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Abstract

Conglomerates have been widely used to investigate deformation history and 

rheology, strain, vorticity and viscosity. Previous studies reveal that several 

factors, such as pebble shapes and concentrations, as well as material 

properties, affect conglomerate deformation. However, how pebble 

concentration and interaction between pebbles affect deformation is not 

understood very well. e use the 2D numerical modelling platform ELLE 

coupled to the full field crystal visco-plasticity code (VPFFT) to simulate the 

deformation of conglomerates with various viscosity contrasts between 

pebbles and matrix and different pebble concentrations, with both linear (n=1) 

and power-law (n=3) viscous rheologies, under simple shear conditions up to a 

shear strain of ten. Pebbles can behave effectively passive, deformable or 

effectively rigid. An increase in concentrations/viscosity contrasts enhances 

pebble deformation, but reduces their rotation. A mean Rf -φ plot is proposed to 

gain an estimate of pebble deformation behaviour and the amount of strain. 
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Clusters formed by the association of several closely spaced rigid or 

deformable pebbles can behave as single objects. Rigid clusters rotate and 

survive for only short strain increments, whereas the more stable deformable 

ones keep on elongating with minor rotation. We provide a natural example of 

deformed conglomerates from the Wutai Mountains, North China Craton. 

Using the mean Rf -φ plot, a simple shear strain of ~6 could be determined. 

The viscosity contrast between BIFs pebbles and schist matrix is estimated at 

about 5-8 for a linear rheology (n=1)or 2-5 if a power-law rheology with n=3 is 

assumed. 

1． Introduction

Conglomerates have received particular attention in structural geology for 

studies on strain analysis, deformation process, rheology and tectonic 

evolution (e.g., Flinn, 1956; Ramsay, 1967; Dunnet, 1969; Fry, 1979; Lisle et 

al., 1983; Yin et al., 1999; Treagus and Treagus, 2002; Passchier and Trouw, 

2005; Czeck et al., 2009). Deformed conglomerates are classical indicators of 

finite strain, stress orientation, vorticity, and viscosity contrast between 

pebbles and their matrix (e.g., Ramsay, 1967; Lisle et al., 1985; Freeman and 

Lisle, 1987; Czeck and Hudleston, 2003). Conglomerates are polyphase rocks 

formed by pebbles (inclusions) embedded in a matrix that is usually assumed 

weaker than these (e.g., Gay, 1968; Fletcher, 2004; Jiang, 2007a,b, 2013; 



Marques et al., 2014). A range of rock and analogue deformation experiments, 

analytical models, as well as numerical simulations have been applied to study 

the viscous deformation of single or multiple inclusion-matrix systems aiming 

to quantify their behaviour (e.g., Jeffery, 1922; Rosenberg, 2001; Treagus, 

2002; Treagus and Treagus, 2002; Mancktelow, 2002, 2011; Mandal et al., 

2003, 2005; Takeda and Griera, 2006; Jiang, 2007a,b, 2013; Jiang and 

Bentley, 2012; Johnson et al., 2009a,b; Griera et al., 2011, 2013; Dabrowski et 

al., 2012; Räss et al., 2016; Ran et al., in review). These studies reveal that 

there are several key factors that control their deformation behaviour: (1) the 

initial shape of inclusion(s) (Lisle, 1979; Treagus, 2002; Treagus and Lan, 

2004), (2) the material properties, in particular the viscosity contrast between 

inclusion and matrix (Treagus and Treagus, 2001; Mandal et al., 2003; Vitale 

and Mazzoli, 2005; Takeda and Griera, 2006; Griera et al., 2013), the matrix 

anisotropy (Treagus, 2003; Fletcher, 2004; Griera et al., 2011, 2013; Qu et al., 

2016) and the linear or power-law rheology (Mancktelow, 2002, 2011; Jiang, 

2013; Qu et al., 2016), (3) the behaviour of the interface between inclusion and 

matrix (Marques and Bose, 2004; Johnson et al., 2009b), and (4) the 

distribution of inclusions (Treagus, 2002; Takeda and Griera, 2006) and the 

interaction between them (Ildefonse et al., 1992a,b; Tikoff and Teyssier, 1994; 

Marques and Bose, 2004; Mandal et al., 2005; Jessell et al., 2009; 

Mancktelow, 2011).



Pebbles in a ductile viscous conglomerate can behave as passive, deformable 

or rigid inclusions, depending on the viscosity contrast between pebbles and 

matrix. The first analytical solutions, proposed by Eshelby (1957) and Gay 

(1968) and further developed by Bilby et al. (1975), Bilby and Kolbuszewski 

(1977) and Treagus and Treagus (2001), indicate that inclusions in linear 

viscous systems deformed in pure shear behave passively (i.e., their 

deformation rate approximately equals that of the matrix) when the viscosity 

ratio (Rη) between inclusion and matrix is less than two. Initially circular 

inclusions remain effectively rigid (i.e., inclusions only undergo very minor 

deformation) when Rη is larger than ca. 20 to 50. In between these two end 

members we define "deformable inclusions" as those that deform significantly, 

but distinctly less than their surrounding matrix. Pulsating behaviour, with 

cyclical rotation of inclusions and changes in their ellipticity, can occur in non-

coaxial shearing at moderate Rη (Bilby and Kolbuszewski, 1977). Based on 

analogue experiments, Piazolo and Passchier (2002) estimated the transitions 

between rigid, pulsating and passive behaviour in simple shear at Rη=1200 

and Rη≈5 to 100, respectively. Mancktelow (2011) extended the solution of 

Bilby and Kolbuszewski (1977) to systems with power-law rheology and 

proposed that the effect of power-law viscous rheology is similar to an increase 

of the linear viscosity contrast between the competent and soft phase. This 

was also observed by Llorens et al. (2013b) from modelling of single-layer 

folding.



