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Abstract. In a first paper, HIPPARCOS astrometric and kinematic data were used to calibrate both infrared K
and IRAS luminosities at the same time as kinematic parameters of Long Period Variable stars (LPVs). Individual
estimated absolute magnitudes and a probabilistic assignation to galactic populations were deduced from these
calibrations for each LPV of our sample. Here we propose a scenario of simultaneous stellar and circumstellar
evolution according to the galactic populations. The transitory states of S and Tc stars allow us to confirm the
location of the first dredge-up at Mpo = —3.5. There is also evidence suggesting that a previous enrichment in
s-elements from a more evolved companion may accelerate the evolution along the AGB. The possible evolution
to OH LPVs is included in this scenario, and any of these stars may have a mass at the limit of the capability for
a C enrichment up to C/O > 1. A list of bright massive LPVs with peculiar envelope and luminosity properties is
proposed as Hot Bottom Burning candidates. The He-shell flash star, R Cen, is found to be exceptionally bright
and could become, before leaving the AGB, a C-rich LPV brighter than the usual luminosity limit of carbon stars.
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1. Introduction

LPVs are particularly interesting red giants for two main
reasons. On the one hand, the brightest LPVs are lumi-
nous enough to be observed at large distances, providing
information on the host galaxy (Van Loon et al. 1999a).
On the other hand, although their precise ranges of masses
and ages remain controversial, it is clear that they are
large enough. Thus LPVs are very good tracers of the
galactic history. Moreover the final evolution along the
AGB, and peculiarly the carbon surface enrichment and
the change of the envelope chemistry, is very complex.
It depends on many factors (as convection, overshooting,
internal chemical process, mass-loss, pulsation, etc.), the
relative effects of which depend on the mass and metallic-
ity, among other things.

In a previous paper (Mennessier et al. 2000), here-
after Paper I, HIPPARCOS astrometric data and multi-
wavelength photometric measurements of a sample of
800 LPVs (semi-regular a and b, irregular L and Mira
with O, S and C spectral types) were analyzed using
the LM algorithm (Luri et al. 1996). V, K and IRAS
12 and 25 luminosities were calibrated. The LM algo-
rithm classified the stars according to the galactic pop-
ulation (associated with the initial mass and metallicity

Send offprint requests to: M. O. Mennessier,
e-mail: Marie-0dile.Mennessier@graal.univ-montp2.fr

of the stars) and to the circumstellar envelope thick-
ness and expansion. Several groups were obtained in this
classification:

— Bright disk (BD) and disk (disk 1 or D1) LPVs with
bright and expanding envelopes;

— Not so young and massive disk population (disk 2 or
D2) divided into two subgroups: one with a thin en-
velope (denoted f) and another one with a bright and
expanding envelope (denoted b);

— Old disk (OD) population, showing a similar separa-
tion (b and f) according to envelope properties;

— Some LPVs were included in the extended disk (ED)
population.

These groups were obtained by combining K and IRAS
results.

From kinematic properties, the disk 1 population was
found to be 1—4x10° yr old, disk 2 population 4—8x10° yr
old and the old disk population older than 8 x 10 yr, up
to 10'° yr or even more. An extended disk was assumed
to be composed of very old, metal-deficient stars.

The lower limits of the main sequence initial mass,
Mns, were estimated to be in the range 2—1.4 Mg,
1.4-1.15 Mg, and 1.15—1 M, for disk 1, disk 2 and old
disk populations respectively. Moreover, in Paper I, sta-
tistical estimates were done to quantify how much groups
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and various variability and spectral types attract or repel
each other.

Each star of the sample was assigned to a galactic pop-
ulation and its individual K and TRAS 12 and 25 absolute
magnitudes were estimated. A table with these values is
available in electronic form at CDS!. They also are avail-
able in the ASTRID specialized database?.

In this paper, we use the estimated individual stel-
lar absolute magnitudes (K') together with properties of
the circumstellar envelopes (deduced from IRAS absolute
magnitudes) and the assigned galactic population to de-
fine an evolutive scenario of simultaneous stellar and cir-
cumstellar evolution of LPVs along the Asymptotic Giant
Branch (AGB). We aimed to link the chemical evolution
from O-rich to C-rich LPVs or OH emitters (through the
intermediate states of S and/or Tc LPVs) and the stel-
lar and circumstellar evolution, depending on the galactic
population, i.e. on the initial mass, as discussed in Sect. 2.

In Sect. 3 we examine the first stages of O-rich LPVs
and their correlation with initial mass. More precisely, we
propose and critically study several possible explanations
for the gap observed in the distribution of O-rich LPVs,
separating those with and without a circumstellar shell.

Section 4 is dedicated to the brightest O and C-rich
LPVs and points out candidates for peculiarities like Hot
Bottom Burning (HBB). Special attention is given to the
case of R Cen, a star in a He-shell flash.

