Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.
Generation of acyclic chiral building blocks
containing a quaternary stereocenter. Formal
synthesis of alkaloids of the leuconolam-leuconoxine-
mersicarpine group

Leave this area blank for abstract info. mersicarpine group
Sergi Ordeix, Marta Alcaraz, Núria Llor, Arnau Calbó, Joan Bosch**, and Mercedes Amat ${ }^{*}$ Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona

Generation of acyclic chiral building blocks containing a quaternary stereocenter. Formal synthesis of alkaloids of the leuconolam-leuconoxine-mersicarpine group ${ }^{\text {T }}$

Sergi Ordeix, Marta Alcaraz, Núria Llor, Arnau Calbó, Joan Bosch,** and Mercedes Amat*
Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain

ARTICLE INFO

Abstract

The stereocontrolled dialkylation at the carbonyl α-position of simple phenylglycinol-derived oxazolopiperidone lactams generates chiral scaffolds bearing a quaternary stereocenter, which are converted to acyclic quaternary stereocenter-containing chiral building blocks, such as 2,2disubstituted 5 -aminopentanols and 4,4-disubstituted O-protected 5 -hydroxypentanoic acids and 5-hydroxypentanenitriles. The enantioselective synthesis of Kerr's intermediate, an advanced synthetic precursor of the alkaloids of the leuconolam-leuconoxine-mersicarpine group, is reported from one of these aminopentanols.

Article history:
Received
Received in revised form
Accepted
Available online

Keywords:

Quaternary stereocenters
Lactams
Enolate dialkylation
Ring-opening
Alkaloids

2019 Elsevier Ltd. All rights reserved

1. Introduction

All-carbon quaternary stereocenters ${ }^{1}$ occur in a wide range of natural products ${ }^{2}$ and feature in numerous semisynthetic and synthetic pharmaceutical ingredients. ${ }^{3}$ The stereocontrolled construction of these stereogenic centers represents a considerable synthetic challenge, ${ }^{4}$ in particular in the conformationally mobile acyclic systems. ${ }^{5}$ A convenient way to tackle the enantioselective synthesis of complex molecules bearing quaternary stereocenters is by initially generating the quaternary carbon in a more rigid cyclic chiral scaffold, which is then converted to an acyclic linear building block via a ring-opening reaction.

Scheme 1. Generation of phenylglycinol-derived oxazolopiperidone lactams.

The easily accessible ${ }^{6}$ phenylglycinol-derived oxazolopiperidone lactams, for instance $\mathbf{1}$ (Scheme 1), have demonstrated to be valuable chiral scaffolds. They have been extensively used to access a variety of diversely substituted enantiopure carbo- and aza(poly)cyclic natural and unnatural products, in particular complex piperidine-containing alkaloids. ${ }^{7}$ More recently, substituted derivatives of $\mathbf{1}$ have been used to generate a variety of linear chiral building blocks, such as 5 -amino-pentanols, ${ }^{8}$ 5hydroxypentanenitriles, and 5-hydroxypentanoic acids. ${ }^{9}$ The procedure involves the $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$-promoted reductive opening of the oxazolidine and lactam rings and the subsequent reductive (catalytic hydrogenation) or oxidative (m-CPBA or $\mathrm{I}_{2} /$ aq. NH_{3}) removal of the phenylethanol moiety. The synthetic value of some of these acyclic building blocks was illustrated in the total synthesis of natural products, such as haliclorensin marine alkaloids ${ }^{10}$ and fluvirucinin $\mathrm{B}_{1},{ }^{9}$ all of them bearing a tertiary stereocenter.

Taking into account that the stereocontrolled generation of a quaternary stereocenter at the carbonyl α-position of these lactams can be accomplished by diastereoselective enolate dialkylation,

[^0]

Scheme 2. Stereoselective dialkylation of oxazolopiperidone lactams.
via conformationally rigid chiral tetrasubstituted enolates, ${ }^{7,11}$ we envisaged the resulting 6,6-disubstituted lactams as convenient starting materials to access enantiopure acyclic building blocks with a quaternary stereocenter. It is known that these lactams preferentially undergo the second alkylation on the exo face of the enolate and that the degree of stereoselectivity depends upon the
configuration of the C-8a stereocenter and the order of incorporation of the substituents. ${ }^{11 a}$

We herein present the preparation of a variety of acyclic chiral building blocks (amino alcohols, hydroxy acids, hydroxy nitriles), bearing different substitution patterns (dialkyl, alkyl/benzyl, alkyl/allyl, alkyl/propargyl) at the quaternary stereocenter and illustrate the usefulness of one of them in the enantioselective synthesis of Kerr's intermediate, ${ }^{12}$ which is an advanced synthetic intermediate of the indole alkaloids (-)-mersicarpine, ${ }^{12 a-f, 13}(+)-$ melodinine E, ${ }^{12 a, 14}$ and (-)-leuconoxine. ${ }^{12 a, 15}$ In turn, (+)melodinine E , has been converted to a number of related alkaloids: ${ }^{13 \mathrm{c}}$ (-)-leuconoxine, ${ }^{\text {12a,13d,f }}(-)$-scholarisine G, (-)leuconolam, (-)-leuconodine A, (+)-leuconodine F, and (-)leuconodine C. ${ }^{16}$

2. Results and discussion

The selected 6,6-disubstituted lactams $\mathbf{2}^{11 a}$ (cis $\mathrm{H}-3 / \mathrm{H}-8 \mathrm{a}$) and 3-5 (trans $\mathrm{H}-3 / \mathrm{H}-8 \mathrm{a}$) were prepared by dialkylation of the corresponding unsubstituted lactams $\mathbf{1 a}$ or $\mathbf{1 b}$, with good stereofacial selectivity ($95: 5$ to $80: 20$; see the Experimental Section) except in the case of 5 . In all cases, the second alkylation took place from the exo face of the lactam, i.e. cis with respect to the hydrogen at the C-8a position (Scheme 2). ${ }^{17}$

Treatment of lactams 2-5 with lithium amidotrihydroborate $\left(\mathrm{LiNH}_{2} \mathrm{BH}_{3}\right),{ }^{18}$ generated in situ by deprotonation of the $\mathrm{BH}_{3} \mathrm{NH}_{3}$

Scheme 3. Generation of enantiopure acyclic building blocks containing a quaternary stereocenter.

Scheme 4. Synthesis of acyclic chiral building blocks en route to Kerr's intermediate.
complex with n-BuLi, afforded the expected amino diols 6-9, all of them bearing a quaternary stereocenter. Scheme 3 outlines the synthetic transformations performed from amino diols 6-8.

Removal of the benzylic substituent of $\mathbf{6}$ by catalytic hydrogenation, followed by treatment of the resulting primary amine with $\mathrm{Boc}_{2} \mathrm{O}$, gave the N-protected amino diol $\mathbf{1 0}$. Interestingly, cleavage of the benzylic $\mathrm{C}-\mathrm{N}$ bond can also be performed by treatment with $\mathrm{Na} /$ liq. NH_{3}, after conversion of the phenylglycinol-derived secondary amines 7 and 8 to the corresponding N-Boc derivatives. This methodology is compatible with the presence of an alkene functionality, for instance, in the conversion of 8 to 15.

On the other hand, the oxidative removal of the chiral inductor of amino diols 6 and 7 was effected via the corresponding bisTBDPS ethers, under m-CPBA conditions to give the O-protected hydroxy acids 11 and 13, and under $\mathrm{I}_{2} /$ aq. NH_{3} conditions (from 7) to give the O-protected hydroxy nitrile $\mathbf{1 4 .}{ }^{19}$

With procedures in hand for the generation of acyclic chiral building blocks containing a quaternary stereocenter, we focused our attention on the pyrido[1,2-a]indole derivative 27, first reported in the racemic form by Kerr as an advanced intermediate in his synthesis of (\pm)-mersicarpine. ${ }^{12 \mathrm{~b}}$ This tricyclic 1-acylindole features a quaternary stereocenter with ethyl, 3-aminopropyl, and 2-indolyl substituents, and a functionalized three-carbon chain connected to the indole nitrogen.

Amino alcohol 19 and nitrile 20 were envisaged as suitable acyclic building blocks for the synthesis of the (R)-configurated Kerr's intermediate 27, which is the enantiomer required to access the alkaloids of the leuconolam-leuconoxine-mersicarpine group. Compounds 19 and 20 incorporate a quaternary stereocenter with the necessary R configuration and the ethyl, aminopropyl, and C_{3} functionalized substituents characteristic of Kerr's intermediate. They also possess a hydroxymethyl group (protected in 20) that could be subsequently elaborated into the indole ring. After oxidation of the hydroxymethyl group and Ohira-Bestmann homologation ${ }^{20}$ of the resulting formyl derivative to an alkyne, the indolization would be accomplished by Sonogashira coupling with 2-iodoaniline and subsequent cyclization of the resulting alkynylaniline utilizing transition-metal catalysis.

Scheme 4 depicts the generation of the acyclic intermediates $\mathbf{1 8}$ and the conversion of $\mathbf{1 8 a}$ to $\mathbf{1 9}$ and $\mathbf{2 0}$ following the methodology described above, by reductive $\left(\mathrm{LiNH}_{2} \mathrm{BH}_{3}\right)$ ring-opening of lactams 17 and subsequent reductive ($\mathrm{Na} /$ liq. NH_{3}) or oxidative ($\mathrm{I}_{2} /$ aq. NH_{3}) removal of the phenylethanol moiety. ${ }^{21}$ The required lactams 17 were prepared by hydroboration/oxidation and subsequent silylation of the allyl group of the known lactam 16, which was accessible by an allylation/alkylation sequence from the (S)-phenylglycinol-derived lactam ent-1b. ${ }^{11 a}$

Contrary to our expectations, ${ }^{22}$ treatment of bis-silyl ether 20 with $5 \% \mathrm{NaOH}$ caused deprotection of the TBS instead of the more labile, but sterically congested TBDPS protecting group. For this reason, the application of this building block as a synthetic precursor of Kerr's intermediate was not further explored.

On the other hand, direct oxidation of 19 under a variety of conditions (Dess-Martin, Swern, PCC) unfortunately did not give the desired result, as the initially formed aldehyde 21 underwent cyclization to afford an N -Boc-2-hydroxypiperidine derivative. ${ }^{23}$ Only under the milder Corey-Kim reaction conditions ${ }^{24}$ could aldehyde 21 be isolated, although the undesired cyclization was again observed when this aldehyde was subjected to the OhiraBestmann homologation reaction. This problem was circumvented by blocking the nitrogen as a bis-Boc derivative, which entailed the previous protection of the free hydroxy group. Thus, after

Scheme 5. Enantioselective synthesis of Kerr's intermediate. Formal synthesis of alkaloids of the leuconolam-leuconoxinemersicarpine group.
treatment of 19 with TESCl , reaction with $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of n-BuLi followed by orthogonal deprotection of the labile TES group ${ }^{25}$ gave an N, N-diprotected amino alcohol, ${ }^{26}$ which was
oxidized with the Dess-Martin periodinane to provide the desired aldehyde 22 (Scheme 5).

Homologation of the crude aldehyde with the Ohira-Bestmann reagent (dimethyl 1-diaza-2-oxopropylphosphonate) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and methanol generated the required terminal alkyne 23, which was converted to alkynylaniline 24 by Pdcatalyzed Sonogashira coupling. ${ }^{27}$ A subsequent Ag-catalyzed indolization ${ }^{28}$ of $\mathbf{2 4}$ took place with concomitant deprotection of a Boc group of the bis-carbamate moiety to give the indole derivative 25 along with minor amounts of the corresponding alcohol 26. ${ }^{29}$ After completing the deprotection of the TBS protecting group with TBAF, treatment with a catalytic amount of tetrapropylammonium perruthenate and N -methyl morpholine N oxide ${ }^{30}$ brought about oxidation of the primary alcohol and cyclization on the indole nitrogen, leading to the R Kerr's intermediate 27.

The synthesis of 27 constitutes the second enantioseletive synthesis of Kerr's intermediate ${ }^{12 a}$ and represents a formal enantioselective synthesis of (-)-mersicarpine, (-)-leuconoxine, $(+)$-melodinine E, and (-)-leuconolam.

3. Conclusion

In summary, we have developed a useful procedure for the synthesis of acyclic chiral building blocks (5-aminopentanols, 5hydroxypentanoic acids, and 5-hidroxypentanenitriles) containing a quaternary stereocenter from enantiopure disubstituted lactams generated by enolate dialkylation of simple phenylglycinolderived oxazolopiperidone lactams. Taking into account that these lactams allow the stereoselective introduction of a variety of substituents (alkyl, allyl, benzyl, propargyl) at the carbonyl α position and that both enantiomers of phenylglycinol are commercially available, the procedure provides access to a number of quaternary stereocenter-bearing building blocks in both enantiomeric series. The usefulness of one of these building blocks is illustrated by the enantioselective synthesis of Kerr's intermediate, an advanced synthetic intermediate of the alkaloids of the leuconolam-leuconoxine-mersicarpine group.

