sub> ) approach indicated that mineralization-                                |
| 777 | immobilization-turnover (MIT) and natural denitrification processes are occurring                                                                         |
| 778 | within the study area. The $\delta^{34}$ S and $\delta^{18}$ O of SO <sub>4</sub> <sup>2-</sup> showed that NO <sub>3</sub> <sup>-</sup> reduction is not |
| 779 | controlled by the oxidation of pyrites but rather by the oxidation of organic matter.                                                                     |
| 780 | However, the role of organic matter in NO3 <sup>-</sup> attenuation could neither be confirmed nor                                                        |
| 781 | discarded by the study of the $\delta^{13}C_{HCO3}$ as other processes and sources ultimately                                                             |
| 782 | buffered these isotope compositions. The consumption of organic matter in anaerobic                                                                       |
| 783 | environments is favoured by 1) the river-aquifer connection, 2) the existence of some                                                                     |
| 784 | organic layers in the Ter riversides, and 3) mixing between polluted groundwater and                                                                      |
| 785 | deep regional flows with reducing conditions.                                                                                                             |
| 786 | Since the role of organic matter in the $NO_3^-$ reduction is still an on-going research,                                                                 |
| 787 | further studies on the $\delta^{13}C$ of local contaminant sources and on the role of $MnO_2$ should                                                      |
| 788 | be further investigated. Even if working with samples from exploitation wells, it has                                                                     |
| 789 | been proved that Mmulti-isotope studies allow us to: i) describe groundwater dynamics,                                                                    |
| 790 | ii) discriminate between sources of pollution and determine their relative contribution,                                                                  |
| 791 | iii) characterise the processes affecting the overall nitrogen budget, such as natural                                                                    |
| 792 | attenuation, that in another way would go unnoticed. Still, these approaches highly                                                                       |
| 793 | depend on the knowledge of the isotopic signatures of the different potential sources of                                                                  |
| 794 | nitrate contamination of a given area, on the complexity of the aquifers complex and on                                                                   |
| 795 | the availability of a good infrastructure (e.g. multi-piezometers).                                                                                       |
| 796 |                                                                                                                                                           |

# 797 Acknowledgements

| 798 | This research was funded by the <u>ATENUATION (CGL2011-29975-C04-01) and</u>       |
|-----|------------------------------------------------------------------------------------|
| 799 | REMEDIATION (CGL2014-57215-C4-1-R) projects from Spanish Ministry of               |
| 800 | Economy and Competitiveness (MINECO) and the AGAUR from the Catalan                |
| 801 | Government (grant 2014SGR-1456).and CGL2014-57215-C4-1-R from the Spanish          |
| 802 | Government and project 2014SGR-1456 from Catalan Government. We would like to      |
| 803 | thank the Centres Científics i Tecnològics of the Universitat de Barcelona for its |
| 804 | laboratory help. Authors acknowledge the fruitful comments of the three anonymous  |
| 805 | reviewers.                                                                         |
| 806 |                                                                                    |
|     |                                                                                    |

### 807 **References**

| 808 | ACA, 2007. Diagnosis de la causalidad de la contaminación por nitratos de algunos                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 809 | abastecimientos públicos en las zonas vulnerables de Cataluña, análisis de                                                |
| 810 | alternativas, medidas de prevención y corrección. Área vulnerable 1 Girona.                                               |
| 811 | Estudio 1: Llanura al·luvial de los ríos Ter y Daró, provincia de Girona. ACA                                             |
| 812 | (Water Catalan Agency) Internal Report. 168 pp.                                                                           |
| 813 | ACA, 2015. Agència Catalana de l'Aigua. Generalitat de Catalunya. Consulta de dades.                                      |
| 814 | Available at: <u>http://aca-web.gencat.cat/aca/appmanager/aca/aca/</u> (June 2016).                                       |
| 815 | Altman, S.J., Parizek, R.R., 1995. Dilution of non-point source nitrate in ground water.                                  |
| 816 | J. Environ. Qual. 24, 707-718.                                                                                            |
| 817 | Amiri, H., Zare, M., Widory. D., 2015. Assessing sources of nitrate contamination in                                      |
| 818 | the Shiraz urban aquifer (Iran) using the $\delta^{15}$ N and $\delta^{18}$ O dual-isotope approach.                      |
| 819 | -Isotopes in Environmental and Health Studies. DOI:                                                                       |
| 820 | 10.1080/10256016.2015.1032960.                                                                                            |
| 821 | Anderson, K. K., Hooper, A. B., 1983. O <sub>2</sub> and H <sub>2</sub> O are each the source of one O in NO <sub>2</sub> |
| 822 | produced from NH <sub>3</sub> by Nitrosomas- <sup>15</sup> N-NMR evidence. FEBS Letters, 64, 236–                         |
| 823 | 40.                                                                                                                       |
| 824 | Aravena, R., Evans, M.L., Cherry, J.A., 1993. Stable isotopes of oxygen and nitrogen in                                   |
| 825 | source identification of nitrate from septic tanks. Ground Water, 31, 180-186.                                            |
| 826 | Aravena, R., Robertson, W.D., 1998. Use of Multiple Isotope Tracers to Evaluate                                           |
| 827 | Denitrification in Ground Water: Study of Nitrate from a Large-Flux Septic                                                |
| 828 | System Plume. Ground Water, 36, 975-982.                                                                                  |
| 829 | Aravena, R., Mayer, B., 2010. Isotopes and Processes in the Nitrogen and Sulfur                                           |
| 830 | Cycles. In: Aelion, C.M., Höhener, P., Hunkeler, D., Aravena, R. (Eds.),                                                  |

| 831 | Environmental Isotopes in Biodegradation and Bioremediation. CRC Press, pp.           |
|-----|---------------------------------------------------------------------------------------|
| 832 | 203–246.                                                                              |
| 833 | Archna, Surinder K. Sharma, Ranbir Chander Sobti, 2012. Nitrate Removal from          |
| 834 | Ground Water: A Review. E Journal of Chemistry, 9, 4, 1667-1675.                      |
| 835 | <del>doi:10.1155/2012/154616.</del>                                                   |
| 836 | Barroso, M.F., Ramalhosa, M.J., Olhero, A., Antão, M.C., Pina, M.F., Guimarães, L.,   |
| 837 | Teixeira, J., Alfonso, M.J., Delerue-Matos, C., Chaminé, H.I., 2015. Assessment       |
| 838 | of groundwater contamination in an aricultural peri-urban area (NW Portugal):         |
| 839 | an integrated approach. Environ Earth Sci 73, 2881-2894.                              |
| 840 | Basset, R.L., Buszka, P.M., Davidson, G.R., Chong-Diaz, D., 1995. Identification of   |
| 841 | groundwater solute sources using boron isotopic composition. Environ. Sci.            |
| 842 | Technol. 29, 2915–2922.                                                               |
| 843 | Bateman, A.S., Kelly, S.D., 2007. Fertilizer nitrogen isotope signatures. Isotopes in |
| 844 | Environmental and Health Studies, 43, 237-247.                                        |
| 845 | Borch, T., Kretzschmar, R., Kappler, A., Van Cappellen, P., Ginder-Vogel, M.,         |
| 846 | Voegelin, A., Campbell, K., 2010. Biogeochemical Redox Processes and their            |
| 847 | Impact on Contaminant Dynamics. Environmental Science and Technology, 44,             |
| 848 | 15–23.                                                                                |
| 849 | Böttcher, J., Strebel, O., Voerkelius, S., Schmidt, H.L., 1990. Using isotope         |
| 850 | fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial      |
| 851 | denitrification in sandy aquifer. Journal of Hydrology, 114, 413-424.                 |
| 852 | Bryan, N.S., Alexander, D.D., Coughlin, J.R., Milkowski, A.L., Boffetta, P., 2012.    |
| 853 | Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food         |
| 854 | and Chemical Toxicology, 50, 3646–3665.                                               |
|     |                                                                                       |

855 Clark, I.D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers,
856 New York. 352 pp.

| 857 | Cravotta, C.A., 1997. Use of Stable Isotopes of Carbon, Nitrogen and Sulphur to       |
|-----|---------------------------------------------------------------------------------------|
| 858 | Identify Sources of Nitrogen in Surface Waters in the Lower Susquehanna River         |
| 859 | Basin, Pennsylvania. U.S. Geological Survey Water-Supply Paper 2497.                  |
| 860 | Curt, M.D., Aguado, P., Sánchez, G., Bigeriego, M., and Fernández, J., 2004. Nitrogen |
| 861 | isotope ratios of synthetic and organic sources of nitrate water contamination in     |
| 862 | Spain. Water, Air and Soil Pollution, 151, 135-142.                                   |
| 863 | Delconte. C.A., Sacchi, E., Racchetti, E., Bartoli, M., Mas-Pla, J., Re, V., 2014.    |
| 864 | Nitrogen inputs to a river course in a heavily impacted watershed: a combined         |
| 865 | hydrochemical and isotopic evaluation (Oglio River Basin, N Italy). Science of        |
| 866 | the Total Environment 466-467, 924-938, DOI: 10.1016/j.scitotenv.2013.07.092.         |
| 867 | EC (European Communities), 1991. Council Directive 91/676/EC, of 12 December          |
| 868 | 1991, concerning the protection of waters against pollution caused by nitrates        |
| 869 | from agricultural sources.                                                            |
| 870 | EC (European Communities), 1998. Council Directive 98/83/EC, of 3 November 1998,      |
| 871 | on the quality of water intended for human consumption.                               |
| 872 | EC (European Communities), 2000. Directive 2000/60/EC of the European Parliament      |
| 873 | and of the Council establishing a framework for the Community action in the           |
| 874 | field of water policy (Water Framework Directive). Official Journal of the            |
| 875 | European Communities, OJ L 327.                                                       |
| 876 | EC (European Communities), 2006. Directive 2006/118/EC of the European Parliament     |
| 877 | and of the Council on the protection of groundwater against pollution and             |
| 878 | deterioration (Groundwater Directive). Official Journal of the European               |
| 879 | Communities, OJ L 372.                                                                |

EEA (European Environment Agency), 1999. Nutrients in European Ecosystems.

- 881 Environmental assessment report Nº 4.
- EEA (European Environment Agency), 2012. European waters: assessment of status
- and pressures. EEA Report Nº 8. Published: Nov 13, 2012. Copenhagen,
- 884 Denmark.
- 885 EEA (European Environment Agency), 2015. Nutrients in freshwater. Indicator
- assessment. Data and maps. IND-8-en. CSI 020, WAT 003. Published: Sep 4th,
- 887 2015. Copenhagen, Denmark. Available as a website at
- 888 <u>http://www.eea.europa.eu/data-and-maps/indicators/nutrients-</u>
- 889 <u>infreshwater/nutrients-in-freshwater-assessment-published-6</u>.
- <sup>890</sup> Faure, G. 1997. Principles of isotope geology, Wiley, 2<sup>nd</sup> Ed, 589 pp.
- Fukada, T., Hiscock, K., Dennis, P.F., Grischek, T., 2003. A dual isotope approach to
  identify denitrification in groundwater at a river-bank infiltration site. Water
- 893 Res. 37, 3070–3078.
- Gaillardet, J., Allègre, C.J., 1995. Boron isotopic compositions of corals: Seawater or
   diagenesis record? Earth and Planetary Science Letters- 136, 665-676.
- Heaton, T.H.E., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and
  atmosphere: a review. Chem. Geol. 59, 87–102.
- Hollocher, T. C., 1984. Source of oxygen atoms in nitrate in the oxidation of nitrite by
   *Nitrobacter agilis* and evidence against a P-O-N anhydride mechanism in
- 900 oxidative phosphorylation. Archives of Biochemistry and Biophysics, 233, 721–
  901 27.
- Horibe, Y., Shigehara, K., Takakuwa, Y., 1973. Isotope separation factors of carbon
- dioxide-water system and isotopic composition of atmospheric oxygen. Journal
- 904 of Geophysical Research, 78, 2625-2629.

| 905 | Ishikawa, T., Nakamura, E., 1990. Suppression of boron volatilization from a                 |
|-----|----------------------------------------------------------------------------------------------|
| 906 | hydrofluoric acid solution using a boron-mannitol complex., Analytical                       |
| 907 | Chemistry 62, 2612–2616.                                                                     |
| 908 | Jurado, A., Vàzquez-Suñé, E., Soler, A., Tubau, I., Carrera, J., Pujades, E., Anson, I.,     |
| 909 | 2013. Application of multi-isotope data (O, D, C and S) to quantify redox                    |
| 910 | processes in urban groundwater. Applied Geochemistry, 34, 114-125.                           |
| 911 | Karr, J.D., Showers, W.J., Wendell Gilliam, J., Scott Andres, A., 2001. Tracing nitrate      |
| 912 | transport and environmental impact from intensive swine farming using delta                  |
| 913 | nitrogen-15. J. Environ. Qual. 30, 1163-1175.                                                |
| 914 | Kendall, C., 1998. Tracing Nitrogen Sources and Cycling in Catchments. In: Isotope           |
| 915 | Tracers in Catchment Hydrology, C. Kendall and J. J. McDonnell (Eds.).                       |
| 916 | Elsevier Science B.V., Amsterdam, 839 p., 519-576.                                           |
| 917 | Kendall, C., Elliott, E.M., Wankel, S.D., 2007. Tracing anthropogenic inputs of nitrogen     |
| 918 | to ecosystems, Chapter 12. In: R.H. Michener and K. Lajtha (Eds.), Stable                    |
| 919 | Isotopes in Ecology and Environmental Science, 2nd edition, Blackwell                        |
| 920 | Publishing, pp. 375-449.                                                                     |
| 921 | Koba, K., Tokuchi, N., Wada, E., Nakajima, T., Iwatsubo, G., 1997. Intermittent              |
| 922 | denitrification: the application of a <sup>15</sup> N natural abundance method to a forested |
| 923 | ecosystem. Geochim. Cosmochim. Acta, 61, 5043-5050.                                          |
| 924 | Komor, S.C., 1997. Boron contents and isotopic compositions of hog manure, selected          |
| 925 | fertilizers, and water in Minnesota. J. Environ. Qual. 26, 1212–1222.                        |
| 926 | Krouse, H.R., Mayer, B., 2000. Sulphur and oxygen isotopes in sulphate. In: Cook,            |
| 927 | P.G., Hercseg, A.L. (Eds.), Environmental Tracers in Subsurface Hydrology.                   |
| 928 | Kluwer Academic Press, Boston, pp. 195–231.                                                  |

| 929 | Li, X-2D, Liu, C-Q, Harue, M., Li, S-L, Liu, X-L, 2010. The use of environmental                 |
|-----|--------------------------------------------------------------------------------------------------|
| 930 | isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic                      |
| 931 | effects on karst groundwater quality: A case study of the Shuicheng Basin, SW                    |
| 932 | China. Applied Geochemistry, 25, 1924–1936.                                                      |
| 933 | Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, P., 1981.             |
| 934 | Experimental determination of nitrogen kinetic isotope fractionation: some                       |
| 935 | principles, illustration for the denitrification and nitrification processes. Plant              |
| 936 | Soil, 62, 413–430.                                                                               |
| 937 | Mariotti, A., Landreau, A., Simon, B., 1988. <sup>15</sup> N isotope biogeochemistry and natural |
| 938 | denitrification process in groundwater: application to the chalk aquifer of                      |
| 939 | northern France. Geochim. Cosmochim. Acta, 52, 1869–1878.                                        |
| 940 | Mas-Pla, J., Bach, J., Montaner J., 1998. Distribución de la concentración de nitratos en        |
| 941 | el sistema hidrogeológico Baix Ter-Gavarres (Girona). In: La contaminación de                    |
| 942 | las aguas subterráneas: Un problema pendiente. ITGE-AIH, pp. 139–145.                            |
| 943 | Mas-Pla, J., Vilanova, E., 2001. Dinámica del sistema hidrogeológico Baix Ter-                   |
| 944 | Gavarres en base a isótopos estables. In: IGME, Las Caras del Agua, Serie                        |
| 945 | Hidrogeología y Aguas Subterráneas n. 1/2001, tomo I, pp. 395-402.                               |
| 946 | Menció, A., J. Mas-Pla, A. Soler, N. Otero, O. Regàs, M. Boy-Roura, R. Puig, J. Bach,            |
| 947 | C. Domènech, A. Folch, M. Zamorano, D. Brusi (2016). Nitrate pollution of                        |
| 948 | groundwater; all right, but nothing else? Science of the Total Environment,                      |
| 949 | 539C: 241-251. DOI: 10.1016/j.scitotenv.2015.08.151                                              |
| 950 | Mengis, M., Walther, U., Bernasconi, S.M., Wehrli, B., 2001. Limitations of using $\delta^{18}O$ |
| 951 | for the source identification of nitrate in agricultural soils. Environ. Sci. Technol.           |
| 952 | 35 (9), 1840–1844.                                                                               |
|     |                                                                                                  |

| 953 | Michalski, G., Kolanowski, M. Rihaa, K.M., 2015. Oxygen and nitrogen isotopic                                  |
|-----|----------------------------------------------------------------------------------------------------------------|
| 954 | composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.                              |
| 955 | Isotopes in Environmental and Health Studies 51, 382-391.                                                      |
| 956 | Mizutani, Y., Rafter, T.A., 1973. Isotopic behaviour of sulphate oxygen in the bacterial                       |
| 957 | reduction of sulphate. Geochemical Journal, 6, 183-191.                                                        |
| 958 | Montaner, J., Pons, P., López, J., 2010. Caracterització del flux hidrològic a la plana                        |
| 959 | litoral del Baix Ter. In: El flux hidrològic de la plana litoral del Baix Ter.                                 |
| 960 | Evolució fluvial, caracterització hidrològica i pautes de gestió. Montaner, J.                                 |
| 961 | (coord.). Càtedra d'Ecosistemes Litorals Mediterranis. Museu de la Mediterrània                                |
| 962 | (Ed.). Recerca i Territori, 2.                                                                                 |
| 963 | Neal, C., Neal, M., Warrington, A., Àvila, A., Piñol, J., Rodà, F., 1992. Stable hydrogen                      |
| 964 | and oxygen isotope studies of rainfall and streamwaters for two contrasting holm                               |
| 965 | oak areas of Catalonia, northeastern Spain. Journal of Hydrology, 140, 163-178.                                |
| 966 | Otero, N., Canals, A., Soler, A., 2007. Using dual-isotope data to trace the origin and                        |
| 967 | processes of dissolved sulphate: a case study in Calders stream (Llobregat basin,                              |
| 968 | Spain). Aquat. Geochem. 13, 109–126.                                                                           |
| 969 | Otero, N., Soler, A., Canals, A., 2008. Controls of $\delta^{34}$ S and $\delta^{18}$ O in dissolved sulphate: |
| 970 | Learning from a detailed survey in the Llobregat River (Spain). Applied                                        |
| 971 | Geochemistry, 23, 1166-1185.                                                                                   |
| 972 | Otero, N., Torrentó, C., Soler, A., Menció, A., Mas-Pla, J., 2009. Monitoring                                  |
| 973 | groundwater nitrate attenuation in a regional system coupling hydrogeology with                                |
| 974 | multi-isotopic methods: the case of Plana de Vic (Osona, Spain). Agr. Ecosyst.                                 |
| 975 | Environ. 133 (1-2), 103–113.                                                                                   |

| 976 | Panno, S.V., Hackley, K.C., Hwang, H.H., Kelly, W.R., 2001. Determination of the                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 977 | sources of nitrate contamination in karst springs using isotopic and chemical                                               |
| 978 | indicators. Chemical Geology, 179, 113-128.                                                                                 |
| 979 | Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., Bemment, C.D., 2008. Nitrate                                           |
| 980 | attenuation in groundwater: a review of biogeochemical controlling processes.                                               |
| 981 | Water Res. 42, 4215–4232.                                                                                                   |
| 982 | Rock, L., Mayer, B., 2002. Isotopic assessment of sources and processes affecting                                           |
| 983 | sulphate and nitrate in surface water and groundwater of Luxembourg. Isotopes                                               |
| 984 | Environ. Health Stud. 38 (4), 191-206.                                                                                      |
| 985 | Sacchi, E., Acutis, M., Bartoli, M., Brenna, S., Delconte. C.A., Laini, A., Pennisi, M.                                     |
| 986 | (2013) Origin and fate of nitrates in groundwater from the central Po plain:                                                |
| 987 | Insights from isotopic investigations. Applied Geochemistry 34, 164-180.                                                    |
| 988 | Saccon, P., Leis, A., Marca, A., Kaiser, J., Campisi, L., Böttcher, M.E., Savarino, J.,                                     |
| 989 | Escher, P., Eisenhauer, A., Erbland, J., 2013. Multi-isotope approach for the                                               |
| 990 | identification and characterization of nitrate pollution sources in the Marano                                              |
| 991 | lagoon (Italy) and parts of its catchment area. Appl. Geochem., 34, 75-89.                                                  |
| 992 | Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., Mariotti, A., 2013. Long-term fate of                                     |
| 993 | nitrate fertilizer in agricultural soils. PNAS (Proceedings of the National                                                 |
| 994 | Academy of Sciences of the United States of America).                                                                       |
| 995 | www.pnas.org/cgi/doi/10.1073/pnas.1305372110                                                                                |
| 996 | Seiler, R. L., 2005. Combined use of <sup>15</sup> N and <sup>18</sup> O of nitrate and <sup>11</sup> B to evaluate nitrate |
| 997 | contamination in groundwater. Applied Geochemistry, 20, 1626-1636.                                                          |
| 998 | Silva, S.R., Ging, P.B., Lee, R.W., Ebbert, J.C., Tesoriero, A.J., Inkpen, E.L., (2002)                                     |
| 999 | Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources                                            |