Finally, a global stellar and circumstellar evolutive sce-
nario is proposed in Sect. 5, which takes into account the
differences between galactic populations and explains both
chemical and variability-type changes.

2. Chemical evolution

It is well known that K and TRAS absolute magnitudes
reflect the properties of various parts of the star. The
K magnitude depends mainly on the characteristics of the
stellar surface, whereas IRAS fluxes are linked to envelope
thickness and dust composition. Using both types of mag-
nitudes, information about the stellar and circumstellar
properties can be obtained.

Here we mainly use the individual absolute magnitudes
and assigned galactic populations estimated in Paper I. It
is convenient to recall that our sample was found to be
representative of the LPV population as far as the kine-
matics and the brightest luminosities are concerned, but
is under-representative for K and IRAS faint stars (see
Paper I).

2.1. From O-rich to C-rich LPVs

Figure 1 shows the distribution of the individual estimated
K absolute magnitudes and 25-123 indices deduced from

! Via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/380/198
2 http://astrid.graal.univ-montp2.fr
3 mas = 2.07 — 2.5 x log Fps and mi2 = 3.63 — 2.5 x log Fia.
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the estimated TRAS absolute magnitudes according to the
assigned kinematical groups and spectral types. A bimodal
distribution of stars with a deficit in the number of stars
around 25—12 = —0.2 is clear, mainly for the lower mass
stars (disk 2 and old disk). Section 3 will examine in detail
this gap for O-rich stars. In the present section we focus
on the fact that this area contains mainly C-rich stars
belonging to disk population. Moreover it corresponds to
the range of the (25-12) index with the lowest ratio of
known variable stars among the IRAS sources with colors
similar to LPVs colors (Paper I, Fig. 4).

This gap has already been reported by Habing (1989)
and interpreted as the separation between stars with
and without a circumstellar envelope. The deficit is very
marked in regions I and II of Habing’s IRAS color-color
diagram®, which correspond to non-variable and variable
(mainly O-rich) stars, and slighter in region VII, which
contains C-rich variable stars, in agreement with our re-
sults. Thus, stars with a thin circumstellar envelope (f)
are clustered around 25—12 = 0 and almost all of them
are O-rich LPVs. However, the kinematical study allowed
us to assess the differences according to the initial mass
of the stars.

The most massive stars can evolve to C-rich LPVs af-
ter a number of dredge-ups that enrich the external shells
of the star in carbon. In these stars the C/O ratio becomes
larger than 1 and when it is around 1, the star is an S star.
At the same time, strong changes take place in the cir-
cumstellar envelope, which becomes dominated by C-rich
grains. The 25-12 index increases in conformity with the
loop in the TRAS (25-12, 60-25) color-color diagram pre-
dicted by Willems & de Jong (1988) and calculated by
Chan & Kwok (1988). The areas occupied by O-rich and
C-rich disk LPVs in Fig. 1 reflect this loop. Indeed the
25-12 index decreases from stars with a thin circumstel-
lar envelope (f) to O-rich LPVs with a thick envelope (b)
and increases again for C LPVs.

However, our luminosity calibrations suggest that the
phenomenon does not strongly induce a difference in the
K distributions of O-rich and C-rich disk LPVs. Moreover,
the (K, IRAS) luminosity diagrams of Figs. 2 and 3 show
that the loop is caused by both the decreasing 12 and
25 luminosities when the star becomes C-rich, but that
this decrease is stronger in the 25 filter.

C-rich irregular and SRb stars mainly belong to the
disk 1 population (Paper I, Sect. 6.4). They are mainly lo-
cated at the upper end of the AGB. Therefore, the change
from a more regular variable star (Mira) to a less regular
one (L or SRb) may be associated with an increase in the
non-linear behaviour of the massive pulsating LPVs due
to interactions of the pulsation phenomenon and a very
thick and dynamically unstable envelope.

4 [25]-[12] index is higher than ours by 1.56 mag.
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Bright Disk LPV’s — LM calibrations

according to Kinematics K(IRAS)
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Fig. 1. Distribution of the individual estimated K luminosities and 12-25 TRAS colors according to the assigned kinematical
groups and to spectral types.

2.2. Peculiar evolutive phases

The above global evolutive scenario along the AGB can
be refined by examining stars which correspond to pecu-
liar short-lived stages during which the star fundamentally
changes (S or Tc stars), or to one of the most advanced
stages of evolution (OH emitters).

2.2.1. Tc stars

According to the models, the s-elements processed in a
star can be brought to the surface by convective dredge-
ups. When a sufficient quantity of s-elements has been
brought to its surface, an O-rich star becomes an S star.
S stars present a C/O ratio close to 1 and are generally
considered as a transition phase between O-rich and C-rich
stars.
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Some S stars are enriched in Tec, indicating that this
material was brought to the surface by recent (in the last
few million years) dredge-ups, as modeled by Mowlavi
(1998) in agreement with the results obtained by Van Eck
et al. (1998) who compared Tc and no-Tc S stars. Our list
of Tec-rich S LPVs is taken from Van Eck’s thesis (1999).