4. Experimental section

4.1. General

All air sensitive reactions were performed under a dry argon or nitrogen atmosphere with dry, freshly distilled solvents using standard procedures. Evaporation of solvent was accomphished with a rotatory evaporator. Drying of organic extracts during the work-up of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thin-layer chromatography was done on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$), and the spots were located by UV light and a $1 \% \mathrm{KMnO}_{4}$ solution. Chromatography refers to flash column chromatography and was carried out on SiO_{2} (silica gel 60, 230-400 mesh). NMR spectra were recorded on a Varian VNMRS-400 or Mercury 400 spectrometer [$400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100.6 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$], and chemical shifts are reported in δ values, in parts per million (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}$ (0 ppm) or relative to residual chloroform (7.26 ppm , 77.0 ppm) as an internal standard. Data are reported in the following manner: chemical shift, multiplicity, coupling constant (J) in hertz (Hz), integrated intensity, and assignment. Assignments and stereochemical determinations are given only when they are derived from definitive two-dimensional NMR experiments (g-HSQC-COSY). IR spectra were performed in a spectrophotometer Nicolet Avatar 320 FT-IR and only noteworthy

IR absorptions (cm^{-1}) are listed. Optical rotations were measured on a Perlin-Elmer 241 polarimeter. [$\alpha]_{\mathrm{D}}$ values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. High resolution mass spectra (HMRS) were performed by Centres Científics i Tecnològics de la Universitat de Barcelona.

4.2. General procedure for the alkylation reactions

A solution of a C-6 epimeric mixture of $(3 R, 8 a S)$-6-substituted-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo-[3,2-a] pyridine ${ }^{31}(1 \mathrm{mmol})$ in anhydrous THF was added to a cooled solution of LiHMDS (1.0 M in THF, 3 mmol) in anhydrous THF under an argon atmosphere. After the cooled solution was stirred for 2 h , the alkylating reagent (2.9 or 3.4 mmol) was added at $-78{ }^{\circ} \mathrm{C}$, and stirring was continued at this temperature for an additional 3 h . The reaction was quenched by the addition of saturated aqueous NaCl at rt , and the resulting mixture was extracted with EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed.

4.2.1. (3R,6S,8aS)-6-Ethyl-6-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2a]pyridine (3)

Following the general procedure, from a C-6 epimeric mixture of (3R,8aS)-6-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro$5 H$-oxazolo[$3,2-a$]pyridine ${ }^{31}$ ($526 \mathrm{mg}, 2.27 \mathrm{mmol}$) in THF (6 mL , $-30^{\circ} \mathrm{C}$), LiHMDS ($6.59 \mathrm{~mL}, 6.81 \mathrm{mmol}$) in THF (25 mL), and ethyl iodide ($0.55 \mathrm{~mL}, 6.81 \mathrm{mmol}$), lactam 3 ($340 \mathrm{mg}, 58 \%$) and its 6-epi-3 diastereomer ($77 \mathrm{mg}, 13 \%$) were obtained after flash chromatography (85:15 to 8:2 hexane-EtOAc). ${ }^{32}$ 3: $[\alpha]^{22}{ }_{\mathrm{D}}-112.6$ (c 1.31, MeOH); IR (film) v 1654 (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.20(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.37-1.46 (m, 1H, CH2CH3), 1.56 (ddd, $J=14.0,4.6,3.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.64-1.69 (m, $1 \mathrm{H}, \mathrm{H}-8$), 1.72-1.81 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.88 (ddd, $J=14.0,13.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.27 (dddd, $J=13.2,4.6,4.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 3.72 (dd, $J=9.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 4.48$ (dd, $J=9.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.01(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 5.21 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.22-7.27$ (m, 3H, ArH), 7.30-7.34 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.0$ $\left(\mathrm{CH}_{3}\right), 25.6(\mathrm{C}-8), 28.2(\mathrm{C}-7), 33.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 42.2(\mathrm{C}-6), 58.6(\mathrm{C}-$ 3), 73.0 (C-2), 89.2 (C-8a), 126.0 (CH-Ar), 128.7 (CH-Ar), 127.4 (C-p), 139.9 (C-i), 174.3 (CO); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}$, 260.1645; found, 260.1642. 6-epi-3: $[\alpha]^{22}{ }_{\mathrm{D}}-$ 128.5 (c 0.48, MeOH); IR (film) v 1651 (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.90\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.15$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.54-1.74 (m, 4H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}-7, \mathrm{H}-8\right), 1.90-1.95(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-7$), 2.18-2.24 (m, 1H, H-8), 3.75 (dd, $J=8.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 4.49$ (dd, $J=8.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.01(\mathrm{dd}, J=8.6,4.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 5.23 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $7.23-7.27$ (m, 3H, ArH), 7.31-7.35 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.8$ $\left(\mathrm{CH}_{3}\right), 25.8(\mathrm{C}-8), 28.4(\mathrm{C}-7), 30.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 41.4(\mathrm{C}-6), 58.3(\mathrm{C}-$ 3), 72.9 (C-2), 88.8 (C-8a), 125.9 (CH-Ar), 128.8 (CH-Ar), 127.5 (C-p), 139.9 (C-i), 175.0 (NCO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}$, 260.1645; found, 260.1646 .
4.2.2. (3R,6S,8aS)-6-Allyl-6-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (4)

Following the general procedure, from a C-6 epimeric mixture of (3R,8aS)-6-allyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a] pyridine ${ }^{31}(601 \mathrm{mg}, 2.34 \mathrm{mmol})$ in THF $(6.2 \mathrm{~mL})$,

LiHMDS ($7.0 \mathrm{~mL}, 7.0 \mathrm{mmol}$) in THF ($26 \mathrm{~mL},-55^{\circ} \mathrm{C}$), and methyl iodide ($0.49 \mathrm{~mL}, 7.87 \mathrm{mmol}$), lactam $4(400 \mathrm{mg}, 63 \%$) and its 6-epi-4 diastereomer ($97 \mathrm{mg}, 15 \%$) were obtained after flash chromatography (9:1 to 8:2 hexane-EtOAc). 4: $[\alpha]^{22} \mathrm{D}-167.9$ (c 1.04, MeOH); IR (film) v $1641(\mathrm{NCO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, COSY, g-HSQC) $\delta 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.52-1.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$, 1.64-1.73 (m, 1H, H-8), 1.94 (ddd, $J=13.6,4.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.16-2.22 (m, 1H, H-8), 2.34 (dd, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 2.43 (dd, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 3.75 (dd, $J=8.8,8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.49$ (dd, $J=8.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.01 (dd, $J=$ $8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.07-5.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right.$), $5.23(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.75-5.86 (m, 1H, CH=), 7.23-7.28 (m, 3H, ArH), 7.31-7.35 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.6$ (C-8), 26.2 $\left(\mathrm{CH}_{3}\right), 28.6(\mathrm{C}-7) .41 .3(\mathrm{C}-6), 42.2\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 58.3(\mathrm{C}-3), 72.9$ (C-2), 88.8 (C-8a), $118.3\left(\mathrm{CH}_{2}=\right), 125.9$ (CH-Ar), $128.8(\mathrm{CH}-\mathrm{Ar})$, 127.5 (C-p), 134.0 (CH=), 139.7 (C-i), 174.3 (CO); HRMS (ESITOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}, 272.1645$; found, 272.1642. 6-epi-4: $[\alpha]^{22}$ D -65.7 (c 0.83, MeOH); IR (film) v 1652 (NCO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) $\delta 1.24$ (s, 3H, CH_{3}), 1.55-1.62 (m, 1H, H-7), 1.64-1.71 (m, 1H, H-8), 1.93 (td, J $=13.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.11 (dd, $J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 2.23-2.29 (m, 1H, H-8), 2.52 (ddt, $J=13.6,6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=$), 3.72 (dd, $J=9.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.49 (dd, $J=9.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.98 (dd, $J=9.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), $5.02-5.10$ (m, 2H, CH2 $=$), 5.21 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.63 (dddd, $J=16.8$, $10.4,8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 7.24-7.28 (m, 3H, ArH), 7.31-7.35 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.0\left(\mathrm{CH}_{3}\right), 25.4(\mathrm{C}-8), 28.5$ (C-7), 41.8 (C-6), 45.2 ($\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 58.5$ (C-3), 73.0 (C-2), 89.0 (C8a), $118.6\left(\mathrm{CH}_{2}=\right), 126.0(\mathrm{CH}-\mathrm{Ar}), 128.7$ ($\left.\mathrm{CH}-\mathrm{Ar}\right), 127.5(\mathrm{C}-p)$, 133.8 (CH=), 139.7 (C-i), 173.6 (CO); HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}$, 272.1645; found, 272.1643.
4.2.3. (3R,6S,8aS)-6-Methyl-5-oxo-3-phenyl-6-[3-(trimethylsilyl)-2-propynyl]-2,3,6,7,8,8a-hexa-hydro-5H-oxazolo[3,2-a]pyridine (5)

A solution of lactam $\mathbf{1 b}^{6}(1.02 \mathrm{~g}, 4.69 \mathrm{mmol})$ in anhydrous THF $(12 \mathrm{~mL})$ was added to a cooled solution $\left(-78^{\circ} \mathrm{C}\right)$ of LiHMDS ($7.03 \mathrm{~mL}, 7.03 \mathrm{mmol}$) in anhydrous THF (39 mL). After stirring the solution at this temperature for $1 \mathrm{~h}, 3$-bromo-1-(trimethylsilyl)-1-propyne ($1.92 \mathrm{~mL}, 11.7 \mathrm{mmol}$) was added, and stirring was continued for 2 h . The reaction was quenched by the addition of saturated aqueous NaCl , and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (9:1 to $8: 2$ hexaneEtOAc) of the residue afforded ($3 R, 6 R, 8 \mathrm{aS}$)-5-oxo-3-phenyl-6-[3-(trimethylsilyl)-2-propynyl]-2,3,6,7,8,8a-hexahydro-5H-oxazolo-[3,2-a]pyridine ($811 \mathrm{mg}, 53 \%$), its C-6 epimer ($138 \mathrm{mg}, 9 \%$), and the 6,6-dialkylated lactam ($91 \mathrm{mg}, 4 \%$). ($3 R, 6 R, 8 \mathrm{aS}$): $[\alpha]^{22} \mathrm{D}+$ 23.1 (c 1.01, MeOH); IR (film) v 2174 (C $=\mathrm{C}$), 1657 (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.16\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.54-$ 1.64 (m, 1H, H-8), 1.91 (dddd, $J=14.1,14.1,11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7), 2.11-2.18 (m, 1H, H-7), 2.40-2.46 (m, 1H, H-8), 2.46-2.53 (m, $1 \mathrm{H}, \mathrm{H}-6$), 2.69-2.71 (m, 2H, CH2C CH^{2}), $3.73(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 4.52 (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.02$ (dd, $J=9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 8a), 5.25 (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.24-7.27 (m, 3H, ArH), 7.31$7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.1\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 22.4(\mathrm{C}-7)$, $23.2\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right), 28.1(\mathrm{C}-8), 40.8(\mathrm{C}-6), 58.5(\mathrm{C}-3), 72.9(\mathrm{C}-2), 87.0$ ($\equiv \mathrm{CCH}_{2}$), 88.8 (C-8a), 103.9 ($\equiv \mathrm{CSi}$), 125.7 (CH-Ar), 128.8 (CHAr), 127.5 (C-p), 139.3 (C-i), 169.7 (CO); HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}$, 328.1727; found, 328.1729. (3R,6S,8aS): $[\alpha]^{22} \mathrm{D}-179.3$ (c 1.02, MeOH); IR (film) v 2174 (C $\equiv \mathrm{C}$), 1655 (NCO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) δ 0.15 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.96-2.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 7), 2.21-2.28 (m, 1H, H-8), 2.45 (dd, $J=16.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C} \equiv$), 2.54-2.60 (m, 1H, H-6), 2.83 (dd, $J=16.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}$,
$\mathrm{CH}_{2} \mathrm{C} \equiv$), 3.79 (dd, $J=8.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.47 (dd, $J=8.9$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.03$ (dd, $J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), $5.24(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.24-7.28$ (m, 3H, ArH), 7.32-7.3 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.05\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 21.2(\mathrm{C}-7), 22.2\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right), 25.7$ (C-8), 39.2 (C-6), $58.4(\mathrm{C}-3), 72.4(\mathrm{C}-2), 86.5\left(\equiv \mathrm{CCH}_{2}\right), 88.5(\mathrm{C}-$ 8a), 104.9 ($\equiv \mathrm{CSi}$), 126.3 (CH-Ar), 128.8 (CH-Ar), 127.7 (C-p), 139.5 (C-i), 170.0 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}$, 328.1727; found, 328.1731. Dialkylated lactam: $[\alpha]^{22}{ }^{2}-42.3$ (c 0.63, MeOH); IR (film) $v 2175$ (C $=\mathrm{C}$), 1656 (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (CDCl 3 , COSY, g-HSQC) $\delta 0.12\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 0.13 [s, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.72-1.82$ (m, 1H, H-8), 2.10-2.15 (m, 1H, H7), 2.20-2.30 (m, 2H, H-7, H-8), 2.52-2.53 (m, 2H, CH2C ${ }^{2}$), 2.54 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv$), $2.66\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv\right.$), 3.67 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.46 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.99 (dd, $J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 5.13 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $7.19-$ $7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.01\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 0.20$ [$\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 25.0(\mathrm{C}-7), 26.0(\mathrm{C}-8), 28.7\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right), 29.7\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right)$, 45.0 (C-6), 59.3 (C-3), $73.0(\mathrm{C}-2), 87.8\left(\equiv \mathrm{CCH}_{2}\right)$, $88.7\left(\equiv \mathrm{CCH}_{2}\right)$, 89.0 (C-8a), 102.5 ($\equiv \mathrm{CSi}$), 103.4 ($\equiv \mathrm{CSi}$), 125.8 (CH-Ar), 128.8 (CH-Ar), 127.5 (C-p), 138.9 (C-i), 171.0 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{3} \mathrm{NO}_{2} \mathrm{Si}_{2}$, 439.2279; found, 439.2281.

