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Abstract 

In the present paper, we survey two common approaches widely used to study the 

kinetics of heterogeneous catalytic reactions. These are kinetic Monte Carlo simulations 

and microkinetic modelling. We discuss typical assumptions, advantages, drawbacks and 

differences of these two methodologies. We also illustrate some wrong concepts and 

inaccurate procedures used too often in this kind of kinetics studies. Thus, several issues as 

for instance minimum energy diagrams, diffusion processes, lateral interactions or the 

accuracy of the reaction rates are discussed. Some own examples mainly based on water 

gas shift reaction over Cu(111) and Cu(321) surfaces are chosen to explain the different 

developed topics on the kinetics of heterogeneous catalytic reactions. 
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1. Introduction 

 

Heterogeneous catalysis employing solid surfaces as catalysts for gas reactions has 

huge impact and many applications in metallurgical and chemical industries. More than 

90% of the chemical and energy industries utilize this type of catalysts. In the past two 

decades, the study of the molecular mechanism of heterogeneous catalysis has led to 

significant advances and established a systematic approach to obtain total and free energy 

profiles as well as quite accurate reaction rates derived from transition state theory.[1,3] The 

understanding of the kinetics of heterogeneous catalytic reactions experienced similar 

progress but the available approaches are far from being generally applicable. Clearly, a 

better understanding of kinetic aspects can help to improve the design of reactors operating 

in steady-state regime, proposing more suitable initial conditions (i.e., T, P and initial gas 

composition) or improved catalysts (e.g., with high conversion at low temperatures). 

Normally, catalytic reactors use porous pellets with nm-sized catalyst particles at the 

available (external or internal) surfaces of pores. Nowadays, surface science allows one to 

study the reaction kinetics on catalyst models working on controlled conditions. Similar 

experiments can be carried out involving surfaces of porous catalysts, pellets and/or the 

whole reactor, therefore implying different size and time scales.[2] The present work focuses 

on those cases, where experimentally single- or poly-crystal samples can be used as 

catalytic models under ultrahigh vacuum conditions. 

Heterogeneous catalytic reactions are complex reactions, which involve frequently a 

large list of several elementary surface processes, where one or several mechanisms can be 

competing in both main and side reactions. Usually five consecutive stages are involved: 1) 

diffusion of reactant species from gas-phase to the surfaces, 2) adsorption of the gases on 

the surfaces, 3) reaction at the surfaces, 4) desorption of the products, and 5) diffusion of 

the desorbed products into the gas-phase.[3] In general, the diffusion processes are faster 

than the chemical reactions at the surface and the global reaction is not diffusion-limited. 

The main types of surface processes can be classified as: a) molecular or dissociative 

adsorptions, b) molecular desorptions, c) unimolecular processes (e.g., molecular 

dissociation) and d) bimolecular reactions, involving two adsorbed species (i.e., Langmuir-

Hinshelwood (LH) step) or involving one gas species and one adsorbed species (i.e., Eley-
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Rideal (ER) step) although the later dominates in a limited number of cases. LH and ER 

reactions can give rise to gas and/or adsorbed products. Moreover, even for pristine well 

defined single crystal surfaces, several types of sites (e.g., top, bridge, fcc-hollow, hcp-

hollow,...), where the same reactants can present different reaction rates (sometimes 

originating also different products), thus enlarging the already long list of existing 

elementary surface processes. 

Density Functional Theory (DFT) calculations represent a good first-principles 

approach for a proper description of these individual surface processes, although adsorbate-

adsorbate lateral interactions should be included too to account for the significant coverage 

effects in the reaction kinetics. These DFT data can be used later to study the global 

catalytic heterogeneous reaction by using mean-field microkinetic modelling (MM)[3] or 

kinetic Monte Carlo (kMC)[4] simulations. Here a caveat is necessary since energy profiles, 

and hence energy barriers and transition state theory derived reaction rates, are sensitive to 

the choice of the exchange-correlation method and inclusion of dispersion terms, neglected 

in many articles in the past, often appears as crucial. 