On another hand some O-rich LPVs (i.e. LPVs classi-
fied with an M spectral type) can also be enriched in Te.
Such peculiar stars were studied by Little et al. (1987) and
they offer great potential as a possible constraint on the
modelization of dredge-ups. Table 1 shows the individual
estimated absolute magnitudes and the assigned group of
these Tc stars.

We would like to highlight the correlation between lo-
cation in the plane (12, 25) of Tc¢ LPVs and the limit
between O-rich and C-rich regions, regardless of their S or
M spectral type (see Fig. 4). The only exception is R And,
which will be discussed later in this paper.

However no differences are found between Tc O-rich
and Tc S LPVs. Tc O-rich LPVs have the same 12 and
25 luminosities as O-rich stars. They are probably LPVs
enriched in Tc by a recent dredge-up, but not efficient
enough either to make the C/O ratio close to 1 or to dras-
tically alter the circumstellar envelope. Tc S LPVs are
mainly assigned to disk population (10/12), which is not
valid for Tc¢ O-rich LPVs. This suggests that the dredge-
up is more efficient in changing the C/O surface ratio up
to 1 for more massive stars. No definitive conclusions can
be reached owing to the scarcity of Tc LPVs in the sample.

It is also important to note that all these stars are
more luminous than ~ —6.5 mag in K, in agreement
with Van Eck et al. (1998), the bolometric correction for
this type of stars being around 3 mag. This confirms the
predicted location of the first thermal pulse (Mowlavi
1998) and the quite early operative third dredge-up on
the TP-AGB (Van Eck 1999).

Finally, some individual Tc stars in our sample have spe-
cific properties that require a specific discussion:

— NQ Pup and HR Peg are both assigned to the disk 1
population. Their faint K and IRAS luminosities
(Table 1) are questionable but they are at the limit
between O-rich and C-rich areas, like the other Tc S
LPVs (Fig. 4). None of these stars show signs of dust
emission (Jorissen & Knapp 1998). They are probably
among the least massive stars in the disk population;

— x Cyg, for which Jorissen & Knapp (1998) find ques-
tionable TRAS fluxes, presents no peculiarities here.
Indeed its 25-12 color index is close to zero but our es-
timated TRAS luminosities indicate the presence of an
envelope. It is assigned to the disk 1 population and its
location in the diagrams is compatible with a star of
large initial mass in transit between O-rich and C-rich
phases, after a recent dredge-up;

— R And can at first seem enigmatic. Assigned to the
old disk population, it is the most luminous star our
sample in 12 and 25 bands for its K luminosity and
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it has almost the smallest 25-12 index (see Fig. 4).
Our classification is probabilistic and thus a few stars
can be misclassified, but this does not seem to be the
case for R And. Indeed, the observed 25-12 color index
is —0.9, in agreement with that estimated from the
IRAS absolute magnitudes (—0.8).

This star probably has a very thick envelope and in
the diagrams it is close to the OH LPVs belonging
to the old disk population (see Fig. 5). A mass close to
the limit at which an O-rich LPVs can become either
an OH emitter or a carbon star may account for its
characteristics.

2.2.2. R Hor and Tc enrichment

R Hor was found to be Tc enriched by Little et al. (1987)
but not confirmed as such by Van Eck (1999) and it is the
only Tc star assigned to the extended disk population. A
Bayesian classification process can lead to some misclas-
sification, but R Hor is at the limit of the O-rich LPVs
area, close to two C-rich LPVs (RS Lup and V CrB) (see
Table 3). Thus, its Tc enrichment is questionable.

Another point is the way of enrichment in Tc and in C
of such a deficient and low mass star. V CrB was reported
as probably “metal poor” by Hron et al. (1998) from ISO
data. This agrees with our assignation to ED (Table 3),
which seems a priori doubtful for a carbon star.

If this is confirmed, it would be an interesting con-
straint to evolutive models.

2.2.3. Non-Tc S-type stars

Some of the non-Tc S stars in our sample can be extrinsic
S stars. These stars are not enriched in s-elements by inter-
nal nucleosynthesis and dredge-ups but by mass transfer
from a more evolved companion. This is probably the case
of X Aqr, BD Cam, V Cnc and SX Peg, for which a duplic-
ity flag is given in the HIPPARCOS catalog. Except for
X Aqr, they are in Fig. 4 at the lower limit in K of the old
disk population with thin envelope (ODf), to which they
are assigned. Moreover, the four of them have a K lumi-
nosity under —6.5 mag i.e. below the threshold of thermal
pulses on AGB, confirming the Van Eck’s (1999) result.