Following the general procedure, from a C-6 epimeric mixture of the above lactams ($316 \mathrm{mg}, 0.97 \mathrm{mmol}$) in THF (2.5 mL), LiHMDS ($2.91 \mathrm{~mL}, 2.91 \mathrm{mmol}$) in THF (11 mL), and methyl iodide ($0.17 \mathrm{~mL}, 2.8 \mathrm{mmol}$), lactam 5 ($145 \mathrm{mg}, 43 \%$) and its 6-epi-5 diastereomer ($92 \mathrm{mg}, 28 \%$) were obtained after flash chromatography (hexane to $85: 15$ hexane-EtOAc). 5: $[\alpha]^{22}{ }_{\mathrm{D}}-$ 163.0 (c 1.12, MeOH); IR (film) v 2174 (C $=\mathrm{C}$), 1651 (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.16\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.27$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.57-1.66 (m, 1H, H-7), 1.72-1.82 (m, 1H, H-8), 2.212.28 (m, 2H, H-7, H-8), 2.54 (d, J = $17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv$), 2.59 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv$), 3.75 (dd, $J=9.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.49 (dd, $J=9.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.03 (dd, $J=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-8 \mathrm{a}), 5.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.22-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.05\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 25.7(\mathrm{C}-8), 26.0\left(\mathrm{CH}_{3}\right), 28.6(\mathrm{C}-7)$, $28.9\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right)$, 41.3 (C-6), $58.4(\mathrm{C}-3), 72.9(\mathrm{C}-2), 87.6\left(\equiv \mathrm{CCH}_{2}\right)$, 89.0 (C-8a), 103.5 ($\equiv \mathrm{CSi}$), 126.0 (CH-Ar), 128.8 (CH-Ar), 127.6 (C-p), 139.5 (C-i), 173.4 (CO); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}$, 342.1884; found, 342.1886. 6-epi-5: $[\alpha]^{22}{ }_{\mathrm{D}}$ + 11.5 (c 1.05, MeOH); IR (film) v 2171 (C $\equiv \mathrm{C}$), 1635 (NCO) cm^{-} ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.16\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.26$ (s, 3H, CH3), 1.64-1.72 (m, 1H, H-8), 1.74-1.79 (m, 1H, H-7), 2.21 (td, $J=14.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.29-2.34 (m, 1H, H-8), 2.37 (d, J $\left.=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv\right), 2.68\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv\right), 3.73$ (dd, $J=9.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.51 (dd, $J=9.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.01 (dd, $J=9.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 5.20 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.23-7.28 (m, 3H, ArH), 7.30-7.35 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.1\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 24.7\left(\mathrm{CH}_{3}\right), 25.6(\mathrm{C}-8), 28.8(\mathrm{C}-7), 31.8$ $\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right), 41.9(\mathrm{C}-6), 58.9(\mathrm{C}-3), 73.0(\mathrm{C}-2), 87.4\left(\equiv \mathrm{CCH}_{2}\right), 88.9$ (C-8a), 103.5 ($\equiv \mathrm{CSi}), 125.8$ (CH-Ar), 128.8 (CH-Ar), 127.5 (C-p), 139.3 (C-i), 172.7 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}$, 342.1884; found, 342.1888.

4.3. General procedure for $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$-promoted opening of the oxazolopiperidone lactams

n-BuLi (1.6 M or 2.5 M in hexanes, 4.3 mmol) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(4.3 \mathrm{mmol})$ in anhydrous THF at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and at rt for 15 min . The resulting mixture was added to a solution of the lactam $2,3,4$ or 5 (1.0 mmol) in anhydrous THF, and stirring was continued at $40^{\circ} \mathrm{C}$ for 1 h or 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the obtained solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated, and the residue was purified by flash chromatography.

4.3.1. (S)-2-Benzyl-2-ethyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (6)

Following the general procedure, from lactam $2(356 \mathrm{mg}, 1.06$ mmol) in THF (2.5 mL), $n-\mathrm{BuLi}$ (1.83 mL of a 2.5 M solution in hexanes, 4.56 mmol$)$, and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(141 \mathrm{mg}, 4.56 \mathrm{mmol})$ in THF (5 mL), aminoalcohol 6 ($250 \mathrm{mg}, 69 \%$) was obtained after flash chromatography (EtOAc to 8:2 EtOAc-EtOH): ${ }^{8}[\alpha]^{22}{ }_{D}-28.4$ (c $0.96, \mathrm{CHCl}_{3}$); IR (film) v $3384(\mathrm{OH}, \mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, COSY, g-HSQC) $\delta 0.89\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.20(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-3$), 1.22-1.30 (m, 2H, H-4), 1.41-1.53 (m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), 2.45-2.49 (m, 2H, H-5), 2.52 (d, J= 13.2 Hz, 1H, CH2Ar), 2.60 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 3.28 (brs, 2H, H-1), 3.58 (dd, $J=11.0$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.72 (dd, $J=11.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.78 (dd, $J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 7.16-7.37(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.6\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 24.8(\mathrm{C}-3), 30.4(\mathrm{C}-$ 4), $39.9\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.5(\mathrm{C}-2), 47.9(\mathrm{C}-5), 64.7$ (CHN), $65.4(\mathrm{C}-1)$, $66.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.9(\mathrm{C}-p), 127.3(\mathrm{CH}-\mathrm{Ar}), 127.7(\mathrm{C}-p), 127.9$ (CH-Ar), 128.7 (CH-Ar), 130.4 (CH-Ar), 138.6 (C-i), 140.4 (C-i), HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2}, 342.2428$; found, 342.2425.

4.3.2. (S)-2-Ethyl-5-\{[(1R)-2-hydroxy-1-phenyl-ethyl]amino\}-2-methyl-1-pentanol (7)

Following the general procedure, from lactam 3 ($364 \mathrm{mg}, 1.4$ mmol) in THF (1.75 mL), $n-\mathrm{BuLi}(3.8 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 6.02 mmol$)$, and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(186 \mathrm{mg}, 6.02 \mathrm{mmol})$ in THF (3.5 mL), aminoalcohol 7 ($324 \mathrm{mg}, 87 \%$) was obtained after flash chromatography (2:8 hexane-EtOAc to 8:2 EtOAc-EtOH): $[\alpha]^{22}{ }_{\mathrm{D}}$ - 33.9 (c 0.99, MeOH); IR (film) v $3346(\mathrm{OH}, \mathrm{NH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.80(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.22-1.27 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}-3$), 1.37-1.49 (m, 2H, H-4), 2.46-2.55 (m, 2H, H-5), 2.97 (brs, 3H, OH, NH), 3.29 (d, J $=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.35(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.61$ (brt, $J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.72 (dd, $J=10.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.79 (dd, $J=8.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), $7.26-7.37$ (m, $5 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right), 23.5(\mathrm{C}-4), 28.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 33.0 (C-3), 37.3 (C-2), 47.9 (C-5), 64.7 (CHN), $66.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.5$ (C-1), 127.3 (CH-Ar), 128.7 (CH-Ar), 127.7 (C-p), 140.0 (C-i); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2}, 266.2115$; found, 266.2111 .

4.3.3. (S)-2-Allyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino \}-2-methyl-1-pentanol (8)

Following the general procedure, from lactam 4 ($464 \mathrm{mg}, 1.71$ mmol) in THF (2.2 mL), n-BuLi (4.6 mL of a 1.6 M solution in hexanes, 7.35 mmol), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(227 \mathrm{mg}, 7.35 \mathrm{mmol})$ in THF (4.5 mL), aminoalcohol 8 ($326 \mathrm{mg}, 69 \%$) was obtained after flash chromatography (2:8 hexane-EtOAc to 9:1 EtOAc-MeOH): $[\alpha]^{22}$ D -41.3 (c 0.79, MeOH); IR (film) v 3355 (OH, NH) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.33(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3$), 1.41-1.53 (m, 2H, H-4), 1.99 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 2.51 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5$), 3.33 (s, 2H, H-1), 3.36 (brs, 3H, NH and OH), 3.63 (dd, $J=10.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.73 (dd, $J=10.9$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.81 (dd, $J=9.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 5.01 (s, $1 \mathrm{H}, \mathrm{CH}_{2}=$), $5.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.74-5.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 7.27-7.37$ (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.4\left(\mathrm{CH}_{3}\right), 23.3(\mathrm{C}-4), 33.5$ (C-3), 37.8 (C-2), $41.7\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 47.7$ (C-5), 64.7 (CHN), 66.2 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.5(\mathrm{C}-1), 117.2\left(\mathrm{CH}_{2}=\right), 127.3(\mathrm{CH}-\mathrm{Ar}), 128.7(\mathrm{CH}-\mathrm{Ar})$, 127.8 (C-p), 134.9 ($\mathrm{CH}=$), 139.5 (C-i); HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{2}$, 278.2115; found, 278.2108.

Abstract

4.3.4. (S)-5-\{[(1R)-2-hydroxy-1-phenylethyl]-amino\}-2-methyl-2-[3-(trimethylsilyl)-2-propyny1]-1-pentanol (9)

Following the general procedure, from lactam 5 ($312 \mathrm{mg}, 0.91$ $\mathrm{mmol})$ in THF (1.15 mL), $n-\operatorname{BuLi}(2.44 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 3.91 mmol), and $\mathrm{NH}_{3} . \mathrm{BH}_{3}(121 \mathrm{mg}, 3.91 \mathrm{mmol})$ in THF (2.3 mL), aminoalcohol 9 ($181 \mathrm{mg}, 60 \%$) was obtained after flash chromatography ($2: 8$ hexane-EtOAc to $9: 1$ EtOAc-MeOH). Attempts to obtain pure compound 9 (successive chromatographic columns) were unsuccessful: IR (film) v 3312 (OH, NH), 2172 $(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.13[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.27-1.50 (m, 4H, H-4 and $\left.\mathrm{CH}_{2} \mathrm{C} \equiv\right)$, 2.15 (t, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$), 2.54 (brm, 2H, H-5), 2.82 (brs, 3 H , OH, NH), 3.43 (s, 2H, H-1), 3.63-3.80 (m, 3H, CH2CHO), 7.23$7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.11\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 14.0\left(\mathrm{CH}_{3}\right)$, 23.6 (C-4); 25.7 (C-3); 28.5 ($\mathrm{CH}_{2} \mathrm{C} \equiv$); 37.8 (C-2); 47.8 (C-5); 62.6 (CHN); $66.4\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 68.4(\mathrm{C}-1) ; 86.9\left(\mathrm{C} \equiv \mathrm{CH}_{2}\right) ; 104.7(\equiv \mathrm{CSi})$, 127.3 (CH-Ar), 128.7 (CH-Ar), 127.6 (C-p), 139.5 (C-i); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}, 348.2353$; found, 348.2368.