In this paper, we describe in detail how to use both MM and kMC methods to study 

a heterogeneous (i.e., gas-surface) catalytic reaction, highlighting the main advantages and 

limitations of these techniques. Moreover, we review and discuss some concepts and 

inaccurate procedures, used very regularly in this kind of kinetics studies. These mistakes 

or inaccuracies could be possibly originated from the very multidisciplinary character of 

this research field, involving scientists from different backgrounds (e.g., chemists, 

physicists, chemical engineers,...), which is also visible through the wide spectrum of 

important journals where these studies are frequently published. 

2. System model and kinetic methods 

A consistent MM or kMC kinetics study on a complex heterogeneously (gas-

surface) catalysed reaction should define clearly the model system (i.e., reactor) aimed at 

closely simulating an experimental kinetic study. This model system involves the choice of 

a gas model, a lattice model and a reaction model. The gas model normally implies a gas 

mixture of reactants (sometimes including also inert or product species) at a fixed 

temperature, total pressure and initial gas composition (i.e., partial pressures). The surface 

of a real solid catalyst (i.e., exposed surface) can be sometimes modelled by choosing a 
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given well defined single crystal surface represented by a slab model described by a 

periodic 2D unit cell (i.e., lattice), and exhibiting one or several types of sites. Finally, the 

reaction model should include all possible elementary surface processes that are likely to 

occur in all accessible reaction mechanisms at the selected experimental conditions. 

Moreover, some extra points should be taken into account if a correct comparison between 

experiment and simulations is intended. For instance, in a closed reactor the composition of 

the reactants mixture would change through the reaction. In the case of a plug flow reactor, 

the total flow rate should also be included into the simulation. Moreover, depending on the 

type of reactor, the reverse reaction of elementary surface processes producing the final 

products of the whole reaction should be taken into account, as these product species could 

react backward (even more if they appear in the initial reactant mixture). Usually, many 

MM or kMC studies assume an ideal experimental set-up with a fresh reactants mixture 

continuously impinging on an empty (or gas precovered) thermalized catalyst surface, 

where the heterogeneous complex reaction takes place and, afterwards, the final gas 

products desorb and leave the surface region implying a process not in a thermodynamic 

equilibrium but rather in a steady-state). 

2.1 Kinetic Monte Carlo simulations  

As surface processes are rare events, direct Molecular Dynamics simulations would 

require very long run times and are thus computationally prohibitive. This is further 

complicated by difficulty in defining accurate force fields describing together all surface 

processes. In principle, one could use ab initio derived forces (AIMD) but, again, the long 

runs needed make the overall approach unaffordable even by relying on the time-saving 

steps methods as in the Carr-Parrinello MD (CPMD). Another complication comes from 

the enormous accumulated errors that would appear in the numerical integration of the 

trajectories. Thus, an alternative approach is needed where the problem can be solved by 

making use of stochastic techniques based on Monte Carlo like algorithms. This is the idea 

behind the so called kinetic Monte Carlo (kMC) method[4, 5] used to solve numerically the 

master equation (ME) (Eq. 1). To make use of this approach one needs to define an 

appropriate lattice model defining the state of a gas-surface system. This can be described 

by defining a surface configuration, where both free and occupied sites are assigned (i.e., 
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adlayer configurations). Different surface processes (i.e., adsorption, diffusion, reaction and 

desorption) will modify continuously the surface configurations. 

The ME, which can be derived from first principles,[4] is a lost-gain equation that 

governs the time evolution of the probability of any a surface configuration (Pa), Eq. 1 

 
!"#
!$

= ∑ '𝑊)*𝑃),𝑊*)𝑃*-)  (1) 

Here, the sum runs over all surface configurations, Pa (Pb) denotes the probability to find 

the system in the surface configuration a (b) at time t and Wab is the transition probability 

per unit time to pass from a configuration a to a different b one in such a way that only one 

surface process is implied. These transition probabilities (units: s-1) are synonymous to 

reaction rates (rab) of the mentioned surface processes. Sometimes they are also called rate 

constants (kab), but they are not necessarily coincident with the same rate constants used in 

macroscopic rate equations,[3] which can have different units (e.g., s-1 for a unimolecular 

reaction or molecular desorption, m2 • s-1 for a LH reaction,...). The ME is solved by using 

several efficient algorithms such as variable step size, random selection, first reaction, 

rejection-free,[4] which can be appropriately selected from analysis of their influence in the 

numerical solution of the ME and should support the principle of detailed balance for each 

surface process. Thus, the rejection-free algorithm is widely used to solve the ME in kMC 

simulations and goes as follows.[4,5] 
 

1. Generate an initial a surface configuration (t = 0), make the list of all possible 

surface processes (Np(a)) and define the sites involved for such processes (Ns(a)). 