There are three other non-Tc S stars in our sample.
They are the least luminous in 12 and 25 bands and have
the largest 25-12 index among stars with their K abso-
lute magnitudes. AD Cyg is assigned to the bright disk
and it is more luminous than all C stars. It is a massive
star and we can assume that its evolution along the AGB
is very rapid. On the other hand, in the (K, 25-12), (K,
12), and (K, 25) planes, R Lyn and GZ Peg are close to
the line on which AD Cyg and three extrinsic S stars as-
signed to disk 2 population with a thin envelope (D2f)
(BD Cam, V Cnc, SX Peg) are located. These locations
seem to confirm the non-Tc character of these stars, which
are probably extrinsic S stars. However, given the difficul-
ties in detecting duplicity, we failed to confirm this result.
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Table 1. Individual K, 12 and 25 luminosities, with assigned crossing K (IRAS) group of Tc O-rich and S spectral type LPVs.
Variability (M = Mira, SR = semi regular, L = irregular) types and possible specificity (Tc = Technetiumstar, BD = bright

galactic disk star) are given.

HIP id name types | group K 12 25 pec
8 Z Peg MO ODb | —6.69 —8.90 —9.58 Tc
1236 S Scl MO ODb | —7.11 —9.08 —-9.63 Tc
77615 R Ser MO ODb | —6.97 —-9.57 —10.17 Tc
90493 RV Segr MO D1 | —6.92 —8.43 —9.06 Tc
104451 Cep MO D1 | —8.08 -9.99 —-10.60 Tc
110736 S Gru MO D2b | —7.48 —-9.98 —10.71 Tc
1901 R And MS ODb | —6.79 —-9.69 —10.54 Tc
10687 W  And MS D1 | —8.83 —11.95 —12.65 | Tc, BD
34356 R Gem MS D1 | —-7.69 —-9.81 —10.36 Tc
35045 AA Cam LS ODb | —6.91 —8.19 —8.84 Tc
38502 NQ Pup LS D2f | —6.73 —6.97 —7.05 Tc
65835 R  Hya MS D2b | —8.52 —11.04 —-11.60 Tc
87850 (014 Her SRS D2b | —7.30 —-8.30 —8.65 Tc
94706 T Sgr MS D2b | —=7.95 —-10.30 —-10.94 Tc
97629 khi  Cyg MS D1 | —7.48 —-9.71 —9.88 Tc
98856 AA  Cyg SRS D2b | —8.83 —-10.66 —11.35 Tc
110478 | pi.l Gru SRS D1 | —8.16 —-9.82 —10.59 Tc
113131 | HR Peg SRS D1 | —6.78 -7.39 —7.67 Tc
17296 BD Cam LS D2f | —6.01 —6.53 —6.63

33824 R Lyn MS ODf | —7.82 —7.85 —8.03

40977 V  Cnc MS D2f | —6.47 —6.85 —6.93

101270 | AD Cyg LS D1 | —9.18 —-10.49 —-10.88 BD
110146 X  Agqr MS ODb | —6.68 —8.92 —9.57

112784 | SX Peg MS D2f | —6.28 —7.00 —-7.11

114347 | GZ Peg | SRSa D1 | —7.63 —8.45 —8.61

Although the number of extrinsic S stars in our sam-
ple prevented us from reaching any definitive conclusion,
these results suggest that an extrinsic S enrichment can
accelerate the evolution along the AGB with formation of
a circumstellar envelope closer to a carbon than to a sil-
icated composition, before any enrichment by the star’s
own nucleosysthesis and dredge-ups.

2.2.4. OH stars

Some O-rich LPVs are maser emitters on the radio fre-
quencies corresponding to OH bands, the masers being
pumped by infrared photons.

These stars emit at the principal frequencies of the
main transition (1665/67 MHz) and some also emit at
1612 MHz. The star is classified as OHII or OHI accord-
ing to a stronger or a lower emission at the secondary
frequency with respect to the main band. All of them are
O-rich LPVs.

A systematic research of OH masers for stars in the
solar neighbourhood has been carried out by Sivagnanam
et al. (1989, 1990), Lewis et al. (1995) and Szymczack
et al. (1995).

Individual estimated absolute magnitudes and as-
signed groups of OH stars in our sample are given in
Table 2. Figure 5 shows their location in the distributions
of the various absolute magnitudes. The distinction be-
tween OHI and OHII is not useful for our purposes because
no difference was found between them in our analysis.

