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Abstract 

Our ability to detect statistical dependencies between different events in the 

environment is strongly biased by the number of coincidences between them. Even when 

there is no true covariation between a cue and an outcome, if the marginal probability of 

either of them is high, people tend to perceive some degree of statistical contingency 

between both events. The present paper explores the ability of the Comparator Hypothesis 

to explain the general pattern of results observed in this literature. Our simulations show 

that this model can account for the biasing effects of the marginal probabilities of cues and 

outcomes. Furthermore, the overall fit of the Comparator Hypothesis to a sample of 

experimental conditions from previous studies is comparable to that of the popular 

Rescorla-Wagner model. These results should encourage researchers to further explore and 

put to the test the predictions of the Comparator Hypothesis in the domain of biased 

contingency detection. 

 

Keywords: associative learning; Comparator Hypothesis; contingency; cue-density 

bias; outcome-density bias; Rescorla-Wagner model. 
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Coincidences don’t matter. One could summarize with this sentence the discoveries 

made during the 60’s in the area of associative learning. The famous studies conducted by 

Kamin, Rescorla, Wagner and colleagues showed that simply pairing a conditioned 

stimulus (CS) and an unconditioned stimulus (US) was not enough to establish 

conditioning (Kamin, 1968; Rescorla, 1968, Wagner, Logan, Haberlandt, & Price, 1968). 

Instead, the CS had to possess some predictive value over the US, that is, it had to provide 

some additional information about the probability of the US over and beyond alternative 

predictors. Most of the theoretical proposals published over the following decades 

incorporated this principle in one way or another (Mackintosh, 1975; Rescorla & Wagner, 

1972; Wagner, 1981). The only noticeable exception to this general trend is the 

Comparator Hypothesis (Miller & Matzel, 1988), which assumes that learning is driven by 

mere contiguity (i.e., by CS-US pairings) and that sensitivity to other factors like predictive 

value is related to additional processes that have little to do with learning. 

Interestingly, a growing body of research in human contingency learning shows quite 

convincingly that coincidences do matter (Griffits & Tenenbaum, 2007; Johansen & 

Osman, 2015; McKenzie & Mikkelsen, 2007). Multiple experiments have shown that, 

other things being equal, the extent to which people perceive that a cue and an outcome are 

related strongly depends on the number of times they have co-occurred (e.g., Kao & 

Wasserman, 1993; Levin, Wasserman, & Kao, 1993; Wasserman, Dorner, & Kao, 1990). 

For instance, people seem to face difficulties to detect the lack of statistical contingency 

between two events when their marginal probabilities are high and their coincidences are, 

therefore, frequent (Blanco, Matute, & Vadillo, 2013). It has been proposed that the 

biasing impact of these coincidences might explain why people develop causal illusions 

and illusory correlations (e.g., Barberia, Blanco, Cubillas, & Matute, 2013; Lilienfeld, 
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Ritschel, Lynn, Cautin, & Latzman, 2014; Matute et al., 2015; Matute, Yarritu, & Vadillo, 

2011; Watts, Smith, & Lilienfeld, 2015). 

Within the associative learning tradition, these effects have typically been explained 

in terms of error-correction learning algorithms like the one proposed by Rescorla and 

Wagner (1972; e.g., see López, Cobos, Caño, & Shanks, 1998; Shanks, 1995). As 

explained in the opening paragraph, these models assume that in the long run the strength 

of the association between a cue and an outcome is more strongly determined by the 

predictive value of the cue than by the overall number of coincidences between both events 

(Chapman & Robbins, 1990; Danks, 2003; Wasserman, Elek, Chatlosh, & Baker, 1993). 

But in the short run, before the associative strength reaches its asymptote, coincidences 

may have a temporary biasing effect. Consequently, these models do anticipate an effect of 

coincidences over predictive value, even if it is a short-lived one. 

It is perhaps puzzling that the Comparator Hypothesis, the main associative model 

assuming that learning is driven by cue-outcome contiguity, has not been usually invoked 

to account for the biasing effects of coincidences on human contingency learning. The goal 

of the present paper is to explore the ability of this model to explain the general pattern of 

results observed in this literature. In the following paragraphs, we provide an overview of 

current research on biases in human contingency learning, including a description of 

conventional research methods and relevant normative analyses. Then, we present a series 

of simulations of the Comparator Hypothesis confirming that it can account for these 

biases and that its predictions deviate substantially from alternative theories. Finally, we 

assess the relative fit of the Comparator Hypothesis and the Rescorla-Wagner model to the 

results of several studies conducted by the first author and colleagues. 