4.4. (S)-2-Benzyl-5-[(tert-butoxycarbonyl)amino]-2-ethyl-1pentanol (10)

To a solution of aminodiol $6(200 \mathrm{mg}, 0.59 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(16 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}$ on activated charcoal. The suspension was hydrogenated at $75^{\circ} \mathrm{C}$ for 22 h under 5 bar of pressure. Then, di-tert-butyl dicarbonate ($141 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added, and the mixture was stirred at rt for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to 8:2 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right)$ afforded alcohol 10 ($96 \mathrm{mg}, 50 \%$) $:^{8}[\alpha]^{22}{ }_{\mathrm{D}}+8.09$ (c 2.25, CHCl_{3}); IR (film) $v 3365$ (OH, NH) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.81(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.09-1.21 (m, 4H, H-3, CH $\mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.37 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.41-1.47$ (m, 2H, H-4), 1.85 (brs, 1H, OH), 2.50 (brs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 2.97-3.05 (m, 2H, H-5), 3.21 (s, 2H, H-1), 4.63 (brs, 1H, NH), 7.10-7.13 (m, 3H, ArH), 7.17-7.21 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 7.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 23.7(\mathrm{C}-4), 25.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 28.4$ [$\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 29.7(\mathrm{C}-3), 40.0\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.1(\mathrm{C}-5), 41.2(\mathrm{C}-2), 65.6$ (C-1), $79.1\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 125.9(\mathrm{C}-p), 127.9(\mathrm{CH}-\mathrm{Ar}), 130.3(\mathrm{CH}-\mathrm{C}}\right.$ Ar), 138.5 (C-i), 156.1 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3}$, 322.2377; found, 322.2374.
4.5. General procedure for oxidative removal of the chiral inductor under m-CPBA conditions

Step 1: Silyl chloride (2.0 or 2.5 mmol) was added to a stirring solution of the aminodiol 6 or $7(1 \mathrm{mmol})$ and imidazole (2.5 or 3.0 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the mixture was stirred overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography gave the corresponding bis-TBDPS ether.

Step 2: A solution of the above bis-TBDPS ether (1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a solution of m-CPBA ($4.2 \mathrm{mmol}, 70 \%$ purity) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred at reflux temperature for 3 h . The reaction was quenched by addition of saturated aqueous NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the residue was purified by flash chromatography.
4.5.1. (S)-4-Benzyl-5-[(tert-butyldiphenylsilyl)oxy]-4-ethylpentanoic acid (11)

Step 1: Operating as in the above general procedure, from aminodiol 6 ($240 \mathrm{mg}, 0.70 \mathrm{mmol}$), tert-butyldiphenylsilyl chloride ($0.37 \mathrm{~mL}, 1.41 \mathrm{mmol}$), and imidazole ($144 \mathrm{mg}, 2.11 \mathrm{mmol}$) in refluxing anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL), the corresponding bisTBDPS ether was obtained ($414 \mathrm{mg}, 72 \%$) after column chromatography (hexane to $95: 5$ hexane-EtOAc): ${ }^{9}[\alpha]^{22}$ D -5.67 (c 1.15, CHCl_{3}); IR (film): v $3070(\mathrm{OH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, COSY, g-HSQC) $\delta 0.86\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.18[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.19-1.26$ (m, 2H, H-3), 1.27 [s, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.31-1.38$ (m, 1H, H-2), 1.39-1.48 (m, 2H, H-2, CH2CH3), 1.53-1.64 (m, 1H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.50-2.54 (m, 2H, H-1), $2.75(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar}$), $2.81\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.38(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$), 3.42 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $3.80-3.84$ (m, 2H, CH2O), 3.89 (dd, $J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 7.34-7.40(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$, 7.44-7.56 (m, 12H, ArH), 7.72-7.76 (m, 4H, ArH), 7.78-7.81 (m, $4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.2$ and 19.4 $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.4(\mathrm{C}-2), 26.9$ and $27.1\left[\left(\mathrm{CH}_{3}\right)_{3}\right]$, $30.0(\mathrm{C}-3), 39.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.8$ (C-1), 48.5 (C-4), 65.0 (CHN), 66.1 (C-5), $68.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7$ ($\left.\mathrm{CH}-\mathrm{Ar}\right), 127.2$ (CH-Ar), 127.5 (CHAr), 127.6 (CH-Ar), 127.7 (CH-Ar), 128.2 (CH-Ar), 129.6 (CHAr), 129.6 (CH-Ar), 129.7 (CH-Ar), 130.5 (CH-Ar), 133.3 (C-i), 133.4 (C-i), 133.8 (C-i), 135.5 (CH-Ar), 135.5 (CH-Ar), 135.8 (CH-Ar), 135.9 (CH-Ar), 138.8 (C-i); HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{NO}_{2} \mathrm{Si}_{2}$, 818.4783; found, 818.4773.

Step 2: Following the general procedure, from the above bisTBDPS ether ($300 \mathrm{mg}, 0.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}$) and mchloroperbenzoic acid ($380 \mathrm{mg}, 1.55 \mathrm{mmol}, 70 \%$ of purity) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$, carboxylic acid $\mathbf{1 1}(130 \mathrm{mg}, 75 \%)$ was obtained after flash chromatography ($1: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc): ${ }^{9}[\alpha]^{22}{ }_{\mathrm{D}}+2.52$ (c 0.65 in CHCl_{3}); IR (film) v $3074(\mathrm{OH})$, 1707 (CO) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, ~ g$-HSQC) $\delta 0.83$ (t, J $\left.=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.19\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.22(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.54 (ddd, $J=14.0,14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.63 (ddd, $J=14.0,14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.06-2.14 (m, 1H, H-2), 2.18-2.27 (m, 1H, H-2), $2.66\left(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.72(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 3.29 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.34 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.18-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.40-7.49$ (m, 6H, $\mathrm{ArH}), 7.69-7.72(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.4\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 24.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 27.2\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 27.8 ~}^{\text {l }}\right.$ (C-3), 28.4 (C-2), 39.6 ($\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 41.5$ (C-4), 65.9 (C-5), 126.0 (Cp), 127.6 (CH-Ar), 127.7 (CH-Ar), 127.8 (CH-Ar), 129.7 (C-p), 129.7 (C-p), 130.5 (CH-Ar), 133.4 (C-i), 133.5 (C-i), 135.8 (CHAr), 135.9 (CH-Ar), 138.1 (C-i), 180.5 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}$, 475.2663; found, 475.2667.
4.5.2. (S)-5-[(tert-Butyldiphenylsilyl)oxy]-4-ethyl-4-methylpentanoic acid (13)

Step 1: Operating as in the general procedure, from aminodiol 7 ($706 \mathrm{mg}, 2.66 \mathrm{mmol}$), tert-butyldiphenylsilyl chloride (1.76 mL , 6.65 mmol), and imidazole ($453 \mathrm{mg}, 6.65 \mathrm{mmol}$) in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$), the corresponding bis-TBDPS ether (1.33 g , 67%) was obtained after flash chromatography (99:1 to 9:1 hexane-EtOAc): $[\alpha]^{22} \mathrm{D}-15.1$ (c $2.15, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, COSY, g-HSQC) $\delta 0.75\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.04\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.05\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.18-1.41(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}-2, \mathrm{H}-3\right), 2.37-2.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.30(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5)$, $3.40(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.66-3.69 (m, 2H, $\mathrm{CH}_{2} \mathrm{O}$), 3.75-3.78 (m, 1H, CHN), 7.21 (m, 5H, ArH), 7.31-7.43 $(\mathrm{m}, 12 \mathrm{H}, \mathrm{ArH}), 7.59-7.66(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.9$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.7\left(\mathrm{CH}_{3}\right), 24.2(\mathrm{C}-$ 2), $26.8\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 26.9\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 33.6(\mathrm{C}-3), 37.8$ (C-4), 48.8 (C-1), 65.2 (CHAr), $68.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.8(\mathrm{C}-5), 127.2$ (C-p), 127. 5 (CH-Ar), 127.6 (CH-Ar), 128.2 (CH-Ar), 129.5 (Cp), 129.6 (C-p), 129.7 (CH-Ar), 133.3 (C-i), 133.5 (C-i), 133.9 (Ci), 135.6 (CH-Ar), 135.7 (CH-Ar); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{NO}_{2} \mathrm{Si}_{2}$, 742.447; found, 742.4464.

Step 2: Following the general procedure, from the above bisTBDPS ether ($306 \mathrm{mg}, 0.41 \mathrm{mmol}$) and m-CPBA ($426 \mathrm{mg}, 1.72$ $\mathrm{mmol}, 70 \%$ purity) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL), carboxylic acid 13 (114.5 $\mathrm{mg}, 70 \%$) was obtained after flash chromatography (1:1 to 1:9 hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $[\alpha]^{22}{ }^{\mathrm{D}}-0.53$ (c 1.23, MeOH); IR (film) v 1708 (CO) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, COSY, g-HSQC) $\delta 0.79(\mathrm{t}, J=7.6$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.28-$ 1.37 (m, 2H, CH2CH3), 1.68 (m, 2H, H-3), 2.27 (m, 2H, H-2), 3.33 (m, 2H, H-5), 7.37-7.46 (m, 6H, ArH), 7.66-7.68 (m, 4H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.1\left(\mathrm{CH}_{3}\right)$, $26.9\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.9(\mathrm{C}-2), 30.9(\mathrm{C}-3), 37.5(\mathrm{C}-4)$, 69.2 (C-5), 127.6 (CH-Ar), 129.6 (CH-Ar), 133.6 (C-i), 135.7 (CH-Ar), 180.8 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}$, 397.2204; found, 397.2205.

4.6. General procedure for reductive removal of the chiral inductor under $\mathrm{Na} / l i q$. NH_{3} conditions

Step 1: Di-tert-butyl dicarbonate (1.6 or 2.0 mmol) was added at rt to a stirring solution of aminodiol 7 or $\mathbf{8}(1 \mathrm{mmol})$ in anhydrous MeOH , and the resulting mixture was stirred for 20 h . The solution was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to give the corresponding N-Boc derivative, which was purified by flash chromatography.

Step 2: Liquid ammonia was condensed at $-78^{\circ} \mathrm{C}$ in a threenecked flask equipped with a cold finger condenser charged with dry ice-acetone, and then a solution of the above N -Boc derivative (1 mmol) in ahydrous THF was added. The temperature was raised to $-33^{\circ} \mathrm{C}$ and sodium metal was added in small portions until the blue color persisted. The mixture was briefly stirred at $-33^{\circ} \mathrm{C}$. The reaction was quenched by the addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue color disappeared, and the mixture was stirred at rt for 4 h. The residue was digested at rt with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting suspension was filtered through Celite ${ }^{\circledR}$. The solution was concentrated under reduced pressure and the crude N-Boc aminopentanol was purified by flash chromtography.

4.6.1. (S)-5-[(tert-Butoxycarbonyl)amino]-2-ethyl-2-methyl-1-pentanol (12)

Step 1: Following the above general procedure, from aminodiol 7 ($548 \mathrm{mg}, 1.99 \mathrm{mmol}$) and $\mathrm{BoC}_{2} \mathrm{O}$ ($696 \mathrm{mg}, 3.18 \mathrm{mmol}$) in MeOH (40 mL), the N-Boc derivative ($500 \mathrm{mg}, 66 \%$) was obtained after flash chromatography (9:1 to $1: 1$ hexane-EtOAc): $[\alpha]^{22}$ D -32.4 (c 1.12, CHCl_{3}); IR (film) v $3418(\mathrm{OH}), 1667(\mathrm{NCO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.75(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $1.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.18(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.18 (ms, $1 \mathrm{H}, \mathrm{H}-4$), 1.38 (m, $1 \mathrm{H}, \mathrm{H}-4$), $1.48[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 2.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.22(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.26 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 5.09 (m, 1H, CHN), 7.26-7.36 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.8\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 23.4(\mathrm{C}-4), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 32.8$ (C-3), 37.1 (C-2), 46.4 (C-5), 61.6 (CHN), 63.2 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.9(\mathrm{C}-1), 80.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 127.6(\mathrm{C}-p), 128.6(\mathrm{CH}-\mathrm{Ar}) \text {, }}\right.$
138.2 (C-i), 157.1 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{4}, 366.2639$; found, 366.2639 .