Most of the studies discussed above deal with the deformation of isolated 

inclusions and thus ignore the influence of inclusion distribution and 

interactions between neighbouring inclusions. However, natural 

conglomerates are composed of multiple pebbles, usually resulting in 

interactions between neighbouring ones, especially in clast-supported 

conglomerates. A few studies have recognised that the deformation behaviour 

of inclusions and the bulk viscosity of the system are significantly affected by 

the concentration inclusions and their interaction (Gay, 1968; Bons and Cox, 

1994; Mandal et al., 2003, 2005; Vitale and Mazzoli, 2005; Jessell et al., 2009; 

Mancktelow, 2011; Dabrowski et al., 2012; Marques et al., 2014). One effect of 

interaction between inclusions is that they behave as if they are softer than 

when they are isolated in the matrix (Mandal et al., 2003; Vitale and Mazzoli, 

2005; Jessell et al., 2009). Therefore, the distribution of inclusions and their 

interactions are likely to affect the Rη-boundaries between passive, 

deformable and rigid behaviour regimes. A further effect of increasing inclusion 

concentration and thus their interaction is that their rotation rate can be slowed 

down or inclusions may even stop rotating. This effect is associated with 

inclusion collisions or flow disturbances in the matrix (Ildefonse et al., 1992a,b; 

Samanta et al., 2003; Marques et al., 2014). Closely spaced inclusions can 

also form clusters or trains mechanically acting as single inclusions 

(Blumenfeld and Bouchez, 1988; Tikoff and Teyssier, 1994; Jessell et al., 



2009). According to Tikoff and Teyssier (1994), clusters of rigid inclusions are 

short-lived, while those composed of deformable inclusions with slipping 

boundaries remain coherent for longer times. However, it is still not entirely 

clear how the pebble concentration affects the Rη-boundaries between 

different behaviour regimes and how rigid and deformable clusters form and 

develop respectively.

Numerical simulations of the deformation of inclusion-matrix systems were 

until recently limited to relatively low finite strains (e.g., Treagus et al., 2002; 

Treagus and Lan, 2003; Takeda and Griera, 2006; Jessell et al., 2009). Only 

recently have codes such as ELLE+VPFFT (Lebensohn, 2001; Lebensohn et 

al., 2009, 2011; Griera et al., 2013) and Milamin/MVEP2 (Dabrowski et al., 

2008; Kaus, 2010) reached high shear strains (e.g., Dabrowski et al., 2012; 

Griera et al., 2013; Pouryazdan et al., 2017). In this study, we use the 

ELLE+VPFFT code to simulate viscous deformation of conglomerates with 

interactions between pebbles, varying the concentration of pebbles and 

viscosity ratio between pebbles and matrix, in both linear and power-law 

viscous rheologies, and up to high simple-shear strain. Our simulations 

produce a range of structures, depending on the various parameters. We 

compare the modelled conglomerate systems with a natural example of 

deformed conglomerates in the Wutai mountains area, North China Craton.



2． Methods

We numerically model the viscous deformation of conglomerates in two-

dimensional simple shear. This study utilizes the open-source numerical 

modelling platform ELLE (Jessell et al., 2001; Bons et al., 2008; Piazolo et al., 

2010; http://www.elle.ws), which has been applied to simulate a range of 

geological processes, such as strain localisation (Jessell et al., 2005; Gardner 

et al., 2017), folding (Llorens et al., 2013a,b), and deformation of two-phase 

rocks (Jessell et al., 2009), including those containing porphyroclasts and 

porphyroblasts (Griera et al., 2011, 2013), among many other studies. The 

deformation field is calculated using the VPFFT code, coupled with the ELLE 

software (Griera et al., 2013; Llorens et al., 2016b) for handling the data 

structure, re-meshing and pre- and post-processing of modelling results. Using 

a spectral solver, the VPFFT method finds a strain rate and stress field, 

associated with a kinematically admissible velocity field, which minimizes the 

average local work-rate under the compatibility and equilibrium constraints 

(Lebensohn, 2001; Griera et al., 2011). In general, the VPFFT approach has a 

better numerical performance than most Finite Element Methods (Prakash and 

Lebensohn, 2009; Roters et al., 2011), but it requires discretisation of the 

system into a regular grid. The VPFFT code requires periodic boundary 

conditions, which has the advantage that high-strain deformation in simple 

shear can be achieved without modifying the square model shape (a feature 



employed by, e.g., Jessell et al., 2009). The VPFFT together with the ELLE 

software platform has been widely used to simulation microstructural evolution 

in polar ice and halite (Llorens et al., 2016a,b; Steinbach et al., 2016, 2017; 

Jansen et al., 2016; Llorens et al., 2017; Gomez-Rivas et al., 2017) and 

deformation of inclusion-matrix systems (Griera et al., 2011, 2013). Although 

specific minerals can be modelled, our simulations here are not mineral-

specific and the scale of the model should be regarded as distinctly larger than 

the individual grain scale.

As we use the same numerical approach as Griera et al. (2011, 2013) we refer 

to them for details of the numerical procedure and to Lebensohn (2001), 

Lebensohn et al. (2009, 2011), Montagnat et al. (2014), and Llorens et al. 

(2016b) for details of the VPFFT method. A model mineral with a hexagonal 

symmetry is used here (similar to Griera et al. 2011, 2013) to simulate the 

mechanical properties of the material, and deformation is allowed to be 

accommodated by glide along basal plane and along non-basal systems (i.e., 

pyramidal and prismatic; Fig. 1e). The resistance to shear of slip systems is 

simulated by means of the critical resolved shear stress (CRSS; τ), which is 

set to the same value for the different slip systems, but is different for pebbles 

and matrix. This way, the materials are effectively isotropic and the lattice 

orientation of grid elements makes no discernible difference to the result and is 

assigned randomly at the beginning of the simulation. Griera et al. (2011) 



showed that with this VPFFT approach the rotation rate of a circular rigid 

inclusion embedded in a viscous isotropic matrix successfully follows the 

analytical solution of Jeffery (1922), thus validating this approach for the 

modelling of inclusion behaviour. 