 

Contingency detection: Methodology and normative analysis 
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In a typical human contingency learning experiment, participants are asked to judge 

the strength of the relationship between a cue and an outcome after being exposed to a 

sequence of trials in which the cue can be present or absent and the outcome follows or not 

(e.g., Wasserman, 1990a). For instance, a popular procedure to implement these 

experiments is to present participants with a cover story in which they are asked to imagine 

that they are physicians exploring the relationship between taking a medicine and 

developing an allergic reaction. In each trial, they see the medical record of a different 

patient. They are told whether the patient took the medicine or not. Then, they are typically 

asked to predict whether that patient would develop an allergy or not. Finally, they are 

given feedback and they proceed to see the next patient. After seeing all the patients, they 

are invited to judge the relationship between taking the medicine and developing the 

allergic reaction, for instance on a numerical scale from -100, indicating a perfectly 

negative correlation between the medicine and the allergy (i.e., patients who take the 

medicine are less likely to develop the allergy), to +100, indicating a perfectly positive 

correlation. 

This procedure allows researchers to present participants with four different types of 

trials: trials in which both the cue (medicine) and the outcome (allergy) are present (type a 

trials), trials in which the cue is present and the outcome is absent (type b trials), trials in 

which the cue is absent but the outcome is present (type c trials), and trials in which both 

events are absent (type d trials). By manipulating the frequencies of each type of trial (a-d) 

across the sequence of trials, researchers can expose participants to different cue-outcome 

contingencies and test how participants’ judgments change accordingly. 

Although different descriptive and normative indexes of contingency have been 

proposed (for reviews, see Perales, Catena, Cándido, & Maldonado, 2017; Perales & 
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Shanks, 2007), the simplest and most popular measure of one-way contingency is the ΔP 

index, given by equation: 

ΔP = P(o|c) - P(o|~c)     (1) 

where P(o|c) is the probability of the outcome given the cue and P(o|~c) is the probability 

of the outcome in the absence of the cue. Note that these two probabilities can be easily 

computed from the frequencies of each trial type, a, b, c and d. P(o|c) can be computed as 

a/(a+b) and P(o|~c) can be computed as c/(c+d). 

In general, numerous experiments have shown that participants’ judgments of 

contingency are sensitive to ΔP (e.g., López et al., 1998; Shanks & Dickinson, 1987; 

Wasserman, 1990b; Wasserman et al., 1993). To the extent that this can be taken as a 

normative index of contingency (Allan, 1980; Cheng & Novick, 1992; Jenkins & Ward, 

1965), this means that participants’ behavior can be considered “rational”. However, it is 

well known that judgments also tend to deviate from ΔP depending on factors that increase 

the number of coincidences between the cue and the outcome. For instance, for any fixed 

level of ΔP, participants’ judgments tend to increase with the overall probability of the 

outcome, P(o), an effect known as the outcome-density bias (e.g., Allan & Jenkins, 1983; 

Allan, Siegel, & Tangen, 2005; Buehner, Cheng, & Clifford, 2003; López et al., 1998; 

Msetfi, Murphy, Simpson, & Kornbrot, 2005; Moreno-Fernández, Blanco, & Matute, 

2017; Musca, Vadillo, Blanco, & Matute, 2010; Wasserman, Kao, Van-Hamme, Katagiri, 

& Young, 1996). Similarly, for any fixed level of ΔP, judgments tend to increase with the 

overall probability of the cue, P(c), an effect known as the cue-density bias (e.g., Allan & 

Jenkins, 1983; Matute et al., 2011; Perales, Catena, Shanks, & González, 2005; Vadillo, 

Musca, Blanco, & Matute, 2011; Wasserman et al., 1996). As could be expected, 

judgments are higher when both P(o) and P(c) are large (Blanco et al., 2013), as the 

number of cue-outcome coincidences is maximal under these circumstances. 
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A Comparator-Hypothesis Account of Cue- and Outcome-Density Biases 