As expected, no OH star was found with a thin enve-
lope, i.e. assigned to an f group. At a given K, they are the
brightest in the 12 and 25 bands and all (except R Leo)
have a 25-12 index corresponding to a thick circumstel-
lar envelope. Their K luminosity distribution is the same
as that of non-OH O-rich LPVs. However, our previous
V' calibration (Mennessier et al. 1999) indicates the ex-
tent to which the presence of a thick envelope induces
an absorption in the visible range and confirms that af-
ter a new growth of the envelope the star becomes fainter
and fainter in the visible range and turns into an OH-IR
source. All these results agree with the current model of
OH sources: a maser emission pumped by photons of an
infrared thick envelope that depends on the mass of the
star and the mass-loss ratio.
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Table 2. Individual K, 12 and 25 luminosities, with assigned crossing K (IRAS) group of OH maser emitters Mira.

HIP id name types | group K 12 25 pec
11350 R Cet MO | ODb | —6.69 —-9.29 —-10.34 | OHI
19567 W Eri MO D2b | —6.26 —9.48 —10.21 | OHI
21766 R Cae MO D1 | —856 —10.80 —11.48 | OHI
25673 S Ori MO D2b | —=7.91 —-10.20 —-10.94 | OHI
26675 RU  Aur MO | ODb | —6.90 —-10.23 —11.09 | OHI
27286 S Col MO D2b | —8.04 —10.09 —10.87 | OHI
36669 Z Pup MO D1 | -817 —11.05 —11.86 | OHI
40534 R Cnc MO D2b | —8.61 —10.83 —11.55 | OHI
47066 X  Hya MO | ODb | —6.48 —8.52 —9.08 | OHI
47886 R LMi MO D1 | —841 —-10.73 —11.37 | OHI
48036 R Leo MO D1 | —7.67 —-9.91 —10.18 | OHI
58854 R Com MO D1 | —6.80 —8.41 —9.22 | OHI
67626 RX  Cen MO | ODb | —6.80 —9.12 —9.90 | OHI
69346 RU  Hya MO | ODb | —6.49 —8.95 —9.76 | OHII
69816 U UMi MO D1 | —6.98 —8.58 —9.18 | OHI
70669 RS Vir MO D1 | —-730 —10.27 —11.18 | OHIIL
74350 Y Lib MO | ODb | —6.15 —8.11 —8.94 | OHI
75143 S CrB MO D2b | —8.01 —10.43 —11.45 | OHII
75170 S Ser MO D1 | —6.72 —8.76 —9.41 | OHI
79233 RU  Her MO D1 | -793 —-10.07 —10.93 | OHI
80488 U  Her MO D2b | =795 —11.06 —11.64 | OHII
91389 X  Oph MO D1 | -816 —11.11 —11.69 | OHI
93820 R Adl MO | ODb | —7.31 —9.48 —10.49 | OHII
98077 RR Sgr MO D2b | —7.64 —10.36 —10.97 | OHI
98220 RR  Adl MO | ODb | —6.88 —9.72 —10.48 | OHII
114114 R Peg MO D2b | —7.35 —10.12 —10.79 | OHI
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Finally, the kinematic assignation of OH emitters also
provides information about these stars. Ten stars were as-
signed to the disk 1 population and they can thus be con-
sidered LPVs with massive progenitors. However we found
that this population group is rather attractive for C-rich
stars and repulsive for O-rich stars (Paper I). These ten
OH emitters have a K luminosity brighter than about
—8 mag. They are located in the same area as the Tc
S LPVs in the (K, 25-12), (K, 12) and (K, 25) planes.
Thus such stars probably have a mass at the limit of the
capability to be sufficiently enriched in carbon by succes-
sive dredge-ups. As discussed in Sect. (4.2) some of them
could be Hot Bottom Burning candidates.

The other OH sources of the sample, assigned to the
disk 2 or old disk population, are less massive.

3. How to explain the gap for observed O-rich
LPVs

As seen in Sect. 2.1 the distribution of O-rich LPVs is
clearly bimodal in the diagrams of Fig. 1, separating shell

and no-shell stars. This gap may a priori be formed by
several scenarios of the circumstellar shell formation, but
one must not forget that the sample selection can also in-
duce such an effect. Therefore, we must take both physics
and sampling into account when examining the validity of
the proposed hypotheses.

3.1. Several hypotheses

Our sample is composed of variable stars observed by
HIPPARCOS, i.e., selected from criteria based on visual
magnitude. As seen in Paper I, this selection effect is the
most prominent in comparison with the other ones: avail-
ability of K magnitude and IRAS detection. A priori and
with regard to the selection effects, we propose three pos-
sible explanations for the striking gap observed for O-rich
LPVs in Figs. 1-3:

1. During its evolution along the AGB, the star presents
two stages of variability. Initially it is irregular or semi-
regular of type b, then the pulsation stops and there-
after the star becomes variable for a second time as
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a semi-regular of type a or Mira and its circumstellar
envelope grows;

2. The first thermal pulses induce an irregular variabil-
ity of the star. Thereafter, the pulsation becomes more
regular and a significant mass loss is the source of the
circumstellar envelope formation. Owing to the compo-
sition of the silicated envelope, the 12 and 25 (more 25
than 12) luminosities suddenly and strongly increase.
After this rapid phase the evolution quietly continues;

3. At the beginning of the thermal pulses the SRb or
irregular variables slowly develop a circumstellar enve-
lope that grows and becomes sufficiently thick to make
the star undetectable in V' magnitude. The envelope
expands and becomes more transparent and thus the
star becomes again visible in the visual magnitudes.