In our simulations with isotropic material properties (meaning that all slip 

systems have the same τ), the relation between stress (σ) and strain rate ( ) of 𝜀

the material is defined by:

, (1)𝜀= 𝐴(𝜎𝜏)
𝑛

where n is the stress exponent and A is a pre-exponential (scaling) factor, 

identical for all materials used in these simulations. The critical resolved shear 

stress (τ) of the matrix was set to unity (τpebble=1) in all cases. Pebbles are 

more competent than the matrix (τmatrix<1). The stress exponents (n) of pebble 

and matrix are always identical in one simulation, being either one or three 

(see Table 1). We define the viscosity ratio Rη between pebble and matrix 

using as a proxy the CRSS ratio (Rη= ). For linear rheology 𝜏𝑝𝑒𝑏𝑏𝑙𝑒/𝜏𝑚𝑎𝑡𝑟𝑖𝑥

models (n=1), Rη is the real viscosity ratio. For n=3, the meaning of Rη is more 

complex, as viscosity is not constant in power-law materials. The effective 

viscosity ratio is defined by:

,
(2)

Two end members can be envisaged: (i) stress (σ) is identical in both materials 

and strain rate ( ) is partitioned (Reuss bound; Reuss, 1929), and (ii) strain 𝜀



rate ( ) is identical in both materials and stress (σ) is partitioned (Voigt or 𝜀

Taylor bound; Voigt, 1928). Effective viscosity ratios range between these two 

extremes:

Reuss: ( ): (3a)σ pebble = σ matrix

Voigt: ( ): (3b)

We see that the real viscosity ratio for n>1 can range from Rη to Rηn, 

depending on the partitioning of stress (σ) and strain rate ( ). 𝜀

The 2-D description of the model conglomerate is defined in the ELLE data 

structure as a contiguous set of polygons (termed flynns; Fig. 1a,b) and a set 

of unconnected nodes or Fourier points (termed unodes; Fig. 1f). The 

boundaries of flynns consist of straight segments that connect boundary nodes 

(termed bnodes; Fig. 1c,f) in either double- or triple-junctions. In this study, 

flynns define single-phase regions, with either matrix or pebble properties. 

State variables, such as stress, strain rate and lattice orientation, which can 

vary within flynns, are stored in the unodes that are distributed on a regular, 

rectangular 256x256 grid.

Starting models are square with a unit-cell size of 1x1 and contain 



approximately circular pebbles with a diameter of 0.075 times the unit-cell size. 

We use 24, 70 and 100 randomly-placed pebbles, corresponding to pebble 

concentrations (C) of 10%, 30% and 45%, respectively. Velocity boundary 

conditions with constant strain rate are applied in the model, with top-to-the-

right simple shear deformation. Displacements (∆x) are derived from a linear 

integration of velocities (v) over a small time increment (∆t): ∆x=v·∆t, to 

achieve shear-strain increments of ∆γ=0.02 /step. The velocity field is used to 

incrementally move boundary nodes that define the flynn boundaries and, 

hence, the pebble-matrix boundaries. The model is repositioned to the initial 

square unit cell and material properties (pebble or matrix) are mapped back on 

the regular, square grid, as is required by the VPFFT method, before each next 

deformation step (Fig. 1d). 

Three input parameters are systematically varied in the simulations (Table 1): 

(1) the concentration (C) of pebbles, (2) the stress exponent for linear or

power-law viscous rheology (n=1 or 3), and (3) the viscosity ratio (Rη). To 

visualise the distribution of the strain rate intensity, we plot the Von Mises 

strain rate (or equivalent strain rate) normalized to the bulk Von Mises strain 

rate for each unode. The Von Mises strain rate is the second invariant of the 

symmetric strain rate tensor. The distribution of the accumulated finite vorticity 

(W) and strain (Rs) for a strain increment are visualized by integrating the

incremental stain rate tensor of each unode from each simulation step 



(Steinbach, 2017). Vorticity is the mean rotation angle (in radians) of material 

lines in a deforming material (Means et al., 1980). Considering the minor 

deformation of rigid pebbles in some simulations, we here use vorticity to 

visualize and discuss pebble rotation instead of the vorticity number (Means et 

al., 1980). We measure the ratios (Rf) between long and short axes of pebbles 

and the orientations of the long axes (φ) from the shear plane at different finite 

strains, using the particle analysis routine of the freeware ImageJ software 

(Schneider et al., 2012; http://imagej.nih.gov/ij). The arithmetic means of Rf 

and φ are used for the statistical analysis of pebble deformation and rotation 

(cf. Lisle, 1977). 

Insert Fig.1

Insert Table 1

3．Results

The geometries of deformed conglomerates for different Rη and values of the 

stress exponent (n) are shown in Fig. 2 for a finite strain of ten (γ=10). Selected 

movies (Table 1) showing the evolution of the structure and normalised strain 

rate can be found in appendix A.

http://imagej.nih.gov/ij


Insert Fig. 2

Our simulations cover the three types of deformation behaviour of pebbles in 

deformed conglomerates: (i) passive, (ii) deformable and (iii) rigid (Fig. 2). For 

a power-law viscous rheology (n=3), passive deformation of pebbles is 

observed at Rη=2 and high pebble concentrations (C=45%). The same 

passive behaviour can be observed in systems with linear viscosity (n=1), in 

simulations with Rη=2 (all range of pebble concentrations) and with Rη=5 with 

high pebble concentration (C= 45%). Rigid pebble behaviour, with minor 

distortion and only rotation, is observed at high Rη. For n=3, pebbles behave 

rigidly when Rη≥5 at C=10% and 30%, and at C=45% for Rη=10 only. The 

same pattern is observed for models with n=1, with pebbles behaving rigidly at 

Rη≥15 at C=10%, and at C=30% only at Rη=45. In between these cases 

pebbles deform significantly, but distinctly less than the matrix. The 

deformation behaviour of pebbles in the simulations with Rη=2, Rη=5 and 

Rη=10 for n=3 are approximately consistent with those in the simulations with 

Rη=5, Rη=15 and Rη=45 for n=1, respectively. Pebbles in the deformable 

regime show elongate mica fish and σ-clast shapes (Fig. 2a,b; Passchier and 

Trouw, 2005). The deformed flynn boundaries in the matrix serve as a proxy 

for the expected trend that a foliation would develop by wrapping around 

rotating pebbles (Fig. 2a,b). 