Since the publication of the seminal chapter outlining the main features of the 

Comparator Hypothesis, Ralph Miller and colleagues have published several developments 

of the theory (Denniston, Savastano, & Miller, 2001; Miller & Matzel, 1988; Stout & 

Miller, 2007). Only the latest of these extensions contains a comprehensive and fully 

developed mathematical formulation, which, for our present purposes, is unnecessarily 

complicated. In the present study, we explored the predictions of the model using a 

simplified mathematical implementation that tries to be as loyal as possible to the original 

formulation. At the same time, because one of the goals of this paper was to compare the 

performance of the Comparator Hypothesis and the Rescorla-Wagner model, we also tried 

to implement the former in a way that is most consistent with the usual formulation of the 

latter. 

One of the basic tenets of the Comparator Hypothesis is that the learning rule that 

updates the strength of the association between two stimuli, 1 and 2, is sensitive to their 

contiguity, defined as the probability of 2 given 1 (Bush & Mosteller, 1951). To achieve 

this, whenever 1 and 2 co-occur, the strength of the association between them changes 

according to the equation: 

ΔV1,2 = s1 · s2 · (λ – V1,2)     (2) 

where ΔV1,2 is the increase in the strength of the association, V1,2 is the previous strength 

of this association, s1 and s2 represent the saliences of stimuli 1 and 2 respectively and λ 

equals 1. Although alternative implementations are possible (see Stout & Miller, 2007, 

Table 1), in the following analyses we will assume that when 1 occurs without 2 the 

strength of the association is updated following the same rule (including also s2), but 

setting λ to zero.1 
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For the particular case of single-cue designs, we assume that only three associations 

are critical: The association between the target cue and the outcome, VC,O, the association 

between the target cue and a constant context, VC,CTX, and the association between the 

context and the outcome, VCTX,O. Both VC,CTX and VCTX,O are updated in all trials (i.e., a, b, 

c, and d), because the context is assumed to be present in all cases. In contrast, VC,O is 

updated only when the target cue is present, that is, in trials a and b. 

The most characteristic assumption of the Comparator Hypothesis is that the cue-

outcome association is not directly translated into overt behavior. Instead, responding to 

the target cue is assumed to be positively influenced by the direct activation of the outcome 

spreading through the VC,O association, and negatively influenced by the indirect activation 

of the outcome spreading through the VC,CTX and VCTX,O associations. In our 

implementation, we will assume that responding to the target cue obeys the following 

equation: 

R = VC,O – (VC,CTX · VCTX,O)     (3) 

Using this set of equations, it is easy to show that the Comparator Hypothesis 

predicts both the cue- and outcome-density effects explained in previous sections of this 

paper. For illustrative purposes, Figure 1 shows the predictions of the model in four 

different conditions where the probability of the outcome and the probability of the cue are 

manipulated orthogonally (taken from Blanco et al., 2013). As can be seen, the Comparator 

Hypothesis predicts that responding to the target cue should always be higher for 

conditions with P(o) = .80 than for their equivalent counterparts with P(o) = .20. In other 

words, the Comparator Hypothesis predicts the outcome-density bias. 

The predictions regarding the cue-density bias are more complex. Figure 1 shows 

that early in the sequence of trials, responding tends to be higher for conditions with P(c) = 

.80 than for the corresponding conditions with P(c) = .20. However, this trend is reversed 
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later on during training. That is to say, at least with the parameter values used to produce 

the simulations depicted in Figure 1, the Comparator Hypothesis predicts a cue-density 

effect during the initial stages of learning, followed by an anti-cue-density bias. 

Exploratory simulations (not reported here) suggest that this trend is observed with any 

combination of parameters, as long as the salience of the target cue is higher than the 

salience of the context. The anti-cue-density bias is due to the fact that the association 

between the target cue and the context develops very slowly when the probability of the 

cue is low (i.e., when the target cue is usually absent). This, in turn, limits the ability of the 

context to down-modulate responding to the target cue (see Equation 3). 

