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ABSTRACT 21 

Diversity and balance of gut microorganisms is fundamental for health throughout life. 22 

The aim of this study is to explore the possible eubiotic effect of the buckwheat 23 

iminosugar D-fagomine (0.096% w/w in standard feed) in growing healthy Wistar 24 

Kyoto rats. Feed and energy intake, residual energy in feces, and body weight gain were 25 

independent of D-fagomine supplementation throughout the intervention (24 weeks). 26 

The populations of significant bacterial subgroups and species were determined in fecal 27 

and cecal DNA by quantitative real-time PCR. D-Fagomine increased the 28 

Bacteroidetes:Firmicutes ratio and partially counteracted the loss of Lactobacilliales and 29 

Bifidobacteriales over time. The supplementation reduced the levels of excreted short-30 

chain fatty acids (SCFAs) as determined by gas chromatography. This paper provides 31 

preliminary evidence that D-fagomine has the capacity to promote microbial functional 32 

diversity by increasing the Bacteroidetes:Firmicutes ratio and to mitigate the age-related 33 

reduction in populations of the putatively beneficial Lactobacilliales and 34 

Bifidobacteriales. 35 
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1. INTRODUCTION 39 

Human gut microbiota is formed of some 1014 bacteria: more than 10 times the number 40 

of eukaryotic cells in a healthy person. It mainly consists of 9 bacterial phyla 41 

encompassing over 1,000 species, and more than 15,000 strains. Most of these bacteria 42 

belong to the two most abundant phyla in the gut: Bacteroidetes (40% of the gut 43 

microbiota) and Firmicutes (60%) (Ley et al., 2005). Their main biological function in 44 

the host is the optimization of energy harvesting through the degradation of indigestible 45 

biopolymers (e.g. polysaccharides) in the large intestine, and their conversion into 46 

smaller species that can be internalized and used as building blocks for lyposynthesis 47 

(Thomas, Hehemann, Rebuffet, Czjzek, & Michel, 2011). Bacteroidales is the major 48 

order among Bacteroidetes while Clostridiales is the major order among Firmicutes. 49 

Other quantitatively minor yet important subgroups of the gut microbiota are the orders: 50 

Lactobacillales, Bifidobacteriales and Enterobacteriales, which belong to the phyla 51 

Firmicutes, Actinobacteria and Proteobacteria, respectively. Lactobacillales and 52 

Bifidobacteriales may confer health benefits on their host, including resistance to 53 

infection, amelioration of allergic symptoms and protection against inflammatory 54 

processes (Roberfroid et al., 2010). Lactobacillus acidophilus is one of the major 55 

species of its genus found in the gut, and together with Lactobacillus plantarum, it 56 

contributes to the maintenance of the normal barrier function of the intestinal epithelium 57 

(Gareau, Sherman, & Walker, 2010). Enterobacteriales is composed of non-pathogenic 58 

and opportunistic bacteria such as Escherichia coli, a facultative anaerobic 59 

microorganism. Most E. coli strains can coexist inside a healthy host; but they may 60 

cause enteric diseases and extra-intestinal infections in immunocompromised hosts or 61 

when the normal gastrointestinal barriers are breached (Kaper, Nataro, & Mobley, 62 

2004). 63 

Microbiota products can be either protective or harmful, depending on their 64 

concentration and on the metabolic status of the host. These products include 65 

lipopolysaccharides (LPS: a component of the bacterial cell wall), angiopoietin-like 66 

protein 4 (a protein involved in lipid metabolism), bile acids and short-chain fatty acids 67 

(SCFAs) (Janssen & Kersten, 2017). SCFAs are the end products of the fermentation of 68 

dietary fiber by anaerobic intestinal bacteria (den Besten et al., 2013; Tan et al., 2014). 69 

Bacteroidetes and Actinobacteria are known to produce acetate and propionate; whereas 70 



butyrate is mainly generated by bacterial groups in the Firmicutes phylum (e.g. 71 