| 1000 | in urban environments. Environ Forensic 3, 125–130.                                            |
|------|------------------------------------------------------------------------------------------------|
| 1001 | doi:10.1006/enfo.2002.0086.                                                                    |
| 1002 | Silva, S.R., Kendall, C., Wilkison, D.H., Ziegler, A.C., Chang, C.C.Y., Avanzino, R.J.,        |
| 1003 | 2000. A new method for collection of nitrate from fresh water and the analysis                 |
| 1004 | of nitrogen and oxygen isotope ratios. Journal of Hydrology, 228, 22-36.                       |
| 1005 | Spivack, A.J., Edmond, J.M., 1986. Determination of boron isotope ratios by thermal            |
| 1006 | ionization mass spectrometry of the dicesium metaborate cation. Anal. Chem.,                   |
| 1007 | 58, 31-35.                                                                                     |
| 1008 | Tirez, K., Brusten, W., Widory, D., Petelet, E., Bregnot, A., Xue, D., Boeckx, P.,             |
| 1009 | Bronders, J., 2010. Boron Isotope Ratio ( $\delta^{11}B$ ) Measurements in Water               |
| 1010 | Framework Directive Programs: Comparison between Double Focusing Sector                        |
| 1011 | Field ICP and Thermal Ionization Mass Spectrometry, J. Anal. At. Spectrom. 25,                 |
| 1012 | 964-974.                                                                                       |
| 1013 | Travé, A., Labaume, P., Calvet, F., Soler, A. (1997) Sediment dewatering and pore fluid        |
| 1014 | migration along thust faults in a foreland basin inferred from isotopic and                    |
| 1015 | elemental geochemical analyses (Eocene southern Pyrenees, Spain).                              |
| 1016 | Tectonophysics 282, 375-398.                                                                   |
| 1017 | Vane, C.H., Kim, A.W., McGowan, S., Leng, M.J., Heaton, T.H.E., Kendrick, C.P.,                |
| 1018 | Coombs, P., Yang, H., Swann, G.E.A., 2010. Sedimentary records of sewage                       |
| 1019 | pollution using faecal markers in contrasting peri-urban shallow lakes. The                    |
| 1020 | Science of the Total Environment 409, 345-356.                                                 |
| 1021 | Van Stempvoort, D.R., Krouse, H.R., 1994. Controls of $\delta^{18}$ O in sulphate. In: Alpers, |
| 1022 | C.N., Blowes, D.W. (Eds.), Environmental Geochemistry of Sulphide Oxidation.                   |
| 1023 | American Chemical Society, Washington, pp. 446–480.                                            |

| 1024 | Vengosh, A., Heumann, K.G., Juraske, S., Kasher, R., 1994. Boron Isotope Application                                                                       |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1025 | for Tracing Sources of Contamination in Groundwater. Environmental, Science                                                                                |
| 1026 | and Technology 28, 1968-1974.                                                                                                                              |
| 1027 | Vilanova, E., 2004. Anàlisi dels sistemes de flux a l'àrea Gavarres-Selva-Baix                                                                             |
| 1028 | Empordà. Proposta de model hidrodinàmic regional. Ph.D Dissertation.                                                                                       |
| 1029 | Universitat Autònoma de Barcelona, 337 pp.                                                                                                                 |
| 1030 | http://www.tdx.cat/handle/10803/3437                                                                                                                       |
| 1031 | Vilanova, E., Mas-Pla, J., 2004. Identificación de sistemas de flujo en base a datos                                                                       |
| 1032 | isotópicos en el área Gavarres-Baix Empordà-Selva (CIC). Geotemas, 6(4), 197-                                                                              |
| 1033 | <del>202.</del>                                                                                                                                            |
| 1034 | Vilanova, E., Mas-Pla, J., Menció, A., 2008. Determinación de sistemas de flujo                                                                            |
| 1035 | regionales y locales en las depresiones tectónicas del Baix Empordà y La Selva                                                                             |
| 1036 | (NE de España) en base a datos hidroquímicos e isotópicos. Boletín Geológico y                                                                             |
| 1037 | Minero, 119 (1), 51-62.                                                                                                                                    |
| 1038 | Vitòria, L., 2004. Estudi multi-isotòpic ( $\delta^{15}$ N, $\delta^{34}$ S, $\delta^{13}$ C, $\delta^{18}$ O, $\delta$ D i $^{87}$ Sr/ $^{86}$ Sr) de les |
| 1039 | aigües subterrànies contaminades per nitrats d'origen agrícola i ramader.                                                                                  |
| 1040 | Translated title: Multi-isotopic approach ( $\delta^{15}N$ , $\delta^{34}S$ , $\delta^{13}C$ , $\delta^{18}O$ , $\delta D$ and                             |
| 1041 | <sup>87</sup> Sr/ <sup>86</sup> Sr) of nitrate contaminated groundwaters by agricultural and stockbreeder                                                  |
| 1042 | activities. PhD Thesis. Universitat de Barcelona, 188 pp.                                                                                                  |
| 1043 | Vitòria, L., Otero, N., Canals, A., Soler, A., 2004. Fertilizer characterization: isotopic                                                                 |
| 1044 | data (N, S, O, C and Sr). Environ. Sci. Technol. 38, 3254–3262.                                                                                            |
| 1045 | Vitòria, L., Soler, A., Aravena, R., Canals, A., 2005. Multi-isotopic approach ( <sup>15</sup> N, <sup>13</sup> C,                                         |
| 1046 | <sup>34</sup> S, <sup>18</sup> O and D) for tracing agriculture contamination in groundwater (Maresme,                                                     |
| 1047 | NE Spain). In: Environmental Chemistry (Eds. E. Lichtfouse, J. Schwarzbauer                                                                                |
| 1048 | and D. Robert). Springer-Verlag, Heidelberg, 43-56.                                                                                                        |

| 1049 | Vitòria, L., Soler, A., Canals, A., Otero, N., 2008. Environmental isotopes (N, S, C, O,                   |
|------|------------------------------------------------------------------------------------------------------------|
| 1050 | D) to determine natural attenuation processes in nitrate contaminated waters:                              |
| 1051 | example of Osona (NE Spain). Appl. Geochem. 23, 3597-3611.                                                 |
| 1052 | Waldron, S., Tatner, P., Jack, I., Arnott, C., 2001. The Impact of Sewage Discharge in a                   |
| 1053 | Marine Embayment: A Stable Isotope Reconnaissance. Estuarine, Coastal and                                  |
| 1054 | Shelf Science, 52, 111–115. doi:10.1006/ecss.2000.0731.                                                    |
| 1055 | Ward, M.H., deKok, T.M., Levallois, P., Brender, J., Gulis, G., Nolan, B.T.,                               |
| 1056 | VanDerslice, J., 2005. Workgroup report: drinking-water nitrate and health-                                |
| 1057 | recent findings and research needs. Environ. Health Perspect. 113, 1607-1614.                              |
| 1058 | Wassenaar, L. I., 1995. Evaluation of the origin and fate of nitrate in the Abbotsford                     |
| 1059 | aquifer using the isotopes of $^{15}$ N and $^{18}$ O in NO <sub>3</sub> . Applied Geochemistry, 10,       |
| 1060 | 391–405.                                                                                                   |
| 1061 | Widory, D., Kloppmann, W., Chery, L., Bonnin, J., Rochdi, H., Guinamant, J.L., 2004.                       |
| 1062 | Nitrate in groundwater: an isotopic multi-tracer approach. Journal of                                      |
| 1063 | Contaminant Hydrology, 72, 165-188.                                                                        |
| 1064 | Widory, D., Petelet-Giraud, E., Négrel, P., Ladouche, B., 2005. Tracking the sources of                    |
| 1065 | nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis.                             |
| 1066 | Environmental, Science and Technology, 39, 539-548.                                                        |
| 1067 | Widory, D., Petelet-Giraud, E., Brenot, A., Bronders, J., Tirez, K., Boeckx, P., 2013.                     |
| 1068 | Improving the management of nitrate pollution in water by the use of isotope                               |
| 1069 | monitoring: the $\delta^{15}N$ , $\delta^{18}O$ and $\delta^{11}B$ triptych. Isotopes in Environmental and |
| 1070 | Health Studies, 48, 1-19.                                                                                  |
| 1071 | Xu, S., Kang, P., Sun, Y., 2016. A stable isotope approach and its application for                         |
| 1072 | identifying nitrate source and transformation process in water. Environ Sci                                |
| 1073 | Pollut Res 23, 1133-1148.                                                                                  |

| 1074 | Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., |
|------|-----------------------------------------------------------------------------------------|
| 1075 | Berglund, M., Boeckx, P., 2009. Present limitations and future prospects of             |
| 1076 | stable isotope methods for nitrate source identification in surface- and                |
| 1077 | groundwater. Water Research, 43, 1159-1170.                                             |
| 1078 | Yingkai, X., Lan, W., 2001. The effect of pH and temperature on the isotopic            |
| 1079 | fractionation of boron between saline brine and sediments. Chem. Geol. 171,             |
| 1080 | 253–261.                                                                                |

# 1082 Figure captions

| 1083 | Figure 1. Geological map of the Baix Ter basin, sampling point locations labelled                                        |
|------|--------------------------------------------------------------------------------------------------------------------------|
| 1084 | according to the hydrogeological formation where they are located. Potentiometric                                        |
| 1085 | contour lines of the unconfined aquifer, mainly in the shallow Quaternary formations,                                    |
| 1086 | correspond to the August 2004 survey. Dashed line represents the zero elevation                                          |
| 1087 | potentiometric level in the deep quaternary formations (mainly leaky aquifers) affected                                  |
| 1088 | by intensive withdrawal rates in the central area of the basin. Geology from ICGC                                        |
| 1089 | (http://www.icgc.cat).Figure 1. Baix Ter basin map showing the geology and sampling                                      |
| 1090 | points, labelled according to their hydrogeological formation (round and triangle shapes                                 |
| 1091 | distinguish between Quaternary and Tertiary aquifers, respectively, and light and bold                                   |
| 1092 | points, between shallow and deep formations, respectively; square refers to the sampled                                  |
| 1093 | spring). Potentiometric contour lines correspond to the water table measurements of the                                  |
| 1094 | Quaternary unit (August 2004).                                                                                           |
| 1095 |                                                                                                                          |
| 1096 | Figure 2. $\delta^{18}O_{H2O}$ and $\delta^{2}H$ of the Baix Ter groundwater samples collected in January                |
| 1097 | 2004 (a) and August 2004 (b). The annual-Local Meteoric Water Line (LMWL) follows                                        |
| 1098 | the equation $\delta^2 H = 7.98(\pm 2.71) \delta^{18}O + 7.85(\pm 0.47)$ (r <sup>2</sup> =0.924, n=23) (Vilanova, 2004), |
| 1099 | whose slope is equal to that of the neighbouring areas ( $\delta^2 H = 7.9 \ \delta^{18} O + 9.8$ ; Neal et al.,         |
| 1100 | 1992).                                                                                                                   |
| 1101 |                                                                                                                          |
| 1102 | Figure 3. Mn concentrations plotted against the Eh values of the groundwater samples.                                    |

- Eh ranges of  $MnO_2/Mn^{2+}$  and  $NO_3^{-}/N_{2(g)}$  redox pairs are taken from Rivett et al. (2008).
- 1104

| 1105 | Figure 4 a) NO <sub>3</sub> <sup>-</sup> concentration versus Cl <sup>-</sup> concentration, b) NO <sub>3</sub> <sup>-</sup> concentration versus              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1106 | $SO_4^{2-}$ concentration, c) $SO_4^{2-}$ concentration versus (NO <sub>3</sub> <sup>-</sup> /Cl <sup>-</sup> ) ratio, and d) B                                |
| 1107 | concentration versus ( $NO_3^{-}/Cl^{-}$ ) ratio.                                                                                                              |
| 1108 |                                                                                                                                                                |
| 1109 | Figure 5. a) Variations of the $\delta^{15}$ N and $\delta^{18}$ O of dissolved NO <sub>3</sub> in groundwater according                                       |
| 1110 | to their hydrogeological unit. Isotope ranges of the main NO <sub>3</sub> sources listed in Table 4                                                            |
| 1111 | are also represented. The extreme isotopic fractionation ratiosfactors from the literature                                                                     |
| 1112 | are $\varepsilon_{N}/\varepsilon_{O} = 2.1$ (Böttcher et al., 1990) and $\varepsilon_{N}/\varepsilon_{O} = 1.3$ (Fukada et al., 2003). b) $\delta^{18}O_{NO3}$ |
| 1113 | values plotted against ln(NO3 <sup>-</sup> /Cl <sup>-</sup> ) according to their hydrogeological unit. R <sup>2</sup> values                                   |
| 1114 | offor the linear regressions for shallow Quat. and deep Tert. Units are also reported.                                                                         |
| 1115 | Variations of the $\delta^{15}$ N and $\delta^{18}$ O of dissolved NO <sub>3</sub> in groundwater according to their                                           |
| 1116 | hydrogeological unit. Isotope ranges of the main NO3 <sup>-</sup> sources listed in Table 4 are also                                                           |
| 1117 | represented. The extreme isotopic fractionation ratios from the literature are $\epsilon_N/\epsilon_0 = 2.1$                                                   |
| 1118 | (Böttcher et al., 1990) and $\varepsilon_N/\varepsilon_0 = 1.3$ (Fukada et al., 2003).                                                                         |
| 1119 |                                                                                                                                                                |
| 1120 | Figure 6. $\delta^{34}$ S and $\delta^{18}$ O of dissolved SO <sub>4</sub> <sup>2-</sup> in groundwater according to their                                     |
| 1121 | hydrogeological unit. Isotope ranges of natural and anthropogenic SO <sub>4</sub> sources listed in                                                            |
| 1122 | Table 4 are also represented. The area of sulphates derived from sulphide oxidation is                                                                         |
| 1123 | from Van Stempvoort and Krouse (1994). Dashed lines define the isotopic fractionation                                                                          |
|      |                                                                                                                                                                |

range ( $\epsilon^{34}$ S/ $\epsilon^{18}$ O<sub>SO4</sub>) in SO<sub>4</sub> reduction reactions, varying between 2.5 and 4 (Mizutani and Rafter, 1973).

1126

Figure 7.  $\delta^{11}$ B values plotted against B concentration (a) and  $\delta^{15}$ N values (b). Isotope ranges of the main NO<sub>3</sub><sup>-</sup> sources listed in Table 4 are also represented.  $\delta^{11}$ B<sub>seawater</sub> is taken from Vengosh et al. (1994).

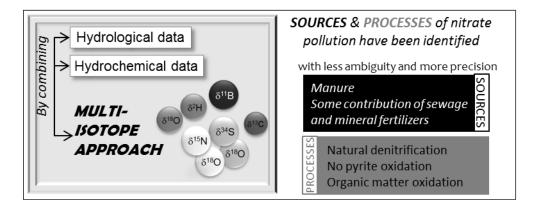
| 1131 | Figure 8. a) $\delta^{18}O_{NO3}$ values plotted against ln(NO <sub>3</sub> <sup>-</sup> /HCO <sub>3</sub> <sup>-</sup> ). b) $\delta^{13}C_{HCO3}$ values plotted |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1132 | against $HCO_3^-$ concentration. Isotope ranges of the main $NO_3^-$ sources listed in Table 4                                                                     |
| 1133 | are also represented. Value for $\delta^{13}C_{HCO3}$ for marls is from Travé et al. (1997).                                                                       |
| 1134 |                                                                                                                                                                    |
| 1135 | Table captions                                                                                                                                                     |
| 1136 | Table 1. Hydrogeological formation, X and Y UTM coordinates, depth (m), hydraulic                                                                                  |
| 1137 | head (m.a.s.l.), and physico-chemical parameters measured in situ for the sampled                                                                                  |
| 1138 | points of each field campaign. See Fig. 1 for sampling locations in the Baix Ter basin.                                                                            |
| 1139 | $R_1$ and $R_2$ Ter River samples are from the Colomers station, NW of the study zone (Fig.                                                                        |
| 1140 | 1). ( <i>n.d.</i> : Not determined).                                                                                                                               |
| 1141 |                                                                                                                                                                    |
| 1142 | Table 2. Hydrochemical data for the January and August 2004 field campaigns ("*" =                                                                                 |
| 1143 | DOC concentrations instead of TOC concentrations). $R_1$ and $R_2$ Ter River samples are                                                                           |
| 1144 | from the Colomers station, NW of the study zone (Fig. 1). (n.d.: Not determined; u.d.l.:                                                                           |
| 1145 | under detection limit).                                                                                                                                            |
| 1146 |                                                                                                                                                                    |
| 1147 | Table 3. Isotope data for the January and August 2004 field campaigns. $R_1$ and $R_2$ Ter                                                                         |
| 1148 | River samples are from the Colomers station, NW of the study zone (Fig. 1). (n.d.: Not                                                                             |
| 1149 | determined).                                                                                                                                                       |
| 1150 |                                                                                                                                                                    |
| 1151 | Table 4. Ranges of nitrate, sulphate, boron and dissolved inorganic carbon isotope                                                                                 |
| 1152 | compositions of the main potential sources of nitrate obtained from the literature.                                                                                |
| 1153 |                                                                                                                                                                    |
|      |                                                                                                                                                                    |

# Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach

Roger Puig<sup>a</sup>, Albert Soler<sup>a</sup>, David Widory<sup>b</sup>, Josep Mas-Pla<sup>c, d</sup>, Cristina Domènech<sup>a</sup> and Neus Otero<sup>a</sup>

<sup>a</sup>Grup de Mineralogia Aplicada i Geoquímica de Fluids, Dept. de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), c/ Martí i Franquès s/n, 08028 Barcelona, Spain.

<sup>b</sup>Département des Sciences de la Terre et de l'Atmosphère, Geotop/UQAM, Montréal, Canada.


<sup>°</sup>Grup de Geologia Aplicada i Ambiental, Centre de Geologia i Cartografia Ambiental, Dept. de

Ciències Ambientals, Universitat de Girona, 17003 Girona, Spain.

<sup>d</sup>Catalan Institute for Water Research, c/ Emili Grahit 101, 17003 Girona, Spain.

**Corresponfing author:** Cristina Domenech (cristina.domenech@ub.edu)

# **Graphical abstract**



# Highlights

- $\delta^{15}N$ ,  $\delta^{18}O_{NO3}$  and  $\delta^{11}B$  confirm pig manure as the main vector of NO<sub>3</sub>-pollution.
- SO<sub>4</sub><sup>2-</sup> and B isotopes indicate also contributions from sewage and mineral fertilizers.
- $NO_3^-$  isotopes show that  $NO_3^-$  undergoes natural attenuation.

- $SO_4^{2-}$  isotopes confirm that denitrification is not controlled by pyrite oxidation.
- The multi-isotope approach provides a unique and comprehensive approach that allows to characterise the origin of NO<sub>3</sub><sup>-</sup> pollution as well as the processes involved.

# Abstract

Nitrate pollution is a widespread issue affecting global water resources with significant economic and health effects. Knowledge of both the corresponding pollution sources and of processes naturally attenuating them is thus of crucial importance in assessing water management policies and the impact of anthropogenic activities. In this study, an approach combining hydrodynamic, hydrochemical and multi-isotope systematics (8 isotopes) is used to characterise the sources of nitrate pollution and potential natural attenuation processes in a polluted basin of NE Spain.  $\delta^2$ H and  $\delta^{18}$ O isotopes were used to further characterize the sources of recharge of the aquifers. Results show that NO<sub>3</sub><sup>-</sup> is not homogeneously distributed and presents a large range of concentrations, from no NO<sub>3</sub><sup>-</sup> to up to 480 mg L<sup>-1</sup>.  $\delta^{15}$ N and  $\delta^{18}$ O of dissolved NO<sub>3</sub><sup>-</sup> identified manure as the main source of nitrate, although sewage and mineral fertilizers can also be isotopically detected using boron isotopes ( $\delta^{11}$ B) and  $\delta^{34}$ S and  $\delta^{18}$ O of dissolved sulphate, respectively. The multi-isotope approach proved that natural denitrification is occurring, especially in near-river environments or in areas hydrologically related to fault zones.  $\delta^{34}$ S and  $\delta^{18}$ O indicated that denitrification is not driven by pyrite oxidation but rather by the oxidation of organic matter. This could not be confirmed by the study of  $\delta^{13}C_{HCO3}$  that was buffered by the entanglement of other processes and sources.