2. Determine the rab reaction rates of all Np(a) surface processes from this a surface 

configuration (i.e., all a ® b processes) and the total reaction rate rtot(a): 
 

r/0/(a) = ∑ rab
34(a)
b  (2) 

3. Then, select the surface process a ® a' that fulfils the following condition,  

 

∑ rabb	6	*7,8 < ρ8 ∙ r/0/(a) ≤			 ∑ rabb	6	*7  (3) 
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where r1 is a random number generated from a uniform distribution on the unit 

interval (r1 Î [0,1]) and both summations represent the cumulative distribution 

functions of the reaction rates (rab is the discrete random variable), being their 

values for surface processes  a ® a'-1 (Ra,a'-1) and a ® a'  (Ra,a'), respectively. 

4. Advance the time, using a second random number 

t	 → t − @A(BC)
rDED(a)

 (4) 

5. Update the system to the new surface configuration a' (i.e., adding, moving or 

removing adsorbed species on the lattice), make the new list of all possible 

surface processes (Np(a')) and repeat again the cycle from  step 2). 

 

Typically, every kMC simulation will involve a huge number of steps (i.e., 108 - 

1011) until the system achieves a steady-state (i.e., temporal convergence of coverages (q) 

and turnover frequencies (TOF), sometimes also called turnover rates (TOR)). Temporal 

acceleration of kMC simulations to overcome the problem of the large differences in the 

time scales of surface processes can be carried out by using more refined algorithms.[6- 8] 

Additional simple techniques can also be considered to reduce the kMC computational cost, 

as for instance, the use of scaling factors in reaction rates for the very fast processes (e.g., 

diffusion rates[9,10]) or beginning the kMC simulation from a lattice with an initial coverage 

obtained from a MM solution.  

The reaction rates of the different surface processes (rab), which are defined as the 

number of times a process occurs per site and time unit, can be computed by means of 

collision theory (CT) and/or the transition state theory (TST).[3,4] For LH reactive processes, 

desorption processes and atomic or molecular diffusion processes the reaction rates can be 

calculated by using the canonical TST formula 

r = FG∙H
I

J≠

JL
e-	

∆P0≠

kB∙T  (5) 

where h denotes Planck’s constant, kB the Boltzmann’s constant, and Q¹ and QR are the 

partition functions (dimensionless) of the transition state (TS) and the reactants, 

respectively, which are calculated from standard statistical mechanical expressions.[ 11 ] 
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∆V0≠	represents the energy barrier of the surface process, including the zero-point energy 

(ZPE) correction. In some works, the term of activation energy (Ea) is inadequately used for 

labelling ∆V≠or ∆V0≠ values. This term should be kept for one of the parameters derived 

from the empirical Arrhenius equation (the other is the pre-exponential factor, A), which 

explain the temperature dependence of many reaction rates.[3] 

The rate of adsorption (non-dissociative) processes can be estimated by using the 

Hertz-Knudsen equation, Eq. 6 
 

rWX = SZ(T) · A]^/_ ·
`

abc	d	FGH
 (6) 

where S0 is the initial sticking coefficient, Asite corresponds to the area of a single site, P is 

the gas partial pressure and m is the molecular mass of the gas species. 

The rate of desorption processes, where ∆V0≠ = ∆VeZ (the reaction endothermicity 

or adsorption energy) can be determined from TST, assuming an early 2D gas-like TS, Eq. 