Obviously, reality may be more complex than these three
proposed scenarios, and other explanations based on
other results may be suggested. The following section is
dedicated to the analysis of the three above proposed
hypothesis.

3.2. Consequences of each hypothesis

First of all, the first hypothesis is not realistic. It has no
convincing physical justification and no such behaviour is
found in the models. We will thus discard it immediately.

The other two are plausible. Let us examine their co-
herence using Fig. 6, which shows the distributions of the
individual estimated K absolute magnitudes and V' — K
indices from the V and K luminosities estimated for each
group. Figure 6 also distinguishes the spectral types and
the envelope thickness. A small number of stars assigned
to the disk 1 or extended disk population have a 25-12
index close to 0. They are marked in the Fig. 6 as “simuf”
type points.

In the case of the third hypothesis, when the circum-
stellar envelope grows more luminous in K, higher values
of V — K are initially found; then V' — K decreases when
the envelope expands. The star crosses back over the limit
of visibility, being more luminous in K and with a larger
V — K index.

In the case of the second hypothesis, the change in
the infrared fluxes is rapid and there is no reason for a
corresponding drastic change in K luminosity, but the ab-
sorption in V' band suddenly increases. Thus, the stars
belonging to the b group may be only visible (i.e. in our
sample) from a more luminous lower limit in K than that
of the f group. Briefly, in the second hypothesis, from one
side to the other of the gap, the star has the same K lumi-
nosity but the K distribution of the sample after the gap
can be truncated for faint values because of an increase
in V — K. In the third hypothesis the gap corresponds
to a time for which the star is invisible. Thereafter it is
brighter in K.

At this stage neither hypotheses 2 nor 3 can be re-
jected. The data available are too scarce to decide be-
tween them. The reality may be a mixture of both, but as

M. O. Mennessier and X. Luri: Stellar and circumstellar evolution of LPVs

long as these two hypotheses are considered, it is obvious
that the observed gap results from a circumstellar phe-
nomenon. On the contrary, a discontinuity in the stellar
evolution along the AGB can be excluded.

3.3. Ditfferences according to the galactic populations

The (K, 12) and (K, 25) diagrams (Figs. 2 and 3) allow
us to extend our analysis. They show the extent to which
the evolution depends on the galactic population, i.e. on
the initial mass and metallicity. We remark that the faint
K luminosity truncation of the sample of stars with a thick
envelope assigned to disk 2 population (D2b) is far lower
than the one assigned to the old disk population (ODDb).
This difference between disk 2 and old disk populations
favours the second hypothesis. Indeed such a difference is
difficult to explain by an individual increase in K during
the time of invisibility of the star assumed by the hypoth-
esis 3. On the other hand, a less massive star has a less
efficient mass loss with a formation of a less thick enve-
lope and is thus less absorbed in the V' band. Therefore, in
the case of hypothesis 2, at a given K for a thin envelope
star (f), old disk population LPVs have a larger probabil-
ity than disk 2 population stars to be in our V-selected
sample just after the circumstellar envelope formation.
The location of carbon stars also reinforces hypothe-
sis 2. Indeed, a few C-rich LPVs have a 25-12 index close
to zero but they cannot be stars just reaching the AGB.
This is obvious when we examine the Fig. 1 except for the
4 carbon stars belonging to the disk 2 population fainter
than —7 mag. However, if we consider these 4 stars as hav-
ing evolved from O-rich LPVs belonging to the truncated
faint part of the b distribution, everything is consistent.

4. Peculiar evolution of bright massive LPVs

The end of the evolution of massive LPVs on AGB induces
complex phenomena and deserves a more detailed study,
presented in this section.

4.1. Luminosity boundary of C stars

The luminosity boundary of carbon stars is an important
constraint for the models. We find the brightest C stars
around K = —9.2, independent of metallicity (Fig. 1), in
agreement with the theoretical boundary: My, = —6.4
(Boothroyd et al. 1993).