# Keywords

Stable isotopes, nitrate contamination, boron, denitrification, groundwater, manure

#### **1. Introduction**

Nitrate (NO<sub>3</sub><sup>-</sup>) contamination of groundwater is a problem affecting groundwater quality worldwide (Xu et al., 2016 and references therein) that has proved to affect human health (Bryan et al., 2012; Ward et al., 2005). Because of this, considerable efforts have been made by the European authorities to promote both the reduction of NO<sub>3</sub><sup>-</sup> inputs and the enhancement of attenuation processes in groundwater.

However, no decreasing trends in average European nitrate concentration in groundwater have been observed during the last 15 years (EEA, 2015). Thus, NO<sub>3</sub> concentrations in groundwater often exceed the 50 mg L<sup>-1</sup> legal guideline set for drinking water (EC, 1998). NO<sub>3</sub> is currently one of the main contaminants that may hinder achieving the goals of the Water Framework (EC, 2000) and of the European Groundwater (EC, 2006) directives. This arises the need for a better knowledge on the overall nitrogen, including nitrate species cycle in surface water and groundwater.

Nitrogen is mainly incorporated into the soil as a nutrient through mineral fertilizers or manure, each of these sources accounting for nearly 50% of the N input into the European agricultural soils (EEA, 2012). However, other minor N sources such as the leakage of sewage from sewer networks in urban environments (Aravena and Mayer, 2010; Barroso et al., 2015; Sacchi et al., 2013; Vane et al., 2010) have been reported for groundwater.

Once in the soil, nitrogen is transformed through microbially mediated redox reactions (nitrogen fixation, nitrification, denitrification, dissimilatory  $NO_3^-$  reduction to ammonium, anammox; Borch et al., 2010). Nitrification represents the oxidation of nitrogen (under the form of ammonia) into nitrate. It frequently occurs in the unsaturated zone where oxygen is available and explains why most of the nitrogen that

reaches groundwater appears as  $NO_3^{-}$ . Denitrification is the transformation of nitrate into  $N_2(g)$ . It is considered the main natural process attenuating nitrate concentration in groundwater. This requires the presence of denitrifying bacteria and electron donors (organic carbon, reduced sulphur and/or reduced iron), abundant presence of  $NO_3^{-}$  and an anaerobic environment (Koba et al., 1997; Rivett et al., 2008). Denitrification can be heterotrophic if linked to the oxidation of an organic compound (eq.1) or autotrophic, if linked to the oxidation of an inorganic compound, such as iron sulphide (eq.2).

$$4NO_3^{-} + 5CH_2O \rightarrow 2N_2 + 4HCO_3^{-} + CO_2 + 3H_2O$$
(1)

$$14NO_3^- + 5FeS_2 + 4H^+ \rightarrow 7N_2 + 10SO_4^{2-} + 5Fe^{2+} + 2H_2O$$
 (2)

Dilution and dispersion are other processes that can result in a decrease of groundwater nitrate concentration, but contrarily to natural attenuation they do not lead to the mass-reduction of the contaminant within the aquifer.

Knowledge of both the sources of nitrogen contamination and the processes affecting nitrogen once in the aquifer is thus of the utmost importance to better design strategies to ultimately decrease nitrate pollution. The study of the isotope composition of nitrogen compounds has proved to be a viable tool to tackle both issues (e.g. Amiri et al. 2016; Vitòria et al. 2008). Denitrification reactions (eq.1 and 2) affect the isotope composition of the residual nitrate leading to an enrichment in its heavy isotopes <sup>15</sup>N and <sup>18</sup>O (Aravena and Robertson, 1998; Fukada et al., 2003; Kendall et al., 2007; Mariotti et al., 1988). The study of the  $\delta^{15}$ N and  $\delta^{18}$ O isotope compositions and nitrate concentrations (eq. 3 and 4) allow to determine the corresponding isotopic enrichment factor ( $\epsilon$ ), used to characterise the extension of the attenuation processes (Böttcher et al., 1990; Fukada et al., 2003; Mariotti et al., 1981). Also, as the initial NO<sub>3</sub><sup>-</sup> isotope compositions differ between the different nitrate sources (inorganic fertilizers, manure, soil, ...), the  $\delta^{15}$ N and  $\delta^{18}$ O compositions of nitrate have been used to identify its origin in groundwater (Aravena et al., 1993; Aravena and Mayer, 2010; Clark and Fritz, 1997; Kendall et al., 2007; Panno et al., 2001).

$$\delta^{15} N_{\text{residual}} = \delta^{15} N_{\text{initial}} + \varepsilon_{N} \ln \left( [NO_{3}^{-}]_{\text{residual}} / [NO_{3}^{-}]_{\text{initial}} \right)$$
(3)  
$$\delta^{18} O_{\text{residual}} = \delta^{18} O_{\text{initial}} + \varepsilon_{O} \ln \left( [NO_{3}^{-}]_{\text{residual}} / [NO_{3}^{-}]_{\text{initial}} \right)$$
(4)

However, in areas characterized by complex groundwater flow systems and exposed to multiple sources of nitrogen, the use of the sole  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup> and nitrate concentrations may result in not conclusive results.

To overcome this difficulty, as the redox transformations affecting nitrate also affect the electron donor, some authors have coupled  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup> data with the isotope composition of the electron donors or with other types of hydrochemical data, such as conservative elements (Xu et al., 2016). Some authors combined chloride concentration (a conservative element) with  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup> to identify nitrate sources and transformation processes (Silva et al. 2002, Vitòria et al. 2008). Some others used the  $\delta^{34}$ S and  $\delta^{18}$ O of sulphate or  $\delta^{13}C_{HCO3}$  to evaluate if sulphide or organic matter oxidation processes could be linked to denitrification processes (Aravena and Robertson, 1998; Otero et al., 2009; Rock and Mayer, 2002; Saccon et al., 2013; Vitòria et al. 2005, 2008).

Moreover, in the last decade, some studies have also used the isotope composition of boron ( $\delta^{11}$ B) in combination with the  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup> to trace the origin of NO<sub>3</sub><sup>-</sup> in water (Delconte et al., 2014; Komor, 1997; Saccon et al., 2013; Seiler, 2005; Widory et al., 2004, 2005, 2013). B is usually found in natural ground- and surface water as a minor constituent (<0.05 mg B L<sup>-1</sup>) whereas contaminant sources are enriched in B (>0.1 mg B L<sup>-1</sup>; Tirez et al., 2010). Besides the fact that groundwater affected by anthropogenic activities may present elevated B contents (Vengosh et al., 1994),  $\delta^{11}$ B values are significantly discriminated between manure and wastewater. As for nitrate isotopic composition,  $\delta^{11}$ B of dissolved B can be modified by different processes. However, the processes that can shift B isotopic composition are aquifer matrix interaction (dissolution of B-bearing silicates) and adsorption-desorption interactions with clay minerals, iron and aluminium oxide surfaces, and/or organic matter (Yingkai and Lan, 2001). No effects on  $\delta^{11}$ B composition are caused by volatilization and oxidation-reduction reactions (Bassett et al., 1995). Thus, the incorporation of  $\delta^{11}$ B in the multi-isotope approach of nitrate polluted areas may be useful for a better identification of NO<sub>3</sub><sup>-</sup> sources (manure or sewage), especially in semirural zones where agricultural and farming practices cohabitate with industrial and urban activities.

However, to our knowledge no study trying to combine these chemical/isotope approaches has ever been reported so far. Here, we aim at assessing the validity of a multi-parameter approach in which, besides the classical  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup>, hydrochemical data (e.g. Cl<sup>-</sup> concentration),  $\delta^2$ H and  $\delta^{18}$ O of water,  $\delta^{34}$ S and  $\delta^{18}$ O of dissolved sulphate,  $\delta^{13}$ C of HCO<sub>3</sub><sup>-</sup> and  $\delta^{11}$ B of dissolved B are used simultaneously to both identify the sources of contamination and to characterise processes affecting the nitrate budget of a given watershed. This study was undertaken in the Baix Ter aquifer (NE Spain), declared vulnerable to NO<sub>3</sub><sup>-</sup> pollution in 1998 by the local government following the 91/676/EC European Nitrate Directive (EC, 1991). NO<sub>3</sub><sup>-</sup> contents in groundwater exceeds the 50 mg NO<sub>3</sub><sup>-</sup> L<sup>-1</sup> threshold (ACA, 2007) due to the large amount of fertilizers used by local agriculture (Mas-Pla et al., 1998; Montaner et al. 2010) and pig raising practices that started in the 80's and intensified during the last decades (ACA, 2007; EEA, 1999). This aquifer is subjected to several anthropogenic pressures such as additional nitrate sources or groundwater exploitation that increases the complexity of the aquifer behaviour.

### 2. Study area

The Baix Ter basin is located in the Baix Empordà tectonic basin (NE Catalonia, Spain) (Fig. 1). The study zone encompasses a 200 km<sup>2</sup> area characterized by the Ter River alluvial plain delimited by the Montgrí Range to the north (Mesozoic limestone formations) and by the Gavarres Range to the south (Paleozoic igneous and metamorphic rocks) that turns into a fluvio-deltaic environment in its eastern margin. The foothills of the Gavarres Range, as well as the basin basement present Paleogene sedimentary materials (sandstone and limestone formations) that are severely affected by fractures (Mas-Pla and Vilanova, 2001).

The Baix Empordà basin was formed during the distensive period of the Alpine orogenesis. Detritic, fine-grained and silty formations were sedimented during the Neogene. The Quaternary fluvio-deltaic deposits originated from the Ter River as well as from some minor tributaries from the Gavarres Range (i.e., Daró River, Fig. 1). They constitute the main aquifers of the area, and lay on the Neogene sediments in the western area, and on the Paleogene in the eastern part of the basin. Fluvial deposits reach a maximum depth of 50-60 m in the central part of the basin and are constituted by three main distinguishable units according to the Holocene sedimentary sequence (Montaner et al. 2010): a deep level formed by alluvial coarse detritic material, gravel and sand; an intermediate level, formed by sandy lenticular bodies in a silty-sandy level; and a shallow level, mainly sandy formed by the present prograding alluvial deposits that transform into marsh and coastal deposits near the coast line.

Because of this lithological diversity, three distinct aquifer units are differentiated, from bottom to top: a leaky aquifer formed by the deeper coarse sediment layer, a leaky aquifer formed by the intermediate sandy layer, and an upper unconfined aquifer formed by the prograding deposits. All of them present significant lateral variations, especially the upper aquifer that reflects the fluvio-deltaic, marsh and coastal areas presently occurring in the plain. These aquifer units are separated by loamy layers that constitute low permeability units that act as aquitards. Nevertheless, all three aquifer layers overlap in the westernmost part of the area, between Colomers and Verges.

According to Montaner et al. (2010) these aquifers are mainly recharged by local precipitation, seasonal contribution from the Ter and Daró rivers (whether natural or induced by pumping), and by irrigation returns. Moreover, igneous and metamorphic rocks at the Gavarres Range act as regional recharge areas that discharge into the fluvio-deltaic Quaternary aquifers through the preferential upward vertical flow paths of the limestone and carbonate Paleogene aquifers and, more importantly, through the fractures that affect them. Potentiometric, hydrochemical and isotope data indicate that these different aquifers are hydraulically connected (Vilanova et al., 2008).

Potentiometric maps reveal an influent (losing stream) behaviour of the Ter River in its western reach, between Colomers and Verges, and an effluent (gaining stream) behaviour of the Ter and Daró rivers downstream of Verges down to the coast line. However, intense groundwater withdrawal from these aquifers started in the 60's with the agricultural and touristic development of the area that modified the natural flow field causing a noticeable depression cone in the centre of the formation, between the villages of Gualta and Torroella de Montgrí (Fig. 1). This cone creates a downward flow from the upper unconfined aquifer, also capturing the Ter River discharge, which recharges the supply wells located in the lower aquifer levels. The total groundwater abstraction is around 21 hm<sup>3</sup>/yr, from which 62% are for domestic use (including the touristic season), 36% for agriculture activities and 2% for the industry (ACA, 2007).

The Baix Ter basin area supports rural agriculture and livestock activities, industrial activities and several small to medium-sized urban areas that drastically increase their

population during summer due to their intense touristic activity. About 60% of the surface is covered by herbaceous dry-farmed and irrigated crops (mainly maize, sunflower and rice), 20% by forest and pasture and 7% by fruit growing (ACA, 2007).

The total nitrogen produced by livestock in the study zone is around 500 tons of N year<sup>-1</sup>. 60% of this amount are from intensive pig rising (460 pigs/km<sup>2</sup>; 50 m<sup>3</sup> ha<sup>-1</sup> year<sup>-1</sup> of pig manure are applied onto maize crops; ACA, 2007). However, leakage from manure ponds or inappropriate spillages may also contribute to the increase of nitrogen, which is unassimilated by crops and incorporated into the saturated zone, ultimately raising NO<sub>3</sub><sup>-</sup> concentrations in the groundwater. The "La Bisbal" water treatment plant discharges downstream of Daró River and produces mud that is eventually applied onto the fields, although some corrective measures were adopted to avoid wastewater spills.

# 3. Methodology

### **3.1.** Sampling

Two sampling campaigns were conducted in the right bank alluvial plain of the Baix Ter basin in January 2004 (24 wells) and in August 2004 (40 wells) to cover both the wet season with fertilization and growing of dry land cereals and the dry season with cultivation of spring cereals, respectively.

All samples were taken from private wells supplied by the shallow Quaternary hydrogeological formation and the upper unconfined aquifer ( $Q_S$ ), in the deep Quaternary formation and the lower unconfined aquifers ( $Q_D$ ), and in the shallow ( $T_S$ ) and deep ( $T_D$ ) Tertiary formations located in the Paleogene materials (Fig.1). Most of the locations were sampled during both campaigns.

After measuring groundwater hydraulic head, wells were pumped until the water Eh stabilized. Then, temperature, pH and electrical conductivity (EC) were measured in situ and groundwater samples were collected in bottles that were previously rinsed several

times with groundwater. Samples were stored at 4°C in a dark environment before analysis.

### **3.2. Analytical techniques**

Temperature, pH, EC and Eh were measured using a flow cell to avoid contact with the atmosphere. Aqueous concentrations of chloride, nitrite, nitrate and sulphate were determined by high-performance liquid chromatography (HPLC), HCO<sub>3</sub><sup>-</sup> aqueous concentration by volumetric titration, and total aqueous concentration of Na, K, Ca, Mg, Fe, Mn and B by inductive-coupled plasma optical emission spectrometry (ICP-OES). Ammonia aqueous concentration was determined by colorimetry (flow injection analysis), and total organic C (TOC) concentration by the organic matter combustion method. All these analyses were done at the Centres Científics i Tecnològics of the Universitat de Barcelona (CCiT-UB).

 $δ^2$ H and  $δ^{18}$ O of water were measured using the H<sub>2</sub> and CO<sub>2</sub> equilibration techniques respectively. H and O isotope compositions were measured by DI-IRMS on a Delta S Finnigan Mat.  $δ^{15}$ N and  $δ^{18}$ O of dissolved NO<sub>3</sub><sup>-</sup> were measured using the AgNO<sub>3</sub> method (modified from Silva et al. (2000)) with an Elemental Analyser (Carlo Erba 1108) coupled with an Isochrom Continuous Flow IRMS in the case of  $δ^{15}$ N and with a Thermo-Chemical Elemental Analyser (TC/EA Thermo-Quest Finnigan) coupled with a Delta C Finnigan Mat IRMS in the case of  $δ^{18}$ O (duplicate analyses). To measure  $δ^{34}$ S and  $δ^{18}$ O of SO<sub>4</sub><sup>2-</sup>, aqueous sulphate was precipitated as BaSO<sub>4</sub> by acidifying the sample with HCl, boiling it, and adding an excess of BaCl<sub>2</sub>·2H<sub>2</sub>O.  $δ^{34}$ S was measured using an Elemental Analyser (Carlo Erba 1108) coupled with a Delta C Finnigan Mat, while  $δ^{18}$ O was measured with the same methodology (TC/EA-IRMS) as  $δ^{18}$ O of nitrate. In order to measure  $δ^{11}$ B, sample volume was determined to ultimately yield 6 to 10 µg of B. Samples then underwent a two-step chemical purification using Amberlite IRA-743 selective resin (method adapted from Gaillardet and Allègre (1995)). First, the sample (pH~7) was loaded on a Teflon PFA<sup>®</sup> column filled with a 1 ml resin, previously cleaned with ultrapure water and 2N ultrapure NaOH. After cleaning again the resin with water and NaOH, the purified B was collected with 15 ml of sub-boiled HCl 2N. After neutralisation of the HCl by Superpur NH<sub>4</sub>OH (20%), the purified B was loaded again on a small 100 ml resin Teflon PFA<sup>®</sup> column. B was collected with 2 ml of HCl 2N. An aliquot corresponding to 2 mg of B was then evaporated below 70°C with mannitol  $(C_6H_8(OH)_6)$  in order to avoid B loss during evaporation (Ishikawa and Nakamura,1990). The dry sample was loaded onto a tantalum (Ta) single filament with graphite (C), mannitol and caesium (Cs).  $\delta^{11}$ B was determined on the Cs<sub>2</sub>BO<sup>2+</sup> ion (Spivack and Edmond, 1986) by negative-ion Thermal-Ionization Mass Spectrometry (TIMS). The analysis was run in dynamic mode by switching between masses 308 and 309. Each analysis corresponded to 10 blocks of 10 ratios. Samples were always run twice. Total B blank was less than 10 ng corresponding to a maximum contribution of 0.2%, which was negligible. Seawater (IAEA-B1) was purified regularly in the same way, in order to check for a possible chemical fractionation due to an uncompleted recovery of B, and to evaluate the accuracy and reproducibility of the overall procedure. Reproducibility was obtained by repeated measurements of the NBS951 and the accuracy was controlled with the analysis of the IAEA-B1 seawater standard ( $\delta^{11}B =$  $38.6\pm1.7\%$ ). The <sup>11</sup>B/<sup>10</sup>B ratio of replicate analyses of the NBS951 boric acid standard (after oxygen correction) was  $4.05045 \pm 0.00130$  ( $2\sigma$ , n=183). The reproducibility of the  $\delta^{11}B$  was  $\pm 0.32\%$  (2 $\sigma$ ). The mean value obtained on  $\delta^{11}B$  of seawater was 39.21±0.31‰ ( $2\sigma$ ; n=20). In order to analyse the  $\delta^{13}$ C of inorganic carbon, water samples were acidified with ortho-phosphoric acid and shaken for at least two hours to convert all bicarbonate into CO<sub>2</sub> and to reach equilibrium between the dissolved and

gaseous phases. Gas samples were then diluted with helium to facilitate the analysis.  $\delta^{13}$ C was measured on a Gas Chromatograph-Combustion-Isotopic Ratio Mass Spectrometer (GC-C-IRMS). All isotope notations are expressed as  $\delta$  per mil relative to their respective international standards: Vienna Standard Mean Ocean Water (V-SMOW), atmospheric N<sub>2</sub> (AIR), Vienna Canyon Diablo Troilite (V-CDT), NBS951 and Vienna Pee Dee Belemnite (V-PDB) standards. Reproducibility is ±1.5‰ for  $\delta^{2}$ H, ±0.2‰ for  $\delta^{18}O_{H2O}$ , ±0.3‰ for  $\delta^{15}$ N, ±0.2‰ for  $\delta^{34}$ S, ±0.5‰ for both  $\delta^{18}O_{NO3}$  and  $\delta^{18}O_{SO4}$ , ±0.3‰ for  $\delta^{11}$ B, and ±0.3‰ for  $\delta^{13}C_{HCO3}$ .

For isotope analyses, samples were prepared at the laboratory of the Mineralogia Aplicada i Geoquimica de Fluids research group of the Universitat de Barcelona and the analyses were performed at the Centres Científics i Tecnològics of the Universitat de Barcelona (CCiT-UB), except those of  $\delta^{11}$ B that were analysed at the BRGM (France) and those of  $\delta^{13}$ C that were analysed at the Environmental Isotope Laboratory (EIL) of the University of Waterloo (Canada).

## 4. Results and discussion

Groundwater hydraulic head, hydrochemical and isotope data of the two campaigns are reported in Tables 1, 2 and 3.