Step 2: Following Step 2 of the general procedure, from the above N-Boc derivative ($333 \mathrm{mg}, 0.91 \mathrm{mmol}$) in THF (5 mL), liquid ammonia (20 mL), and sodium (stirring the blue mixture for 1 min), compound 12 (134 mg, 60\%) was obtained after flash chromatography ($9: 1$ to $8: 2$ hexane-EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}+0.5$ (c 1.56, CHCl_{3}); IR (film) v $3354(\mathrm{OH}, \mathrm{NH}), 1693(\mathrm{NCO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.21-1.31 (m, 4H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}-4\right), 1,41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 3) $1.48\left[\mathrm{~s}, 9 \mathrm{H}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.33(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1)$, $3.36(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.2\left(\mathrm{CH}_{3}\right), 24.1(\mathrm{C}-3), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.5(\mathrm{C}-4), 32.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.1(\mathrm{C}-2), 41.4(\mathrm{C}-5), 69.0(\mathrm{C}-1), 79.1\left[C\left(\mathrm{CH}_{3}\right)_{3}\right]$, 156.1 (CO); HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 246.2064$; found 246.2069.
4.6.2. (S)-2-Allyl-5-[(tert-butoxycarbonyl)amino]-2-methyl-1-pentanol (15)

Step 1: Following the general procedure, from aminodiol 8 (326 $\mathrm{mg}, 1.17 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}$ ($513 \mathrm{mg}, 2.35 \mathrm{mmol}$) in MeOH (50 mL), the N-Boc derivative ($298 \mathrm{mg}, 67 \%$) was obtained after flash chromatography ($6: 4$ to $1: 1$ hexane-EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}-52.8$ (c 1.17, $\mathrm{MeOH})$; IR (film) v $3426(\mathrm{OH}), 1667(\mathrm{NCO}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99-1.13(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3), 1.20-1.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.35-1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.46[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.91\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.93(\mathrm{brm}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.05 (brm, 1H, H-5), 3.24 (s, 2H, H-1), 4.03-4.12 (m, 2H, $\mathrm{CH}_{2} \mathrm{O}$), 4.96-4.99 (m, $1 \mathrm{H}, \mathrm{CH}_{2}=$), $5.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.08$ (brs, 1 H , CHN), 5.67-5.78 (m, 1H, CH=), 7.24-7.27 (m, 3H, ArH), 7.30$7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.4\left(\mathrm{CH}_{3}\right), 23.4(\mathrm{C}-4)$, $28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 33.3(\mathrm{C}-3), 37.6(\mathrm{C}-2), 41.5\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 46.2(\mathrm{C}-5)$, $61.4(\mathrm{CHN}), 63.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.0(\mathrm{C}-1), 80.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 117.2$ $\left(\mathrm{CH}_{2}=\right), 127.6(\mathrm{CH}-\mathrm{Ar}), 128.5(\mathrm{CH}-\mathrm{Ar}), 134.9(\mathrm{CH}=), 138.2(\mathrm{C}-i)$, 156.7 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{4}$, 378.2639; found, 378.2651.

Step 2: Following Step 2 of the general procedure, from the above N-Boc derivative ($80 \mathrm{mg}, 0.21 \mathrm{mmol}$) in THF (6 mL), liquid ammonia (20 mL), and sodium (stirring the blue mixture for 8 seconds), compound 15 ($49 \mathrm{mg}, 90 \%$) was obtained after flash chromatography ($9: 1$ to $8: 2$ hexane-EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}+0.3$ (c 1.63, MeOH); IR (film) v 3357 (OH, NH), 1693 (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.27(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3), 1.41-1.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.43\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.87$ (brs, 1 H , NH), 2.01 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), $3.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, H-5), 3.34 (s, 2H, H-1), 4.59 (brs, $1 \mathrm{H}, \mathrm{OH}$), 5.03 (brs, $1 \mathrm{H}, \mathrm{CH}_{2}=$), 5.05-5.08 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2}=\right)$, 5.76-5.86 (m, $\left.1 \mathrm{H}, \mathrm{CH}=\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 24.1(\mathrm{C}-4), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 33.3(\mathrm{C}-3), 37.7$ $(\mathrm{C}-2, \mathrm{C}-5), 41.4\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 69.3(\mathrm{C}-1), 79.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 117.3$ $\left(\mathrm{CH}_{2}=\right), 134.9(\mathrm{CH}=), 156.1(\mathrm{CO})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NO}_{3}$, 258.2063; found, 258.2064.
4.7. (S)-5-[tert-Butyldiphenylsilyl)oxy]-4-ethyl-4-methylpentanenitrile (14)

A 20% aqueous solution of $\mathrm{NH}_{3}(14 \mathrm{~mL})$ and iodine $(875 \mathrm{mg}$, 3.43 mmol) were added to a solution of the bis-TBDPS ether derived from aminodiol 7 ($320 \mathrm{mg}, 0.43 \mathrm{mmol}$) in anhydrous THF $(2 \mathrm{~mL})$ at rt , and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h. The mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried, filtered, and concentrated. Flash chromatography (hexane to 8:2 hexane-EtOAc) of the residue gave nitrile 14 (123 $\mathrm{mg}, 75 \%$) as an
oil: $[\alpha]^{22}{ }_{\mathrm{D}}-2.00\left(c 1.85, \mathrm{CHCl}_{3}\right)$; IR (film) $v 2246(\mathrm{CN}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.31(\mathrm{q}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.73 (m, 2H, H-3), 2.19 (m, 2H, H-2), 3.28 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.32(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.39-7.47$ (m, 6H, ArH), 7.63-7.66 (m, 4H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.7$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $12.0(\mathrm{C}-2) 19.3\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 20.7\left(\mathrm{CH}_{3}\right), 26.9\left[\left(\mathrm{CH}_{3}\right)_{3}\right]$, $28.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 32.3(\mathrm{C}-3), 37.8(\mathrm{C}-4), 69.8(\mathrm{C}-5), 120.5(\mathrm{CN})$, 127.5 (CH-Ar), 129.8 (CH-Ar), 133.2 (C-i), 135.6 (C-m); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NOSi}$, 380.2404; found, 380.2406 .

4.8. Preparation of acyclic building blocks 19 and 20

4.8.1. (3S,6S,8aR)-6-\{3-[(tert-Butyldimethylsilyl)oxy] propyl\}-6-ethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (17a)

Step 1: 9-BBN (0.5 M in THF, $31.3 \mathrm{~mL}, 15.6 \mathrm{mmol}$) was added dropwise to a solution of lactam $16^{11 \mathrm{a}}(2.23 \mathrm{~g}, 7.82 \mathrm{mmol})$ in anhydrous THF (91 mL) under an argon atmosphere at $0^{\circ} \mathrm{C}$. The ice-water bath was removed and the mixture was stirred at rt for 2 h. After cooling the mixture to $0^{\circ} \mathrm{C}, 3 \mathrm{M}$ aqueous NaOH and 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ were added. Then, the mixture was allowed to slowly warm up until rt, stirred for 3 h , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (Biotage ${ }^{\circledR}$, $8: 2$ hexane-EtOAc) of the residue afforded (3S,6S,8aR)-6-(3-hydroxypropyl)-6-ethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine $(2.10 \mathrm{~g}, 89 \%)$ as a white crystalline solid: $[\alpha]^{22} \mathrm{D}+106.0$ (c 1.0, $\mathrm{MeOH})$; m.p. $106-108{ }^{\circ} \mathrm{C}$; IR (film) v $1644(\mathrm{CO}), 3507(\mathrm{OH}) \mathrm{cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.40-1.50 (m, 1H, CH2CH3), 1.50-1.70 (m, 5H, H-8, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.70-1.84\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 2.23 (m, 1H, H-8), 2.26 (ddt, $J=12.4,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 3.553.59 (m, 2H, CH2O), 3.73 (dd, $J=9.0,8.0, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.46 (dd, $J=9.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.03$ (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a})$, 5.18 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.31(\mathrm{~m}, 2 \mathrm{H}$, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.6\left(\mathrm{CH}_{3}\right), 25.6(\mathrm{C}-7), 26.5(\mathrm{C}-8), 27.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 32.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 34.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 44.8(\mathrm{C}-6)$, 58.9 (C-3), $62.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 73.0(\mathrm{C}-2), 89.0(\mathrm{C}-8 \mathrm{a}), 126.2(\mathrm{CH}-\mathrm{Ar})$, 127.5 (C-p), 128.7 (CH-Ar), 139.7 (C-i), 173.8 (CO); HRMS (ESITOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}, 304.1907$; found, 304.1908.

Step 2: Following the general procedure described in Step 1 of Section 4.5, from a solution of the above alcohol (4.02 g, 13.26 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(114 \mathrm{~mL})$, anhydrous triethylamine (7.4 mL , 53.0 mmol), and tert-butyldimethylsilyl chloride ($4.97 \mathrm{~g}, 33.5$ mmol) at rt, lactam $17 \mathrm{a}(5.10 \mathrm{~g}, 92 \%)$ was obtained as a colorless oil after flash chromatography ($8: 2$ hexane-EtOAc to EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}+121.0\left(c\right.$ 1.1, MeOH); IR (film) $v 1652(\mathrm{CO}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta-0.01\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.74(\mathrm{t}, J=$ $\left.7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.85\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.32-1.48(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.53-1.76\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-8, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.17-2.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.54(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.70(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.43(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 4.98 (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.16$ (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), 7.20-7.30 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $8.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.3(\mathrm{C}-7), 25.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.2$ $(\mathrm{C}-8), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $34.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 44.9 (C-6), 58.8 (C-3), $63.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 73.0(\mathrm{C}-2), 89.2(\mathrm{C}-8 \mathrm{a}), 126.2$ (CH-Ar), 127.4 (C-p), 128.7 (CH-Ar), 139.9 (C-i), 173.6 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{Si}$, 418.2772; found, 418.2774 .
4.8.2. (3S,6S,8aR)-6-\{3-[(tert-Butyldiphenylsilyl)-oxy]propyl\}-6-ethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (17b)

Following the general procedure described in Step 1 of Section 4.5, from (3S,6S,8aR)-6-(3-hydroxypropyl)-6-ethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (883 $\mathrm{mg}, 2.92 \mathrm{mmol}$), imidazole ($297 \mathrm{mg}, 4.36 \mathrm{mmol}$) and tertbutyldiphenylsilyl chloride ($1.13 \mathrm{~mL}, 4.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21$ mL) at rt , lactam $\mathbf{1 7 b}(1.75 \mathrm{~g}, 84 \%)$ was obtained as a colorless oil after flash chromatography (9:1 to 8:2 hexane-EtOAc) $[\alpha]^{22}{ }_{\mathrm{D}}+$ 87.3 (c 1.0, MeOH); IR (film) v $1652(\mathrm{CO}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.77$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.04 [s, 9 H , $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.33-1.42\left(\mathrm{dq}, J=14.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.46-1.57$ (m, 1H, CH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.59-1.81$ (m, 7H, H-7, H-8, $\mathrm{CH}_{2} \mathrm{CH}_{3}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.19-2.25 (m, 1H, H-8), $3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.73 (dd, $J=9.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.46 (dd, $J=9.2,8.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.01 (dd, $J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 5.19 (t, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.21-7.43 (m, 3H, ArH), 7.64-7.66 (m, 7H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.3(\mathrm{C}-7)$, $26.2(\mathrm{C}-8), 26.9\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 27.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $34.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 44.9(\mathrm{C}-6), 58.8(\mathrm{C}-3), 64.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 73.0(\mathrm{C}-2)$, 89.0 (C-8a), 126.2 (C-o), 128.7 (C-m), 129.5 (C-o), 134.0 (Cp), 134.0 (C-i), 135.0 (C-m), 139.9 (C-i), 173.6 (CO); HRMS (ESITOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{NO}_{3} \mathrm{Si}$, 542.3085; found, 542.3079.
4.8.3. (R)-2-\{3-[(tert-Butyldimethylsilyl)oxy]-propyl\}-5-\{[(1S)-2-hydroxy-1-phenylethyl]amino $\}$ -2-ethyl-1-pentanol (18a)

Following the general procedure described in Section 4.3, from lactam 17a ($396 \mathrm{mg}, 0.95 \mathrm{mmol}$) in THF (2 mL), n-BuLi (2.55 mL of a 1.6 M solution in hexanes, 4.08 mmol), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(126$ $\mathrm{mg}, 4.08 \mathrm{mmol}$) in THF (4 mL), aminoalcohol 18a ($261 \mathrm{mg}, 65 \%$) was obtained as a colorless oil after flash chromatography (EtOAc to 9:1 EtOAc-MeOH): $[\alpha]^{22}{ }_{\mathrm{D}}+3.9$ (c 1.0, MeOH); IR (film) v 3355 (OH, NH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.05[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.77\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.17-$ 1.25 (m, 6H, H-3, CH2CH3, CH2CH2CH2O), $1.38-1.46(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ 4, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.46-2.57 (m, 2H, H-5), 2.84 (brs, $3 \mathrm{H}, \mathrm{OH}$, NH), 3.34 (s, 2H, H-1), 3.57 (t, J = $6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}$), 3.62 (brd, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 3.72 (dd, $J=10.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OH}$), 3.79 (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 7.29-7.37 (m, 5 H , $\mathrm{Ar}-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $7.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.4$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.0(\mathrm{C}-4), 25.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.0\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 26.2(\mathrm{C}-3)$, $29.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 30.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.5(\mathrm{C}-2), 47.9$ $\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 63.9(\mathrm{C}-5), 64.7(\mathrm{CHN}), 65.9(\mathrm{C}-1), 66.4\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, 127.3 (CH-Ar), 127.8 (C-p), 128.7 (CH-Ar), 139.9 (C-i); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}, 424.3241$; found, 424.3241.
4.8.4. (R)-2-\{3-[(tert-Butyldiphenylsilyl)oxy]-propyl]\}-5-\{[(1S)-2-hydroxy-1-phenylethyl]amino\}-2-ethyl-1-pentanol (18b)