With increasing finite strain, passive and deformable pebbles keep stretching 

(increasing their Rf) and their long axes rotate towards the shear plane (φ=0) 

(Fig. 3). Some of deformable and rigid pebbles show pulsating behaviour. In 

this case their long axes rotate towards and beyond the shear plane, while 

their Rf values remain low (<3). The Rf-φ graph (Fig. 3) thus shows two types of 

paths. In the first φ consistently decreases towards φ=0 and Rf increases 

towards Rf=∞ with progressive strain. In the second case, pebbles remain 

"trapped" at Rf smaller than about three and variable φ. 

Insert Fig. 3

At a low pebble concentration of C=10%, the mean rotation of rigid pebbles is 

similar to the ideal rotation of the single rigid inclusion calculated by Jeffery’s 

(1922) solution (Fig. 4). With increasing concentration, the mean rotation of 

rigid pebbles decreases (Fig. 4). However, the variation in rotation rate 

between pebbles increases and some pebbles actually rotate faster than the 

prediction by Jeffery’s (1922).

Insert Fig. 4

As expected, strain rate and vorticity are highly variable in the matrix, 

especially at high Rη (Fig. 5). An increase in Rη and C enhances strain rate 



partitioning. The vorticity maps (Fig. 5, columns IV-VI) illustrate the sense of 

rotation of local deformation. Some of the highest strain rates (red tones in Fig. 

5, columns II-III) are associated with a clockwise rotation (dextral shear, red 

tones in Fig. 5, columns V-VI) and develop in nearly horizontal zones, thus 

indicating the activity of synthetic C-type shear bands. At high Rη and C, 

vertical, C''-type shear bands with significantly elevated strain rates and 

negative vorticity (i.e., sinistral shear-sense) also form. 

Insert Fig. 5

Clusters formed by the association of several closely spaced deformable or 

rigid pebbles can behave as effectively single objects. They form with 

increasing finite strain in simulations with high pebble concentrations such as 

and  (Figs. 6, 7). In the simulations with rigid pebbles such 30% 𝑛3
𝑅𝜂10 30% 𝑛3

𝑅η2

as , antithetic shear zones initially form perpendicular to the shear 30% 𝑛3
𝑅𝜂10

plane and progressively rotate toward it (Figs. 6, 7). The cluster formed by rigid 

pebbles rotate less than the mean rotation of individual pebbles and Jeffery’s 

(1922) rotation model in simulation (Fig. 4).30% 𝑛3
𝑅𝜂10

Insert Fig. 6 & 7

4.  Discussion



4.1 Pebble deformation

Passive, deformable and rigid behaviour of pebbles are observed in our 

simulations with different Rη and for different C (Fig. 2). For a given C value, 

decreasing Rη enhances pebble deformation (Figs. 2, 3). This is consistent 

with previous studies, which suggest that the deformation behaviour of 

inclusions is strongly influenced by Rη (e.g., Gay, 1968; Bilby and 

Kolbuszewski, 1977; Lisle et al., 1983; Treagus and Treagus, 2001; Mandal et 

al., 2003; Takeda and Griera, 2006; Jiang, 2013; Qu et al., 2016). In our 

simulations, pebble concentration (C) is another important factor. In models 

with high C closely spaced pebbles interact with their neighbours, thus 

enhancing their deformation (Figs. 2, 3). In both cases of linear and power-law 

viscous rheologies, the effect of increasing C is similar to a decrease of Rη, 

and vice versa. The pebbles deform as if they are “softer” in models with 

higher C. An increase in C and pebble interaction slightly reduce the mean 

rotation rate of rigid pebbles, which is consistent with previous studies (Fig. 4; 

Ildefonse et al., 1992a,b; Samanta et al., 2003; Marques et al., 2014). 

However, variation in pebble rotation rate increases with increasing C (Fig.4). 

Previous studies have suggested that an isolated inclusion at Rη ca. 20-50 >  

deforms rigidly if rheology is linear viscous, even at high finite strain (Gay, 



1968; Bilby et al., 1975; Weijermars, 1993; Treagus and Treagus, 2001). Our 

n=1 simulations show that pebbles in simulations with Rη  behave rigidly ≥ 15

for a low C=10% with minor interactions between neighbour pebbles. 

However, at a high C of 45%, pebbles interact with their neighbours and are 

deformable even at Rη=45. The reported boundary between deformable and 

rigid from Rη=10-50 is thus confirmed by our simulations, with the lower end 

representing isolated inclusions and the higher end closely packed inclusions. 

According to Bilby and Kolbuszewski, (1977), a single inclusion behaves 

passively at Rη  for a linear viscous rheology. This is supported by our ≤ 2

results for C=10%. Again, raising the pebble concentration also raises the 

transition Rη, here up to about 5 for C=45% (Fig. 2b). Similar trends are found 

for a power-law rheology with n=3 (Fig. 2a).

The range of Rη for deformable pebbles is quite narrow, between 2 and 15 for 

n=1 and C=10%, and at higher C still within one or two orders of magnitude. 

However, passive and deformable pebbles appear to be the most common in 

nature, with no examples of rigid-pebble behaviour at high strains known to the 

authors. This suggests that viscosity contrasts between materials that 

constitute a conglomerate are usually low. Generally low viscosity contrasts 

are also indicated by fold geometry and cleavage refraction (Treagus, 1999).   