#### 4.1. Hydrodynamic data and potentiometric map

Hydraulic head measurements in the Quaternary aquifer conducted during the August campaign were used to draw the potentiometric contour lines shown in Fig.1, as this represents the largest pressure in the groundwater system resources. The generated potentiometric map shows that groundwater flow lines were mainly oriented along a south to north trend (from the Gavarres massif to the Ter River) (Fig. 1) although close to the Ter River, groundwater flow changed to a west-to-east direction towards the sea. The potentiometric map also reflects the depression cone of the Gualta village resulting from the intense groundwater withdrawal activity of its supply wells. However, it was not possible to draw a consistent potentiometric plot of the Tertiary aquifer able to corroborate the upward vertical flow line connecting the underlying confined fractured Tertiary unit to the shallow Quaternary aquifer that was suggested by Vilanova et al. (2008). Potentiometric levels in the Tertiary aquifer may vary seasonally due to groundwater pumping, controlling the recharge relation with the Ter River alluvial aquifer.

## 4.2. $\delta^2$ H and $\delta^{18}$ O data. Sources of recharge

Fig. 2 shows that  $\delta^2$ H and  $\delta^{18}$ O of groundwater samples from both campaigns mostly plot under the annual Local Meteoric Water Line LMWL (Vilanova et al., 2008).

However, the wide range of  $\delta^2$ H and  $\delta^{18}$ O values from the Quaternary aquifer indicates the implication of several recharge flow systems affecting the aquifer. Some of the samples fall very close to the weighted mean precipitation ( $\delta^2$ H = -33.5‰,  $\delta^{18}$ O = -5.2‰) calculated from the Mas Badia station data (located in the Baix Ter basin; Fig. 2) showing the influence of the infiltration of rainfall into the basin. Samples located at the NW of the shallow Quaternary aquifer (Q<sub>7</sub>, Q<sub>8</sub> and Q<sub>12</sub>) yielded lighter isotope compositions with values similar to those of the Ter River reported by Vilanova (2004;  $\delta^2$ H from -50 to -45‰,  $\delta^{18}$ O from -8 to -7‰), indicating a contribution from the Ter River to the alluvial aquifer groundwater. Finally, other samples from the Quaternary aquifer present  $\delta^2$ H and  $\delta^{18}$ O compositions intermediate between those influenced by the rainfall and those influenced by the Ter river water (Fig. 2) but also close to those of sample T<sub>21</sub>, located in the Gavarres massif foothill (south of the study area, Fig. 1). Thus, these samples can be geochemically and isotopically considered as representative of the recharge from the Gavarres massif, given its very low mineralization and its isotope composition (Fig.2). As irrigation demand is fully covered by groundwater in

the sampled area, the potential effects of irrigation returns on groundwater isotopic composition would not in any case modify the recharge model herein proposed.

In Tertiary aquifers, most of the groundwater samples fell between the weighted mean precipitation signature and the isotope composition of groundwater from the Gavarres massif (Fig. 2). They present a narrower range of  $\delta^2$ H and  $\delta^{18}$ O compositions, although they overlap with the intermediate isotopic composition of the Quaternary aquifer groundwater samples (Fig. 2). This overlap suggests that both aquifers share a common source of recharge or are somehow connected. This is consistent with the conceptual model described by Vilanova et al. (2008) in which an upward groundwater flow was proposed connecting the Tertiary aquifer to the deep Quaternary aquifer in the northern part of the area. Therefore, the contribution from the Tertiary units towards the Quaternary aquifer cannot be discarded despite the fact that this could not be supported by the potentiometric map.

## 4.3. Hydrochemical data

Chemical data for groundwater samples collected in the Baix Ter basin (Tables 1 and 2) showed a HCO<sub>3</sub><sup>-</sup>-Ca<sup>2+</sup>-Mg<sup>2+</sup> facies, in accordance with the hydrochemistry being controlled by carbonate dissolution reactions that occur throughout the Tertiary materials and alluvial formations. The rapid kinetic of carbonate dissolution hides the hydrochemical characteristics acquired from the igneous and metamorphic rocks of the Gavarres massif (Vilanova et al., 2008). Groundwater pH values were all above 7.4, HCO<sub>3</sub><sup>-</sup> concentrations were between 177 and 619 mg L<sup>-1</sup> and EC varied from 552  $\mu$ S cm<sup>-1</sup> to 2993  $\mu$ S cm<sup>-1</sup>.

In all the studied area,  $NO_3^-$  concentrations presented a wide range of values from below the detection limit (0.1 mg L<sup>-1</sup>) to concentrations up to 480 mg L<sup>-1</sup>. 60% of the studied samples had  $NO_3^-$  levels above the legal threshold of 50 mg L<sup>-1</sup> for drinking

water (EC, 1998). No NO<sub>2</sub><sup>-</sup> was detected. Ammonium concentration ranged between 0.08 mg  $L^{-1}$  and 0.47 mg  $L^{-1}$ . It can be observed that NO<sub>3</sub><sup>-</sup> concentrations of the river samples presented values of 9 and 7 mg L<sup>-1</sup>, consistent with surface water nitrate values and lower than the monthly NO<sub>3</sub><sup>-</sup> average for the Ter River (15 mg L<sup>-1</sup>;  $\sigma$  = 5.1, n = 37) between 2003 and 2006 (ACA, 2015). However, nitrate concentration in aquifers showed a diffuse spatial distribution. In shallow aquifers ( $Q_S$  and  $T_S$ ), nitrate concentrations ranged from 6 to  $480 \text{ mg L}^{-1}$ , while in deeper aquifers they went from values below detection limit up to 265 mg  $L^{-1}$ . This distribution does not seem to be linked to any specific groundwater flow direction nor limit of the aquifer units. It can be explained by the highly complex hydrogeology of the study zone and its distinct recharge areas, and by the mixing of waters from distinct origins and qualities within the well borehole. Several factors such as the intended exploitation of different levels to increase the well efficiency, the possible lack of well casing derived from an incomplete borehole construction, and/or the presence of preferential flow paths through fractures or fault zones that connect local and regional flow systems, i.e. Quaternary and Tertiary aquifers could account for the mixing of waters. Moreover, the intensive pumping during irrigation and low rainfall periods can also enhance re-circulation between aquifer levels, mainly from the shallow to deeper ones, resulting in a decrease of the quality of the water resources stored in the deeper aquifer layers.

The lowest  $NO_3^-$  contents in the Quaternary aquifer were observed near the Ter River suggesting some influence from induced stream recharge; and in the SE area, near the Gavarres Range, in the Tertiary aquifer.

During the first sampling campaign, two samples from the shallow Quaternary aquifer ( $Q_4$  and  $Q_8$ , Table 2) presented  $NO_3^-$  concentrations of 6 mg L<sup>-1</sup> and 13 mg L<sup>-1</sup>, respectively, coupled with high levels of Mn (4.4 and 0.8 mg Mn L<sup>-1</sup>) and around 2 mg

 $L^{-1}$  of total organic carbon. Two samples in the  $Q_D$  ( $Q_1$  and  $Q_2$ ) and three samples in  $T_D$  aquifers ( $T_9$ ,  $T_{10}$  and  $T_{14}$ ) had NO<sub>3</sub><sup>-</sup> below detection limit, an Eh value below 200 mV and showed the highest ammonium and manganese concentrations (Tables 1 and 2, Fig.3). Moreover, NO<sub>3</sub><sup>-</sup> in  $Q_2$  has been monitored through time and has always been below detection limit. These characteristics are typical of groundwater under reducing conditions, and would suggest that they are undergoing denitrification processes. However, measured TOC concentrations for  $Q_1$ ,  $Q_2$ ,  $T_9$ ,  $T_{10}$  and  $T_{14}$  (between 0.4 and 1.2 mg  $L^{-1}$ ) are not high enough to stoichiometrically allow the reduction of NO<sub>3</sub><sup>-</sup> by oxidation of organic matter in anaerobic conditions (Rivett et al., 2008), but they may indicate the presence of organic matter that could represent a residual content after previous consumption by heterotrophic denitrifying bacteria.

Some samples with high NO<sub>3</sub><sup>-</sup> concentration (Q<sub>5</sub>, Q<sub>10</sub>, Q<sub>15</sub> and Q<sub>16</sub> from Q<sub>8</sub>, T<sub>17</sub> and T<sub>20</sub> from T<sub>s</sub>, and T<sub>3</sub>, T<sub>5</sub> and T<sub>8</sub> from T<sub>D</sub>) also presented high sulphate and chloride concentrations (up to 371 and 362 mg L<sup>-1</sup>, respectively) (Fig. 4a, b). Considering that CI<sup>-</sup> is a conservative element largely unaffected by physical, chemical and microbiological processes occurring in the groundwater (Altman and Parizek, 1995), the [NO<sub>3</sub><sup>-</sup>]/[CI<sup>-</sup>] ratio can be used to eliminate the potential effect of dilution. In Fig. 4c, sulphate concentration is plotted against the [NO<sub>3</sub><sup>-</sup>]/[CI<sup>-</sup>] ratio. Groundwater SO<sub>4</sub><sup>2-</sup> varied between 29 and 371 mg L<sup>-1</sup>, with an average value of 108 mg L<sup>-1</sup> (n = 64). But a set of samples, with 1<[NO<sub>3</sub><sup>-</sup>]/[CI<sup>-</sup>]<2, present moderate SO<sub>4</sub><sup>2-</sup> concentrations but also high NO<sub>3</sub><sup>-</sup> and consequently high CI<sup>-</sup> concentrations. Samples with [NO<sub>3</sub><sup>-</sup>]/[CI<sup>-</sup>]>2 had high NO<sub>3</sub><sup>-</sup> but lower SO<sub>4</sub><sup>2-</sup> concentrations (Fig. 4c).

Since no evaporitic or gypsum outcrops nor disseminated pyrite exist in the study area, these  $SO_4^{2-}$  concentrations must originate from anthropogenic sources such as manure, synthetic fertilizers or sewage. High Cl<sup>-</sup> concentrations can be caused by the

input of organic fertilizers since they generally show elevated chloride concentrations (Karr et al., 2001; Menció et al. 2016). All these observations suggest that both the mineral and the organic fertilizers are the major vectors of contamination.

In most of samples, B concentration was below the detection limit. However, B concentrations around 0.1-0.2 mg L<sup>-1</sup> have been measured in samples with high nitrate, sulphate and chloride concentrations (e.g. Q10 and Q15, Fig. 4d) suggesting sewage and manure as other potential contamination sources. However, as seen in Fig. 4d, samples with the highest B concentration (up to 232  $\mu$ g/L) presented intermediate nitrate concentrations (25-45 mg NO<sub>3</sub><sup>-</sup> L<sup>-1</sup>), showing that the presence of B in groundwater is not necessarily linked to high NO<sub>3</sub><sup>-</sup> concentrations.

Thus, our results show that groundwater is probably affected by more than one source of contamination and that natural denitrification may be acting in some areas. However, the unambiguous identification of these sources and processes based on the sole hydrochemical data is somewhat difficult as the signal may be hindered by the mixing of groundwaters from different layers and recharge flow systems.

## 4.4. Isotope data. Pollution sources and attenuation processes

# 4.4.1. $\delta^{15}$ N and $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup>

NO<sub>3</sub><sup>-</sup> isotope composition in groundwater ranged between +5.0 and +32.5‰ for  $\delta^{15}$ N, with an average value of +13.0‰ (n = 58), and between +1.8 and +18.1‰ for  $\delta^{18}$ O, with an average value of +7.1‰ (n = 58) (Table 3).

As seen in Fig. 5a, five groundwater samples ( $Q_{14}$  and  $Q_{16}$  from  $Q_8$ ,  $T_3$  from  $T_D$ , and  $T_{18}$  and  $T_{21}$  from  $T_8$ ) presented  $\delta^{15}N$  values compatible with soil organic nitrogen (from +3 to +8‰), fertilizers (-4 to +8‰) and sewage (+5 to +20‰) (Table 4). Within these samples, only sample  $T_{21}$  presented low nitrate, sulphate and chloride concentration (6 mg L<sup>-1</sup> NO<sub>3</sub><sup>-</sup>, 36 mg L<sup>-1</sup> Cl<sup>-</sup> and 30 mg L<sup>-1</sup> SO<sub>4</sub><sup>2-</sup>). The low  $\delta^{15}N$  (+5.0‰) measured in sample  $T_{21}$ , coupled with its  $\delta^2 H$  and  $\delta^{18}O$ , that are similar to those of the Gavarres massif (Fig. 2), indicate that the NO<sub>3</sub><sup>-</sup> for these samples is consistent with a natural soil origin.  $T_{21}$  represents thus the local NO<sub>3</sub><sup>-</sup> background. However, as for samples Q<sub>14</sub>, Q<sub>16</sub>, T<sub>3</sub>, and T<sub>18</sub>, nitrate contents range from 65 to 222 mg L<sup>-1</sup>. The origin of NO<sub>3</sub><sup>-</sup> for these samples cannot be solely attributed to the mineralization of soil nitrogen (as in T<sub>21</sub>) which cannot explain such high concentrations.

Therefore, although a small contribution of soil organic nitrogen is possible (Wassenaar, 1995) measured isotope values may originate from synthetic fertilizers or sewage/manure sources or from a mixing of both (Fig. 5a).

Most of the samples presented  $\delta^{15}$ N ranging between +8 and +16‰, indicating that NO<sub>3</sub><sup>-</sup> may originate from <sup>15</sup>N-enriched anthropogenic organic matter (manure or sewage) (Fig. 5a). Finally, some samples (Q<sub>4</sub>, Q<sub>8</sub> and Q<sub>9</sub>, from Q<sub>S</sub>, and T<sub>2</sub> from T<sub>D</sub>) presented  $\delta^{15}$ N values higher than +16‰, coupled to low NO<sub>3</sub><sup>-</sup> contents (between 6 and 26 mg L<sup>-1</sup>, Table 2) and high  $\delta^{18}O_{NO3}$  values (close to +10‰). The range of  $\delta^{18}O$  of NO<sub>3</sub><sup>-</sup> for NH<sub>4</sub><sup>+</sup> fertilizers, soil nitrogen and manure and sewage provided in Table 4 and plotted in Fig. 5a (+3.4‰ to +4.6‰), has been estimated according to eq. 5 (Anderson and Hooper, 1983; Hollocher, 1984; Kendall et al., 2007), where the  $\delta^{18}O_{H2O}$  values are the highest and lowest groundwater  $\delta^{18}O$  measured in the Baix Ter basin, and the  $\delta^{18}O_{O2}$  is that of the atmospheric O<sub>2</sub> (+23.5‰; Horibe et al., 1973).

$$\delta^{18}O_{NO3} = 2/3(\delta^{18}O_{H2O}) + 1/3(\delta^{18}O_{O2})$$
(5)

 $\delta^{18}O_{NO3}$  values measured in the groundwater samples ranged from +1.8‰ to +18.1‰ (Fig.5b). While nitrate fertilizers are currently applied onto local crops their direct contribution to groundwater nitrate must be discarded as  $\delta^{18}O$  and  $\delta^{15}N$  of groundwater NO<sub>3</sub><sup>-</sup> fall very far from nitrate fertilizers values (Fig. 5a). Moreover, most

of samples had  $\delta^{18}O_{NO3}$  higher than the calculated values for full equilibrium with the  $\delta^{18}O$  of groundwater. Both results could be interpreted as a consequence of three different processes: i) the mineralization-immobilization-turnover (MIT) process, ii) the higher consumption of NO<sub>3</sub><sup>-</sup> from mineral fertilizers compared to that of ammonium in the root zone and iii) the reduction of NO<sub>3</sub><sup>-</sup> via denitrifying bacteria. The MIT process consists of a microbial-mediated immobilization of nitrate N as organic nitrogen, the subsequent mineralization of this organic nitrogen to ammonium, and finally the nitrification of this ammonium back to NO<sub>3</sub><sup>-</sup> (Mengis et al., 2001). This turnover process results in an important <sup>18</sup>O depletion of the initial  $\delta^{18}O_{NO3}$  of the synthetic fertilizers (+17‰ to +20‰, Table 4). As synthetic fertilizers are currently used in the area, MIT process must be very active in order to explain why our results do not show the low  $\delta^{15}N$  and high  $\delta^{18}O$  values of nitrate from synthetic fertilizers. This indicates all NO<sub>3</sub><sup>-</sup> from synthetic fertilizers that infiltrated underwent this process and that this source cannot be dismissed.

As pig manure is mainly liquid, the infiltration of ammonium from manure through the non-saturated zone to the saturated one is faster than that of nitrate from solid synthetic fertilizers, which need to be dissolved by rain or irrigation. Ammonium soil sorption capacity can be considered negligible as the soil is already saturated due to the long-standing fertilization practices affecting the area. Ammonium is also fast and completely nitrified into nitrate in the non-saturated zone. All these elements favour ammonium from pig manure to reach the saturated zone polluting groundwater. On the contrary, nitrate from synthetic fertilizers remains on the agricultural soil, incorporated and stored in the soil organic matter pool by means of the MIT process. It could then be slowly rereleased for either uptake by crops or export into the hydrosphere (Sebilo et al., 2013). Finally, the reduction of  $NO_3^-$  via denitrifying bacteria, which is characterized by

a heavy-isotope enrichment of both the  $\delta^{15}$ N and  $\delta^{18}$ O of the residual nitrate, can overprint the mixing of potential end-members and can significantly alter both the NO<sub>3</sub><sup>-</sup> concentration (i.e. attenuation) and corresponding N and O isotope compositions.  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub> from the Ter River samples were in agreement with a wastewater origin.

Ten of the samples had  $\delta^{18}O_{NO3}$  and  $\delta^{15}N$  higher than +8‰ and +15‰, respectively. Fig. 5a shows that these samples roughly aligned following a  $\varepsilon_N:\varepsilon_O$  ratio of 2, consistent with natural denitrification (Kendall et al., 2007). This means that the nitrate isotopic compositions but also the low nitrate concentration measured in those samples result from natural denitrification processes occurring in the aquifers. This is confirmed by Fig. 5b, in which a negative linear correlation between  $\delta^{18}O_{NO3}$  and  $\ln(NO_3^-/C\Gamma)$  is observed for these samples, indicating that denitrification is taking place (Vitòria et al. 2008). The highest denitrified samples (i.e. with the higher coupled  $\delta^{18}O_{NO3}$  and  $\delta^{15}N$ ) were observed either in the shallow Quaternary levels near the Ter River (Q<sub>4</sub>, Q<sub>8</sub>, Q<sub>9</sub>) or in the Tertiary aquifers (T<sub>2</sub>). Moreover, the NO<sub>3</sub><sup>-</sup> concentration measured below the detection limit in the samples Q<sub>1</sub>, Q<sub>2</sub>, T<sub>9</sub>, T<sub>10</sub> and T<sub>14</sub> (Fig. 2) can also be interpreted as resulting of natural denitrification. Considering that no significant variations were identified in both the isotope and chemical compositions of our samples between both campaigns, it can be inferred that natural denitrification had a moderate activity and/or that NO<sub>3</sub><sup>-</sup> attenuation was balanced by the input of new NO<sub>3</sub><sup>-</sup> into the aquifer.

## 4.4.2. $\delta^{34}$ S and $\delta^{18}$ O of SO<sub>4</sub>

 $SO_4^{2-}$  isotope compositions ranged between -16.0 and +14.7‰ for  $\delta^{34}S$ , with an average value of +4.5‰ (n = 64), and between +3.8 and +16.1‰ for  $\delta^{18}O_{SO4}$ , with an average value of +7.2‰ (n = 64) (Table 3, Fig. 6). Most of the groundwater samples fall within the area defined by the isotope signatures of local anthropogenic sources (Table

4) showing that  $SO_4^{2-}$  in the Baix Ter groundwater can be explained by a ternary mixing between: 1) mineral fertilizers, 2) sewage and 3) pig manure (Fig. 6). This comforts the conclusions from the study of sulphate and nitrate groundwater concentrations.

Still, the  $\delta^{34}$ S and a  $\delta^{18}O_{SO4}$  values measured between 0 and +6‰ of samples Q<sub>17</sub>, T<sub>11</sub>, T<sub>18</sub> and T<sub>21</sub> could indicate a soil origin (Table 4), in agreement with their low SO<sub>4</sub><sup>2-</sup> concentrations (around 30 mg SO<sub>4</sub><sup>2-</sup> L<sup>-1</sup>).