To the best of our knowledge, the prediction that the strength and direction of the 

cue-density bias depends on the number of trials is a unique prediction of the Comparator 

Hypothesis. Just as an example, the right panel of Figure 1 shows the predictions of the 

Rescorla-Wagner for the same four conditions. The most important difference between this 

model and the Comparator Hypothesis is that the learning rule depends on global error 

correction. Specifically, the strength of the association between stimuli 1 (i.e., the cue or 

the context) and 2 (i.e., the outcome) changes according to the equation 

ΔV1,2 = s1 · s2 · (λ – ∑Vi,2)     (4) 

where all the symbols have the same meaning as in Equation 2 and ∑Vi,2 refers to the 

associative strength of all the predictors of stimulus 2 that are present in that trial. 

Importantly, in this implementation of the model, only the associative strengths of stimuli 

that are actually present change on each trial, that is, the associative strength of the cue is 

updated only on cue-present trials. Unlike the Comparator Hypothesis, the Rescorla-

Wagner model does not incorporate a response production rule analogous to Equation 3. 

Consequently, in our simulations of the Rescorla-Wagner model we will assume that 

participants’ behavior is modeled by the strength of the association between the cue and 
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the outcome. As shown in Figure 1, this implementation of the Rescorla-Wagner model 

predicts that cue- and outcome-density biases should be observed at all stages of learning, 

although they become smaller as training proceeds and learning approaches the asymptote 

(zero, in the case of all four conditions simulated in Figure 1). 

Interestingly, in a recent re-analysis of the data reported by Blanco et al. (2013; see 

Vadillo, Blanco, Yarritu, & Matute, 2016) we have found some evidence of an anti-cue-

density bias. The main dependent variable collected by Blanco et al. (2013) was a 

numerical rating requested to all participants at the end of training. The analyses conducted 

on these ratings revealed only a small cue-density bias that disappeared in some conditions. 

However, in a more recent paper we re-analysed an alternative measure of participants’ 

perception of contingency between cue and outcome. Specifically, Blanco et al. (2013) 

requested all participants to predict on each trial whether the outcome would be present or 

not. Using these binary responses, it is possible to measure participants’ perception of 

contingency by checking whether the proportion of “yes” responses was higher in trials in 

which the cue was present than in trials in which the cue was absent (e.g., Allan et al., 

2005; Collins & Shanks, 2002). In other words, the difference between P(“yes”|cue) and 

P(“yes”|no cue), an index known as ΔPpred, can be taken as a measure of the extent to 

which each participant believes that the cue is a good predictor of the outcome. Using this 

alternative variable as a dependent measure, Vadillo et al. (2016) re-analysed the data 

collected by Blanco et al. (2013) and observed that in some conditions participants actually 

showed an anti-cue-density bias. Given that the two experiments conducted by Blanco et 

al. (2013) comprised a relatively long sequence of trials, these data provide some support 

for the predictions of the Comparator Hypothesis shown in Figure 1. 

 

Testing the Quantitative Fit of the Comparator Hypothesis to Empirical Data 
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The previous section shows that the Comparator Hypothesis can account for the cue- 

and outcome-density biases typically observed in human contingency learning and that it 

makes novel predictions that receive some support from previous research. In this section, 

we compare the relative fit of the Comparator Hypothesis and the Rescorla-Wagner model 

to a large set of studies on cue- and outcome-density effects conducted by the first author 

and colleagues. Specifically, we used the 20 experimental conditions summarized in Table 

1. These data were taken from the re-analysis conducted by Vadillo et al. (2016), from 

which we only excluded two experimental conditions from Yarritu et al. (2014), because in 

that experiment each participant was exposed to a unique cue-outcome contingency. As 

can be seen in Table 1, several of the experimental conditions re-analysed by Vadillo et al. 

(2016) involved the same experimental design (defined here as the frequencies of each trial 

type: a, b, c, and d). For the sake of simplicity, in the following analyses data from 

comparable experimental conditions were collated using a weighted mean (also shown in 

Table 1). 