In the strict definition, all inclusions are deformable when not perfectly rigid. In 



practice, it is difficult to determine whether natural pebbles exhibited perfectly 

passive or rigid behaviour. We therefore use three fields in the mean Rf-φ plot 

(Fig. 8) based on the structures shown in Fig. 2 and the data in Fig. 3: (i) 

effectively passive, (ii) deformable and (iii) effectively rigid. Effectively passive 

pebbles stretch significantly and achieve an average aspect ratio (Rf) of  20 ≥

at high finite strain. Because of the strong stretching, there is no discernable 

deflection or wrapping of a foliation (if present) around the pebbles. Effectively 

rigid pebbles maintain an average aspect ratio (Rf) of less than about two, 

even at high finite strains. Any developing foliation would show strong 

deflections around the nearly equidimensional pebbles. Deformable pebbles 

occupy the field in between the previous two in Fig. 8. Pebbles are visible 

stretched, but a foliation would still be deflected around the pebbles, indicating 

even higher strains in the matrix. The field for deformable pebbles can be 

divided into two: pulsating behaviour (high Rη and/or low C) and permanently 

stretching (low Rη and/or high C). 

In simple shear, initially approximately equidimensional pebbles follow 

trajectories in Rf -φ space, starting from around Rf=1 and φ=45° and moving 

towards one of the two fabric attractors with increasing strain. Rf and φ values 

can be measured in naturally deformed pebbles and their means can be 

plotted in the Rf -φ graph to gain an estimate of their type of behaviour and the 

amount of strain, in case of permanently stretching pebbles. An example is 



given further below.

Insert Fig. 8

Effectively passive and deformable pebbles in deformed conglomerates are 

the most important and thus most widely investigated, as their shape fabrics 

can be used for strain analysis and rheology studies (e.g., Gay, 1968; Lisle et 

al., 1985; Treagus and Treagus, 2002; Czeck et al., 2009). In our simulations, 

for a given Rη, an increasing C enhances the aspect ratios (Rf) of pebbles but 

reduces their rotation (Figs. 3, 4; Ildefonse et al., 1992a,b; Samanta et al., 

2003; Mandal et al., 2004; Marques et al., 2014). Our simulations allow 

comparison with existing models for the evolution of mean Rf as a function of 

strain (Rs), such as the equation proposed by Gay (1968):

, (4)ln Rf( ) =
5⋅ ln Rs( )
3+ 2RηGay

⇔ RηGay =
2.5⋅ ln Rs( )
ln Rf( )

−1.5

where RηGay is the calculated apparent viscosity ratio. 

Another solution purposed by Bilby et al. (1975) is also widely accepted for the 

calculations of strain and viscosity ratio. However, Treagus and Treagus 

(2002) showed no distinct difference between the equations of Gay (1968) and 

Bilby et al. (1975) and suggested to use Gay’s (1968) equation for practical 

geological applications, which we also use here. It should be noted that Eq. (4) 

applies to a linear viscosity only. However, it may also serve to gain insight in 



the apparent viscosity contrast for the cases where n≠1. 

Figure 9a compares our simulations with the Rf-strain curves from Gay (1968). 

The development of shape fabrics of pebbles is different from the predictions 

using Gay’s (1968) theory for single inclusion in linear viscous rheology. Most 

of our results show larger Rf-values with increasing finite strain than predicted 

with Eq. (4). Pebble concentration has a critical effect on shape fabrics in our 

simulations, especially at high finite strain. For low C=10%, the shape 

development is similar to that in Gay’s (1968) theory at low finite strain (Rs

). However, the simulations show an increasing deviation from the < 10

corresponding theory solution at middle to high finite strain (Rs ), even for ＞10

a very low C (10%). 

We use Eq. (4) to calculate apparent viscosity ratios (RηGay) and compare 

these with the known Rη in our simulations (Fig. 9b). For n=1 and C=10%, 

RηGay≈Rη within error. However, at higher C, but same Rη, pebbles deform 

more with the result that Gay’s (1968) solution tends to underestimate the true 

viscosity ratio (Rη). The concept of an apparent viscosity ratio could potentially 

be used for power-law rheologies, where Fig. 9b gives RηGay>Rη for n=3. 

However, we did not find a consistent relationship between Rη and RηGay.

Insert Fig. 9



4.2 Nature of pebble clusters

In some simulations with rigid and deformable pebble behaviour, closely 

spaced pebbles form a cluster that behaves as a single pebble, resulting in low 

strain rate and consistent vorticity within the cluster (Figs. 6, 7). There are two 

types of clusters depending on their deformation behaviour: rigid and 

deformable clusters. 

In rigid clusters, the pebbles rotate together and not relative to each other (Fig. 

6). However, they do not survive long, as after a short deformation increment, 

strain begins to localise in the matrix between pebble clusters until the clusters 

break up. Figure 6 gives an example of the formation and disintegration of rigid 

clusters in the simulation . Pebbles A, B and C form a cluster from a 30% 𝑛3
𝑅𝜂10

finite strain of γ=4 (Fig. 6a-c). There is no shearing of the matrix between them 

(Fig. 6b) and the pebbles and matrix in between together rotate at the same 

rate (Fig. 6c), which is similar to that of other individual pebbles in the model. 

This cluster survives until a finite strain of γ=4.6 is reached, at which point the 

cluster disintegrates and each pebble behaves independently (Fig. 6d-f). 

Pebbles A and B move towards each other again until they form a new cluster 

during the finite strain interval between γ=6.3 and 6.7 (Fig. 6g-i). 



In Fig. 6, single pebbles rotate on average ca. 13.6 ° over a finite strain 

increment of ∆γ=0.5, whereas the cluster formed by pebbles A, B and C rotates 

over ca. 12.6 ° from γ=4 to 4.5 (∆γ=0.5; Fig. 4). The rotation of the cluster is 

less than that of individual pebbles as well as the finite rotation according to 

Jeffery’s (1922) analytical solution (14.3°). This is consistent with previous 

studies suggesting that clusters rotate more slowly than single pebbles 

(Ildefonse et al., 1992a; Jessell et al., 2009). However, cluster rotation is still 

within the range of individual pebble rotations. Considering the short-lived 

character of rigid clusters, our results suggest that the formation of rigid 

clusters does not strongly affect the rotation of pebbles at large finite strains.