Two sampling sites (T<sub>2</sub> and T<sub>14</sub>) yielded the lowest negative  $\delta^{34}$ S values and had  $\delta^{18}O_{SO4}$  around +5‰, revealing a SO<sub>4</sub><sup>2-</sup> contribution from a <sup>34</sup>S-depleted source of reduced S (Fig. 6). Moreover, both T<sub>2</sub> and T<sub>14</sub> showed very low (9 mg L<sup>-1</sup>) or below detection limit (0.1 mg L<sup>-1</sup>) nitrate concentrations, respectively. On the contrary, samples Q<sub>1</sub>, Q<sub>2</sub>, T<sub>9</sub> and T<sub>10</sub>, with nitrate concentration below the detection limit (0.1 mg L<sup>-1</sup>) exhibited the highest  $\delta^{34}$ S and  $\delta^{18}O_{SO4}$  values (+14.7‰ and +16.1‰ respectively).

All these samples in which nitrate concentration is below detection limit, together with other samples with very low nitrate aqueous concentration (NO<sub>3</sub><sup>-</sup> < 25 mg L<sup>-1</sup>) and  $\delta^{18}O_{SO4}$  higher than +8‰ define a linear trend with  $\varepsilon_S/\varepsilon_O = 1/0.31=3.2$  compatible with a bacteriogenic reduction of SO<sub>4</sub><sup>2-</sup> (Mizutani and Rafter, 1973) (Fig. 6). This is consistent with their corresponding low Eh values and high Mn concentrations (Fig. 3). However, as the presence of pyrite and gypsum in the area is scarce, autotrophic denitrification can be discarded as the main denitrifying process occurring in the study zone.

 $\delta^{34}$ S and  $\delta^{18}O_{SO4}$  of the Ter River samples also indicated, in agreement with their  $\delta^{15}$ N and  $\delta^{18}O_{NO3}$  that the dissolved SO<sub>4</sub><sup>2-</sup> in surface waters originated from wastewater. **4.4.3.**  $\delta^{11}$ B Boron isotopes measurements were performed in 12 groundwater samples, selected considering both their  $NO_3^-$  and B contents and their location in the vicinity of pig farms or urban areas with the aim of discriminating between these two origins.

Pig manure present  $\delta^{11}$ B values ranging from +19.5‰ to +42.4‰, significantly higher than urban wastewater values that range from -7.7‰ to +12.9‰ (Table 4). However, mineral fertilizers are characterized by a  $\delta^{11}$ B range similar to sewage (-9‰ to +15‰, Table 4). Although mineral fertilizers can present a wide range of B concentrations they usually have lower B contents compared pig manure (Fig. 7a).

 $\delta^{11}$ B composition of dissolved B in selected groundwater samples ranged between +1.4‰ and +34.5‰, with an average value of +24.1‰ (n = 12). B concentrations in these samples ranged between 0.055 and 0.232 mg L<sup>-1</sup>. No trends or enrichment in  $\delta^{11}$ B composition of dissolved B with decreasing B content were observed (Fig. 7a), indicating that B is not explained by binary mixing relationships and that no significant sorption/desorption processes of B onto/from clay minerals are occurring. Most samples fell in the isotope range of pig manure (Fig. 7a and 7b). This is in agreement with the conclusions drawn from the NO<sub>3</sub><sup>-</sup> and SO<sub>4</sub><sup>2-</sup> isotope data. Two of the samples showed  $\delta^{11}$ B values consistent with a wastewater origin. They correspond to groundwater collected in La Bisbal (Q<sub>20</sub>) and Ullastret (Q<sub>21</sub>) water supply wells (Fig. 1), located downstream the discharge of the La Bisbal water treatment plant into the Daró River.

Boron analyses, thus, suggest that pig manure is the main source of contamination and that the influence of sewage and mineral fertilizers is lower than the contribution from organic residues.

# 4.4.4. $\delta^{13}$ C of HCO<sub>3</sub><sup>-</sup>

Samples presented  $\delta^{13}C_{HCO3}$  values between -6.5‰ and -16.2‰ (Table 3).  $\delta^{13}C_{HCO3}$  values of marine marls in the study zone are  $\delta^{13}C \sim 0$ ‰. Typical  $\delta^{13}C$  values for CO<sub>2</sub>

dissolved in the soil are between -14‰ and -16‰; for soil HCO<sub>3</sub><sup>-</sup>  $\delta^{13}$ C values are around -23‰ and for pig manure, mineral fertilizers and sewage,  $\delta^{13}$ C values range from -23.8‰ to -16.4‰, from -35‰ to -24‰ and from -25‰ to -13‰, respectively (Table 4).

Denitrification catalysed by organic matter oxidation induces a decrease in NO<sub>3</sub><sup>-</sup> and in total organic carbon concentrations coupled with an increase in dissolved inorganic carbon concentration (eq.1), causing an increase of  $\delta^{15}$ N and  $\delta^{18}O_{NO3}$  and a decrease in  $\delta^{13}C_{HCO3}$  (Faure, 1977).

Fig. 8a shows the evolution of the  $\delta^{18}O_{NO3}$  as a function of ln(NO<sub>3</sub><sup>-</sup>/HCO<sub>3</sub><sup>-</sup>). A slight increase in  $\delta^{18}O_{NO3}$  coupled to a decrease in ln(NO<sub>3</sub><sup>-</sup>/HCO<sub>3</sub><sup>-</sup>) can be observed that would suggest that denitrification may occur. Nevertheless, we were not able to observe the corresponding decrease in  $\delta^{13}C_{HCO3}$  in our results (Fig. 8b). As already discussed porewaters presented HCO<sub>3</sub><sup>-</sup>-Ca<sup>2+</sup>-Mg<sup>2+</sup> facies, with saturation indices for Ca-Mgcarbonates between -1 and 1. This indicates that bicarbonate is in equilibrium with Ca-Mg-carbonates whose dissolution and precipitation will contribute to the buffering of the  $\delta^{13}C_{HCO3}$  of our samples with a final isotope composition corresponding to sedimentary rocks ( $\delta^{13}C$  around 0 ‰ after Travé et al., 1997). Besides these dissolution/precipitation reactions,  $\delta^{13}C_{HCO3}$  can be also affected by other reactions such as equilibrium with CO<sub>2</sub>(g) and other sources such as manure or sewage (Clark and Fritz, 1997).

#### **5.** Conclusions

Here we have coupled the study of hydrochemical and multi-isotope data with hydrogeological framework information to identify the sources and to characterise processes controlling the budget of dissolved  $NO_3^-$  in ground- and surface water in a complex hydrogeological system (the Baix Ter basin).

Isotope data have shown that the sources of recharge for both the Tertiary and the Quaternary aquifers are the rainfall, the Ter River in the NW and a contribution from Les Gavarres Massif. Moreover, they showed that dissolved NO<sub>3</sub><sup>-</sup> in groundwater in the study area mainly comes from pig manure application onto the fields, with minor contributions from sewage and mineral fertilizers. The study of  $\delta^{11}$ B confirmed pig manure as the main vector of pollution but also identified an urban origin for two of the analysed wells. The dual-isotope ( $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub>) approach indicated that mineralization-immobilization-turnover (MIT) and natural denitrification processes are occurring within the study area. The  $\delta^{34}$ S and  $\delta^{18}$ O of SO<sub>4</sub><sup>2-</sup> showed that NO<sub>3</sub><sup>-</sup> reduction is not controlled by the oxidation of pyrites but rather by the oxidation of organic matter. However, the role of organic matter in NO<sub>3</sub><sup>-</sup> attenuation could neither be confirmed nor discarded by the study of the  $\delta^{13}C_{HCO3}$  as other processes and sources ultimately buffered these isotope compositions. The consumption of organic matter in anaerobic environments is favoured by 1) the river-aquifer connection, 2) the existence of some organic layers in the Ter riversides, and 3) mixing between polluted groundwater and deep regional flows with reducing conditions.

Since the role of organic matter in the NO<sub>3</sub><sup>-</sup> reduction is still an on-going research, further studies on the  $\delta^{13}$ C of local contaminant sources and on the role of MnO<sub>2</sub> should be further investigated. Even if working with samples from exploitation wells, it has been proved that multi-isotope studies allow us to: i) describe groundwater dynamics, ii) discriminate between sources of pollution and determine their relative contribution, iii) characterise the processes affecting the overall nitrogen budget, such as natural attenuation, that in another way would go unnoticed. Still, these approaches highly depend on the knowledge of the isotopic signatures of the different potential sources of nitrate contamination of a given area, on the complexity of the aquifers complex and on the availability of a good infrastructure (e.g. multi-piezometers).

## Acknowledgements

This research was funded by the ATENUATION (CGL2011-29975-C04-01) and REMEDIATION (CGL2014-57215-C4-1-R) projects from Spanish Ministry of Economy and Competitiveness (MINECO) and the AGAUR from the Catalan Government (grant 2014SGR-1456). We would like to thank the Centres Científics i Tecnològics of the Universitat de Barcelona for its laboratory help. Authors acknowledge the fruitful comments of the three anonymous reviewers.

## References

- ACA, 2007. Diagnosis de la causalidad de la contaminación por nitratos de algunos abastecimientos públicos en las zonas vulnerables de Cataluña, análisis de alternativas, medidas de prevención y corrección. Área vulnerable 1 Girona. Estudio 1: Llanura aluvial de los ríos Ter y Daró, provincia de Girona. ACA (Water Catalan Agency) Internal Report. 168 pp.
- ACA, 2015. Agència Catalana de l'Aigua. Generalitat de Catalunya. Consulta de dades. Available at: http://aca-web.gencat.cat/aca/appmanager/aca/aca/ (June 2016).
- Altman, S.J., Parizek, R.R. 1995. Dilution of non-point source nitrate in ground water.J. Environ. Qual. 24, 707-718.
- Amiri, H., Zare, M., Widory. D., 2015. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the  $\delta^{15}$ N and  $\delta^{18}$ O dual-isotope approach. Isotopes in Environmental and Health Studies. DOI: 10.1080/10256016.2015.1032960.
- Anderson, K. K., Hooper, A. B., 1983. O<sub>2</sub> and H<sub>2</sub>O are each the source of one O in NO<sub>2</sub><sup>-</sup> produced from NH<sub>3</sub> by Nitrosomas-<sup>15</sup>N-NMR evidence. FEBS Letters, 64, 236–40.
- Aravena, R., Evans, M.L., Cherry, J.A., 1993. Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic tanks. Ground Water, 31, 180–186.
- Aravena, R., Robertson, W.D., 1998. Use of Multiple Isotope Tracers to Evaluate Denitrification in Ground Water: Study of Nitrate from a Large-Flux Septic System Plume. Ground Water, 36, 975-982.
- Aravena, R., Mayer, B., 2010. Isotopes and Processes in the Nitrogen and Sulfur Cycles. In: Aelion, C.M., Höhener, P., Hunkeler, D., Aravena, R. (Eds.),

Environmental Isotopes in Biodegradation and Bioremediation. CRC Press, pp. 203–246.

- Barroso, M.F., Ramalhosa, M.J., Olhero, A., Antão, M.C., Pina, M.F., Guimarães, L.,
  Teixeira, J., Alfonso, M.J., Delerue-Matos, C., Chaminé, H.I., 2015. Assessment
  of groundwater contamination in an aricultural peri-urban area (NW Portugal):
  an integrated approach. Environ Earth Sci 73, 2881-2894.
- Basset, R.L., Buszka, P.M., Davidson, G.R., Chong-Diaz, D., 1995. Identification of groundwater solute sources using boron isotopic composition. Environ. Sci. Technol. 29, 2915–2922.
- Borch, T., Kretzschmar, R., Kappler, A., Van Cappellen, P., Ginder-Vogel, M., Voegelin, A., Campbell, K., 2010. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environmental Science and Technology, 44, 15–23.
- Böttcher, J., Strebel, O., Voerkelius, S., Schmidt, H.L., 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in sandy aquifer. Journal of Hydrology, 114, 413-424.
- Bryan, N.S., Alexander, D.D., Coughlin, J.R., Milkowski, A.L., Boffetta, P., 2012. Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food and Chemical Toxicology, 50, 3646–3665.
- Clark, I.D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York. 352 pp.
- Cravotta, C.A., 1997. Use of Stable Isotopes of Carbon, Nitrogen and Sulphur to Identify Sources of Nitrogen in Surface Waters in the Lower Susquehanna River Basin, Pennsylvania. U.S. Geological Survey Water-Supply Paper 2497.

- Curt, M.D., Aguado, P., Sánchez, G., Bigeriego, M., Fernández, J., 2004. Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water, Air and Soil Pollution, 151, 135-142.
- Delconte. C.A., Sacchi, E., Racchetti, E., Bartoli, M., Mas-Pla, J., Re, V., 2014.
  Nitrogen inputs to a river course in a heavily impacted watershed: a combined hydrochemical and isotopic evaluation (Oglio River Basin, N Italy). Science of the Total Environment 466-467, 924-938, DOI: 10.1016/j.scitotenv.2013.07.092.
- EC (European Communities), 1991. Council Directive 91/676/EC, of 12 December 1991, concerning the protection of waters against pollution caused by nitrates from agricultural sources.
- EC (European Communities), 1998. Council Directive 98/83/EC, of 3 November 1998, on the quality of water intended for human consumption.
- EC (European Communities), 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy (Water Framework Directive). Official Journal of the European Communities, OJ L 327.
- EC (European Communities), 2006. Directive 2006/118/EC of the European Parliament and of the Council on the protection of groundwater against pollution and deterioration (Groundwater Directive). Official Journal of the European Communities, OJ L 372.
- EEA (European Environment Agency), 1999. Nutrients in European Ecosystems. Environmental assessment report Nº 4.
- EEA (European Environment Agency), 2012. European waters: assessment of status and pressures. EEA Report Nº 8. Published: Nov 13, 2012. Copenhagen, Denmark.

EEA (European Environment Agency), 2015. Nutrients in freshwater. Indicator assessment. Data and maps. IND-8-en. CSI 020, WAT 003. Published: Sep 4th, 2015. Copenhagen, Denmark. Available as a website at <u>http://www.eea.europa.eu/data-and-maps/indicators/nutrients-</u> infreshwater/nutrients-in-freshwater-assessment-published-6.

Faure, G. 1997. Principles of isotope geology, Wiley, 2<sup>nd</sup> Ed, 589 pp.

- Fukada, T., Hiscock, K., Dennis, P.F., Grischek, T., 2003. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res. 37, 3070–3078.
- Gaillardet, J., Allègre, C.J., 1995. Boron isotopic compositions of corals: Seawater or diagenesis record? Earth and Planetary Science Letters 136, 665-676.
- Heaton, T.H.E., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. 59, 87–102.
- Hollocher, T. C., 1984. Source of oxygen atoms in nitrate in the oxidation of nitrite by *Nitrobacter agilis* and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Archives of Biochemistry and Biophysics, 233, 721–27.
- Horibe, Y., Shigehara, K., Takakuwa, Y., 1973. Isotope separation factors of carbon dioxide-water system and isotopic composition of atmospheric oxygen. Journal of Geophysical Research, 78, 2625-2629.
- Ishikawa, T., Nakamura, E., 1990. Suppression of boron volatilization from a hydrofluoric acid solution using a boron-mannitol complex. Analytical Chemistry 62, 2612–2616.

- Jurado, A., Vàzquez-Suñé, E., Soler, A., Tubau, I., Carrera, J., Pujades, E., Anson, I., 2013. Application of multi-isotope data (O, D, C and S) to quantify redox processes in urban groundwater. Applied Geochemistry, 34, 114–125.
- Karr, J.D., Showers, W.J., Wendell Gilliam, J., Scott Andres, A., 2001. Tracing nitrate transport and environmental impact from intensive swine farming using delta nitrogen-15. J. Environ. Qual. 30, 1163–1175.
- Kendall, C., Elliott, E.M., Wankel, S.D., 2007. Tracing anthropogenic inputs of nitrogen to ecosystems, Chapter 12. In: R.H. Michener and K. Lajtha (Eds.), Stable Isotopes in Ecology and Environmental Science, 2nd edition, Blackwell Publishing, pp. 375-449.
- Koba, K., Tokuchi, N., Wada, E., Nakajima, T., Iwatsubo, G., 1997. Intermittent denitrification: the application of a <sup>15</sup>N natural abundance method to a forested ecosystem. Geochim. Cosmochim. Acta, 61, 5043–5050.
- Komor, S.C., 1997. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota. J. Environ. Qual. 26, 1212–1222.
- Krouse, H.R., Mayer, B., 2000. Sulphur and oxygen isotopes in sulphate. In: Cook,P.G., Hercseg, A.L. (Eds.), Environmental Tracers in Subsurface Hydrology.Kluwer Academic Press, Boston, pp. 195–231.
- Li, X.D., Liu, C.Q., Harue, M., Li, S.L., Liu, X.L., 2010. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality: A case study of the Shuicheng Basin, SW China. Applied Geochemistry, 25, 1924–1936.
- Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, P., 1981. Experimental determination of nitrogen kinetic isotope fractionation: some

principles, illustration for the denitrification and nitrification processes. Plant Soil, 62, 413–430.

- Mariotti, A., Landreau, A., Simon, B., 1988. <sup>15</sup>N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta, 52, 1869–1878.
- Mas-Pla, J., Bach, J., Montaner J., 1998. Distribución de la concentración de nitratos en el sistema hidrogeológico Baix Ter-Gavarres (Girona). In: La contaminación de las aguas subterráneas: Un problema pendiente. ITGE-AIH, pp. 139–145.
- Mas-Pla, J., Vilanova, E., 2001. Dinámica del sistema hidrogeológico Baix Ter-Gavarres en base a isótopos estables. In: IGME, Las Caras del Agua, Serie Hidrogeología y Aguas Subterráneas n. 1/2001, tomo I, pp. 395-402.
- Menció, A., J. Mas-Pla, A. Soler, N. Otero, O. Regàs, M. Boy-Roura, R. Puig, J. Bach,
  C. Domènech, A. Folch, M. Zamorano, D. Brusi (2016). Nitrate pollution of
  groundwater; all right ..., but nothing else? Science of the Total Environment,
  539C: 241-251. DOI: 10.1016/j.scitotenv.2015.08.151
- Mengis, M., Walther, U., Bernasconi, S.M., Wehrli, B., 2001. Limitations of using δ<sup>18</sup>O for the source identification of nitrate in agricultural soils. Environ. Sci. Technol. 35 (9), 1840–1844.
- Michalski, G., Kolanowski, M. Rihaa, K.M., 2015. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.Isotopes in Environmental and Health Studies 51, 382-391.
- Mizutani, Y., Rafter, T.A., 1973. Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochemical Journal, 6, 183-191.
- Montaner, J., Pons, P., López, J., 2010. Caracterització del flux hidrològic a la plana litoral del Baix Ter. In: El flux hidrològic de la plana litoral del Baix Ter.

Evolució fluvial, caracterització hidrològica i pautes de gestió. Montaner, J. (coord.). Càtedra d'Ecosistemes Litorals Mediterranis. Museu de la Mediterrània (Ed.). Recerca i Territori, 2.

- Neal, C., Neal, M., Warrington, A., Àvila, A., Piñol, J., Rodà, F., 1992. Stable hydrogen and oxygen isotope studies of rainfall and streamwaters for two contrasting holm oak areas of Catalonia, northeastern Spain. Journal of Hydrology, 140, 163–178.
- Otero, N., Canals, A., Soler, A., 2007. Using dual-isotope data to trace the origin and processes of dissolved sulphate: a case study in Calders stream (Llobregat basin, Spain). Aquat. Geochem. 13, 109–126.
- Otero, N., Soler, A., Canals, A., 2008. Controls of δ<sup>34</sup>S and δ<sup>18</sup>O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain). Applied Geochemistry, 23, 1166-1185.
- Otero, N., Torrentó, C., Soler, A., Menció, A., Mas-Pla, J., 2009. Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic (Osona, Spain). Agr. Ecosyst. Environ. 133 (1-2), 103–113.
- Panno, S.V., Hackley, K.C., Hwang, H.H., Kelly, W.R., 2001. Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators. Chemical Geology, 179, 113-128.
- Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., Bemment, C.D., 2008. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 42, 4215–4232.
- Rock, L., Mayer, B., 2002. Isotopic assessment of sources and processes affecting sulphate and nitrate in surface water and groundwater of Luxembourg. Isotopes Environ. Health Stud. 38 (4), 191-206.