Clostridiales) (Mackie & White, 2012).  72 

SCFAs are building blocks for de novo lyposynthesis as well as mediators of biological 73 

responses in the host. They interact with signaling pathways through activities such as 74 

inhibition of histone deacetylases (HDACs) and activation of G-protein-coupled 75 

receptors (GPCRs) (Tan et al., 2014).  76 

The preservation of microbial diversity and balance is fundamental for host health 77 

(Nicholson et al., 2012). Many factors can produce disruptions in gut microbiota and 78 

lead to dysbiosis, which consequently increases the susceptibility of the host to contract 79 

diseases (Iebba et al., 2016). Physiological changes in the gastrointestinal tract, 80 

modifications in lifestyle, and functional alterations of the host immune system over 81 

time ultimately affect the bacterial ecosystem (Biagi et al., 2010). In humans, age-82 

related differences in gut microbiota composition include an increase in the total 83 

number of facultative anaerobes, mainly Enterobacteriales; and a reduction in the 84 

populations of species belonging to the phylum Bacteroidetes, as well as of the health-85 

promoting Lactobacillales and Bifidobacteriales (Woodmansey, 2007). E. coli and other 86 

opportunistic bacteria tightly adhere to mucosal surfaces (Svanborg, Agace, Hedges, 87 

Lindstedt, & Svensson, 1994) and may prevent gut colonization by the more loosely 88 

bound species belonging to the Lactobacillales and Bifidobacteriales orders. 89 

Nutritional strategies to avert dysbiosis or to restore a normobiotic/eubiotic state include 90 

the administration of probiotics (putatively beneficial microorganisms) and prebiotics 91 

(ingredients that promote the growth/activity of beneficial microorganisms) (Roberfroid 92 

et al., 2010). Other food components may have the capacity to preserve gut microbial 93 

diversity through different mechanisms; together with probiotics and prebiotics these 94 

may generally be called eubiotics. Iminocyclitols, also called iminosugars, are 95 

carbohydrate analogues with a nitrogen atom in place of the endocyclic oxygen. D-96 

Fagomine (1,2-dideoxynojirimycin) is a six-ring iminocyclitol first isolated from seeds 97 

of buckwheat (Fagopyrum esculentum) and also present in other plant sources, such as 98 

mulberry (Morus alba) leaves, and gogi (Lycium chinense) roots (Amézqueta et al., 99 

2012). D-Fagomine is partially absorbed and then rapidly (8 h) excreted in urine. It is 100 

partially metabolized into methyl-D-fagomine (about 10% in urine and 3% in feces) 101 

(Amezqueta et al., 2017). D-Fagomine inhibits intestinal disaccharidases in vitro, 102 



reduces the post-prandial blood glucose concentration in healthy rats and inhibits the 103 

adhesion of E. coli and Salmonella enterica serovar Typhimurium to pig intestinal 104 

mucosa (Gómez et al., 2012). D-Fagomine also maintains the glycemic status in pre-105 

diabetic animals (Molinar-Toribio et al., 2015), it reduces fat-induced weigh gain 106 

(Ramos-Romero et al., 2014) and there is preliminary evidence that it may elicit these 107 

effects through an action on gut microbiota, particularly on Enterobacteriales (Ramos-108 

Romero et al., 2014).  109 

To evaluate the possible use of D-fagomine as a functional food component for the 110 

maintenance of balanced gut microbiota, here we explore the changes it induces in the 111 

populations of major microbial phyla and selected putatively beneficial minor orders in 112 

healthy rats over time.   113 



2. MATERIALS AND METHODS 114 

2.1.Animals 115 

A total of 18 male Wistar-Kyoto rats from Envigo (Indianapolis, IN, USA), aged 8-9 116 

weeks, were used. All animal handling was carried out in the morning, to minimize the 117 

effects of circadian rhythms. All the procedures strictly adhered to the European Union 118 

guidelines for the care and management of laboratory animals (directive 2010/63/EU) 119 

under license from the regional Catalan authorities (reference no. DAAM7921), and 120 

were approved by the Spanish CSIC Subcommittee of Bioethical Issues. 121 

2.2.Experimental design and sample collection 122 

The rats were housed under controlled conditions of humidity (60%), and temperature 123 