7 and 8, 
 

rX_] =
FG∙H
I

Jfgh
ijk∙JlED

ijk∙JDljk,Cn
ijk

Jfgh
L e-	

∆V0≠

kB∙T  (7) 

 Q/pW],bq
rW] = A]^/_ ·

bc	dFGH
IC

 (8) 

 
 

The energy barriers and the vibrational frequencies of minima and transition states 

are normally calculated from first-principles by using DFT calculations[1,12] although the 

choice of the DFT method requires some caution and, whenever possible, calibration by 

comparison to available accurate experimental data. Moreover, additional DFT calculations 

are necessary to introduce also the adsorbate-adsorbate lateral interactions for all reactant 

and product pairs (vide infra), which may affect the values of the energy barriers of the 

surface processes (i.e., coverage-dependent energy barriers) and hence their reaction rates, 

becoming especially important for high coverage situations. 

Note also that kMC method applied to the study of heterogeneously catalysed gas-

phase reactions is not limited only to flat crystal surfaces; it can also be used for simulating 
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complex systems such as surface reactions on supported nanoparticles exhibiting different 

facets.[13]  

2.2 Microkinetic modelling 

Kinetic models can be used for the study of many complex reactions (e.g., gas-

phase, solution-phase or gas-surface processes), including also the transport phenomena 

when they are relevant (i.e., diffusivity, viscosity and heat conduction). These models 

afford treating several kinds of experimental reactor models.[14] When dealing with the 

reaction kinetics on pore or crystalline solid surfaces, simpler microkinetic models can be 

used in a similar way as it was explained before for kMC simulations.[15, 16] In this case, 

macroscopic rate equations (Eq. 9) are applied to describe all surface processes involved in 

the proposed reaction model, usually within the mean-field approximation, in which it is 

assumed that the adsorbates are uncorrelated, 
 

sdθi
dt
=∑ nij	rjj fj(θ1, . . . , θN)|

i=1,N
 (9) 

where qi is the surface coverage of i species at time t (among the all N possible adsorbates), 

nij is the stoichiometric number for i species in j surface process (positive or negative for 

species formation or removal, respectively), rj the reaction rate and fj is a function of 

several coverages involved in the j surface process; the summation covers all possible 

surface processes where the i species is involved. Frequently, these equations are expressed 

using rate constants (kj), which are easily related with reaction rates (rj). DFT data along 

with TST and CT can be applied to determine the reaction rates from first-principles as 

already explained for kMC simulations. However, sometimes they can be used as fitting 

parameters together with some available values of experimental rate constants aiming to 

reproduce the observed experimental global reaction kinetics data, assuming a reasonable 

reaction mechanism. Clearly, such empirical fitting hinders a validation of the proposed 

mechanism. 

The set of coupled differential equations are numerically integrated until steady-

steady values of coverages and TOFs are achieved. Apparent activation energies (EW
W~) and 

partial reaction orders (ai) can also be derived from the values of total reaction rates by 
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using either the net overall reaction rate rnet (the forward minus the reverse reaction rate) or 

the forward reaction rate rf, 

 

EW
W~ = k�Tb ∙ s

�@A	(p�)
�H

|
`
 (10) 

α^ = s�@A	(p�)
�@A[^]

|
`
 (11) 

that also can be calculated in kMC simulations in a similar way, and compared later with 

experimental values. 

2.3 kMC vs. MM studies 

The simplest possible comparison between kMC and MM methods for a given 

complex gas-surface reaction involves assuming the same gas model, lattice model and 

reaction model (i.e., the same number of surface processes including also diffusion). kMC 

gives a stochastic solution of the ME whereas MM provides a deterministic solution of the 

differential rate equations (Eq. 9). However, a first difference arises from the assumption of 

uniform coverages in mean-field MM, while kMC simulations reveal the existence of 

structures or ordered adlayers even at high temperatures. Moreover, kMC and MM 

predicted TOFs and final average coverages are usually different.[4] For instance, compared 

to similar kMC simulations, mean-field models can overestimate the catalytic activity by 

several orders of magnitude as shown in the case of CO methanation on stepped transition 

metal surfaces.[6] This is the case even when lateral interactions are neglected in both 

methods. 