- Sacchi, E., Acutis, M., Bartoli, M., Brenna, S., Delconte. C.A., Laini, A., Pennisi, M.(2013) Origin and fate of nitrates in groundwater from the central Po plain: Insights from isotopic investigations. Applied Geochemistry 34, 164-180.
- Saccon, P., Leis, A., Marca, A., Kaiser, J., Campisi, L., Böttcher, M.E., Savarino, J., Escher, P., Eisenhauer, A., Erbland, J., 2013. Multi-isotope approach for the identification and characterization of nitrate pollution sources in the Marano lagoon (Italy) and parts of its catchment area. Appl. Geochem., 34, 75–89.
- Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., Mariotti, A., 2013. Long-term fate of nitrate fertilizer in agricultural soils. PNAS (Proceedings of the National Academy of Sciences of the United States of America). www.pnas.org/cgi/doi/10.1073/pnas.1305372110
- Seiler, R. L., 2005. Combined use of <sup>15</sup>N and <sup>18</sup>O of nitrate and <sup>11</sup>B to evaluate nitrate contamination in groundwater. Applied Geochemistry, 20, 1626-1636.
- Silva, S.R., Ging, P.B., Lee, R.W., Ebbert, J.C., Tesoriero, A.J., Inkpen, E.L., (2002) Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments. Environ Forensic 3, 125–130. doi:10.1006/enfo.2002.0086.
- Silva, S.R., Kendall, C., Wilkison, D.H., Ziegler, A.C., Chang, C.C.Y., Avanzino, R.J., 2000. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. Journal of Hydrology, 228, 22–36.
- Spivack, A.J., Edmond, J.M., 1986. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal. Chem., 58, 31-35.
- Tirez, K., Brusten, W., Widory, D., Petelet, E., Bregnot, A., Xue, D., Boeckx, P., Bronders, J., 2010. Boron Isotope Ratio ( $\delta^{11}$ B) Measurements in Water

Framework Directive Programs: Comparison between Double Focusing Sector Field ICP and Thermal Ionization Mass Spectrometry, J. Anal. At. Spectrom. 25, 964-974.

- Travé, A., Labaume, P., Calvet, F., Soler, A. (1997) Sediment dewatering and pore fluid migration along thust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene southern Pyrenees, Spain). Tectonophysics 282, 375-398.
- Vane, C.H., Kim, A.W., McGowan, S., Leng, M.J., Heaton, T.H.E., Kendrick, C.P., Coombs, P., Yang, H., Swann, G.E.A., 2010. Sedimentary records of sewage pollution using faecal markers in contrasting peri-urban shallow lakes. The Science of the Total Environment 409, 345-356.
- Van Stempvoort, D.R., Krouse, H.R., 1994. Controls of δ<sup>18</sup>O in sulphate. In: Alpers,
   C.N., Blowes, D.W. (Eds.), Environmental Geochemistry of Sulphide Oxidation.
   American Chemical Society, Washington, pp. 446–480.
- Vengosh, A., Heumann, K.G., Juraske, S., Kasher, R., 1994. Boron Isotope Application for Tracing Sources of Contamination in Groundwater. Environmental, Science and Technology 28, 1968-1974.
- Vilanova, E., 2004. Anàlisi dels sistemes de flux a l'àrea Gavarres-Selva-Baix
  Empordà. Proposta de model hidrodinàmic regional. Ph.D Dissertation.
  Universitat Autònoma de Barcelona, 337 pp.
  http://www.tdx.cat/handle/10803/3437
- Vilanova, E., Mas-Pla, J., Menció, A., 2008. Determinación de sistemas de flujo regionales y locales en las depresiones tectónicas del Baix Empordà y La Selva (NE de España) en base a datos hidroquímicos e isotópicos. Boletín Geológico y Minero, 119 (1), 51-62.

- Vitòria, L., 2004. Estudi multi-isotòpic (δ<sup>15</sup>N, δ<sup>34</sup>S, δ<sup>13</sup>C, δ<sup>18</sup>O, δD i <sup>87</sup>Sr/<sup>86</sup>Sr) de les aigües subterrànies contaminades per nitrats d'origen agrícola i ramader. Translated title: Multi-isotopic approach (δ<sup>15</sup>N, δ<sup>34</sup>S, δ<sup>13</sup>C, δ<sup>18</sup>O, δD and <sup>87</sup>Sr/<sup>86</sup>Sr) of nitrate contaminated groundwaters by agricultural and stockbreeder activities. PhD Thesis. Universitat de Barcelona, 188 pp.
- Vitòria, L., Otero, N., Canals, A., Soler, A., 2004. Fertilizer characterization: isotopic data (N, S, O, C and Sr). Environ. Sci. Technol. 38, 3254–3262.
- Vitòria, L., Soler, A., Aravena, R., Canals, A., 2005. Multi-isotopic approach (<sup>15</sup>N, <sup>13</sup>C, <sup>34</sup>S, <sup>18</sup>O and D) for tracing agriculture contamination in groundwater (Maresme, NE Spain). In: Environmental Chemistry (Eds. E. Lichtfouse, J. Schwarzbauer and D. Robert). Springer-Verlag, Heidelberg, 43-56.
- Vitòria, L., Soler, A., Canals, A., Otero, N., 2008. Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: example of Osona (NE Spain). Appl. Geochem. 23, 3597–3611.
- Waldron, S., Tatner, P., Jack, I., Arnott, C., 2001. The Impact of Sewage Discharge in a Marine Embayment: A Stable Isotope Reconnaissance. Estuarine, Coastal and Shelf Science, 52, 111–115. doi:10.1006/ecss.2000.0731.
- Ward, M.H., deKok, T.M., Levallois, P., Brender, J., Gulis, G., Nolan, B.T., VanDerslice, J., 2005. Workgroup report: drinking-water nitrate and health recent findings and research needs. Environ. Health Perspect. 113, 1607–1614.
- Wassenaar, L. I., 1995. Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of <sup>15</sup>N and <sup>18</sup>O in NO<sub>3</sub>. Applied Geochemistry, 10, 391–405.

Widory, D., Kloppmann, W., Chery, L., Bonnin, J., Rochdi, H., Guinamant, J.L., 2004. Nitrate in groundwater: an isotopic multi-tracer approach. Journal of Contaminant Hydrology, 72, 165-188.

- Widory, D., Petelet-Giraud, E., Négrel, P., Ladouche, B., 2005. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis.
   Environmental, Science and Technology, 39, 539-548.
- Widory, D., Petelet-Giraud, E., Brenot, A., Bronders, J., Tirez, K., Boeckx, P., 2013. Improving the management of nitrate pollution in water by the use of isotope monitoring: the  $\delta^{15}$ N,  $\delta^{18}$ O and  $\delta^{11}$ B triptych. Isotopes in Environmental and Health Studies, 48, 1-19.
- Xu, S., Kang, P, Sun, Y., 2016. A stable isotope approach and its application for identifying nitrate source and transformation process in water. Environ Sci Pollut Res 23, 1133-1148.
- Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., Boeckx, P., 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 43, 1159-1170.
- Yingkai, X., Lan, W., 2001. The effect of pH and temperature on the isotopic fractionation of boron between saline brine and sediments. Chem. Geol. 171, 253–261.

## **Figure captions**

Figure 1. Geological map of the Baix Ter basin, sampling point locations labelled according to the hydrogeological formation where they are located. Potentiometric contour lines of the unconfined aquifer, mainly in the shallow Quaternary formations, correspond to the August 2004 survey. Dashed line represents the zero elevation potentiometric level in the deep quaternary formations (mainly leaky aquifers) affected by intensive withdrawal rates in the central area of the basin. Geology from ICGC (http:// www.icgc.cat).

Figure 2.  $\delta^{18}O_{H2O}$  and  $\delta^{2}H$  of the Baix Ter groundwater samples collected in January 2004 (a) and August 2004 (b). The annual-Local Meteoric Water Line (LMWL) follows the equation  $\delta^{2}H = 7.98(\pm 2.71) \delta^{18}O + 7.85(\pm 0.47)$  (r<sup>2</sup>=0.924, n=23) (Vilanova, 2004), whose slope is equal to that of the neighbouring areas ( $\delta^{2}H = 7.9 \delta^{18}O + 9.8$ ; Neal et al., 1992).

Figure 3. Mn concentrations plotted against the Eh values of the groundwater samples. Eh ranges of  $MnO_2/Mn^{2+}$  and  $NO_3^{-}/N_{2(g)}$  redox pairs are taken from Rivett et al. (2008).

Figure 4 a) NO<sub>3</sub><sup>-</sup> concentration versus Cl<sup>-</sup> concentration, b) NO<sub>3</sub><sup>-</sup> concentration versus  $SO_4^{2-}$  concentration, c)  $SO_4^{2-}$  concentration versus (NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup>) ratio, and d) B concentration versus (NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup>) ratio.

Figure 5. a) Variations of the  $\delta^{15}$ N and  $\delta^{18}$ O of dissolved NO<sub>3</sub><sup>-</sup> in groundwater according to their hydrogeological unit. Isotope ranges of the main NO<sub>3</sub><sup>-</sup> sources listed in Table 4 are also represented. The extreme isotopic fractionation factors from the literature are  $\epsilon_N/\epsilon_O = 2.1$  (Böttcher et al., 1990) and  $\epsilon_N/\epsilon_O = 1.3$  (Fukada et al., 2003). b)  $\delta^{18}O_{NO3}$  values plotted against  $\ln(NO_3^-/CI^-)$  according to their hydrogeological unit. R<sup>2</sup> values for the linear regressions for shallow Quat. and deep Tert. Units are also reported.

Figure 6.  $\delta^{34}$ S and  $\delta^{18}$ O of dissolved SO<sub>4</sub><sup>2-</sup> in groundwater according to their hydrogeological unit. Isotope ranges of natural and anthropogenic SO<sub>4</sub> sources listed in Table 4 are also represented. The area of sulphates derived from sulphide oxidation is from Van Stempvoort and Krouse (1994). Dashed lines define the isotopic fractionation range ( $\epsilon^{34}$ S/ $\epsilon^{18}$ O<sub>SO4</sub>) in SO<sub>4</sub> reduction reactions, varying between 2.5 and 4 (Mizutani and Rafter, 1973).

Figure 7.  $\delta^{11}$ B values plotted against B concentration (a) and  $\delta^{15}$ N values (b). Isotope ranges of the main NO<sub>3</sub><sup>-</sup> sources listed in Table 4 are also represented.  $\delta^{11}$ B<sub>seawater</sub> is taken from Vengosh et al. (1994).

Figure 8. a)  $\delta^{18}O_{NO3}$  values plotted against  $\ln(NO_3^-/HCO_3^-)$ . b)  $\delta^{13}C_{HCO3}$  values plotted against  $HCO_3^-$  concentration. Isotope ranges of the main  $NO_3^-$  sources listed in Table 4 are also represented. Value for  $\delta^{13}C_{HCO3}$  for marls is from Travé et al. (1997).

## **Table captions**

Table 1. Hydrogeological formation, X and Y UTM coordinates, depth (m), hydraulic head (m.a.s.l.), and physico-chemical parameters measured in situ for the sampled points of each field campaign. See Fig. 1 for sampling locations in the Baix Ter basin.
R<sub>1</sub> and R<sub>2</sub> Ter River samples are from the Colomers station, NW of the study zone (Fig. 1). (*n.d.*: Not determined).

Table 2. Hydrochemical data for the January and August 2004 field campaigns ("\*" = DOC concentrations instead of TOC concentrations).  $R_1$  and  $R_2$  Ter River samples are from the Colomers station, NW of the study zone (Fig. 1). (*n.d.*: Not determined; *u.d.l.*: under detection limit).

Table 3. Isotope data for the January and August 2004 field campaigns.  $R_1$  and  $R_2$  Ter River samples are from the Colomers station, NW of the study zone (Fig. 1). (*n.d.*: Not determined).

Table 4. Ranges of nitrate, sulphate, boron and dissolved inorganic carbon isotope compositions of the main potential sources of nitrate obtained from the literature.

# Table 1Click here to download Table: Table 1.docx

Table 1. Hydrogeological formation, X and Y UTM coordinates, depth (m), hydraulic head (m.a.s.l.), and physico-chemical parameters measured in situ for the sampled points of each field campaign. See Fig. 1 for sampling locations in the Baix Ter basin.  $R_1$  and  $R_2$  Ter River samples are from the Colomers station, NW of the study zone (Fig. 1). (*n.d.*: Not determined)

| Sample                 | Field    | Hydrogeological | X (UTM) | Y (UTM) | Depth | Hydraulic  | Т    | EC (25 °C) | pН  | Eh   |
|------------------------|----------|-----------------|---------|---------|-------|------------|------|------------|-----|------|
|                        | campaign | formation       |         |         | (m)   | head       | (°C) | (mS/cm)    |     | (mV) |
|                        |          |                 |         |         |       | (m.a.s.l.) |      |            |     |      |
| <b>Q</b> <sub>1</sub>  | 1        | Q <sub>D</sub>  | 504970  | 4654520 | 28    | 13.1       | 14.0 | 787        | 7.9 | 89   |
| $Q_2$                  | 1        | Q <sub>D</sub>  | 508910  | 4653880 | 46    | -1.4       | 14.4 | 596        | 8.0 | 46   |
| <b>Q</b> <sub>3</sub>  | 1        | Q <sub>D</sub>  | 508790  | 4648620 | 72    | 16.9       | 16.7 | 955        | 7.7 | 397  |
| Q2                     | 2        | Q <sub>D</sub>  | 508910  | 4653880 | 46    | -3.0       | 18.3 | 812        | 7.8 | 188  |
| <b>Q</b> <sub>3</sub>  | 2        | Q <sub>D</sub>  | 508790  | 4648620 | 72    | 15.6       | 18.2 | 1225       | 7.7 | 393  |
| Q4                     | 1        | Qs              | 506280  | 4653300 | 7     | 10.8       | 15.0 | 1594       | 7.4 | 276  |
| Q5                     | 1        | Qs              | 502300  | 4649320 | 10    | 27.4       | 16.0 | 1640       | 7.6 | 376  |
| $Q_6$                  | 1        | Qs              | 503340  | 4649390 | 10    | 22.4       | 14.6 | 899        | 7.6 | 332  |
| <b>Q</b> <sub>7</sub>  | 1        | Qs              | 501670  | 4655680 | 21    | 13.4       | 17.0 | 843        | 7.7 | 368  |
| $Q_8$                  | 1        | Qs              | 504920  | 4656490 | 20    | 10.9       | 16.9 | 862        | 7.9 | 366  |
| Q9                     | 1        | Qs              | 505460  | 4652860 | 10    | 12.6       | 14.0 | 772        | 7.9 | 267  |
| <b>Q</b> <sub>10</sub> | 1        | Qs              | 504340  | 4644620 | 8     | 60.3       | 16.3 | 1180       | 7.7 | 425  |
| <b>Q</b> <sub>11</sub> | 1        | Qs              | 507820  | 4647100 | 6     | 32.0       | 13.3 | 722        | 8.2 | 361  |
| Q <sub>12</sub>        | 1        | Qs              | 501970  | 4655900 | 20    | 12.3       | 16.1 | 773        | 7.9 | 340  |

| Q <sub>13</sub> | 1 | Qs     | 504290 | 4652570 | 16   | 13.1 | 14.9 | 836  | 7.8 | 449 |
|-----------------|---|--------|--------|---------|------|------|------|------|-----|-----|
| Q <sub>14</sub> | 1 | Qs     | 504920 | 4646740 | 6    | 37.7 | 13.2 | 886  | 8.2 | 378 |
| Q <sub>15</sub> | 1 | Qs     | 509180 | 4650980 | 6    | 5.2  | 15.3 | 2523 | 7.6 | 409 |
| Q <sub>16</sub> | 1 | Qs     | 510970 | 4644350 | 6    | 36.4 | 14.7 | 1004 | 7.8 | 392 |
| Q <sub>5</sub>  | 2 | Qs     | 502300 | 4649320 | 10   | 24.8 | 16.8 | 2359 | 7.6 | 386 |
| $Q_6$           | 2 | Qs     | 503340 | 4649390 | 10   | n.d. | 17.3 | 1125 | 7.8 | 318 |
| $\mathbf{Q}_7$  | 2 | Qs     | 501670 | 4655680 | 21   | 10.2 | 17.1 | 1164 | 7.5 | 413 |
| $Q_8$           | 2 | Qs     | 504920 | 4656490 | 20   | 10.7 | 17.7 | 1383 | 7.8 | 332 |
| $Q_9$           | 2 | Qs     | 505460 | 4652860 | 10   | n.d. | 16.2 | 1070 | 7.7 | 395 |
| Q <sub>10</sub> | 2 | Qs     | 504340 | 4644620 | 8    | 60.4 | 16.2 | 1320 | 7.4 | 428 |
| Q <sub>13</sub> | 2 | Qs     | 504290 | 4652570 | 16   | 8.7  | 16.2 | 1219 | 7.4 | 395 |
| Q <sub>14</sub> | 2 | Qs     | 504920 | 4646740 | 12   | 36.1 | 17.6 | 949  | 7.5 | 365 |
| Q <sub>15</sub> | 2 | Qs     | 509180 | 4650980 | 6    | 3.8  | 17.3 | 2993 | 8.0 | 388 |
| Q <sub>16</sub> | 2 | Qs     | 510970 | 4644350 | 6    | 35.7 | 22.9 | 1007 | 7.8 | 443 |
| Q <sub>17</sub> | 2 | Qs     | 501720 | 4647990 | n.d. | 29.5 | 17.6 | 809  | 7.9 | 386 |
| Q <sub>18</sub> | 2 | Qs     | 510230 | 4648070 | 6    | 14.2 | 17.9 | 875  | 7.7 | 408 |
| Q <sub>19</sub> | 2 | Qs     | 508410 | 4647030 | 12   | 32.8 | 16.4 | 999  | 7.6 | 348 |
| Q <sub>20</sub> | 2 | Qs     | 503580 | 4647920 | 17   | 19.0 | 15.8 | 661  | 7.8 | 727 |
| Q <sub>21</sub> | 2 | Qs     | 505090 | 4650800 | 17   | 15.0 | 16.2 | 980  | 7.5 | 445 |
| S               | 1 | spring | 507650 | 4645200 | 0    | 55.0 | 15.0 | 629  | 7.7 | 319 |

| S                     | 2 | spring         | 507650 | 4645200 | 0   | 55.0 | 15.4 | 748  | 7.9 | 334  |
|-----------------------|---|----------------|--------|---------|-----|------|------|------|-----|------|
| T <sub>1</sub>        | 1 | T <sub>D</sub> | 508930 | 4648350 | 90  | 21.6 | 19.5 | 552  | 8.0 | 348  |
| $T_2$                 | 1 | T <sub>D</sub> | 508830 | 4651340 | 100 | 7.2  | 14.9 | 908  | 8.0 | 369  |
| $T_3$                 | 1 | T <sub>D</sub> | 503340 | 4651590 | 100 | 27.7 | 17.5 | 1176 | 7.8 | 378  |
| $T_4$                 | 1 | T <sub>D</sub> | 505912 | 4646025 | 110 | 27.4 | 16.6 | 725  | 8.1 | n.d. |
| $T_5$                 | 1 | T <sub>D</sub> | 504420 | 4647820 | 125 | 27.1 | 16.5 | 1325 | 7.8 | 343  |
| $T_6$                 | 1 | T <sub>D</sub> | 511510 | 4646260 | 110 | -4.5 | 18.5 | 736  | 7.8 | 362  |
| T <sub>1</sub>        | 2 | T <sub>D</sub> | 508930 | 4648350 | 90  | 21.6 | 20.0 | 935  | 7.7 | 366  |
| $T_2$                 | 2 | T <sub>D</sub> | 508830 | 4651340 | 100 | 11.4 | 19.8 | 1095 | 7.7 | 426  |
| $T_3$                 | 2 | T <sub>D</sub> | 503340 | 4651590 | 100 | 22.1 | 17.2 | 1500 | 7.7 | 370  |
| $T_5$                 | 2 | T <sub>D</sub> | 504420 | 4647820 | 125 | 24.4 | 19.1 | 1330 | 7.9 | 301  |
| $T_6$                 | 2 | T <sub>D</sub> | 511510 | 4646260 | 110 | -4.5 | 19.0 | 600  | 8.2 | 326  |
| $T_7$                 | 2 | T <sub>D</sub> | 499910 | 4647360 | 70  | 42.0 | 21.2 | 1164 | 7.7 | 425  |
| $T_8$                 | 2 | T <sub>D</sub> | 501790 | 4643590 | 156 | n.d. | 18.1 | 1374 | 8.0 | 357  |
| <b>T</b> <sub>9</sub> | 2 | $T_{D}$        | 507880 | 4644460 | 85  | 53.9 | 18.4 | 971  | 7.9 | 157  |
| $T_{10}$              | 2 | T <sub>D</sub> | 510025 | 4649000 | 125 | n.d. | 20.7 | 1053 | 7.9 | 183  |
| T <sub>11</sub>       | 2 | $T_{D}$        | 501590 | 4647810 | 130 | 23.8 | 19.4 | 824  | 8.0 | 916  |
| T <sub>12</sub>       | 2 | $T_{D}$        | 498230 | 4653260 | 110 | n.d. | 19.3 | 994  | 7.8 | 456  |
| T <sub>13</sub>       | 2 | $T_{D}$        | 512180 | 4645340 | 175 | n.d. | 17.1 | 1137 | 7.6 | 393  |
| T <sub>14</sub>       | 2 | T <sub>D</sub> | 508150 | 4649930 | 60  | 19.3 | 17.0 | 1449 | 7.6 | 159  |

| T <sub>15</sub>       | 2 | T <sub>D</sub> | 501970 | 4653420 | 80   | n.d.  | 19.1 | 1389 | 7.8 | 331  |
|-----------------------|---|----------------|--------|---------|------|-------|------|------|-----|------|
| T <sub>16</sub>       | 1 | Ts             | 510930 | 4647500 | 22   | -6.5  | 16.1 | 1006 | 7.9 | 363  |
| T <sub>16</sub>       | 2 | Ts             | 510930 | 4647500 | 22   | -5.8  | 16.8 | 1219 | 7.5 | 408  |
| T <sub>17</sub>       | 2 | Ts             | 502650 | 4652480 | 40   | 23.7  | 19.2 | 2414 | 7.6 | 321  |
| T <sub>18</sub>       | 2 | Ts             | 499460 | 4652480 | 34   | 126.0 | 18.0 | 837  | 8.0 | 357  |
| T <sub>19</sub>       | 2 | Ts             | 500770 | 4651700 | 10   | 106.3 | 17.8 | 944  | 8.0 | 352  |
| T <sub>20</sub>       | 2 | Ts             | 508550 | 4653010 | 9    | 9.0   | 17.7 | 1528 | 7.7 | 357  |
| T <sub>21</sub>       | 2 | Ts             | 504505 | 4643350 | 5    | 102.5 | 22.2 | 649  | 7.7 | 385  |
| T <sub>22</sub>       | 2 | Ts             | 499640 | 4645180 | n.d. | n.d.  | 17.9 | 1055 | 7.6 | 327  |
| T <sub>23</sub>       | 2 | Ts             | 502340 | 4646230 | 40   | 35.0  | 17.5 | 1438 | 7.5 | 372  |
| <b>R</b> <sub>1</sub> | - | Ter River      | 505699 | 4654685 | -    | -     | n.d. | 636  | 7.8 | n.d. |
| $R_2$                 | - | Ter River      | 499361 | 4658519 | -    | -     | n.d. | 664  | 7.8 | n.d. |