(22 ± 2 ºC) with a 12 h light-12 h dark cycle. To reduce the variation in microbiota 124 

between rats, the animals were accommodated in their cages (n = 3 per cage) for 4 125 

weeks before the nutritional intervention. Then, they were randomly divided into 2 126 

groups (n = 9/group): control group (STD), fed a standard diet of 2014 Teklad Global 127 

14% Protein chow from Envigo; and a group fed the standard diet supplemented with 128 

0.96 g D-fagomine/kg feed (> 98% from Bioglane SLNE, Barcelona, Spain) per kg feed  129 

(FG). The composition of the diets is provided in Table 1. The proportion  of D-130 

fagomine in the feed (2 mg/g carbohydrates) was defined in accordance with the results 131 

of previous studies in vitro (Gómez et al., 2012) and in vivo (Ramos-Romero et al., 132 

2014). The mean daily dose of D-fagomine was 3.9 mg per 100 g body weight, 133 

calculated from a mean feed consumption of 4.1 g feed per day per 100 g body weight. 134 

The animals were fed ad libitum with free access to water (Ribes, Barcelona, Spain). 135 

Feed consumption was monitored daily and body weight was measured three times per 136 

week throughout the experiment. Energy intake was calculated as estimates of 137 

metabolizable energy, based on the Atwater factors, assigning: 4 kcal/g protein, 9 kcal/g 138 

fat, and 4 kcal/g available carbohydrate.  139 

Fecal samples were collected by abdominal massage after weeks 0, 1, 3, 9 and 24. The 140 

energy content in the feces collected after week 20 was determined by differential 141 

scanning calorimetry (25-600 ºC in an O2 atmosphere, 10 ºC/min) by means of a 142 

TGA/SDTA851e thermogravimetric analyzer (Mettler-Toledo, Columbus, OH) with 143 

integrated SDTA signal.  144 



After 24 weeks of supplementation, the rats were fasted overnight and anesthetized 145 

intraperitoneally with ketamine from Merial Laboratorios (Barcelona, Spain) and 146 

xylacine from Quimica Farmaceutica (Barcelona, Spain) (80 and 10 mg/kg body 147 

weight, respectively). The cecal content was collected, weighed and immediately frozen 148 

in liquid N2. All the samples were stored at –80 ºC until analysis. 149 

2.3.Measurement of microbial populations 150 

The relative populations of selected bacterial phyla, orders and species were estimated 151 

in fecal and cecal DNA by quantitative real-time PCR (qRT-PCR). Total DNA was 152 

extracted from both feces and cecal content using a QIAamp® DNA Stool Mini Kit 153 

from QIAGEN (Hilden, Germany) and quantified using a Nanodrop 8000 154 

Spectrophotometer (ThermoScientific, Waltham, MA, USA). All DNA samples were 155 

diluted to 20 ng/µL. The qRT-PCR experiments were carried out using a LightCycler® 156 

480 II (Roche, Basel, Switzerland) in 96-well plates. Each qRT-PCR well was run in 157 

triplicate and contained DNA (2 µL) and a master mix (18 µL) consisting of 2X SYBR 158 

(10 µL), the corresponding forward and reverse primer (1 µL each), and water (6 µL). 159 

All the reactions were paralleled by a non-template control (water) and a positive 160 

control (Table 2) from DSMZ (Braunschweig, Germany). Water was purified using a 161 

Milli-Q system (Millipore Corporation, Billerica, MA, USA). The qRT-PCR cycling 162 

conditions were as follows: 10 s at 95 ºC, then 45 cycles of 5 s at 95 ºC, 30 s at the 163 

primer-specific annealing temperature (Table 2), and 30 s at 72 ºC (extension). 164 

Following amplification, to determine the specificity of the qRT-PCR, melting curve 165 

analysis was carried out by heating for 2 s at 95 ºC, then cooling for 30 s at 60 ºC, and a 166 

temperature gradient from 30 ºC to 95 ºC at a rate of 0.11 ºC/s, with five fluorescence 167 

recordings per ºC. 168 

The relative DNA abundances for the different sequences were calculated from the 169 

second derivative maximum of their respective amplification curves (Cp, calculated in 170 

triplicate) by considering Cp values to be proportional to the dual logarithm of the 171 

inverse of the specific DNA concentration, following the equation: [DNAa]/[DNAb] = 172 