Figure 7 gives an example of evolution of deformable clusters in the simulation 

. Contrary to rigid clusters, clusters of deformable pebbles deform into 30% 𝑛3
𝑅𝜂2

shapes similar to those of isolated individual pebbles (Fig. 7). The strain 

distribution in some deformable clusters is heterogeneous, as is the case for 

isolated pebbles. Deformable clusters survive for longer strain increments, 

some even persist until the end of the simulations (Fig. 7j). In Fig. 7, clusters A 

and B form at γ=3.2 and 3.4, and collapse at γ=5.4 and 7.2, respectively (Fig. 

7.a-f,j). There is no shearing of the matrix between them (Fig. 7b,c) and the

pebbles and matrix in between deform jointly at the same rate (Fig. 7b). 

However, cluster C forms at γ=4.6 and remains up to γ=10 (Fig. 7g-j). 

Deformable isolated pebbles and clusters rotate rapidly towards the shear 



direction and then keep on elongating with minor further rotation in response to 

progressive deformation. The slow rotation facilitates the stability of 

deformable clusters, as opposed to rigid-pebble clusters. 

Our observations can be compared with the models proposed by Tikoff and 

Teyssier (1994). They suggested three models of trains (clusters) based on 

Jeffery’s (1922) and March’s (1932) theories: (1) Jeffery-rotating train model, 

(2) March-rotating train model and (3) March-fixed train model. In the Jeffery-

rotating train model, both inclusions and trains rotate rigidly according to 

Jeffery’s (1922) theory, and trains are short-lived cf. Fig. 6. In the March-

rotating train and the March-fixed train models, it is assumed that there is slip 

at the interface between inclusions and matrix and the shear localisation takes 

place around the inclusions. Inclusions rotate according to March’s (1922) 

theory for passive markers and are not allowed to rotate past the shear plane. 

Trains persist for longer deformation increments in the March-rotating train 

model, whereas trains remain fixed in March-fixed train model. The behaviour 

of rigid clusters (Fig. 6) in our simulations is consistent with the Jeffery-rotating 

train model. Our deformable clusters are present for longer deformation 

increments (Fig. 7), which is similar to the March-rotating and the March-fixed 

train models, even though our simulations do not allow slip along the pebble 

boundaries.



5. Natural example in North China Craton

Our simulation results are compared with deformed Proterozoic 

conglomerates in the Hutuo Group, North China Craton. The Hutuo group is 

exposed in the Wutai Mountains area, in the Trans-North China Orogen 

(TNCO), where the Eastern and Western Blocks of the North China Craton 

collided at ~2.5 or ~1.85 Ga (e.g., Zhao et al., 2001; Li and Kusky, 2007; Fig. 

10a,b). The group is divided into three subgroups: the Doucun, Dongye and 

Guojiazhai subgroups from base to top (Bai, 1986). The deformed 

conglomerates have been interpreted as basal conglomerates at the base of 

Doucun Subgroups, which unconformably overlay the Wutai Group and 

Neoarchean granitoids and were deposited after ~ 2.2 or ~1.9 Ga (e.g., Bai, 

1986; Zhang et al., 2012; Du et al., 2017). 

Insert Fig. 10

In the Yangjiaogou area, the deformed conglomerates mainly consist of 

pebbles composed of deformed banded iron formations (BIFs) embedded in a 

foliated greenschist matrix (Fig. 10c,d). Matrix-supported conglomerates with a 

pebble concentration of about 7% appear strongly deformed with limited 

interactions between pebbles. Pebbles are visible stretched, but the foliation in 

the matrix is deflected around the pebbles. We therefore classify the pebbles 



as deformable. Asymmetric structures, such as sigmoidal pebbles and rolling 

structures indicate top-to-SW shearing (Fig. 10c). The stretching direction of 

boudinage quartz veins, which is oblique to the shear plane, also suggests a 

top-to-SW shearing (Fig. 10c). Although the exact kinematic vorticity of 

deformation could not be determined, we assume here that deformation was 

approximately simple shear because of the consistent asymmetry and sense 

of shear of all structures. 

We use the geometries of boudinaged quartz veins to estimate the amount of 

shear strain, using the equations B.12 and 13b’ of Ramsay and Huber (1987). 

The calculated finite strain is either 3.7 or 8.7 depending on the initial 

orientation of the vein (ca. 22 ° or −22 °) (more details of calculation see 

Appendix B). The formation of rolling structures (Fig. 10c) requires a significant 

rotation of pebbles of ≥150 ° at high finite strain. Together with the deflection of 

the foliation around the pebbles, this suggests that the finite strain is ca. 8.7, 

and not ca. 3.7. A low Rf of ~3.4 and an orientation of long-axes (φ) nearly 

parallel to the shear plane (φ≈2.9°) was obtained from an analysis of 82 

pebbles. The measurements and structures can be compared with our 

simulations with 10% pebble concentration characterized by minor interactions 

and the deflected foliation around pebbles (Fig. 10d,e). The mean of φ is 

consistent with that in simulation  (Appendix A, Movie 1) at a finite 10% 𝑛1
𝑅𝜂5

strain of 8 to 10, whereas the mean of aspect ratios (Rf) is lower than that in 



simulation  at a finite strain of 8 to 10, thus suggesting a higher 10% 𝑛1
𝑅𝜂5

viscosity ratio (Fig. 11). An additional simulation ( ) with C=10% pebbles 10% 𝑛1
𝑅𝜂8

and a lower viscosity ratio (Rη=8) in linear rheology (n=1), was run for 

comparison with the deformed conglomerates in the Yangjiaogou area (Fig. 

11). According to our Rf-φ plot (Fig. 8), we suggest that the viscosity ratio of 

deformed conglomerates in the Yangjiaogou area is 5 to 8 for a linear rheology 

(n=1) and 2 to 5 for a power-law rheology (n=3). The plot also suggests a finite 

strain of γ≈6, close to the γ≈8.7 derived from the strain analysis on the 

boudinaged vein. 