In general, a considerable number of early published mean-field MM studies 

disregards lateral interactions,[17-19,50] which are very important for the overall reaction as 

kMC studies show. However, MM beyond the mean-field approximation have been 

successfully applied for methane oxidation over PdO(101), subdividing the relevant 

adsorbates into “paired” and “unpaired” species,[16] obtaining a  good agreement with a 

range of experimental findings. To include these lateral interactions, the coverage 

dependence of the energy barriers of the surface processes is also included in some recent 

MM studies as in the case of ethylene hydrogenation over transition metal surfaces.[20] 
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From a practical point of view, kMC simulations have a larger computational cost 

than for corresponding MM simulations applied to the study of catalytic heterogeneous 

reactions based on first-principles DFT data. However, this is a fraction of the 

computational cost required to obtain the CT and TST rates and, on the other hand, kMC 

method allows an easier and deeper introduction of complex lattice models including for 

instance explicit or grouped kinds of sites, mono- or bidentate-adsorbed species, diffusion 

processes and lateral interactions than using MM methods.  

Finally, a direct comparison of kMC and MM simulations about the time evolution 

of the surface reactions is not appropriate. In spite of using the same reaction rates which in 

fact represent thermally averaged values, the stochastic kMC time evolution of the 

rejection-free algorithm is governed by Eq. 4. Hence the step-time to advance the clock is 

independent of the process which is chosen.[5] For instance, for a selected surface process a 

® a' compare 1/r/0/(a)  and 1/ra	a7 ), which are different from the deterministic time 

propagation followed in MM simulations (Eq. 9). Finally, it is worth pointing out that 

neither kMC nor MM match the real-time evolution of the experimental surface reactions, 

being the experimental and theoretical comparisons made mainly through the final steady-

state properties such as TOFs, coverages, degrees of rate control, among others. 

3. Discussion of some topics related with kMC and MM studies 

3.1 Water gas shift reaction as an example 

In order to illustrate and discuss several topics that appear in both kMC and MM 

kinetic studies of complex gas-surface reactions, we have selected as an example the water 

gas shift reaction (WGSR) on the flat Cu(111)[10] and on the stepped Cu(321)[21] surfaces, 

that have recently studied by means of kMC simulations.  

Two general reaction mechanisms have been proposed for the WGSR on metal-

based catalysts, both starting with water dissociation. Next, in the so called redox 

mechanism, carbon dioxide is formed by direct reaction between adsorbed CO and O, 

whereas the so called associative mechanism is based on the formation of a carboxyl 

intermediate (see Figure 1). The associative mechanism has been found to be the most 

important in both surfaces and has been selected in the present study for the construction of 

several minimum energy diagrams and to better explain the issues discussed below. 
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Nevertheless, all kMC simulations were performed including both mechanisms in the 

reaction model. A complete list of all surfaces processes can be found in previous 

works.[10,21] In the case of the Cu(111) surface, all terrace sites were considered equivalent, 

and only pairwise additive lateral interactions between neighbouring CO adsorbates were 

included. Moreover, diffusion processes for the most mobile species (essentially CO, H2O, 

OH and O) were added into the reaction model. On the other hand, in the study of the 

Cu(321) surface, different types of sites were distinguished, and pairwise interactions for all 

possible reactant and product pairs were included using a cluster expansion model.[22, 23] 

Additionally, diffusion processes for H2O, OH and O species were included as in the case 

of the Cu(111) surface. All kMC calculations have been carried out by means of ZACROS 

code,[22, 24] although some of them used also an in-house developed C++ code. 

3.2 Construction and use of several kinds minimum energy diagrams 

DFT-based calculations carried out on suitable periodic surfaces, complemented by 

statistical thermodynamics, is currently the main tool to investigate heterogeneously 

catalysed reactions at the molecular level.[1, 12] These constitute a necessary previous stage 

to kMC or MM studies. This computational framework allowed us to calculate accurate 

minimum energy diagrams for many complex processes involving several elementary steps 

with detailed information about transition states and stable intermediate species. From the 

minimum energy profiles the equivalent pictures for Gibbs free energies can be obtained, 

which summarize the proposed reaction model or the main reaction mechanisms observed 

in kMC or MM studies. Nevertheless, the construction, the use and the interpretation of 

these energy diagrams needs to be handled with caution. 