2Cpb-Cpa (Pfaffl, 2001). Total bacteria was normalized as 16S rRNA gene copies per mg 173 

of wet feces (copies/mg).  174 

2.4.Short-chain fatty acids175 



SCFAs were analyzed in feces after 12 weeks of supplementation and in the cecal 176 

content at the end of the study, by gas chromatography using a previously described 177 

method (Schwiertz et al., 2009) with some modifications. Briefly, the feces were freeze-178 

dried and weighed (~50 mg dry matter) and a solution (1.5 mL) containing the internal 179 

standard 2-ethylbutiric acid (6.67 mg/L) and oxalic acid (2.97 g/L) in acetonitrile/water 180 

3:7 was added. Then, SCFAs were extracted for 10 min using a rotating mixer. The 181 

suspension was centrifuged (5 min, 12,880 g) in a 5810R centrifuge (Eppendorf, 182 

Hamburg, Germany) and the supernatant passed through a 0.45 µm nylon filter. An 183 

aliquot of the supernatant (0.7 mL) was diluted to 1 mL with acetonitrile/water 3:7. 184 

SCFAs were analyzed using a Trace2000 gas chromatograph coupled to a flame 185 

ionization detector (ThermoFinnigan, Waltham, MA, USA) equipped with a Innowax 186 

30 m × 530 µm × 1 µm capillary column (Agilent, Sta Clara, CA, USA). Chrom-Card 187 

software was used for data processing. This method has shown good selectivity for six 188 

different SCFAs (acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid 189 

and isovaleric acid), sensitivity, linearity in the working concentration range (acetic and 190 

butyric acids 3-750 ppm; propionic acid 1-250 ppm; isobutyric acid 0.3-75 ppm; 191 

isovaleric and valeric acids 0.2-40 ppm) and accuracy (trueness and precision). To 192 

check the method trueness and precision, a recovery study at three concentration levels 193 

and on three different days was performed. Precision (RSD < 15%) and recovery (> 194 

70%) were adequate and intra-day reproducible. 195 

2.5.Statistical analysis 196 

The results are expressed as mean values with their standard errors (SEM). Normal 197 

distribution and heterogeneity of data were evaluated by Shapiro-Wilk test and F-tests, 198 

respectively. Intra-group statistical significance throughout the study was determined by 199 

repeated-measures ANOVA. Statistical significance between groups was determined by 200 

Student’s t-test. Differences were considered significant when P < 0.05. All data 201 

calculations and statistical analysis were performed using Graph Pad Prism 5 (Graph 202 

Pad Software, Inc., San Diego, CA, USA).   203 



3. RESULTS 204 

3.1.Body weight, and feed and energy intakes 205 

Body weight was similar in the STD and FG groups, both before and after the 206 

nutritional intervention (Table 3). There were no differences between groups in either 207 

water, feed or energy intakes throughout the experiment (Table 3); nor were there in the 208 

energy excreted  in feces at the end of the study (Table 3).  209 

3.2.Major microbiota phyla and orders210 

The relative proportions of the two predominant bacterial phyla: Bacteroidetes and 211 

Firmicutes, and orders within these phyla: Bacteroidales and Clostridiales in the gut 212 

microbiome, were evaluated at time 0 and after 1, 3, 9 and 24 weeks of supplementation 213 

in feces, and also at the end of the study (24 weeks) in cecal content (Figure 1). 214 

Intragroup variations in the percentages of Bacteroidetes and Firmicutes over the entire 215 

experiment were not significant; while supplementation with D-fagomine clearly 216 

increased the populations of Bacteroidetes in feces, already after one week of 217 

supplementation, except at week 3 (Figure 1A). This effect was also detected in the 218 

cecal content at the end of the study (Figure 1A, B). The populations of Bacteroidales 219 