However, in our individual estimates of absolute mag-
nitude some O-rich LPVs are brighter in K than the
brightest C stars (see Table 3). This could be due to Hot
Bottom Burning (HBB) that prevents carbon star forma-
tion. One of them, R Cen, is even brighter than the 3o
upper limit of the AGB population from our calibration
(K = —9.4 for the disk 1 population, Paper I). The prop-
erties of this exceptional star will be a guide to investigate
the massive bright LPVs.
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4.2. R Cen and Hot Bottom Burning

R Cen has a very long period (more than 500 days) and
its light curve presents a double maximum. It may have
already changed from being a first overtone pulsator to a
fundamental one, but this assumption does not agree with
pulsation models (Ya’ari & Tuchmann 1996) for a high lu-
minosity star with a period around 500 days. Moreover,
the hypothesis that R cen is a first overtone pulsator
accounts for the peculiar shape of its light curve by a
resonance phenomenon with the ratio P1/P3 close to 2
(Barthes 1998). This author suggests that this peculiarly
massive star (more than 3 Mg and maybe 5 Mg) is a
candidate star in the Hot Bottom Burning phase. Indeed
this phenomenon stops the carbon-enrichment of the sur-
face. This agrees with the fact that this star is nearly the
brightest in K, 12 and 25 luminosities.

Two other candidates are proposed by Barthes (1998):
T Cas and X Oph. In Paper I, we assign both these stars

to the disk population (see Table 3), in agreement with
young and initially massive LPVs. Our estimated lumi-
nosities confirm T Cas as an HBB candidate. X Oph is
more intriguing because its mass is probably at the lowest
limit of carbon star formation (Sect. 2.2.4).

Another peculiarity of R Cen is the appearance of
the silicate band of its ISO-SWS spectrum (Justtanont
et al. 1998). Let us examine the O-rich LPVs assigned
to the disk 1 population with an estimated high luminos-
ity. V774 Sgr and SV Cas have IRAS-LRS spectra (IRAS
Science Team 1986) with a similar appearance as that of
R Cen; they also have a relatively early spectral type (M5
and M6.5 respectively), and so they may also be HBB can-
didates. IM Cas and V539 Cas have a high luminosity, an
early spectral type (M2) and their IRAS-LRS spectra are
close to that of R Cen one in the same way as T Cas and
X Oph. Another possible candidate could be Y Vel, which
has a late spectral type LPV (M8-M9.5).
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C-rich LPVs.

At least YZ Per has an IRAS-LRS spectrum close to
that of R Cen, an early spectral type (M1-M3), but it is
classified as a supergiant of class Iab and so it may be at
the most advanced end of the AGB or may be a post-AGB.

TRAS luminosities and 25—12 indices of V4028 Sgr and
V613 Mon indicate that they probably are in the first
stages on the AGB. This is confirmed by the IRAS-LRS
spectrum of V4028 Sgr in which no SiO feature is present.
Unfortunately no IRAS-LRS spectrum of V613 Mon is
available.

4.3. R Cen and He-shell flash

Another interesting property of R Cen was studied by
Hawkins et al. (2001) in a recent paper. They present ev-
idence of a steadily decreasing period of R Cen from 550
to 505 days during the last 50 years. They suggest that it

is caused by a He-shell flash, in a similar way to R Hya,
R Aql, W Dra and T UMi (Wood & Zarro 1981).

W Dra and T UMi have no available HIPPARCOS
data and so we could not estimate their luminosities.
R Aql is an OH emitter and a remark similar to X Oph
(Sect. 4.2) applies.

Wood & Zarro (1981) deduce a value between —5.3
and —5.5 mag. for the bolometric luminosity of R Hya,
in agreement with our estimation (K = —8.58). They also
find that the time scale for the period change of R Hya cor-
responds to a longer time after the maximum luminosity
of the He-shell flash than that of R Aql. This could ex-
plain the Tc enrichment of R Hya and its M6-M9S spectral
type.

The period change for R Cen is steeper than for R Hya
and thus Hawkins et al. (2001) give two possible explana-
tions: either R Cen is in a stage right after the beginning
of the flash, with a total mass less than 2-3 Mg or it
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is in a stage right after where the luminosity of the flash
reaches the stellar surface with a much larger range of
allowed stellar mass. We find that R Cen is the most K
luminous LPV but its 25-12 index is this of an S star, at
the limit between O and C-rich LPVs, and is assigned to
BD, the group of the most massive stars. Therefore, our
results strongly favor the second possibility: R Cen is in
a stage right after the luminosity of the flash reaches the
stellar surface.

Furthermore the He-shell flash enhances the efficiency
of the third dredge-up (Herwig 2000), that can explain the
very peculiar location, compared to the one of that HBB
candidates, of R Cen in the diagram (K, 25-12). This so
luminous O-rich LPV might become a carbon star excep-
tionally brighter than the usual luminosity limit accepted
for these stars. A few such luminous carbon stars exist

in the Magellanic Clouds as observed by Van Loon et al.
(1999b) and modeled by Frost et al. (1998).