Table 2. Hydrochemical data for the January and August 2004 field campaigns ("\*" = DOC concentrations instead of TOC concentrations). R<sub>1</sub> and R<sub>2</sub> Ter River samples are from the Colomers station, NW of the study zone (Fig. 1). (*n.d.*: Not determined; *u.d.l.*: under detection limit).

|                       | Field    | Hydrogeological | HCO <sub>3</sub> <sup>-</sup> | $SO_4^{2-}$ | Cl     | NO <sub>3</sub> <sup>-</sup> | $Na^+$ | $\mathbf{K}^+$ | Ca <sup>2+</sup> | $Mg^{2+}$ | $\mathrm{NH_4^+}$ | TOC    | Mn     | Fe     | В      |
|-----------------------|----------|-----------------|-------------------------------|-------------|--------|------------------------------|--------|----------------|------------------|-----------|-------------------|--------|--------|--------|--------|
| Sample                | campaign | formation       | (mg/L)                        | (mg/L)      | (mg/L) | (mg/L)                       | (mg/L) | (mg/L)         | (mg/L)           | (mg/L)    | (mg/L)            | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
| $Q_1$                 | 1        | Q <sub>D</sub>  | 413                           | 66          | 138    | u.d.l.                       | 43     | u.d.l.         | 157              | 23        | 0.15              | 1.2    | 0.056  | 0.015  | u.d.l. |
| $Q_2$                 | 1        | Q <sub>D</sub>  | 349                           | 48          | 51     | u.d.l.                       | 44     | 3              | 90               | 19        | 0.47              | 1.0    | 0.289  | 0.020  | u.d.l. |
| $Q_3$                 | 1        | Q <sub>D</sub>  | 361                           | 117         | 79     | 115                          | 37     | u.d.l.         | 181              | 18        | 0.15              | 1.2    | 0.002  | 0.010  | u.d.l. |
| Q <sub>2</sub>        | 2        | Q <sub>D</sub>  | 341                           | 41          | 61     | u.d.l.                       | 45     | 3              | 99               | 19        | 0.41              | 0.6    | 0.335  | 0.016  | u.d.l. |
| <b>Q</b> <sub>3</sub> | 2        | Q <sub>D</sub>  | 335                           | 129         | 79     | 144                          | 36     | u.d.l.         | 184              | 17        | 0.14              | 0.9    | 0.002  | u.d.l. | u.d.l. |
| Q4                    | 1        | Qs              | 473                           | 227         | 269    | 6                            | 92     | 4              | 239              | 40        | 0.25              | 2.3    | 4.380  | 0.019  | 0.127  |
| <b>Q</b> <sub>5</sub> | 1        | Qs              | 463                           | 223         | 200    | 215                          | 88     | u.d.l.         | 291              | 28        | 0.13              | 2.1    | 0.002  | 0.019  | u.d.l. |
| $Q_6$                 | 1        | Qs              | 388                           | 71          | 62     | 88                           | 31     | 2              | 153              | 18        | 0.15              | 1.6    | 0.003  | 0.015  | u.d.l. |
| $\mathbf{Q}_7$        | 1        | Qs              | 353                           | 111         | 76     | 48                           | 30     | u.d.l.         | 159              | 22        | 0.13              | 1.0    | 0.001  | 0.013  | u.d.l. |
| $Q_8$                 | 1        | Qs              | 347                           | 136         | 99     | 13                           | 60     | 3              | 128              | 25        | 0.12              | 1.4    | 0.783  | 0.016  | u.d.l. |
| <b>Q</b> <sub>9</sub> | 1        | Qs              | 372                           | 86          | 84     | 25                           | 63     | 4              | 122              | 17        | 0.16              | 1.2    | 0.002  | 0.012  | 0.217  |
| $Q_{10}$              | 1        | Qs              | 384                           | 114         | 60     | 325                          | 41     | u.d.l.         | 245              | 15        | 0.18              | 1.3    | 0.001  | 0.014  | 0.113  |

| <b>Q</b> <sub>11</sub> | 1 | Qs | 253 | 60  | 52  | 31  | 31  | 3      | 94  | 13 | 0.17 | 3.3 | 0.003 | 0.018  | u.d.l. |
|------------------------|---|----|-----|-----|-----|-----|-----|--------|-----|----|------|-----|-------|--------|--------|
| Q <sub>12</sub>        | 1 | Qs | 324 | 134 | 81  | 12  | 43  | 2      | 141 | 20 | 0.18 | 1.1 | 0.001 | 0.011  | 0.055  |
| Q <sub>13</sub>        | 1 | Qs | 401 | 89  | 106 | 51  | 44  | u.d.l. | 167 | 20 | 0.15 | 1.9 | 0.001 | 0.017  | 0.089  |
| <b>Q</b> <sub>14</sub> | 1 | Qs | 210 | 77  | 52  | 147 | 29  | u.d.l. | 128 | 12 | 0.15 | 1.7 | 0.002 | u.d.l. | u.d.l. |
| Q <sub>15</sub>        | 1 | Qs | 427 | 277 | 294 | 387 | 94  | 72     | 283 | 76 | 0.14 | 3.2 | 0.001 | 0.011  | 0.168  |
| Q <sub>16</sub>        | 1 | Qs | 351 | 124 | 76  | 168 | 57  | u.d.l. | 183 | 19 | 0.17 | 1.9 | 0.001 | u.d.l. | u.d.l. |
| <br>Q <sub>5</sub>     | 2 | Qs | 483 | 321 | 226 | 328 | 123 | u.d.l. | 331 | 30 | 0.14 | 1.6 | 0.001 | u.d.l. | u.d.l. |
| $Q_6$                  | 2 | Qs | 366 | 88  | 59  | 129 | 28  | 2      | 165 | 18 | 0.16 | 0.6 | 0.006 | u.d.l. | u.d.l. |
| <b>Q</b> <sub>7</sub>  | 2 | Qs | 399 | 112 | 79  | 122 | 30  | u.d.l. | 201 | 26 | 0.11 | 0.5 | 0.001 | 0.011  | u.d.l. |
| $Q_8$                  | 2 | Qs | 337 | 204 | 139 | 51  | 71  | 3      | 174 | 31 | 0.08 | 1.1 | 0.971 | u.d.l. | u.d.l. |
| Q <sub>9</sub>         | 2 | Qs | 358 | 86  | 84  | 26  | 58  | 4      | 130 | 17 | 0.11 | 0.6 | 0.002 | u.d.l. | 0.209  |
| <b>Q</b> <sub>10</sub> | 2 | Qs | 440 | 76  | 50  | 241 | 45  | u.d.l. | 225 | 13 | 0.12 | 0.9 | 0.002 | 0.012  | 0.189  |
| Q <sub>13</sub>        | 2 | Qs | 405 | 120 | 86  | 66  | 44  | 2      | 178 | 21 | 0.08 | 1.2 | 0.001 | u.d.l. | 0.123  |
| <b>Q</b> <sub>14</sub> | 2 | Qs | 195 | 66  | 55  | 201 | 29  | u.d.l. | 140 | 13 | 0.08 | 0.5 | 0.002 | 0.011  | u.d.l. |
| Q <sub>15</sub>        | 2 | Qs | 413 | 371 | 362 | 480 | 111 | 68     | 345 | 85 | 0.14 | 3.4 | 0.001 | u.d.l. | 0.150  |
| Q <sub>16</sub>        | 2 | Qs | 356 | 93  | 55  | 65  | 47  | u.d.l. | 143 | 14 | 0.14 | 0.6 | 0.001 | u.d.l. | u.d.l. |

| Q <sub>17</sub>       | 2 | Qs             | 301 | 29  | 28  | 60  | 18  | u.d.l. | 116 | 12 | 0.13 | 0.4 | 0.001 | u.d.l. | u.d.l.        |
|-----------------------|---|----------------|-----|-----|-----|-----|-----|--------|-----|----|------|-----|-------|--------|---------------|
| Q <sub>18</sub>       | 2 | Qs             | 390 | 102 | 47  | 83  | 38  | 6      | 163 | 14 | 0.13 | 0.6 | 0.001 | u.d.l. | u.d.l.        |
| Q <sub>19</sub>       | 2 | Qs             | 304 | 55  | 52  | 205 | 24  | u.d.l. | 166 | 14 | 0.15 | 0.7 | 0.001 | 0.022  | u.d.l.        |
| Q <sub>20</sub>       | 2 | Qs             | 177 | 52  | 52  | 50  | 29  | 5      | 83  | 11 | 0.12 | 0.9 | 0.001 | 0.012  | 0.082         |
| Q <sub>21</sub>       | 2 | Qs             | 313 | 95  | 71  | 45  | 55  | 4      | 124 | 16 | 0.21 | 0.6 | 0.002 | 0.011  | 0.232         |
| S                     | 1 | spring         | 298 | 64  | 47  | 37  | 29  | u.d.l. | 110 | 12 | 0.18 | 1.4 | 0.001 | 0.011  | u.d.l.        |
| S                     | 2 | spring         | 268 | 58  | 50  | 68  | 31  | u.d.l. | 117 | 13 | 0.15 | 1.0 | 0.001 | 0.013  | <i>u.d.l.</i> |
| T <sub>1</sub>        | 1 | T <sub>D</sub> | 417 | 68  | 43  | 10  | 42  | 3      | 131 | 13 | 0.13 | 0.8 | 0.001 | 0.012  | u.d.l.        |
| $T_2$                 | 1 | T <sub>D</sub> | 470 | 156 | 87  | 9   | 51  | 3      | 129 | 54 | 0.13 | 1.3 | 0.018 | 0.019  | u.d.l.        |
| <b>T</b> <sub>3</sub> | 1 | T <sub>D</sub> | 276 | 116 | 123 | 222 | 55  | u.d.l. | 185 | 22 | 0.15 | 1.9 | 0.001 | 0.014  | u.d.l.        |
| $T_4$                 | 1 | T <sub>D</sub> | 383 | 110 | 60  | 15  | 33  | 49     | 118 | 24 | 0.16 | 1.2 | 0.025 | 0.016  | 0.071         |
| <b>T</b> <sub>5</sub> | 1 | T <sub>D</sub> | 430 | 152 | 119 | 222 | 105 | 12     | 178 | 36 | 0.20 | 2.8 | 0.007 | 0.012  | 0.066         |
| $T_6$                 | 1 | T <sub>D</sub> | 382 | 59  | 76  | 46  | 57  | 3      | 118 | 20 | 0.14 | 1.2 | 0.007 | 0.014  | u.d.l.        |
| $T_1$                 | 2 | T <sub>D</sub> | 402 | 55  | 41  | 23  | 35  | 3      | 136 | 12 | 0.16 | 0.4 | 0.001 | u.d.l. | <i>u.d.l.</i> |
| $T_2$                 | 2 | T <sub>D</sub> | 435 | 157 | 74  | 11  | 44  | 3      | 127 | 51 | 0.12 | 0.7 | 0.026 | u.d.l. | 0.081         |
| <b>T</b> <sub>3</sub> | 2 | T <sub>D</sub> | 376 | 91  | 180 | 221 | 68  | 4      | 214 | 30 | 0.12 | 1.7 | 0.001 | u.d.l. | 0.065         |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | $T_5$                  | 2 | $T_D$          | 514 | 118 | 99  | 61     | 162 | 11     | 94  | 23 | 0.18 | 0.6 | 0.010 | u.d.l. | 0.104  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------|---|----------------|-----|-----|-----|--------|-----|--------|-----|----|------|-----|-------|--------|--------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | T <sub>6</sub>         | 2 | T <sub>D</sub> | 354 | 34  | 70  | 3      | 54  | 3      | 100 | 18 | 0.14 | 0.3 | 0.007 | u.d.l. | 0.051  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | $T_7$                  | 2 | T <sub>D</sub> | 368 | 83  | 66  | 139    | 32  | u.d.l. | 183 | 14 | 0.14 | 0.9 | 0.001 | u.d.l. | u.d.l. |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | $T_8$                  | 2 | T <sub>D</sub> | 222 | 107 | 135 | 265    | 58  | 9      | 181 | 24 | 0.12 | 1.1 | 0.007 | 0.016  | u.d.l. |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | <b>T</b> <sub>9</sub>  | 2 | T <sub>D</sub> | 384 | 31  | 118 | u.d.l. | 75  | 5      | 81  | 39 | 0.16 | 0.9 | 0.197 | 0.013  | 0.055  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | T <sub>10</sub>        | 2 | T <sub>D</sub> | 533 | 74  | 52  | u.d.l. | 63  | 2      | 168 | 16 | 0.10 | 0.4 | 0.064 | 0.013  | 0.053  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | T <sub>11</sub>        | 2 | T <sub>D</sub> | 323 | 32  | 46  | 69     | 41  | 3      | 106 | 16 | 0.11 | 0.8 | 0.001 | 0.013  | u.d.l. |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | T <sub>12</sub>        | 2 | T <sub>D</sub> | 379 | 52  | 62  | 71     | 33  | 3      | 104 | 45 | 0.12 | 0.4 | 0.002 | 0.013  | u.d.l. |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | T <sub>13</sub>        | 2 | T <sub>D</sub> | 392 | 86  | 96  | 46     | 55  | 2      | 146 | 28 | 0.12 | 0.7 | 0.001 | 0.010  | 0.051  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | $T_{14}$               | 2 | T <sub>D</sub> | 619 | 87  | 126 | u.d.l. | 74  | 4      | 102 | 94 | 0.33 | 0.5 | 0.042 | 0.016  | 0.061  |
| $T_{16}$ 2 $T_s$ 3711461027149u.d.l.169320.230.90.0020.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.0120.012 |   | T <sub>15</sub>        | 2 | T <sub>D</sub> | 401 | 95  | 130 | 152    | 114 | 3      | 110 | 42 | 0.21 | 1.2 | 0.002 | 0.014  | 0.095  |
| $T_{17}$ 2 $T_s$ 37224523141912259223700.112.60.003u.d.l.0 $T_{18}$ 2 $T_s$ 249303114715u.d.l.121190.140.60.001u.d.l.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | T <sub>16</sub>        | 1 | T <sub>S</sub> | 388 | 149 | 93  | 63     | 55  | 2      | 162 | 37 | 0.12 | 1.4 | 0.002 | 0.014  | u.d.l. |
| $T_{18}$ 2 $T_{S}$ 249 30 31 147 15 <i>u.d.l.</i> 121 19 0.14 0.6 0.001 <i>u.d.l.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | T <sub>16</sub>        | 2 | T <sub>s</sub> | 371 | 146 | 102 | 71     | 49  | u.d.l. | 169 | 32 | 0.23 | 0.9 | 0.002 | 0.012  | u.d.l. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | T <sub>17</sub>        | 2 | T <sub>s</sub> | 372 | 245 | 231 | 419    | 122 | 59     | 223 | 70 | 0.11 | 2.6 | 0.003 | u.d.l. | 0.084  |
| $T_{19}$ 2 $T_{S}$ 348 56 39 89 33 7 137 13 0.14 1.2 0.003 <i>u.d.l.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | T <sub>18</sub>        | 2 | T <sub>s</sub> | 249 | 30  | 31  | 147    | 15  | u.d.l. | 121 | 19 | 0.14 | 0.6 | 0.001 | u.d.l. | u.d.l. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | <b>T</b> <sub>19</sub> | 2 | Ts             | 348 | 56  | 39  | 89     | 33  | 7      | 137 | 13 | 0.14 | 1.2 | 0.003 | u.d.l. | u.d.l. |

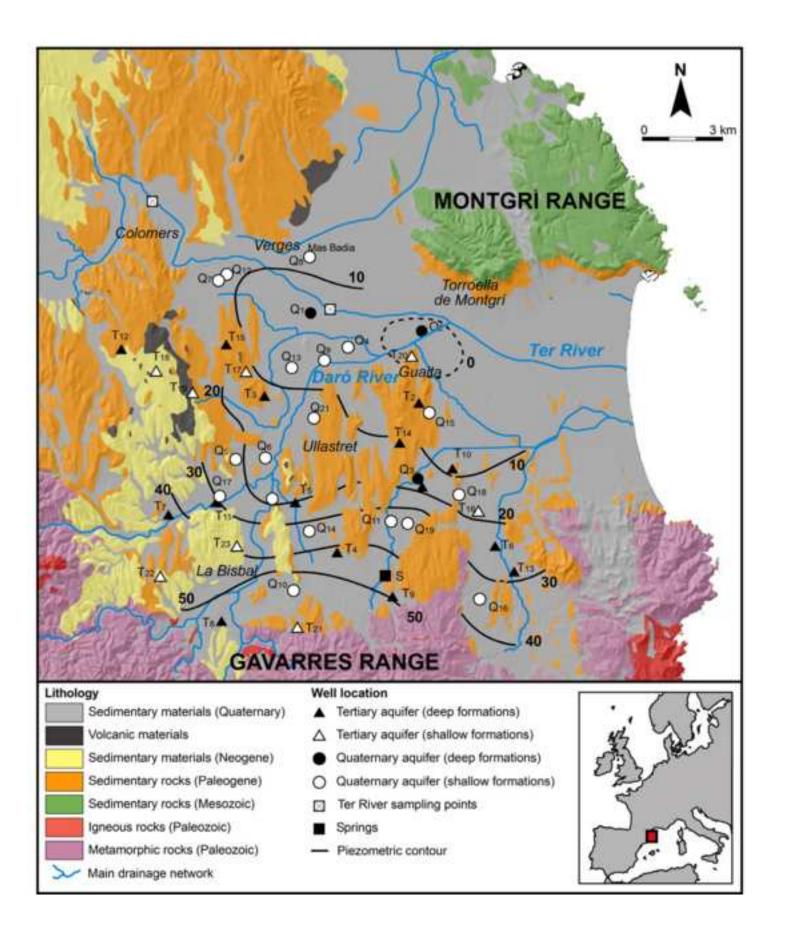
| T <sub>20</sub> | 2 | Ts        | 350 | 210 | 108 | 212 | 56 | 6      | 200 | 38 | 0.17 | 2.2  | 0.001 | u.d.l. | 0.123  |
|-----------------|---|-----------|-----|-----|-----|-----|----|--------|-----|----|------|------|-------|--------|--------|
| T <sub>21</sub> | 2 | Ts        | 300 | 30  | 36  | 6   | 22 | u.d.l. | 104 | 9  | 0.14 | 1.0  | 0.002 | 0.012  | u.d.l. |
| T <sub>22</sub> | 2 | Ts        | 371 | 81  | 49  | 153 | 29 | u.d.l. | 193 | 8  | 0.16 | 1.1  | 0.002 | 0.012  | u.d.l. |
| T <sub>23</sub> | 2 | Ts        | 355 | 66  | 181 | 190 | 75 | u.d.l. | 216 | 24 | 0.26 | 0.7  | 0.004 | 0.010  | u.d.l. |
| R <sub>1</sub>  | - | Ter River | 194 | 73  | 50  | 7   | 38 | 5      | 75  | 11 | n.d. | 4.3* | 0.029 | 0.010  | 0.075  |
| $R_2$           | - | Ter River | 204 | 74  | 50  | 9   | 40 | 5      | 78  | 12 | n.d. | 4.5* | 0.025 | 0.012  | 0.090  |

Table 3. Isotope data for the January and August 2004 field campaigns.  $R_1$  and  $R_2$  Ter River samples are from the Colomers station, NW of the study zone (Fig. 1). (*n.d.*: Not determined).