(the main order within Bacteroidetes) presented a similar pattern (Figure 1D). No 220 

significant differences were observed in the populations of Firmicutes or its major 221 

order, Clostridiales, throughout the study (Figure 1B, E).  222 

3.3.Minor microbiota orders and species223 

The relative proportions of the orders Lactobacillales, Bifidobacteriales, and 224 

Enterobacteriales, as well as L. acidophilus, L. plantarum, and E. coli in the gut 225 

microbiota, were evaluated at time 0 and after 1, 3, 9 and 24 weeks of supplementation 226 

in feces, and at the end of the study (24 weeks) in cecal content (Figure 2). 227 

The relative populations of Lactobacillales at the end of the study (week 24) were 228 

significantly lower (P < 0.001) than those at time 0 in the STD group (Figure 2A). D-229 

Fagomine partially counteracted this age-related loss, as after 24 weeks the population 230 

of Lactobacilliales in the supplemented group was significantly (P < 0.01) greater than 231 

that in the STD group (Figure 2A). The same effect was detected for L. acidophilus232 



(Figure 2D). There were no differences between the groups in the percentage of L. 233 

plantarum (Figure 2E). 234 

235 

The relative populations of Bifidobacteriales also significantly decreased (P < 0.05) 236 

over time in the feces of animals in the STD group (Figure 2B); at the end of the 237 

experiment (week 24) the population was almost undetectable. Supplementation with D-238 

fagomine also had an effect on these proportions of Bifidobacteria over time. Already 239 

after 9 weeks of intervention, the population of Bifidobacteriales was significantly 240 

higher (P < 0.05) in the supplemented group than in the STD group; and at the end of 241 

the study (week 24), the differences between the groups were still significant (P < 0.05). 242 

243 

The populations of Enterobacteriales and E. coli in the STD and FG groups were similar 244 

throughout the study except after week 9 of supplementation when a significant (P < 245 

0.05) increase was recorded for Enterobacteriales in the FG group (Figure 2C). At the 246 

end of the study, the group supplemented with D-fagomine presented higher amounts of 247 

Enterobacteriales (P < 0.05) and E. coli (P < 0.01) in the cecal content (Figure 2C, F). 248 

249 

3.4.Short-chain fatty acids250 

The concentrations of SCFAs were measured in feces after week 12 of the study and in 251 

the cecal content at the end (24 weeks) (Table 4).  252 

D-Fagomine significantly (P < 0.05) reduced the concentration  of  acetic and isobutyric 253 

acids, and also the total content of SCFAs in feces (Table 4). There were no differences 254 

between groups in any SCFA determined in the cecal content (Table 4).  255 



4. DISCUSSION 256 

The present study focuses on the effect of D-fagomine on gut microbiota of healthy 257 

WKY rats over a period of 24 weeks (from age 8-9 weeks to 32-33 weeks). The 258 

intragroup differences in the populations of Bacteroidetes, Firmicutes and their 259 

respective major orders, Bacteroidales and Clostridiales, were not significant. This 260 

result roughly agrees with a previous report of fecal microbiota variation in healthy 261 

Sprage-Dawley rats over a period of two years (Flemer et al., 2017). In that study, the 262 

populations of the two phyla and the Bacteroidetes:Firmicutes ratio showed a non-263 

significant tendency to increase during the first year (Flemer et al., 2017). Now we have 264 

shown here that the feces of WKY rats supplemented with D-fagomine contains 265 

significantly higher populations of Bacteroidetes and Bacteroidales than those of rats 266 

given the STD diet, already after one weak and over the entire experiment, with the 267 

exception of Bacteroidetes at week 3 (Figure 1A, D). As the level of functional diversity 268 

in the gut microbiome has been linked to the relative abundance of Bacteroidetes 269 