We compared the fit of both models to two different dependent variables explored by 

Vadillo et al. (2016). One of them is ΔPpred (see the previous section). An advantage of 

these scores is that they are computed on the basis of trial-by-trial predictions, which were 

collected using exactly the same procedure in all the experiments overviewed by Vadillo et 

al. (2016). They are also the dependent variable in which we observed an anti-cue-density 

bias in some conditions, which might play an essential role to discriminate between 

models. Unfortunately, the use of these scores is not free from problems. Given that they 

are based on a long series of trial-by-trial predictions, ΔPpred may not reflect accurately 

participants’ perception of contingency at the end of training. To overcome this problem, 

we also fitted both models to the numerical judgments of contingency provided by 

participants at the end of the experiment. These judgments were collected using slightly 
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different procedures across experiments and, consequently, they are noisier than ΔPpred 

(Matute et al., 2011; Vadillo, Miller, & Matute, 2005; Vadillo et al., 2011). However, they 

are more likely to capture participants’ sensitivity to contingency at the end of the 

experiment. 

We aimed at comparing the relative fit of both models using optimal parameters for 

each of them (for a similar approach, see Witnauer, Hutchings, & Miller, 2017; Witnauer, 

Rhodes, Kysor, & Narasiwodeyar, in press). In our implementation of the Comparator 

Hypothesis, the model has the same number of free parameters as the Rescorla-Wagner 

model, namely, the saliences of the target cue, sC, the context, sCTX, and the outcome, sO. 

These parameters play a similar role in both models: They are typically assumed to reflect 

the amount of attention gathered by each stimulus and they modulate the rate of acquisition 

of each association. Initially, we attempted to fit the models using only a gradient descent 

algorithm (MATLAB’s fminsearch function). However, we found that the algorithm 

returned radically different parameters depending on the starting values, suggesting the 

presence of multiple local minima. To ameliorate this problem, we adopted a two-step 

strategy. Firstly, we used a grid-search process, testing the fit of each model with all 

combinations of parameter values from .10 to .90 in steps of .10. For each of the 

experimental conditions summarized in Table 1, we estimated the predictions of the 

models by simulating 1,000 iterations with random trial orders. Model performance was 

assessed with the root mean squared error (RMSE). Secondly, once the grid-search process 

ended we used the combination of parameters that yielded the lowest RMSE as starting 

values for the gradient-descent algorithm. The best-fitting parameters obtained with this 

combination of methods are presented in Table 2. Although our procedure ensures a 

comprehensive exploration of the parameter space, we cannot reject categorically the 
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possibility that these parameter values are local minima. All the MATLAB scripts that we 

used in our analyses are available at the Open Science Framework (https://osf.io/z9ad7/). 

Figure 2 shows the overall fit of both models to the empirical data. Black symbols 

denote ΔPpred and grey symbols denote judgments. In both panels, data points falling 

exactly in the diagonal indicate a perfect correspondence between observed and predicted 

responses. Points above or below the diagonal indicate that the model overestimates or 

underestimates empirical responses, respectively. The RMSE of each model is shown in 

Table 2. As can be seen, both models were able to fit ΔPpred and judgments with reasonable 

accuracy, with the Rescorla-Wagner model achieving a somewhat better fit (ΔRMSE = 

0.024 and 0.007 for ΔPpred scores and judgments, respectively). 

 

Alternative Implementations 

Although the previous simulations reveal a good fit of both models to the empirical 

data, it may be possible to improve their performance using alternative and more flexible 

formalizations of the models. As explained above, our implementation of the Comparator 

Hypothesis is simpler than the formulation offered by Stout and Miller (2007). 

Specifically, (a) we used a slightly different extinction rule (see Footnote 1) and (b) we 

also ignored, k2, a parameter that down-modulates the impact of the indirect activation of 

the outcome (i.e., VC,CTX · VCTX,O) on responding. The latter choice, in particular, might 

have an important impact on the model predictions for our data set, because it determines 

whether responding is mainly driven by cue-outcome contingency (i.e., as defined by ΔP) 

or by mere cue-outcome contiguity. That is to say, the model can be made more sensitive 

to coincidences or to overall contingency by selecting different values for k2. 

Consequently, in the present section, we tested the quantitative fit of an alternative 

implementation of the Comparator Hypothesis that included this additional parameter. All 
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the details of the model were kept as in the previous analyses, except that Equation 3 was 

rewritten as 

R = VC,O – k2 · (VC,CTX · VCTX,O)    (4) 

where k2 is allowed to vary as a free parameter. To avoid any confusion, henceforth we 

will refer to this alternative implementation of the Comparator Hypothesis as CH-2. 