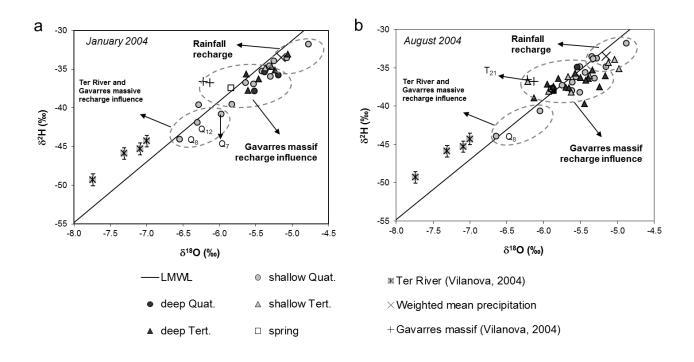
| Sample                | Field    | Hydrogeological | δ <sup>18</sup> O-H <sub>2</sub> O (‰) | δ <sup>2</sup> H (‰) | δ <sup>15</sup> N (‰) | $\delta^{18}$ O-NO <sub>3</sub> (‰) | $\delta^{34}S$ (‰) | $\delta^{18}$ O-SO <sub>4</sub> (‰) | δ <sup>13</sup> C-DIC (‰) | $\delta^{11}B$ (‰) |
|-----------------------|----------|-----------------|----------------------------------------|----------------------|-----------------------|-------------------------------------|--------------------|-------------------------------------|---------------------------|--------------------|
|                       | campaign | formation       |                                        |                      |                       |                                     |                    |                                     |                           |                    |
| Q1                    | 1        | Q <sub>D</sub>  | -5.2                                   | -35.8                | n.d.                  | n.d.                                | 14.7               | 16.1                                | -14.9                     | n.d.               |
| Q <sub>2</sub>        | 1        | Q <sub>D</sub>  | -5.5                                   | -37.8                | n.d.                  | n.d.                                | 13.9               | 13.6                                | -13.7                     | n.d.               |
| Q <sub>3</sub>        | 1        | Q <sub>D</sub>  | -5.4                                   | -35.4                | 11.6                  | 8.3                                 | 0.4                | 5.6                                 | -13.6                     | n.d.               |
| Q <sub>2</sub>        | 2        | Q <sub>D</sub>  | -5.9                                   | -37.6                | n.d.                  | n.d.                                | 10.3               | 12.4                                | -13.8                     | n.d.               |
| Q <sub>3</sub>        | 2        | Q <sub>D</sub>  | -5.5                                   | -34.9                | 12.3                  | 8.4                                 | 0.9                | 5.5                                 | -13.7                     | n.d.               |
| Q4                    | 1        | Qs              | -5.1                                   | -33.6                | 32.5                  | 18.1                                | 8.2                | 13.0                                | -13.2                     | 34.5               |
| Q5                    | 1        | Qs              | -5.3                                   | -34.6                | 15.9                  | 8.9                                 | 12.2               | 10.1                                | -12.9                     | n.d.               |
| $Q_6$                 | 1        | Qs              | -5.3                                   | -33.9                | 11.3                  | 6.8                                 | 6.2                | 6.8                                 | -13.2                     | n.d.               |
| <b>Q</b> <sub>7</sub> | 1        | Qs              | -6.0                                   | -40.8                | 12.2                  | 7.7                                 | 6.3                | 7.8                                 | -11.3                     | n.d.               |
| $Q_8$                 | 1        | Qs              | -6.5                                   | -44.1                | 20.5                  | 13.7                                | 9.1                | 10.1                                | -12.7                     | n.d.               |
| <b>Q</b> <sub>9</sub> | 1        | Qs              | -5.4                                   | -35.3                | 19.1                  | 10.1                                | 6.8                | 8.9                                 | -14.0                     | 23.3               |
| Q <sub>10</sub>       | 1        | Qs              | -5.8                                   | -39.5                | 10.4                  | 4.4                                 | 5.9                | 4.8                                 | -12.5                     | 25.7               |

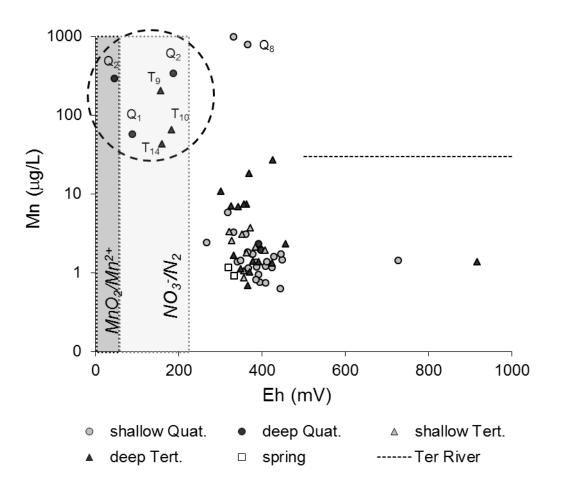
| <b>Q</b> <sub>11</sub> | 1 | Qs | -6.3 | -39.6 | 13.6 | 8.7  | 5.1  | 7.8  | -16.0 | n.d. |
|------------------------|---|----|------|-------|------|------|------|------|-------|------|
| Q <sub>12</sub>        | 1 | Qs | -6.3 | -41.9 | 13.3 | 8.1  | 8.2  | 8.9  | -12.4 | 26.0 |
| Q <sub>13</sub>        | 1 | Qs | -5.3 | -35.9 | 14.7 | 9.2  | 6.3  | 8.2  | -13.9 | 28.3 |
| Q <sub>14</sub>        | 1 | Qs | -5.6 | -36.8 | 7.7  | 5.5  | 4.0  | 5.4  | -11.3 | n.d. |
| Q <sub>15</sub>        | 1 | Qs | -4.8 | -31.8 | 13.5 | 7.5  | 2.6  | 5.8  | -14.6 | 30.4 |
| Q <sub>16</sub>        | 1 | Qs | -5.5 | -36.9 | 8.7  | 4.2  | 5.3  | 5.3  | -14.0 | n.d. |
| <br>Q5                 | 2 | Qs | -5.3 | -33.5 | 18.9 | 5.3  | 12.7 | 10.2 | -15.5 | n.d. |
| Q <sub>6</sub>         | 2 | Qs | -5.3 | -33.8 | 12.3 | 7.2  | 6.1  | 7.0  | -13.6 | n.d. |
| <b>Q</b> <sub>7</sub>  | 2 | Qs | -5.3 | -36.3 | 12.3 | 6.5  | 3.0  | 6.0  | -12.0 | n.d. |
| $Q_8$                  | 2 | Qs | -6.6 | -43.9 | 16.3 | 9.5  | 8.0  | 7.8  | -11.8 | n.d. |
| <b>Q</b> <sub>9</sub>  | 2 | Qs | -5.5 | -34.8 | 21.6 | 10.6 | 7.7  | 9.9  | -14.1 | n.d. |
| Q <sub>10</sub>        | 2 | Qs | -6.0 | -40.6 | 13.4 | 4.6  | 6.4  | 5.1  | -16.0 | n.d. |
| Q <sub>13</sub>        | 2 | Qs | -5.3 | -33.8 | 15.7 | 9.1  | 5.9  | 8.5  | -13.6 | n.d. |
| Q <sub>14</sub>        | 2 | Qs | -5.2 | -34.8 | 9.9  | 4.4  | 4.6  | 5.0  | -14.7 | n.d. |
| Q <sub>15</sub>        | 2 | Qs | -4.9 | -31.8 | 16.2 | 4.6  | 3.3  | 5.3  | -14.1 | n.d. |
| Q <sub>16</sub>        | 2 | Qs | -5.8 | -37.3 | 7.2  | 4.3  | 4.7  | 6.1  | -14.1 | n.d. |

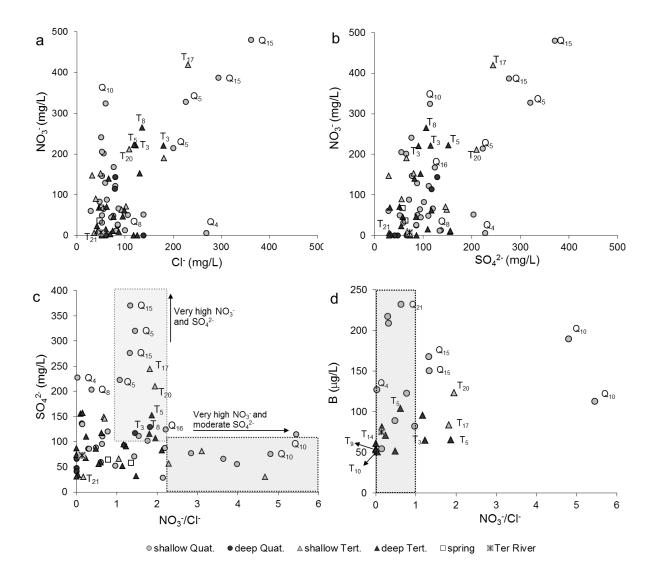
| <b>Q</b> <sub>17</sub> | 2 | Qs             | -5.4 | -35.6 | 8.4  | 4.8  | 7.2   | 6.6  | -15.0 | n.d. |
|------------------------|---|----------------|------|-------|------|------|-------|------|-------|------|
| Q <sub>18</sub>        | 2 | Qs             | -5.6 | -38.0 | 8.2  | 4.5  | -1.4  | 6.3  | -12.2 | n.d. |
| Q <sub>19</sub>        | 2 | Qs             | -5.5 | -38.2 | 10.5 | 5.5  | 3.1   | 4.9  | -13.4 | n.d. |
| Q <sub>20</sub>        | 2 | Qs             | -5.6 | -36.2 | 13.6 | 7.4  | 5.6   | 6.6  | -14.9 | 9.0  |
| Q <sub>21</sub>        | 2 | Qs             | -5.6 | -36.9 | 16.6 | 9.9  | 5.4   | 7.5  | -14.7 | 1.4  |
| S                      | 1 | spring         | -5.8 | -37.4 | 8.6  | 5.0  | 5.3   | 7.3  | -14.3 | n.d. |
| S                      | 2 | spring         | -5.9 | -37.7 | 9.6  | 6.8  | 5.4   | 7.2  | -13.5 | n.d. |
| <b>T</b> <sub>1</sub>  | 1 | T <sub>D</sub> | -5.6 | -37.8 | 8.9  | 6.8  | 1.6   | 8.2  | -10.2 | n.d. |
| $T_2$                  | 1 | T <sub>D</sub> | -5.2 | -35.1 | 16.0 | 8.0  | -13.5 | 3.8  | -9.0  | n.d. |
| <b>T</b> <sub>3</sub>  | 1 | T <sub>D</sub> | -5.1 | -33.1 | 7.6  | 4.7  | 4.9   | 6.0  | -13.7 | n.d. |
| $T_4$                  | 1 | T <sub>D</sub> | -5.5 | -36.3 | 14.9 | 10.1 | 4.9   | 10.1 | -13.3 | 31.7 |
| T <sub>5</sub>         | 1 | T <sub>D</sub> | -5.3 | -34.7 | 11.1 | 5.3  | 4.2   | 4.8  | -12.5 | 23.9 |
| $T_6$                  | 1 | $T_{D}$        | -5.6 | -35.7 | 12.8 | 6.9  | 2.3   | 8.0  | -12.0 | n.d. |
| T <sub>1</sub>         | 2 | T <sub>D</sub> | -5.8 | -36.4 | 10.8 | 6.8  | 1.5   | 7.6  | -11.2 | n.d. |
| $T_2$                  | 2 | T <sub>D</sub> | -5.3 | -35.3 | 22.6 | 10.9 | -13.4 | 4.2  | -9.1  | n.d. |
| <b>T</b> <sub>3</sub>  | 2 | T <sub>D</sub> | -5.2 | -36.1 | 11.0 | 7.0  | 5.5   | 6.2  | -13.9 | n.d. |

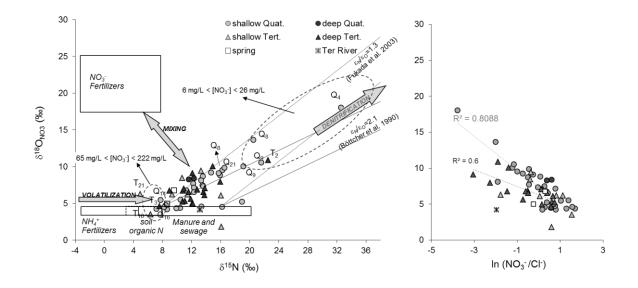

| Т | 5  | 2 | T <sub>D</sub> | -5.9 | -37.5 | 13.7 | 6.5  | 5.8   | 7.9  | -8.5  | n.d. |
|---|----|---|----------------|------|-------|------|------|-------|------|-------|------|
| Т | 6  | 2 | T <sub>D</sub> | -5.9 | -37.1 | 12.1 | 9.1  | -2.6  | 11.1 | -11.9 | n.d. |
| Т | 7  | 2 | T <sub>D</sub> | -5.5 | -36.3 | 10.8 | 5.2  | 5.2   | 6.6  | -13.4 | n.d. |
| Т | 8  | 2 | T <sub>D</sub> | -5.6 | -35.7 | 13.8 | 6.1  | 5.3   | 4.6  | -15.4 | n.d. |
| Т | 9  | 2 | T <sub>D</sub> | -6.1 | -39.0 | n.d. | n.d. | 14.2  | 12.0 | -11.5 | n.d. |
| Т | 10 | 2 | T <sub>D</sub> | -5.7 | -37.6 | n.d. | n.d. | 10.0  | 10.6 | -10.2 | n.d. |
| Т | 11 | 2 | T <sub>D</sub> | -5.4 | -39.7 | 11.6 | 6.6  | 6.3   | 6.2  | -13.0 | n.d. |
| Т | 12 | 2 | T <sub>D</sub> | -5.2 | -37.5 | 13.8 | 7.1  | -1.8  | 4.5  | -12.1 | n.d. |
| Т | 13 | 2 | T <sub>D</sub> | -5.7 | -37.6 | 11.9 | 5.6  | 1.7   | 5.8  | -12.5 | n.d. |
| Т | 14 | 2 | T <sub>D</sub> | -5.4 | -36.4 | n.d. | n.d. | -16.0 | 4.9  | -6.5  | n.d. |
| Т | 15 | 2 | T <sub>D</sub> | -5.4 | -36.6 | 12.2 | 5.0  | 6.2   | 5.2  | -13.1 | n.d. |
| Т | 16 | 1 | T <sub>S</sub> | -5.4 | -34.8 | 10.7 | 8.5  | -4.1  | 5.8  | -11.3 | n.d. |
| T | 16 | 2 | T <sub>S</sub> | -5.0 | -35.1 | 13.3 | 9.4  | -1.7  | 5.5  | -11.9 | n.d. |
| Т | 17 | 2 | T <sub>s</sub> | -5.1 | -34.3 | 16.1 | 1.8  | 5.9   | 6.3  | -14.5 | 29.5 |
| Т | 18 | 2 | T <sub>s</sub> | -5.0 | -33.9 | 6.3  | 3.5  | 4.1   | 5.0  | -13.5 | n.d. |
| Т | 19 | 2 | Ts             | -5.9 | -38.1 | 9.3  | 6.2  | 7.3   | 9.2  | -16.2 | n.d. |

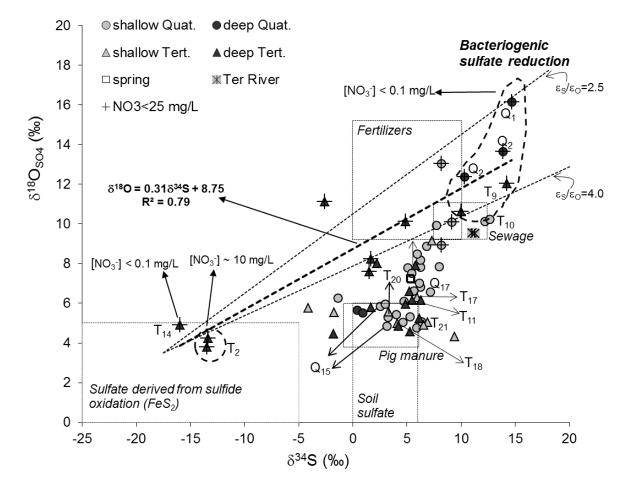
| T <sub>20</sub> | 2 | Ts        | -5.4 | -36.0 | 12.2 | 5.1  | 3.3  | 5.6  | -13.2 | 25.5 |
|-----------------|---|-----------|------|-------|------|------|------|------|-------|------|
| T <sub>21</sub> | 2 | Ts        | -6.2 | -36.8 | 5.0  | 6.3  | 6.9  | 5.1  | -14.9 | n.d. |
| T <sub>22</sub> | 2 | Ts        | -5.7 | -36.2 | 11.5 | 6.2  | 6.6  | 4.9  | -15.6 | n.d. |
| T <sub>23</sub> | 2 | Ts        | -5.6 | -38.2 | 16.1 | 6.1  | 9.4  | 4.3  | -14.8 | n.d. |
| R <sub>1</sub>  | - | Ter River | n.d. | n.d.  | 13.2 | 4.2  | 11.3 | 9.5  | n.d.  | n.d. |
| $R_2$           | - | Ter River | n.d. | n.d.  | n.d. | n.d. | n.d. | n.d. | n.d.  | n.d. |


Table 4. Ranges of nitrate, sulphate, boron and dissolved inorganic carbon isotope compositions of the main potential sources of nitrate obtained from the literature.


| NO <sub>3</sub> <sup>-</sup> source<br>Isotope ratio (‰) | Pig manure                             | Mineral fertilizers                               | Sewage                                                              | Soil                                                                 |
|----------------------------------------------------------|----------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                          | +8 - +16                               | -4 +8                                             | +5 +20                                                              | +3 +8                                                                |
| $\delta^{15}N$                                           | Vitòria (2004)                         | Michalski et al. (2015), Vitòria et<br>al. (2004) | Aravena and Mayer (2010), Curt<br>el al. (2004), Vane et al. (2010) | Aravena and Mayer (2010),<br>Heaton (1986), Kendall et al.<br>(2007) |
| $\delta^{18}O_{NO3}$                                     | +3.4 — +4.6<br>Estimated in this study | +17 — +25<br>Aravena and Mayer (2010), Vitòria    | +3.4 — +4.6<br>Estimated in this study                              | +3.4 — +4.6<br>Estimated in this study                               |
|                                                          | according to eq.5                      | et al. (2004), Xue et al. (2009)                  | according to eq.5                                                   | according to eq.5                                                    |
| $\delta^{34}$ S                                          | -0.9 +5.8                              | 0 +10                                             | +7.6 - +11.7                                                        | 0 — +6                                                               |
|                                                          | Cravotta (1997)                        | Vitòria et al. (2004)                             | Otero et al. (2008)                                                 | Krouse and Mayer (2000)                                              |
|                                                          | +3.8 - +6                              | +9 +15                                            | +9 +11.1                                                            | 0 — +6                                                               |
| $\delta^{18}O_{SO4}$                                     | Otero et al. (2007), Vitòria<br>(2004) | Vitòria et al. (2004)                             | Otero et al. (2008)                                                 | Krouse and Mayer (2000)                                              |


|                       | +19.5 - +42.4            | -9 -+ +15                   | -7.7 — +12.9                      | -                                |
|-----------------------|--------------------------|-----------------------------|-----------------------------------|----------------------------------|
| $\delta^{11}B$        |                          | Komor (1997), Widory et al. |                                   |                                  |
|                       | Widory et al. (2005)     | · · · ·                     | al. (1994), Widory et al. (2013), | -                                |
|                       |                          | (2005), (2013)              | Xue et al. (2009)                 |                                  |
|                       | -23.816.4                | -35 — -24                   | -25 — -13                         | -23                              |
| $\delta^{13}C_{HCO3}$ | Cravotta (1997), Vitòria |                             | Jurado et al. (2013), Li et al.   | $C_{1} = 1 = 1 = 1 = 1 = (1007)$ |
|                       | (2004)                   | Vitòria et al. (2004)       | (2010), Waldron et al. (2001)     | Clark and Fritz (1997)           |





## Figure 2 Click here to download Figure: figure2.docx