(Turnbaugh et al., 2009), D-fagomine may contribute to the maintenance of intestinal 270 

health in ageing rats by preserving diversity.  271 

We have also recorded some intergroup differences in fecal SCFAs. The total SCFA 272 

content in the group supplemented with D-fagomine showed a tendency to be lower than 273 

in the STD group; this difference was only significant in the cases of acetate and 274 

isobutyrate (Table 4). This reduction in excreted SCFAs might be related to the increase 275 

in the Bacteroidetes:Firmicutes ratio (Figure 1C), in agreement with studies that 276 

associate a reduced Bacteroidetes:Firmicutes ratio in obese vs lean mice with increased 277 

concentrations of acetate and butyrate (Turnbaugh et al., 2006) or acetate and 278 

propionate (Murphy et al., 2010). In humans, the transfer of intestinal microbiota from 279 

lean donors can improve insulin sensitivity of patients suffering from metabolic 280 

syndrome, while increasing the populations of butyrate-producing bacteria and reducing 281 

fecal SCFAs (acetate and butyrate) (Vrieze et al., 2012). This apparent contradiction 282 

may be explained by considering the host/microbiome ecosystem as a whole, in which 283 

the capacity to absorb bacterial metabolites by the host plays a determinant role and the 284 

fecal concentration of these metabolites may not be directly related to their generation 285 

rate. Fecal SCFAs may still be markers of the host’s metabolic status. Hence, lower 286 

levels of excreted SCFAs together with higher Bacteroidetes:Firmicutes ratios are 287 



consistently associated in the literature with a lean healthy phenotype, compared to 288 

metabolically altered phenotypes (Canfora, Jocken, & Blaak, 2015). 289 

The action of D-fagomine is also evident in the case of the putatively beneficial 290 

Lactobacillales and Bifidobacteriales, particularly Lactobacillus acidophilus (Figure 291 

2A, B, D). The fecal populations of these bacteria steadily and significantly decreased 292 

from week 3 until the end of the study in non-supplemented animals. There is little 293 

information in the literature about changes in the populations of putatively beneficial 294 

bacteria in healthy rats over time. In Wistar rats, Lactobacilliales show a slight tendency 295 

to increase during the first year of life, while species of the Bifidobacterium genus are 296 

detected only in the second year (Flemer et al., 2017). In humans, the populations of 297 

Bifidobacteriales remain relatively stable during adulthood and decrease considerably in 298 

old age (Arboleya, Watkins, Stanton, & Ross, 2016). This decline has been associated 299 

with the development of intestinal disorders, including diarrhea, irritable bowel 300 

syndrome, and inflammatory bowel disease (Gareau et al., 2010). In the present study, 301 

the supplemented group presented significantly higher populations of Lactobacilliales 302 

and Bifidobacteriales than those in the STD group at the end of the intervention 303 

(animals of 32-33 weeks of age). D-Fagomine might counteract the loss of beneficial 304 

bacteria by inhibiting the adhesion of opportunistic species such as E. coli, as previously 305 

reported (Gómez et al., 2012).  306 

The feces of the Wistar-Kyoto rats in this study did not contain elevated percentages of 307 

Enterobacteriales, whether they were supplemented with D-fagomine or not. In the 308 

supplemented group, a significant increase of Enterobacteriales, and particularly E. coli, 309 

was recorded after 9 weeks of intervention (Figure 2C, F). Yet these levels (up to 0.2%) 310 

fall within the normal range for healthy individuals and they are much lower than those 311 

triggered by an obesogenic diet (4%) (Ramos-Romero et al., 2014). The population of 312 

Bifidobacteriales also increased significantly at the same time point (Figure 2B). At this 313 

particular time in the experiment, a singular event may have occurred. The combination 314 

of the standard diet and D-fagomine may have induced changes in the intestinal 315 

ecosystem when the rats were 17-18 weeks old. As commented before in the case of 316 

SCFAs, the increase in excreted Enterobacteriales and E. coli does not necessarily imply 317 

an increase of these populations in contact with the intestinal wall. In fact, the opposite 318 

might be the case in the supplemented group. The results at week 9 suggest that D-319 

fagomine was eliminating Enterobacteriales and E. coli while favoring colonization by 320 



Bifidobacteriales. This assertion is supported by previous results which show that D-321 

fagomine inhibits the adhesion of E. coli, but not of Bifidobacteria, to the intestinal 322 

mucosa (Gómez et al., 2012) and it reduces the populations of enterobacteria triggered 323 

by an obesogenic diet (Ramos-Romero et al., 2014). This explanation is also consistent 324 

with the recorded increased populations of E. coli in cecum content at the end of the 325 

study (Figure 2F).  326 

5. CONCLUSIONS 327 

This paper provides preliminary evidence that the iminosugar D-fagomine has the 328 

capacity to promote diversity in gut microbiota  and to mitigate the age-related 329 

reduction in the populations of some putatively beneficial bacteria in healthy rats. D-330 