Similarly, since the original publication of the Rescorla-Wagner model, different 

extensions have been suggested, especially in the area of human contingency learning. For 

instance, parameter sO is sometimes allowed to take different values in outcome-present 

and outcome-absent trials (Lober & Shanks, 2000; Wasserman et al., 1993). In the 

following sections, we refer to this alternative implementation of the model as RW-2. In 

the same vein, Van Hamme and Wasserman (1994) developed an extension of the 

Rescorla-Wagner model that allowed updating the associative strength of absent stimuli by 

assuming a negative sC in cue-absent trials. 

Figure 3 and Table 2 summarize the performance of these alternative 

implementations with best-fitting parameters, obtained with the same optimization 

procedure described in the previous section. Logically, these models achieve better 

performance than their simpler counterparts because they have an additional free 

parameter.2 Within these extended models, the Van Hamme-Wasserman algorithm fits 

ΔPpred scores slightly better than the rest of the models, while CH-2 provides the best 

overall fit to judgments. Note, however, that these differences are small in terms of RMSE 

values. 

The simpler implementations of the Comparator Hypothesis and the Rescorla-

Wagner model cannot be directly compared to their extended counterparts using RMSE as 

a criterion, because this metric fails to take into account the fact that the latter models 

include an additional free parameter and, consequently, are less parsimonious. A popular 
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metric to compare models with different levels of complexity is the Akaike Information 

Criterion (AIC) which can be computed from RMSE using the equation 

AIC = n · log(SSE/n) + 2P     (5) 

where n is the number of observations (11 in our case), SSE is the sum of squared errors, 

and P is the number of free parameters (3 or 4 in our case, depending on the model). 

Models with smaller AICs are preferred to models with higher values. The final term, 2P, 

ensures that, other things being equal, AICs will be lower for models with fewer free 

parameters (see Lewandowsky & Farrell, 2010, for more information on the computation 

and interpretation of AICs). 

As can be seen in Table 2, neither CH-2, RW-2 or the Van Hamme-Wasserman 

model outperform the simple Rescorla-Wagner model in terms of AICs. In other words, 

although these models achieve a better fit (i.e., lower RMSE), the gains do not pay off 

when pitted against the loss of parsimony. Interestingly, CH-2 achieves a lower AIC than 

the simpler version of the Comparator Hypothesis, both for ΔPpred and judgments, 

suggesting that parameter k2 plays an essential role in allowing the model to fit the present 

data set. This does not happen with the extensions of the Rescorla-Wagner model, which 

perform worse than the original model. Therefore, while k2 seems to improve the fit of the 

Comparator Hypothesis, neither allowing different values for sC in cue-present and cue-

absent trials (Van Hamme & Wasserman, 1994) or allowing different values for sO in 

outcome-present and outcome-absent trials (Wasserman et al., 1993) seem to improve the 

fit of the Rescorla-Wagner model. 

 

General Discussion and Concluding Comments 

The simulations and model comparisons reported in the previous sections show that 

the Comparator Hypothesis must be regarded as valid and promising account of biases in 
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human contingency learning. The Comparator Hypothesis not only predicts that cue- and 

outcome-density biases should be observed, but also anticipates that the sign and 

magnitude of the former depend heavily on the amount of training (see Figure 1). Given 

that this pattern of results is not predicted by the Rescorla-Wagner model, it is possible to 

compare the merits of both models by fitting them to a rich dataset with information about 

people’s ability to detect and rate contingency under conditions with different values of 

ΔP, P(c), P(o), and number of trials. Using data from 20 experimental conditions (see 

Table 1) we observed that, in general, both models were able to approximate the actual 

behavior of participants with a high degree of precision (see Figure 2). Although the 

Rescorla-Wagner model outperformed the Comparator Hypothesis, the difference between 

them in terms of RMSE was relatively small. Clearly, the Comparator Hypothesis is a 

worthy rival of the Rescorla-Wagner model that must be considered in future research. 