Following the general procedure described in Section 4.3, from lactam 17b ($299 \mathrm{mg}, 0.55 \mathrm{mmol}$) in THF (2 mL), $n-\operatorname{BuLi}(1.45 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 2.37 mmol), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(73 \mathrm{mg}$, 2.37 mmol) in THF (4 mL), aminoalcohol $\mathbf{1 8 b}$ ($197 \mathrm{mg}, 65 \%$) was obtained as a colorless oil after flash chromatography (EtOAc to 9:1 EtOAc-MeOH): $[\alpha]^{22}$ D +21.6 (c 1.0, MeOH); IR (film) $v 3346$ $(\mathrm{OH}, \mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.77(\mathrm{t}, \mathrm{J}=$
$\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05$ [s, 9H, $\left(\mathrm{CH}_{3}\right)_{3}$], 1.16-1.26 (m, 6H, H3, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.36-1.46 (m, $4 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.52 (m, 2H, H-5), 2.67 (brs, 3H, OH, NH), 3.32 (s, 2H, H-1), 3.62 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}, \mathrm{CHN}$), $3.73-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right.$), 7.37 (m, $11 \mathrm{H}, \mathrm{ArH}), 7.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $19.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 23.0(\mathrm{C}-4), 25.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 26.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $26.9\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.9(\mathrm{C}-3), 30.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.4(\mathrm{C}-2), 47.9(\mathrm{C}-$ 5), $64.6\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 64.7(\mathrm{CHN}), 65.9(\mathrm{C}-1), 66.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 127.3$ (C-p), 127.6 (CH-Ar), 127.8 (C-i), 128.7 (CH-Ar), 129.5 (CH-Ar), 134.0 (C-p), 135.6 (CH-Ar); HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{NO}_{3} \mathrm{Si}, 548.3554$; found, 548.3549 .
4.8.5. (R)-2-\{3-[(tert-Butyldimethylsilyl)oxy] propyl\}-5-[(tert-butoxycarbonyl)amino]-2-ethyl-1pentanol (19)

Step 1: Following the general procedure described in Section 4.6 , from aminodiol 18a ($372 \mathrm{mg}, 0.88 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(307 \mathrm{mg}$, 1.41 mmol) in $\mathrm{MeOH}(35 \mathrm{~mL}$), the N-Boc derivative (404 mg , 88%) was obtained as a colorless oil after flash chromatography (8:2 hexane-EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}+39.58$ (c 1.19, MeOH); IR (film) v $3421(\mathrm{OH}), 1669(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) $\delta 0.05\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.72\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.98-1.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.11-1.19(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}-3, \mathrm{H}-4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.32-1.39 (m, 3H, H-4, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.45 [s, 9H, OC($\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 2.19$ (brs, 2H, OH), 2.93 (brs, 1H, H-5), 3.04 (brs, 1H, H-5), 3.25 (s, 2H, H-1), 3.55 (dt, $J=4.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OSi}$), 4.08 (m, 2H, CH2OH), 5.11 (brs, $1 \mathrm{H}, \mathrm{CHN}$), 7.26 (m, $1 \mathrm{H}, \mathrm{ArH})$, $7.26-7.36(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3$ [$\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 7.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.9\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.0(\mathrm{C}-4), 25.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 26.0\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.4\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.0(\mathrm{C}-3)$, $30.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.2(\mathrm{C}-2), 46.2(\mathrm{C}-5), 61.5(\mathrm{CHN}), 63.2$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 63.9\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 66.0(\mathrm{C}-1), 80.1\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 127.6$ (CH-Ar), 128.5 (C-p), (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{NO}_{5} \mathrm{Si}$, 524.3766 ; found, 524.3763 .

Step 2: Following the general procedure described in Step 2 of Section 4.6, from the above N-Boc derivative ($466 \mathrm{mg}, 0.89 \mathrm{mmol}$) in THF (5 mL), liquid ammonia (20 mL), and sodium (stirring the blue mixture for 20 seconds), compound 19 ($337 \mathrm{mg}, 89 \%$) was obtained as a colorless oil after flash chromatography ($8: 2$ hexaneEtOAc): $[\alpha]^{22}$ D +8.3 (c 1.1, MeOH); IR (film) v $3420(\mathrm{OH}), 1668$ (CO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.05[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.78\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.18-1.26$ (m, 6H, H-3, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.44 [s, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.30-1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 1.70 (brs, $1 \mathrm{H}, \mathrm{OH}$), 3.07 (t, J = $6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5$), 3.35 (s, 2H, H-1), 3.58 (t, $\left.J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.56$ (brs, $1 \mathrm{H}, \mathrm{CH}$); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right)$ $\delta-5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 7.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.3\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.7(\mathrm{C}-4)$, $25.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 25.8\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.5$ [$\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$], $29.1(\mathrm{C}-3), 30.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.3(\mathrm{C}-2, \mathrm{C}-5), 63.8$ $\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 66.3(\mathrm{C}-1), 82.0\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 152.5(\mathrm{CO})$; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{Si}$, 404.3191; found, 404.3198.
4.8.6. (S)-4-\{3-[(tert-Butyldimethylsilyl)oxy] propyl\}-5-[(tert-butyldiphenylsilyl)oxy]-4-ethylpentanitrile (20)

Step 1: Following the general procedure described in Section 4.5 , from aminodiol 18a ($153 \mathrm{mg}, 0.36 \mathrm{mmol}$), tertbutyldiphenylsilyl chloride ($0.24 \mathrm{~mL}, 0.90 \mathrm{mmol}$), and imidazole ($61 \mathrm{mg}, 1.02 \mathrm{mmol}$) in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, the corresponding bis-TBDPS ether ($236 \mathrm{mg}, 73 \%$) was obtained as a colorless oil after flash chromatography (Biotage ${ }^{\circledR}$, 8:2 hexane-EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}$
+10.7 (c 1.4, CHCl_{3}); IR (film) $v 3335(\mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.05\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.72(\mathrm{t}, J=7.6$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.05[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSiPh}_{2}\right], 1.07$ [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSiPh}_{2}\right], 1.21-1.42(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-$ 2, H-3, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.97 (brs, NH), 2.40-2.46 (m, $2 \mathrm{H}, \mathrm{H}-1$), 3.32 (s, 2H, H-5), 3.56 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSi}$), 3.68 (m, 2H, CH2CH), 3.79 (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), $7.33-$ 7.43 (m, 15H, ArH), 7.61-7.66 (m, 10H, ArH); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$, $\delta-5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 7.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.4\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.2$ $\left[\mathrm{Ph}_{2} \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.4\left[\mathrm{PhSiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.7 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.0$ [$\left.\mathrm{MeSiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{C}-3\right)$, $26.7\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSiPh}\right]$, $27.0\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSiPh}\right], 29.4(\mathrm{C}-4), 31.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.7(\mathrm{C}-2), 48.7$ (C-5), $64.1\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 65.1(\mathrm{CHN}), 66.9(\mathrm{C}-1), 69.0\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, 127.2 (C-p), 127.6 (CH-Ar), 127.7 (CH-Ar), 127.7 (CH-Ar), 128.1 (C-p), 129.5 (C-p), 129.6 (C-p), 129.7, (C-p), 133.3(C-i), 133.5 (C-i), 133.9(C-i), 135.3 (C-i), 135.6 (CH-Ar), 135.7 (CH-Ar), 141.0 (C-i); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{56} \mathrm{H}_{82} \mathrm{NO}_{3} \mathrm{Si}_{3}, 900.5597$; found, 900.5589 .

Step 2: Operating as described in the preparation of nitrile 14, from a solution of the above bis-TBDPS ether ($206.9 \mathrm{mg}, 0.23$ mmol) in anhydrous THF (1 mL), aqueous $\mathrm{NH}_{3}(8 \mathrm{~mL})$, and iodine ($465 \mathrm{mg}, 1.83 \mathrm{mmol}$), nitrile 20 ($83 \mathrm{mg}, 67 \%$) was obtained after flash chromatography (9:1 hexane-EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}+9.7$ (c 1.0 in MeOH); IR (film) v 2247 (CN); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, g-$ HSQC) $\delta 0.03$ [s, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.73\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 0.88 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSiMe}\right], 1.08$ [s, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSiPh}\right), 1.16-1.38$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.67-1.72 (m, 2H, H-3), 2.09-2.41 (m, 2H, H-2), 3.28 (s, 2H, H-5), 3.54 (dt, $J=13.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSi}\right), 7.38-7.46(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.61-7.64(4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta-5.3\left(\mathrm{SiCH}_{3}\right), 7.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 11.7(\mathrm{C}-2), 18.3$ $\left[\begin{array}{llll}\left.\mathrm{MeC}\left(\mathrm{CH}_{3}\right)_{3}\right], & 19.3 \quad\left[\mathrm{PhC}\left(\mathrm{CH}_{3}\right)_{3}\right], \quad 25.4 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), & 26.0\end{array}\right.$ $\left[\mathrm{MeSiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 27.0\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSiPh}\right], 28.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $30.2(\mathrm{C}-3), 39.8(\mathrm{C}-4), 63.4\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 66.4(\mathrm{C}-5)$, 120.5 (C-1), 127.8 (CH-Ar), 129.8 (C-p), 133.2 (C-i), 135.7 (CHAr); HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{NO}_{2} \mathrm{Si}_{2}$, 538.3531; found, 538.3536.

4.9. Synthesis of Kerr's intermediate

4.9.1. (R)-5-[(tert-Butoxycarbonyl)amino]-2-\{3-[(tert-butyldimethylsilyl)oxy]propyl\}-2-ethylpentanal (21)

Dimethylsulfide ($0.49 \mathrm{~mL}, 6.63 \mathrm{mmol}$) was added under an argon atmosphere to a solution of freshly recrystallized N chlorosuccinimide ($177 \mathrm{mg}, 1.33 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7$ mL) at $-15{ }^{\circ} \mathrm{C}$. After the addition was completed, a white precipitate appeared and the mixture was stirred for an additional 30 min at $-15^{\circ} \mathrm{C}$. The temperature was lowered to $-78^{\circ} \mathrm{C}$, and a solution of alcohol 19 ($106 \mathrm{mg}, 0.27 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{CH}_{2}$ (2 mL) was added via a cannula. After 2 h of stirring, anhydrous TEA $(0.64 \mathrm{~mL})$ was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried, filtered, and concentrated to give crude aldehyde $21(110 \mathrm{mg})$ as colorless oil. Due to its instability, further purification was not performed: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.03$ [s, 6H, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.78\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.88[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)\right], 1.24-1.37$ (m, $6 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.43$1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.43$ [s, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $3.05-$ 3.11 (m, 2H, H-5), 3.57 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}$), $9.40(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-1)$.
4.9.2. (R)-5,5-bis-[(tert-Butoxycarbonyl)amino]-2-\{3-[(tert-butyldimethylsilyl)oxy]propyl\}-2-ethylpentanal (22)

Step 1: Following Step 1 of the general procedure described in Section 4.5, from a solution of alcohol 19 ($559 \mathrm{mg}, 1.39 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), imidazole (189 mg, 2.77 mmol), and chlorotriethylsilane ($0.28 \mathrm{~mL}, 1.66 \mathrm{mmol}$) at rt , the O-TES ether ($655 \mathrm{mg}, 91 \%$) was obtained as a colorless oil after flash chromatography (95:5 hexane-EtOAc): $[\alpha]^{22}{ }_{\mathrm{D}}-1.74$ (c 1.75, $\mathrm{MeOH})$; IR (film) $v 1674(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, g-$ HSQC) $\delta 0.42\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.57[\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\left.\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right]\right), 0.75\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)\right], 0.94\left[\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right], 1.24-1.37(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.43-1.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.43 [s, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.05-3.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5)$, 3.26 (s, 2H, H-1), 3.55 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.4\left[\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right], 6.8\left[\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right]$, $7.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1\left(95: 5\right.$ hexane-EtOAc) $8.3\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.9(\mathrm{C}-$ 4), $25.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.0\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 28.1$ [$\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $29.5(\mathrm{C}-3), 30.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.2(\mathrm{C}-2), 47.2(\mathrm{C}-5)$, $64.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.1(\mathrm{C}-1), 81.1\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.1(\mathrm{CO})$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{60} \mathrm{NO}_{4} \mathrm{Si}_{2}, 518.4055$; found, 518.4049.