Minimum energy diagrams based on DFT calculated total energies lead to potential 

energy diagram (PED). These, should include the ZPE correction and provide a first view 

of a given reaction mechanism. ZPE can be calculated for a harmonic oscillator model as a 

sum of contribution from all vibrational modes. Low frequencies (< 500 cm-1) do not 

contribute to ZPE, while high frequencies can contribute with several tenths of eV.[1] This 

trend is opposite to that of the frequency contribution to the entropy, as discussed later. 

ZPE correction is especially important in surface reactions involving H atoms, like water 

dissociation or hydrogenation reactions, because the atom-H stretching frequencies are 

typically between 3000-4000 cm-1. Figure 2 shows the effect of the inclusion of the ZPE 
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correction on the PED for the WGSR on Cu(321) (associative mechanism). Small 

differences of up to 0.22 eV can be observed in some energy barriers (i.e., water 

dissociation), which have large effects on the corresponding reaction rates. For instance, the 

reaction rate corresponding to the water dissociation at 625 K including ZPE is 1.5·106 s-1, 

whereas the value without ZPE is only 2.5·104 s-1, 60 times smaller! Therefore, ZPE should 

always be included in all energy barriers (i. e. ,	∆V0≠) used for reaction rate calculations 

(e.g., in Eqs. 5 and 7). 

The commonly GGA functionals widely used in past years neglect dispersion terms, 

which may play an important role in chemical and physical processes. Dispersion 

interactions largely affect the adsorption properties of molecules at surfaces, and can be the 

dominant term as in the case of aromatic molecules interacting with the basal plane of 

MoS2,[25] graphene on metallic surfaces[26] or hydrocarbons interacting with zeolites.[27] 

Even if the process being studied involves small size species such as, CO or CO2 only, the 

contribution of dispersion interactions to the overall energy may be important and should 

not be ignored. In a previous study on the effect of vdW interactions in the WGSR on 

Cu(321),[28] it has been shown that the dispersion contribution is different for reactants, 

intermediates and products, with a clear net effect and with no compensation of errors. 

These terms affect adsorption structures and adsorption energies but also the overall PED, 

producing tremendous changes in the predicted reaction rates. For instance, the calculated 

binding energy of CO2 on Cu(321) surface is increased from 0.06 to 0.28 eV when vdW 

corrections are included (i.e., at PBE-D2 level), resulting in a desorption reaction rate 60 

times smaller (at T = 625 K). Another example is the energy barrier associated to the 

carboxyl disproportionation by hydroxyl (i.e., COOH + OH → CO2 + H2O) for the same 

system, which decreases from 0.55 to 0.33 eV when dispersion forces are included, 

resulting in an increase of a factor of also 60 in the reaction rate (at T = 625 K). 

Consequently, dispersion terms should be always included when aiming at obtaining 

reliable information to be used in MM or kMC approaches. Fortunately, most of the often-

used codes include the contribution of dispersion terms even if the choice of the appropriate 

methods is still a matter of debate.[29] 

PEDs are good tools to have an overview of the different elementary reaction steps 

in a complex surface reaction such as the WGSR. However, for processes involving large 
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shifts in entropy (e.g., adsorption and desorption), they often fail to make even qualitative 

predictions. Gibbs free energy diagrams are more useful for making such predictions (e.g., 

the most favourable mechanisms, accurate reaction rates,..), because they take into account 

the effects of pressure and temperature. Figure 3 shows the Gibbs free energy diagram for 

the associative mechanism of the WGSR on Cu(321). The process is even exothermic at 

temperatures as high as 625 K but becomes about thermoneutral at 1000 K and endothermic 

at even higher temperatures. The PED and the Gibbs free energy diagrams are very 

different, mainly regarding the adsorption and desorption processes. This is because in for 

molecules in the gas phase, the largest fraction of the standard entropy contribution arises 

from the translation degrees of freedom, while the vibrational and rotational parts constitute 

a minor contribution. For adsorbed species, the translational and rotational degrees of 

freedom become constrained and turn into vibrational degrees of freedom (i.e., frustrated 

translational and rotational modes). The Gibbs free energy of adsorption is commonly 

estimated by an approximate procedure proposed by Nørskov et al.[1] where, in absence of 

mechanical work, the enthalpy of adsorption is approximated by the corresponding change 

in the potential energy, the entropy of gas-phase is computed by taking into account all 

contributions to the partition function with the assumption of rigid rotor and harmonic 

frequencies, and finally the entropy of adsorbed species can be neglected or computed from 

the vibrational modes.  