Insert Fig. 11

The example from the Wutai Mountains shows that the graphs obtained from 

our simulations may aid to quantify the amount of deformation with relatively 

simple Rf and φ measurements. Not only does one obtain an estimate of the 

finite strain, but also insight in the relative rheological properties of the 

lithologies involved. Together with regional structural geological studies (e.g., 

Li et al., 2010; Trap et al., 2012; Zhang et al., 2012), this may help to elucidate 

the regional deformation and tectonics after deposition of the conglomerates of 

the Hutuo Group. 

6. Conclusions



We use numerical simulations to model the viscous simple-shear deformation 

of conglomerates with different degrees of interaction between pebbles, by 

varying the concentration of pebbles and viscosity ratio between pebbles and 

matrix, in both linear and power-law viscous rheologies. Our results lead to the 

following conclusions:

1. Pebbles can behave as rigid, deformable and passive inclusions depending

on both the viscosity ratio and their concentration. 

2. The effect of increasing pebble concentration is similar to a decrease of

viscosity ratio between pebbles and matrix, and vice versa. An increase in 

concentration and interaction enhances the pebble distortion, but reduces 

the mean rotation of rigid pebbles. 

3. Clusters of closely spaced pebbles can behave as single objects. Rigid

clusters continue rotating, but survive for only a short strain interval. 

Deformable clusters initially rotate rapidly towards the shear direction, and 

then keep on elongating with minor rotation. The slower rotation facilitates 

the stability of deformable clusters.

4. A mean Rf -φ plot is suggested to gain an estimate of pebble deformation

behaviour and the amount of strain in cases of permanently stretching 

pebbles.

5. A case study on deformed conglomerates of the Hutuo Group, North China



Craton, illustrates the use of the use of the mean Rf -φ plot, giving an 

estimate of the finite strain and viscosity contrast between pebbles and 

matrix.
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Figure captions

Fig. 1. Data structure. (a) The square unit-cell contains circular pebbles (black) 

embedded in a homogeneous matrix (grey) composed of a set of flynns 

(defined by white solid lines). (b) and (c) Flynns are defined by bnodes and 

define the pebble-matrix boundaries, as well as sub-regions. (d) The model is 

repositioned into the initial square unit cell after each step of dextral simple-

shear deformation. (e) Deformation is assumed to take place by glide of 

dislocations along the slip systems of a hexagonal mineral. (f) Unconnected 

nodes (unodes) are superimposed on flynns and used for storing physical 

properties and state variables. (c) and (f) show the difference of region 



boundaries defined by flynns and unodes that are used for the VPFFT code.

Fig. 2. Results of simulations with different Rη-settings with a stress exponent 

of n=1 (a) and n=3 (b) for simple-shear deformation (top to the right) up to a 

shear strain of γ=10. Pebbles are black, matrix light grey and flynn boundaries 

white. Initial structures of conglomerates with pebble concentrations of 

C=10%, 30% and 45% are shown as the first column of (a). The pebble 

behaviour is labelled as passive (P), deformable (D) or rigid (R). Movies 1-5 

can be found in Appendix A.

Fig. 3. Mean Rf-φ graph showing the trajectories of the mean pebble shape 

(Rf) and long axis orientation (φ)  for the different simulations as a function of 

strain. All the data displayed correspond to the arithmetic mean of the Rf or φ of 

all individual pebbles in a model. Sub-vertical dashed lines indicate finite strain 

contours. Dark blue dashed lines separate passive, deformable and rigid 

pebble behaviour.

Fig. 4. Normalised mean rotation (vorticity) of all individual pebbles (with one 

standard deviation error bars) at different pebble concentrations of C=10%, 

30% and 45% and viscosity ratio of Rη=10 in power-law (n=3) viscous 

rheology, for a strain increment of ∆γ=0.5. Normalised mean rotation is defined 

as the ratio between mean ration angle in the simulation and the ideal Jeffery’s 



(1922) rotation of 14.3 ° for ∆γ=0.5. Each mean rotation angle with standard 

deviation is calculated from all rotation data at finite strains of γ=3.5-4, 4-4.5, 

4.5-5, 5-5.5 and 5.5-6 in simulations ,  and . The 10% 𝑛3
𝑅𝜂10 30% 𝑛3

𝑅𝜂10 45% 𝑛3
𝑅𝜂10

rotation angle of one cluster is selected from the simulation  for 30% 𝑛3
𝑅𝜂10

∆γ=0.5 (γ=4-4.5). 

Fig. 5. Maps of the Von Mises strain-rate field normalised to the bulk Von 

Mises strain rate at different viscosity ratios (Rη) (column Ⅰ-Ⅲ) and vorticity 

(for ∆γ=0.02) at different viscosity ratios (Rη) (column Ⅳ-Ⅵ) for (a) power-law 

(n=3) and (b) linear (n=1) viscous rheology at finite strain of 10. The bulk 

sense of shear is top to right.

Fig. 6. Evolution of rigid clusters in the simulation  (Appendix A, 30% 𝑛3
𝑅𝜂10

Movie 4). Pebble (white and coloured) and matrix (black) distribution is shown 

at shear strains of (a) γ=4.5, (d) at γ=6.0 and (g) γ=6.6. Pebbles belonging to a 

cluster are coloured. Incremental strain (Rs, b, e, h) and vorticity (W; c, f, i) 

distributions are shown for the preceding strain increment of ∆γ=0.2. Three 

pebbles are labelled A to C. At γ=4.5 they form a cluster, which has 

disintegrated at γ=6. Pebbles A and B form a cluster again at γ=6.6. The sense 

of shear is top to the right.

Fig.7. Evolution of deformable clusters in simulation  (Appendix A, 30% 𝑛3
𝑅𝜂2



Movie 3). Pebble and matrix (black) distribution is shown at (a) γ=4.5, (d) at 

γ=7 and (g) γ=8. Pebbles belonging to a cluster are coloured. Incremental 

strain (Rs, b, e, h) and vorticity (W; c, f, i) distributions are shown for the 

preceding strain increment of ∆γ=1. Three clusters are labelled A to C. The life 

span of these clusters with increasing finite strain is shown in (j). The sense of 

shear is top to the right.