Fagomine increased the Bacteroidetes:Firmicutes ratio, reduced the loss of 331 

Lactobacilliales and Bifidobacteriales with aging and reduced the levels of excreted 332 

SCFAs. A comprehensive metagenomic study should shed more light on the changes in 333 

gut microbiota induced by iminosugars such as D-fagomine and their functionality. D-334 

Fagomine may have a eubiotic effect on the composition of intestinal microbiota that 335 

may be complementary to that of probiotics and prebiotics. 336 
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TABLES AND FIGURES 458 

Table 1.- Composition of the experimental diets459 

Standard a Standard plus

D-fagomine 

Composition (g/kg) 

Protein  143.00 143.00

L-cystine  3.00 3.00

Available carbohydrate  480.00 480.00

Crude fiber  41.00 41.00

Fat  40.00 40.00

Mineral  28.37 28.37

Vitamins  1.20 1.20

Ash  47.00 47.00

Choline bitartrate  1.00 1.00

D-Fagomine b  - 0.96

Total energy (ks ºC/g) c 704.3 627.0
a Teklad Global 14% protein rodent maintenance diet (2014) from Harlan. 460 
b D-Fagomine (Batch: FG1008E) from Bioglane (Barcelona, Spain). 461 

c Integrated SDTA signal proportional to energy in diets. 462 

463 



Table 2.- Quantitative real-time PCR primers and conditions 464 

Target bacteria Annealing 
temperature (ºC) Sequences (5’-3’) Positive Controla Reference

Total Bacteria 65 F: ACT CCT ACG GGA GGC AGC AGT (b) (Hartman et al., 2009)

R: ATT ACC GCG GCT GCT GGC

Bacteroidetes 62 F: ACG CTA GCT ACA GGC TTA A Bacteroides fragilis (Abdallah Ismail et al., 2011)

R: ACG CTA CTT GGC TGG TTC A

Firmicutes 52 F: CTG ATG GAG CAA CGC CGC GT Ruminococcus productus (Haakensen, Dobson, Deneer, 

& Ziola, 2008)R: ACA CYT AGY ACT CAT CGT TT 

Bacteroidales 61 F: GGT GTC GGC TTA AGT GCC AT Bacteroides fragilis (Hartman et al., 2009)

R: CGG AYG TAA GGG CCG TGC

Clostridiales 60 F: CGG TAC CTG ACT AAG AAG C Ruminococcus productus (Hartman et al., 2009)

R: AGT TTY ATT CTT GCG AAC G

Lactobacilliales 60 F: AGC AGT AGG GAA TCT TCC A Lactobacillus acidophylus (Walter et al., 2001)

R: CAC CGC TAC ACA TGG AG

Bifidobacteriales 55 F: CTC CTG GAA ACG GGT GG Bifidobacterium longum (Queipo-Ortuno et al., 2013)

R: GGT GTT CTT CCC GAT ATC TAC A

Enterobacteriales 60 F: ATG GCT GTC GTC AGC TCG T Escherichia coli M15 (Hartman et al., 2009) 

R: CCT ACT TCT TTT GCA ACC CAC T 

Lactobacillus acidophylus 64 F: AGC TGA ACC AAC AGA TTC AC Lactobacillus acidophylus (Walter et al., 2001) 

R: ACT ACC AGG GTA TCT AAT CC 

Lactobacillus plantarum 55 F: GCC GCC TAA GGT GGG ACA GAT Lactobacillus plantarum (Walter et al., 2001) 

R: TTA CCT AAC GGT AAA TGC GA 

Escherichia coli 61 F: GTT AAT ACC TTT GCT CAT TGA Escherichia coli M15 (Malinen, Kassinen, Rinttila, 