In our analyses, we also found that extending the Rescorla-Wagner model with 

additional parameters (i.e., assuming different values of sO for outcome-present and 

outcome-absent trials or assuming negative values of sC for cue-absent trials) did not 

improve the fit of the model substantially. Although the RMSE was logically lower for the 

more complex versions of the Rescorla-Wagner model than for the basic model with just 

three free parameters, the AICs were actually lower for the simple than for the complex 

versions. In other words, the improvement in fit does not compensate for the loss of 

parsimony. In contrast, AICs were lower for CH-2 than for the simpler implementation of 

the Comparator Hypothesis. This shows that allowing the contribution of the comparator 

process to be modulated by parameter k2 (see Equation 4) does improve the fit of the 

model. Even so, the Comparator Hypothesis failed to outperform the Rescorla-Wagner 

model, either with or without parameter k2. 
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Of course, these results hinge on the data that we used to fit both models. Although 

all the experimental conditions included in the present analyses come from the same 

laboratory, they are representative of the designs used in other studies exploring cue- and 

outcome-density biases in human contingency learning and they cover a wide range of 

experimental designs: Within our dataset we included experiments manipulating cue and 

outcome density with long (e.g., 30/30/0/60) and short (e.g., 8/32/2/8) sequences of trials, 

and with positive and null cue-outcome contingencies. But however rich, the present 

dataset does not exhaust the infinite space of combinations of trial frequencies. For 

instance, none of the experiments included in the present analyses explored cue or 

outcome-density biases under negative contingencies. This means that in our analyses most 

of the empirical data points and model predictions tended to concentrate on the positive 

side of the contingency spectrum, constraining their variation to a relatively narrow range 

of values. Similarly, and perhaps more importantly, our data set did not include any 

experiment where cue-density and training length were manipulated orthogonally, keeping 

other factors constant. This is unfortunate because the simulations reported in Figure 1 

suggest that such an experiment would offer the best chance to discriminate between the 

Comparator Hypothesis and the Rescorla-Wagner model. Future research should explore 

thoroughly this combination of experimental manipulations. 
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Footnotes 

 

1 In our implementation of the Comparator Hypothesis, the amount of unlearning that takes 

place in extinction trials is modulated by sC · sO. In contrast, in Stout and Miller (2007, 

Table 1), unlearning in extinction trials is modulated by sC · k1, where k1 is an additional 

free parameter that only affects unlearning. We decided to remove k1 from our 

implementation because this would render the Comparator Hypothesis and the Rescorla-

Wagner model equivalent in terms of the number of free parameters. Note that, once k1 is 

removed, if learning trials are modulated by sC · sO, while unlearning trials are modulated 

solely by sC, then learning must be slower than unlearning (because these parameters have 

values between 0 and 1). To overcome this problem, we assumed that both learning and 

unlearning are modulated by sC · sO. This is also more consistent with the standard 

implementation of the Rescorla-Wagner model. 

 

2 It is interesting to note that, among the best fitting parameters for RW-2, sO has a higher 

value on outcome-present trials than on outcome-absent trials. Although it might seem 

unrealistic to assume that an outcome can have a higher salience when it is absent than 

when it is present, Lober and Shanks (2000) suggested that this might be a reasonable 

assumption in experimental tasks in which participants have strong a priori reasons to 

expect that the outcome will tend to follow the cue. 
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Table 1. Summary of experimental conditions used to fit the models 

 

Trial frequencies Study, condition, N ∆Ppred Judgm. 
Average 

∆Ppred 

Average 

Judgm. 

4a / 16b / 16c / 64d Blanco et al. (2013), Experiment 1, LowC-LowO, N = 26 .1307 .2461 .1165 .1150 

 Blanco et al. (2013), Experiment 2, LowC-LowO, N = 44 .1081 .0375   

8a / 32b / 2c / 8d Musca et al. (2010), Delayed-LowO, N = 31 -.1122 .3145 -.0600 .2999 

 Musca et al. (2010), Concurrent-LowO, N = 29 -.0041 .2844   

13a / 3b / 29c / 35d Vadillo et al. (2011), LowC, N = 70 .0372 .4329 .0372 .4329 

16a / 4b / 64c / 16d Blanco et al. (2013), Experiment 1, LowC-HighO, N = 26 .1026 .5096 .0128 .3033 