Fig. 8. Mean Rf-φ plot for deformed conglomerates with different viscosity 

ratios (Rη) and concentrations (C). Perfectly passive and rigid behaviours are 

shown as solid red lines. The solid pink line separates the pulsating and 

permanently stretching deformation behaviour. Dark blue dashed lines 

separate effectively passive, deformable and effectively rigid behaviours. Sub-

vertical dashed lines are contours of the bulk finite strain (γ).

Fig. 9. (a) Variation of mean aspect ratios (Rf) with increasing finite strain (Rs) 

for simulations with different pebble concentrations and Rη for both linear 

(n=1, red to orange) and power-law (n=3, blue to green) rheologies. Our 

simulations are represented by the solid lines with data points and Gay’s 

(1968) prediction as dashed lines. (b) Comparison of viscosity ratios (Rη) and 

calculated viscosity ratios (RηGay) using Eq. (4). Most n=1 data lie below the 

black Rη=RηGay-line, indicating that Eq. (4) tends to underestimate the 

viscosity contrast, especially at higher pebble concentrations.



Fig. 10. Deformed conglomerates in North China Craton compared with our 

simulation. (a) Tectonic subdivision of the North China Craton (modified after 

Zhao et al., 2005). TNCO is Trans-North China Orogen. (b) Simplified 

geological map of the Yangjiaogou area and location of the outcrop with 

deformed Hutuo Group conglomerates. (c) Rolling structure and a boudinaged 

quartz vein indicating top-to-the-left sinistral simple shear. The ratio between 

final and initial length of boudinage quartz vein is estimated at ca. 2.3. The 

diameter of the 1 dollar-cent coin is 19mm. (d) and (e) Interactions between 

pebbles in outcrop compared with our simulation  at a finite strain of 10% 𝑛1
𝑣𝑟5

eight. 

Fig. 11. Mean Rf-φ plot for comparing the outcrop data (with one standard 

deviation error bars) of deformed conglomerates in the Yangjiaogou area 

compared with our simulations at different finite strains (γ) plotted on the graph 

of Fig. 8.



       Table 1. Settings for the simulations presented here.

Experiment
Pebble 

concentration (C)

Stress exponent 

(n)
s

Supplementary 

movie

10% 𝑛1
𝑅𝜂2 10% 1 2

10% 𝑛1
𝑅𝜂5 10% 1 5 Movie 1

10% 𝑛1
𝑅𝜂15 10% 1 15

10% 𝑛1
𝑅𝜂45 10% 1 45

30% 𝑛1
𝑅𝜂2 30% 1 2

30% 𝑛1
𝑅𝜂5 30% 1 5

30% 𝑛1
𝑅𝜂15 30% 1 15

30% 𝑛1
𝑅𝜂45 30% 1 45

45% 𝑛1
𝑅𝜂2 45% 1 2

45% 𝑛1
𝑅𝜂5 45% 1 5 Movie 2

45% 𝑛1
𝑅𝜂15 45% 1 15

45% 𝑛1
𝑅𝜂45 45% 1 45

10% 𝑛3
𝑅𝜂2 10% 3 2

10% 𝑛3
𝑅𝜂5 10% 3 5

10% 𝑛3
𝑅𝜂10 10% 3 10

30% 𝑛3
𝑅𝜂2 30% 3 2 Movie 3

30% 𝑛3
𝑅𝜂5 30% 3 5

30% 𝑛3
𝑅𝜂10 30% 3 10 Movie 4

45% 𝑛3
𝑅𝜂2 45% 3 2 Movie 5

45% 𝑛3
𝑅𝜂5 45% 3 5

45% 𝑛3
𝑅𝜂10 45% 3 10



Appendix A

Movies of selected simulations, showing pebble and strain rate distributions. 

Movie 1: , Movie 2: , Movie 3: , Movie 4: , 10% 𝑛1
𝑅𝜂5 45% 𝑛1

𝑅𝜂5 30% 𝑛3
𝑅𝜂2 30% 𝑛3

𝑅𝜂10

Movie 4: .45% 𝑛3
𝑅𝜂2

Appendix B

The expression for the deformation of a linear marker under simple and pure 

shear in 2-D plane is given by Ramsay and Huber (1987; pp.283-286). 

Consider a line of unit length that joins coordinates (0, 0) and (x, y) and which 

has an angle α with the x-direction. After deformation, (x, y) is positioned at (x’, 

y’) and the line now has an angle α’ with the axis and its length is now 1+e. We 

assume homogeneous finite strain, described with:

𝑥' = 𝑎𝑥+ 𝑏𝑦

   (B1)𝑦' = 𝑐𝑥+ 𝑑𝑦

where a, b, c and d are the elements of the position gradient tensor. For simple 

shear, the tensor is 

(B2)|𝑎 𝑏
𝑐 𝑑| = |1 𝛾

0 1|
The equation for the reciprocal quadratic extension ( ) is given 𝜆' = 1/(1 + 𝑒)2

as:



(B2)λ ' =
1
2 d

2 + c2 − a2 −b2( )cos2α '− ac−bd( )sin 2α '+ 1
2 a

2 +b2 + c2 + d 2( )
ad −bc( )2

The relationship between α and α’ is:

(B3) tan 𝛼=
𝑐 ‒ 𝑎tan 𝛼'

𝑏tan 𝛼' ‒ 𝑑

The ratio between stretching and initial length (e) of the boudinage quartz vein 

in Yangjiaogou area (Fig. 10c) is estimated at ca. 2.3 and the angle (α’) 

between boudinage quartz vein and shear plane is ca. 9.1°. Inserting these 

values into Eqs. (B2) and (B3) gives two solutions: γ=3.7 and α=22° or γ =8.7 

and α=-22°. 


