& Palva, 2003) R: ACC AGG GTA TCT AAT CCT GTT 

a All strains of positive controls were from Deutsche Sammlung von Mikroorganismen 465 
und Zellkulturen (DSMZ). 466 
b  Positive control for total bacteria was the same as that for each individual reaction. 467 

468 



Table 3.- Body weight, feed and energy intake, and energy in feces of rats supplemented 469 
(or not) with D-fagomine for 24 weeks.  470 

STDa FGb

Mean SEM Mean SEM 

Initial body weight (g) 224.9 3.9 237.8 4.1 

Final body weight (g) 416.4 12.9 435.7 11.15 

Water intake (mL/day/100 g body 
weight) 7.4 0.2 7.3 0.2 

Feed intake (g/day/100 g body 
weight) 4.8 0.7 4.1 0.3 

Energy intakec (kcal/day/100 g 
body weight) 14.3 0.2 14.6 0.2 

Excreted energyd 306.6 19.5 253.6 21.7 

471 
a STD (Control group): rats fed a standard diet (2014 Teklad Global 14% Protein chow 472 
from Envigo). 473 

b FG (D-Fagomine group): rats fed the standard diet supplemented with 0.96 g D-474 
fagomine/kg feed. 475 

c Estimated as metabolizable energy based on Atwater factors, which assign: 4 kcal/g to 476 
protein, 9 kcal/g to fat, and 4 kcal/g to available carbohydrates. 477 

d Integrated STD signal (ks ºC/g) proportional to energy in feces from week 20. 478 

479 

480 



Table 4.- Short-chain fatty acids determined in feces from rats supplemented (or not) 481 

with D-fagomine for 12 weeks and at the end of the study (24 weeks) in cecal content. 482 

FECES  CECAL CONTENT 

STDa  FGb  STDa  FGb

Mean SEM  Mean SEM  Mean SEM  Mean SEM 

Acetic acid 310.94 61.1 142.07* 25.7 96.12 5.3 88.07 6.0 

Propionic acid  27.42 6.2  16.70 2.7  25.41 2.0  19.95 1.3 

Isobutyric acid  1.25 0.2  0.45* 0.1  3.66 0.3  3.00 0.1 

Butyric acid  17.58 3.3  10.62 2.0  15.28 1.9  10.59 0.9 

Isovaleric acid  1.00 0.3  0.44 0.1  3.92 0.3  3.02 0.2 

Valeric acid  0.69 0.1  0.64 0.1  3.00 0.3  2.32 0.2 

TOTAL SCFA  356.86 66.1  170.92* 28.5  136.71 10.8  125.77 7.2 

483 

Comparisons were made using Student’s t-test. * P < 0.05 vs STD group.  484 

a STD (Control group): rats fed a standard diet (2014 Teklad Global 14% Protein chow 485 
from Envigo).  486 

b FG (D-Fagomine group): rats fed the standard diet supplemented with 0.96 g D-487 
fagomine/kg feed. 488 

489 
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495 

Figure 1.- Bacteroidetes (A), Firmicutes (B), Bacteroidetes:Firmicutes ratio (C) 496 

Bacteroidales (D) and Clostridiales (E) in fecal samples from rats fed a standard diet 497 

(STD, empty bars), or supplemented with D-fagomine (FG, striped bars) at different 498 

times, and in cecal content (CC) at the end of the study. Data are presented as means 499 

with their standard error. Comparisons were made using Student’s t-test. * P < 0.05 ** 500 

P < 0.01 *** P < 0.001501 
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Figure 2.- Lactobacillales (A), Bifidobacteriales (B), Enterobacteriales (C), 509 

Lactobacillus acidophilus (D), Lactobacillus plantarum (E) and E. coli (F) in fecal 510 

samples from rats fed a standard diet (STD, empty bars), or supplemented with D-511 

fagomine (FG, striped bars) at different times, and in cecal content (CC) at the end of 512 

the study. Data are presented as means with their standard error. Comparisons were 513 

made using Student’s t-test or repeated-measures ANOVA. * P < 0.05 vs STD ** P < 514 

0.01 vs STD; & P < 0.05 vs wk 0 &&& P < 0.001 vs wk 0 515 
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