Step 2: n-BuLi (0.61 mL of a 1.6 M solution in hexanes, 1.52 mmol) was added under an argon atmosphere at $0^{\circ} \mathrm{C}$ to a solution of the above O-TES ether ($655 \mathrm{mg}, 1.26 \mathrm{mmol}$) in anhydrous THF (6 mL), and the resulting solution was stirred at this temperature for 15 min . Then, a solution of $\mathrm{Boc}_{2} \mathrm{O}$ ($331 \mathrm{mg}, 1.52 \mathrm{mmol}$) in anhydrous THF (2 mL) was added, and the solution was allowed to warm slowly to rt. After stirring for $1 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}$ was added (5 mL) and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was further washed with brine, dried, filtered, and concentrated. Flash chromatography (98:2 to 95:5 hexane-EtOAc) afforded the bis- N Boc derivative ($664 \mathrm{mg}, 86 \%$) as a colorless oil: $[\alpha]^{22}$ D -0.42 (c 1.2, MeOH); IR (film) v 1698 (CO), 1749 (CO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}\right.$-HSQC) $\delta 0.30\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.57[\mathrm{q}, J=7.6$ $\left.\mathrm{Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{Si}\right], 0.75\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.88[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.94\left[\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 9 \mathrm{H},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{Si}\right], 1.12-1.25$ (m, 6H, H-3, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.37-1.47$ (m, $4 \mathrm{H}, \mathrm{H}-4$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.49\left\{\mathrm{~s}, 18 \mathrm{H},\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}, 3.26(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2)$, 3.48 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5$), $3.55\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3 \quad\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.4 \quad\left[\mathrm{Si}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)\right], 6.8$ [$\left.\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right], 7.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.3\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.9(\mathrm{C}-4), 25.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.0 \quad\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], \quad 26.6 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 28.1$ [$\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$], $29.5(\mathrm{C}-3), 30.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.2(\mathrm{C}-2), 47.2(\mathrm{C}-5)$, $64.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.1(\mathrm{C}-1), 81.1\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.1(\mathrm{CO})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Boc}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{60} \mathrm{NO}_{4} \mathrm{Si}_{2}, 518.4055$; found, 518.4048.

Step 3: A $6.2 \cdot 10^{-3} \mathrm{M}$ solution of FeCl_{3} in $\mathrm{MeOH}(0.27 \mathrm{~mL}$, $1.7 \cdot 10^{-3} \mathrm{mmol}$) was added under an argon atmosphere to a solution of the above bis- N-Boc derivative ($146 \mathrm{mg}, 0.24 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$. The mixture was stirred at rt for 1 h 45 \min and filtered through silica. The solvent was evaporated, and the residue was chromatographed (8:2 to 6:4 hexane/EtOAc) to give the aminopentanol ($95 \mathrm{mg}, 65 \%$) and the aminodiol (19 mg , 20\%) derivatives as colorless oils. Aminopentanol derivative: $[\alpha]^{22}{ }_{\mathrm{D}}-9.02$ (c 2.2, MeOH); IR (film) v 1697 (CO), 1732 (CO), $3488(\mathrm{OH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g-\mathrm{HSQC}\right) \delta 0.05[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.79\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)\right], 1.14-1.26$ (m, $6 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.37$1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.50\left\{\mathrm{~s}, 18 \mathrm{H},\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}$, 3.35 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-1$), 3.52 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5$), $3.58(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 7.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $18.3\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.7(\mathrm{C}-4), 25.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.0\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$,
$26.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 28.1\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.3(\mathrm{C}-3), 30.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.3(\mathrm{C}-2), 47.1(\mathrm{C}-5), 63.9\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 66.4(\mathrm{C}-1)$, $82.0\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 152.7$ (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Boc}]^{+}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{Si}$ 2, 404.3191; found, 404.3196. Aminodiol derivative: $[\alpha]^{22}$ D -0.26 (c 2.2, MeOH); IR (film) v 1696 (CO), $1731(\mathrm{CO}), 3427(\mathrm{OH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.77$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.11-1.29 (m, 6H, H-3, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.39-1.44 (m, 4H, H-4, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.44 $\left\{\mathrm{s}, 18 \mathrm{H},\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}, 2.44$ (brs, 2H, OH), 3.32 (s, 2H, H-1), 3.49 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.60\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 22.5(\mathrm{C}-4), 25.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 25.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.0\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.4(\mathrm{C}-3), 29.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.3$ (C-2), $47.0(\mathrm{C}-5), 63.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 65.7(\mathrm{C}-1), 82.2\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 152.8 (CO); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{2} \mathrm{H}_{40} \mathrm{NO}_{6}$, 390.2850; found, 390.2856.

Step 4: Dess-Martin periodinane ($154 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added at rt to a solution of the above aminopentanol ($73 \mathrm{mg}, 0.18$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the resulting mixture was stirred for 1 h 30 min . The solution was poured into a saturated aqueous solution (8 mL) of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}(1: 1)$ and the mixture was stirred at rt for 1 h . The layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried, filtered, and concentrated to give crude aldehyde 22 (74 mg), which was used in the next step without purification: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $0.77\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.87\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.32-$ 1.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$), 1.43 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.48\{\mathrm{~s}$, $\left.\left.18 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}, 1.45-1.57$ (m, $4 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.513.57 (m, 4H, H-5, CH2O), 9.39 (s, 1H, H-1).
4.9.3. (R)-6,6-bis-[(tert-Butoxycarbonyl)amino]-3-[(tert-butyldimethylsilyl)oxy] propyl\}-3-ethyl-1hexyne (23)

Bestmann-Ohira reagent ($40 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(62$ $\mathrm{mg}, 0.45 \mathrm{mmol}$) were successively added at rt under an inert atmosphere to a solution of aldehyde $22(74 \mathrm{mg})$ in anhydrous $\mathrm{MeOH}(1 \mathrm{~mL})$. After stirring for 15 h , the mixture was filtered through a Celite ${ }^{\circledR}$ pad, and the organic solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting solution was washed with 5% aqueous NaHCO_{3} and brine. The organic layer was dried, filtered, and concentrated. Flash chromatography ($95: 5$ hexane-EtOAc) of the residue gave alkyne 23 ($48 \mathrm{mg}, 53 \%$, two steps) as a colorless oil: ${ }^{29}[\alpha]^{22}$ D -2.5 (c 2.4, MeOH); IR (film) v 1699 (CO), 1748 (CO), 3310 (H-Csp) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.04\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 0.77 (t, $\left.J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)\right], 1.37-$ 1.46 (m, 6H, H-4, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.50\{\mathrm{~s}, 18 \mathrm{H}$, $\left.\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}, 1.55-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 2.07 (s, $1 \mathrm{H}, \mathrm{H}-1$), 3.57 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 3.57(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 8.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.3$ [$\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $24.0(\mathrm{C}-5), 25.9\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $28.1\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 33.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 34.7(\mathrm{C}-4)$, 38.0 (C-3), 46.6 (C-6), $63.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.7(\mathrm{C}-1), 89.8(\mathrm{C}-2), 82.0$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 152.5(\mathrm{CO})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}-2 \mathrm{Boc}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{NOSi}$, 298.2561; found, 298.2562.
4.9.4. (R)-1-(2-Aminophenyl)-6,6-bis-[(tert-butoxycarbonyl)amino]-3-[(tert-butyldimethylsilyl)-oxy]propyl\}-3-ethyl-1-hexyne (24)
o-Iodoaniline ($43 \mathrm{mg}, 0.20 \mathrm{mmol}$), copper iodide (1.5 mg , 0.008 mmol), and tetrakis(triphenylphosphine)palladium (19 mg , 0.016 mmol) were added at rt under an argon atmosphere to a
stirred solution of alkyne 23 ($81 \mathrm{mg}, 0.16 \mathrm{mmol}$) in anhydrous DMF (2 mL) and triethylamine (2 mL). After stirring at $80^{\circ} \mathrm{C}$ overnight, the mixture was filtered through a Celite ${ }^{\circledR}$ pad, and the organic solvent was evaporated. Flash column chromatography ($98: 2$ to 9:1 hexane-EtOAc) of the residue gave aniline $\mathbf{2 4}$ (94 mg , 98\%) as a yellow oil: $[\alpha]^{22}$ D -0.47 (c 1.5, MeOH); IR (film) v 1695 (CO), 1738 (CO), 3377, (NH), 3478 (NH) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}\right.$-HSQC) $\delta 0.04\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.89[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)\right], 0.98$ (t, $\left.J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.48\{\mathrm{~s}, 18 \mathrm{H}$, $\left.\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}, 1.42-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.46-1.56(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ 4, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.57-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), $1.65-1.73$ (m, $2 \mathrm{H}, \mathrm{H}-5), 3.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 3.58(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 6.57 (ddd, 1H, $\left.J=7.2,7.2,0.6 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{Ar}\right), 6.61$ (dt, 1H, $J=8.4,0.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{Ar}$), 7.05 (ddd, $1 \mathrm{H}, J=8.4,7.2,1.6 \mathrm{~Hz}, \mathrm{H}-$ 4Ar), 7.20 (dd, $1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $-5.3\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 8.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.3\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 24.3(\mathrm{C}-5), 25.9$ [$\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $28.0\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right.$], $28.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $30.9(\mathrm{C}-4), 34.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 35.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 39.1(\mathrm{C}-3), 46.7(\mathrm{C}-6), 63.5$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.0(\mathrm{C}-1), 82.0\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 100.9(\mathrm{C}-i), 100.9(\mathrm{C}-2)$, 114.0 (C-3Ar), 117.6 (C-5Ar), 128.7 (C-4Ar), 132.1 (C-6Ar), 147.5 (C-2Ar), 152.5 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}$, 611.3851; found, 611.3852.
4.9.5. (R)-1-(tert-Butoxycarbony)lamino]-7-[(tert-butyldimethylsilyl)-oxy]-4-ethyl-4-(2-indolyl)heptane (25)

AgOTf ($2.7 \mathrm{mg}, 20 \% \mathrm{mmol}$) was added at rt under an argon atmosphere to a solution of aniline $\mathbf{2 4}(30 \mathrm{mg}, 0.05 \mathrm{mmol})$ in anhydrous MeCN (1.1 mL), and the resulting mixture was stirred at reflux temperature overnight. The solvent was evaporated and the residue was purified by flash chromatography (95:5 hexaneEtOAc) to afford indole 25 ($17.4 \mathrm{mg}, 58 \%$) and alcohol 26 (3.4 $\mathrm{mg}, 18 \%$) as yellow oils. 25: $[\alpha]^{22} \mathrm{D}-2.6$ (c 1.2, MeOH); IR (film) $v 1665(\mathrm{CO}), 3345(\mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, COSY, g-HSQC) $\delta 0.04\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.76\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.26-1.38$ (m, 4H, H-2, H-3), 1.42 [s, 9H, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.62-1.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 1.70-1.75(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.04 (m, 2H, H-1), 3.57 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$), 4.42 (brs, $1 \mathrm{H}, \mathrm{NH}$), 6.26 (s, 1H, H3-ind), 7.09 (ddd, $J=7.6,7.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5 \mathrm{ind}$), 7.12 (ddd, $J=8.0,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6-\mathrm{ind}$), 7.30 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7-\mathrm{ind}$), 7.51 (dt, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4-$ ind), $8.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 23.1$ (C-2), $26.7(\mathrm{C}-3), 27.9\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.2(\mathrm{C}-5), 32.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 33.0 (C-6), 41.0 (C-4), 46.6 (C-1), 63.1 (C-7), $82.2\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 100.3 (C3-ind), 110.5 (C7-ind), 119.4 (C4-ind), 119.8 (C5-ind), 120.9 (C6-ind), 128.3 (C3a-ind), 135.8 (C7a-ind), 144.8 (C2-ind), 152.7 (CO); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{3}$, 489.3507; found, 489.3499.