 Blanco et al. (2013), Experiment 2, LowC-HighO, N = 37 -.0597 .1513   

 Matute et al. (2011), LowC, N = 56 .0190 .3080   

16a / 64b / 4c / 16d Blanco et al. (2013), Experiment 1, HighC-LowO, N = 27 -.0029 .2481 -.0364 -.1220 

 Blanco et al. (2013), Experiment 2, HighC-LowO, N = 41 -.0585 -.3658   

30a / 30b / 0c / 60d Vadillo et al. (2005), Experiment 3, Condition 0.50-0.00, N = 35 .4660 .4671 .4660 .4671 

32a / 8b / 8c / 2d Musca et al. (2010), Delayed-HighO, N = 31 .2661 .4919 .2348 .5741 

 Musca et al. (2010), Concurrent-HighO, N = 29 .2013 .6620   
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38a / 26b / 4c / 12d Vadillo et al. (2011), HighC, N = 70 .1587 .4207 .1587 .4207 

40a / 10b / 40c / 10d Yarritu & Matute (2015), LowC, N = 53 .0730 .4772 .0730 .4772 

60a / 0b / 30c / 30d Vadillo et al. (2005), Experiment 3, Condition 1.00-0.50, N = 32 .5156 .6219 .5156 .6219 

64a / 16b / 16c / 4d Blanco et al. (2013), Experiment 1, HighC-HighO, N = 27 .2496 .7017 .1991 .5509 

 Blanco et al. (2013), Experiment 2, HightC-HighO, N = 38 .1710 .3184   

 Matute et al. (2011), HighC, N = 52 .2500 .5778   

 Yarritu & Matute (2015), HighC, N = 61 .1510 .6061   
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Table 2. Best fitting parameters and summary of model fit 

DV Model sC sCTX sO k2 RMSE AIC 

∆Ppred CH .789 .210 .064 - 0.110 -42.652 

 RW .492 .888 .103 - 0.086 -47.866 

 CH-2 .300 .901 .200 .736 0.091 -44.753 

 RW-2 .101 .200 .402, .501 b - 0.085 -46.275 

 VHW .377, -.108 a .603 .101 - 0.083 -46.826 

Judgments CH .065 .095 .710 - 0.106 -43.484 

 RW .501 .101 .105 - 0.099 -44.915 

 CH-2 .630 .100 .100 .600 0.095 -43.821 

 RW-2 .537 .107 .099, .105 b - 0.098 -43.029 

 VHW .838, -.016 a .122 .131 - 0.097 -43.271 

Note. DV = dependent variable; sC / sCTX / sO / k2 = best-fitting parameters of the models; RMSE = root mean squared error; AIC = Akaike 
Information Criterion; CH = Comparator Hypothesis; RW = Rescorla-Wagner model; CH-2 = Comparator Hypothesis with parameter k2; 
VHW = Van Hamme and Wasserman’s revision of the Rescorla-Wagner model; RW-2 = Rescorla-Wagner model with different values of sO 
for outcome-present and outcome-absent trials; a sC for cue-present and cue-absent trials, respectively, in VHW; b sO for outcome-present and 
outcome-absent trials in RW-2. 
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Figure 1. Predictions of the Comparator Hypothesis and the Rescorla-Wagner model for four different conditions. The learning curve of each 
condition is the result of averaging the model’s performance across 5,000 iterations with different (random) trial orders. For both simulations, the 
parameter values were arbitrarily set to sC = 0.300, sCTX, = 0.200, sO = 0.400. Outcome salience, sO, adopted the same value in outcome-present 
and outcome-absent trials. 
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Figure 2. Correspondence between empirical data and predictions of the Comparator Hypothesis and the Rescorla-Wagner model with best-
fitting parameters. Each data point denotes one of the trial-frequency conditions in Table 1. Black symbols denote ∆Ppred and grey symbols denote 
judgments. 
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Figure 3. Correspondence between empirical data and predictions of the Comparator Hypothesis with parameter k2 (CH-2), the Rescorla-Wagner 
model with different sC values for cue-present and cue-absent trials (RW-2), and Van Hamme and Wasserman’s (1994) revision of the Rescorla-
Wagner model, all of them with best-fitting parameters. Each data point denotes one of the trial-frequency conditions in Table 1. Black symbols 
denote ∆Ppred and grey symbols denote judgments. 
 

 