5. Conclusion

Our results confirm that the AGB evolution depends on
the initial mass of the progenitor on the main sequence.
The study of LPVs with peculiar properties, often asso-
ciated with transition states in the stellar evolution, elu-
cidates some points of the very complex evolution along
the AGB. The simultaneous study of the behaviour of the
circumstellar envelope provides further information on the
evolutive state of the stars along the AGB. However, this
study is mainly statistical and so results for individual
stars can be erroneous because the confidence level of a
probabilistic discrimination can never reach 100%.
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Table 3. Individual K, 12 and 25 luminosities, with assigned crossing K (IRAS) group, spectral (O = O —rich, C = C — rich
, S = Sspectral type star) and variability (M = Mira, SR = semi regular, L. = irregular) types, possible specificity (Tc =
Technetium star, OH = OH star, BD = brightgalacticdiskstar, He = star in He-shell flash) and IRAS spectrum.

HIP id name types | group K 12 25 pec | IRAS sp.
13502 R Hor MO ED | -840 —-10.81 —11.49 Tc?

70339 RS Lup LC ED | —8.96 —-10.57 —11.20

77501 vV CrB MC ED | —882 —-11.59 —12.06

1834 T Cas MO D2b | —9.00 —-11.37 —12.05 115
7139 M Cas | SROb D1 | —895 —-1143 —12.36 BD 115
7598 V539  Cas LO D1 | —9.30 —-11.50 —12.43 BD 116
12302 YZ Per | SROb D1 | —883 —-11.70 —-1291 BD 127
15530 UZ Per | SROb D1 | —8.93 —-11.04 —-12.04 125
46502 Y Vel MO D1 | —9.01 -12.01 —-12.79 123
69754 R Cen MO D1 | -9.60 —-12.18 —12.79 BD,He 122
87668 V774 Sgr LO D1 | —9.36 —12.85 —14.03 129
116705 SV Cas | SROa D1 | —9.31 -—11.714 —12.70 125
91389 X  Oph MO D1 | —-816 —-11.11 —11.69 OH 115
32627 V613 Mon | SROb D1 | —-8.60 —10.07 —10.31 BD

89980 V4028 Sgr | SROq D1 | —8.58 —9.80 —10.29 BD

65835 R Hya| MS| D2 | -852 —11.04 —11.60 | Tc, He

93820 R Adl MO | ODb | —7.31 —9.48 —10.49 | OH, He

The proposed evolutive scenario, schematically repre-
sented in Fig. 7, is:

— At the beginning of the variability phase, stars be-
longing to the disk 2 or old disk population (i.e.,
with a not too large initial mass My,s) are irregular
L or semi-regular SRb O-rich variables. They begin
to slowly produce an envelope. Thereafter the enve-
lope expands, and the IRAS luminosities of the star
rapidly grow brighter. They become O-rich SRa or
Mira. Depending on smaller or greater M s, they can
evolve either to OH emitters and finally OH-IR sources
or, for the more massive, to be enriched in s elements
and then in carbon by successive dredge-ups and finally
become a C-rich Mira. The least massive stars leave the
AGB with no special transformation of their surface
abundance;

— The disk 1 and bright disk population LPVs seem to
very rapidly build a bright expanding envelope. They
can also evolve to OH or C-rich stars. Although this
population is not attractive for O-rich LPVs, a tenth of
OH Mira belong to it. They are probably not massive
enough to be sufficiently carbon enriched. A few may
be HBB stars.

If the mass of the star is high enough, after a num-
ber of dredge-ups the external shells of the star can
be enriched in carbon. The C/O ratio becomes larger
than 1. When C/O is around 1, the star is an S star.

At the same time, strong changes take place in the cir-
cumstellar envelope, which becomes dominated by car-
bonated grains, and the 25-12 index increases in con-
formity with the loop drawn in the IRAS color-color
diagram, as predicted by Willems & de Jong (1988)
and calculated by Chan & Kwok (1988). Our luminos-
ity calibrations in 12 and 25 clearly show that the star
becomes fainter in both luminosities but more in 25
than in 12. The C-rich irregular and SRb stars seem
to be the most evolved and massive.

The study of LPVs enriched in Tc confirms that they
are at different stages along the AGB but after a recent
dredge-up. It allows us to confirm the location of the first
dredge-up at My, = —3.5 and the quite early operative
third dredge-up on the TP-AGB

The no-Tc S-type LPVs (except R And), are faint
in K, 12 and 25, and they are confirmed as extrinsic S stars
enriched not by their own nucleosynthesis but by mass ex-
change from a more evolved companion. The extrinsic en-
richment in s-elements may accelerate the evolution along
the AGB and lead to the formation of an envelope closer
to being carbonated than silicated before any intrinsic en-
richment by successive dredge-ups.

The examination of the brightest LPVs allows us to
propose a list of stars with peculiar spectral, envelope and
luminosity properties that may be Hot Bottom Burning
candidates. The most luminous of them, R Cen, a star
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Fig. 7. Schematic illustration of the proposed stellar and circumstellar evolutive scenario.

in a He-shell flash, could become, before leaving AGB, a
C-rich LPV brighter than the usual luminosity limit of
carbon stars.
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