4.9.6. (R)-7-[(tert-Butoxycarbonyl)amino]-4-ethyl-4-(2-indolyl)-1-heptanol (26)

TBAF ($0.16 \mathrm{~mL}, 0.16 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added under an inert atmosphere to a solution of indole $25(44 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous THF (1.2 mL), and the mixture was stirred at rt for 3 h. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with EtOAc. The organic extracts were washed with brine, dried, and concentrated. Flash chromatography (9:1 hexaneEtOAc) of the residue afforded alcohol 26 ($24 \mathrm{mg}, 86 \%$) as a yellow foam: $[\alpha]^{22}$ D -24.2 ($c 0.8, \mathrm{MeOH}$); IR (film) $v 1693$ (CO), $3340(\mathrm{NH}, \mathrm{OH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.77$ (t, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26-1.38$ (m, 4H, H-5, H-6), $1.42[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49-1.77\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.04$ (m,
$2 \mathrm{H}, \mathrm{H}-7$), 3.58 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), 4.51 (bs, 1H, NH), 6.27 (s, 1H, H3-ind), 7.04-7.13 (m, 2H, H5-ind, H6-ind), 7.30 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7-\mathrm{ind}$), 7.53 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4-\mathrm{ind}), 8.11$ (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 24.2(\mathrm{C}-6), 26.8(\mathrm{C}-5)$, $28.4\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.0(\mathrm{C}-3), 32.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 33.5(\mathrm{C}-2), 41.0$ (masked, C-4), $41.0(\mathrm{C}-7), 63.0(\mathrm{C}-1), 79.2\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 100.2$ (C3-ind), 110.5 (C7-ind), 119.3 (C5-ind), 119.8 (C4-ind), 120.9 (C5-ind), 128.3 (C3a-ind), 135.9 (C7a-ind), 145.0 (C2-ind), 156.1 (CO); HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}$, 375.2642; found, 375.2645.
4.9.7. Kerr's intermediate: (R) $-4-\{3-[($ tert-Butoxy-carbonyl)amino]propyl\}-4-ethyl-1-oxo-1,2,3,4-tetrahydropyrido[1,2-a]indole (27)

Tetrapropylammonium perruthenate ($1.7 \mathrm{mg}, 0.005 \mathrm{mmol}$) was added to a solution of N-methylmorpholine N-oxide ($35 \mathrm{mg}, 0.30$ mmol) and alcohol 26 ($37 \mathrm{mg}, 0.10 \mathrm{mmol}$) in anhydrous acetonitrile (2.5 mL) containing $4 \AA$ molecular sieves (60 mg). After stirring for 6 h at rt under an argon atmosphere, EtOAc (10 mL) was added and the mixture was filtered. The organic solution was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, and saturated aqueous CuSO_{4}. The organic layer was dried, filtered, and concentrated. Flash chromatography (9:1 to 8:2 hexane-EtOAc) of the residue afforded Kerr's intermediate 27 ($17 \mathrm{mg}, 47 \%$) as a yellow oil: $[\alpha]^{22}{ }_{\mathrm{D}}+5.3$ (c $1.0, \mathrm{CHCl}_{3}$), $\left\{\right.$ lit. ${ }^{12 \mathrm{a}} 74 \%$ ee; $[\alpha]^{22}{ }_{\mathrm{D}}+3.0$ (c $\left.\left.1.0, \mathrm{CHCl}_{3}\right)\right\}$; IR (film) $v 1693(\mathrm{CO}), 3340(\mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{COSY}, g\right.$-HSQC) $\delta 0.90\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.43$ [s, 9H, OC($\left.\left.\mathrm{CH}_{3}\right)_{3}\right], 1.47-1.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.97 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 2.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 3.11$ (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 4.50 (bs, $1 \mathrm{H}, \mathrm{NH}$), $6.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$ Ar), 7.23-7.30 (m, 2H, CH-Ar), 7.47 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $8.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.0$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 28.4\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.0(\mathrm{C}-3), 30.0$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 30.3(\mathrm{C}-2), 33.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 37.4(\mathrm{C}-4), 40.9$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 79.2\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 105.1(\mathrm{CH}-\mathrm{Ar}), 116.5(\mathrm{CH}-\mathrm{Ar}), 119.8$ (CH-Ar), 119.8 (CH-Ar), 123.9 (CH-Ar), 124.3 (C-Ar), 135.2 (CAr), 143.9 (C-Ar), 155.9 (OCO), $169.0\left(\mathrm{CH}_{2} \mathrm{CO}\right)$; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{3}, 393.2149$; found, 393.2154.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

Financial support from the MINECO/FEDER, Spain (Projects CTQ2015-65384-R and RTI2018-093974-B-I00) is gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data to this article can be found online. Spectroscopic data of minor byproducts ${ }^{32}$ and monocarbamates $\mathbf{2 3}$ ' and $\mathbf{2 4}$ ', and copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of all compounds.

References and notes

1. Christoffers, J.; Baro, A. (Eds.), Quaternary Stereocenters Challenges and Solutions for Organic Synthesis, Wiley-VCH, Weinheim, 2005.
2. a) Peterson, E. A.; Overman, L. E. PNAS 2004, 101, 11943-11948; b) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629-661; c) Long, R.; Huang, J.; Gong, J.; Yang, Z. Nat. Prod. Rep. 2015, 32, 1584-1601; d) Büschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schentahal, K. B.; Overman, L. E. Angew. Chem. Int. Ed. 2016, 55, 4156-4186.
3. a) Quasdorf, K. W.; Overman L. E. Nature 2014, 516, 181-191; b) Ling, T.; Rivas, F. Tetrahedron 2016, 72, 6729-6777.
4. For reviews, see: a) Martin, S. F. Tetrahedron 1980, 36, 419-460; b) Fuji, K. Chem. Rev. 1993, 93, 2037-2066; c) Corey, E. J.; Guzman-Perez, A. Angew. Chem. Int. Ed. 1998, 37, 388-401; d) Christoffers, J.; Mann, A. Angew. Chem. Int. Ed. 2001, 40, 45914597; e) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 1010510146; f) Douglas, C. J.; Overman, L. E. PNAS 2004, 101, 53635367; g) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473-1482; h) Trost, B. M.; Jiang, C. Synthesis 2006, 369-396; i) Bella, M.; Gasperi, T. Synthesis 2009, 1583-1614; j) Hawner, C.; Alexakis, A. Chem. Commun. 2010, 46, 7295-7306; k) Shimizu, M. Angew. Chem. Int. Ed. 2011, 50, 5998-6000. For recent work, see: l) Wendlandt, A. E.; Vangal, P.; Jacobsen, E. N. Nature 2018, 556, 447-451.
5. For reviews, see: a) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593-4623; b) Marek, I.; Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik, H.; Das, J. P. J. Am. Chem. Soc. 2014, 136, 26822694; c) Minko, Y.; Marek, I. Chem. Commun. 2014, 50, 12597; d) Feng, J.; Holmes, M.; Krische, M. J. Chem. Rev. 2017, 117, 1256412580; e) Pierrot, D.; Marek, I. Angew. Chem. Int. Ed. 2020, 59, 3649. For more recent work, see: f) Wang, Z.-X.; Li, B.-J. J. Am. Chem. Soc. 2019, 141, 9312-9320.
6. Amat, M.; Bosch, J.; Hidalgo, J.; Cantó, M.; Pérez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074-3084.
7. For reviews, see: a) Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503-9569, b) Meyers, A. I.; Brengel, G. P. Chem. Commun. 1997, 1-8; c) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000, 56, 9843-9873; d) Escolano, C.; Amat, M.; Bosch J. Chem. Eur. J. 2006, 12, 8198-8207; e) Amat, M.; Pérez, M.; Bosch, J. Synlett 2011, 143-160; f) Amat, M.; Llor, N.; Griera, R.; Pérez, M.; Bosch, Nat. Prod. Commun. 2011, 6, 515-526; g) See also: Mizutani, M.; Inagaki, F.; Nakanishi, T.; Yanagihara, C.; Tamai, I.; Mukai, C. Org. Lett. 2011, 13, 1769-1799.
8. Guignard, G.; Llor, N.; Urbina, A.; Bosch, J.; Amat, M. Eur. J. Org. Chem. 2016, 693-703.
9. Guignard, G.; Llor, N.; Molins, E.; Bosch, J.; Amat, M. Org. Lett. 2016, 18, 1788-1791.
10. Amat, M., Guignard, G.; Llor, N.; Bosch, J. J. Org. Chem. 2014, 79, 2792-2802.
11. a) Amat, M.; Lozano, O.; Escolano, C.; Molins, E.; Bosch, J. J. Org. Chem. 2007, 72, 4431-4439. b) For a review of the generation of all carbon quaternary stereocenters at the C-3 carbon of 2piperidones, see: Pandey, G.; Mishra, A.; Khamrai, J. Tetrahedron 2018, 74, 4903-4915.
12. a) Only one enantioselective synthesis of this intermediate (74\% ee) has been reported so far: Higuchi, K.; Suzuki, S.; Ueda, R.; Oshima, N.; Kobayashi, E.; Tayu, M.; Kawasaki, T. Org. Lett. 2015, 17, 154-157. For syntheses in the racemic series, see: b) Magolan, J.; Carson, C. A.; Kerr, M. A. Org. Lett. 2008, 10, 1437-1440; c) Biechy, A.; Zard, S. Z. Org. Lett. 2009, 11, 2800-2803; d) Zhong, X.; Li, Y.; Han, F.-S. Chem. Eur. J. 2012, 18, 9784-9788; e) Zhong, X.; Qi, S.; Li, Y.; Zhang, J.; Han, F.-S. Tetrahedron 2015, 71, 3734-3740; f) Pfaffenbach, M.; Gaich, T. Eur. J. Org. Chem. 2015, 3427-3429. For a formal enantioselective synthesis, see: g) Pfaffenbach, M.; Gaich, T. Chem. Eur. J. 2015, 21, 6355-6357.
13. For other enantioselective syntheses, see: a) Nakajima, R.; Ogino, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132, 1236-1237; b) Iwama, Y.; Okano, K.; Sugimoto, K.; Tokuyama, H. Chem. Eur. J. 2013, 19, 9325-9334; c) Xu, Z.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2015, 137, 6712-6724; d) Li, Z.; Geng, Q.; Lv, Z.; Pritchett, B. P.; Baba, K.; Numajiri, Y.; Stoltz, B. M.; Liang, G. Org. Chem. Front. 2015, 2, 236-240 (formal); e) Zhang, Y.; Xue, Y.; Luo, T. Tetrahedron 2017, 73, 4201-4205; f) Liu, Y.; Wang, H. Chem. Commun. 2019, 55, 3544-3547.
14. For other enantioselective syntheses, see: Ref. 13c,d,f.
15. For other enantioselective syntheses, see: Ref. 12g and 13c,d,f.
16. For a review of the synthesis of leuconoxine alkaloids, see: Pfaffenbach, M.; Gaich, T. Chem. Eur. J. 2016, 22, 3600-3610.
17. For a study on the influence of the order of introduction of the substituents on the stereofacial selectivity of dialkylation reactions of 1a and 1b, see: Ref. 11a.
18. For a discussion on the proposed mechanism for the $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reduction, see: Ref. 8.
19. For a discussion on the proposed mechanism for the m-CPBA- and $\mathrm{I}_{2} /$ aq. NH_{3}-promoted oxidations, see: Ref. 9 .
20. a) Ohira, S. Synthetic Commun. 1989, 19, 561-564; b) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett, 1996, 521-522.
21. The conversion of $\mathbf{1 8 b}$ to the corresponding N-Boc aminopropanol was unsuccessful, as the phenyl substituents of the TBDPS group underwent partial reduction under the $\mathrm{Na} /$ liq. NH_{3} conditions.
22. a) Kabat, M. M.; Lange, M.; Wovkulich, P. M.; Uskoković, M. R. Tetrahedron Lett. 1992, 33, 7701-7704; b) Hatakeyama, S.; Irie, H.; Shintani, T.; Noguchi, Y.; Yamada, H.; Nishizawa, M. Tetrahedron 1994, 50, 13369-13376; c) Loh, T.-P.; Feng, L.-C. Tetrahedron Lett. 2001, 42, 3223-3226.
23. For similar cyclizations, see: a) Ojima, I.; Tzamarioudaki, M.; Eguchi M. J. Org. Chem. 1995, 60, 7078-7079; b) Xiao, X.; Antony, S.; Kohlhagen G.; Pommier, Y.; Cushman, M. Bioorg. Med. Chem. 2004, 12, 5147-5160.
24. Corey, E. J.; Kim, C. U. J. Am. Chem. Soc. 1972, 94, 7586-7587.
25. Yang, Y.-Q.; Cui, J.-R.; Zhu, L.-G.; Sun, Y.-P.; Wu, Y. Synlett, 2006, 1260-1262.
26. Deprotection of the TBS group also occurred to a certain extent (~ 15\%)
27. Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874-922.
28. a) Van Esseveldt, B. C. J.; van Delft, F. L.; Smits, J. M. M.; de Gelder, R.; Schoemaker, H. E.; Rutjes, F. P. J. T. Adv. Synth. Catal. 2004, 346, 823-834; b) For Pd- and Au-catalyzed indolizations of 2-alkynylanilines, see: Iritani, K.; Matsubara, S.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1799-1802.
29. Removal of a Boc group of 22 during de Ohira-Bestmann homologation was observed in some runs. The resulting alkyne 23' was satisfactorily converted (83\%) to the corresponding alkynylaniline 24', which was then cyclized under AgOTf conditions to ultimately give 26 (57\%) (see Supporting Information).
30. a) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 63, 639-666; b) Schultz, A. G.; Pettus, L. J. Org. Chem. 1997, 62, 6855-6861; c) Maki, B. E.; Scheidt, K. A. Org. Lett. 2009, 11, 1651-1654.
31. Amat, M.; Escolano, C.; Lozano, O.; Gómez-Esqué, A.; Griera, R.; Molins, E.; Bosch, J. J. Org. Chem. 2006, 71, 3804-3815.
32. In some assays, minor amounts of ($3 R, 6 S, 8 \mathrm{a} S$)- and $(3 R, 6 R, 8 \mathrm{a} S)-6$ -hydroxy-6-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine were also obtained (see Supporting Information).

[^0]: ${ }^{\star}$ Dedicated to Prof. Nuno Maulide for his major contributions to organic synthesis.

 * Corresponding author.
 **Corresponding author.
 E-mail addresses: joanbosch@ub.edu (J. Bosch), amat@ub.edu (M. Amat).