However, as in kMC and MM studies the reaction rates need to be calculated for all 

surface processes, their values can also be used to determine the standard free energies of 

activation for each surface process (∆G0≠), using the thermodynamic formulation of TST 

expression (Eq. 12), 
 

r(T) = FG∙H
I
e-	

∆�0≠(�)
kB∙T  (12) 

The standard free energies of reaction for each surface process (∆G0 ) can be 

obtained by using the rates of forward and reverse processes and the detailed balance 

principle,[30] Eq. 13,  

p�El�jl�(H)
pl�f�lk�(H)

= e-	
∆�0(�)
kB∙T  (13) 
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From Eqs. 5 and 12 one can derive a simple relationship between ∆G0≠ and ∆V0≠, 

Eq. 14, 

∆G°� = ∆V°� − k�	T	ln s
J�

JL
| (14) 

The contribution to the partition functions (i.e., Q¹ and QR) for a given vibrational 

mode (q^ ) is large for low vibrational frequencies, and viceversa, contrary to what 

happened with the ZPE correction to the energy barrier. Vibrational frequencies larger than 

1000 cm-1 have a negligible contribution to the total partition function (i.e., q^ ≈	1), while 

frequencies below 50 cm-1 give significant contributions to Q (i.e.,	q^ >	10). In the free 

energy diagrams shown in many published works, it is commonly assumed that the entropy 

contributions of adsorbed species are zero,[31] which means that for a given surface process 

Q�/Qe ≈ 1  and hence ΔVZ≠ ≈ ΔGZ≠  as derived from Eq. 14. However, this usual 

assumption may not be valid in surface processes involving more than 4 atoms (with a large 

number of low vibrational modes) or at high temperatures. In the WGSR example at T = 

625 K, most of the elementary steps satisfy that 	|ΔVZ≠ − ΔGZ≠| 	< 0.10 eV, but for certain 

processes |ΔVZ≠ − ΔGZ≠| is very large (e.g., for CO2 + H2O →	COOH + OH, being ≈ 0.35 

eV), as shown in Table 1, and it can no longer be assumed that ΔVº ≈ ΔGº . This also holds 

for adsorption and desorption processes. 

Another feature observed when looking in detail at minimum energy diagrams is 

that sometimes the ∆G0 or ∆V (with ZPE) values reported for the overall reaction are 

different from the DFT values computed directly from gas-phase species (i.e., using only 

reactants and products). For instance, in the PED of Figure 3 one can see that for WGSR on 

Cu(321) the value of ∆V is -0.84 eV whereas a value of -0.80 eV is obtained from DFT 

gas-phase calculations. The differences in ∆G0 are even larger (e.g., at 525 K, compare -

0.55 eV (Fig. 3) against -0.48 eV (Table 2) at PBE level). For other systems, these 

differences can reach up to several tenths of eV. Clearly, this comparison between gas 

phase and through the surface calculated thermodynamic values has to be investigated and 

for large discrepancies further studies are require finding out their origin and to minimize 

them. A possible e reason for this disagreement is that adsorbed species may react from 

several adsorption sites (i.e., top, bridge, hollow,…), and the binding energy at each site is 

really different. Diffusion processes are often not included in minimum energy diagrams, 
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leading to an inaccurate value of ∆V for the overall reaction. Another reason is that 

occasionally these energy diagrams are constructed from energy barriers for coadsorbed 

reactants and products, instead of using the energy barriers at infinite separation on the slab. 

Finally, in DFT calculations only the slab and the reactant species for a given step are 

included, while spectator species are missing. This implies a lack of consistency in the 

energy calculations simply because the unit cells are different. In the case of using a plane 

wave basis set this implies a different number of plane waves for the same kinetic energy 

cut-off whereas in the case of using atomic like basis sets such as Gaussian type orbitals or 

numerical orbitals one faces the problem of basis set superposition error. Ideally, a much 

more accurate calculation including all possible reaction intermediates is possible but this 

would require the use of very large supercells, with a concomitant unaffordable increase in 

the computationally cost.  

Finally, it is worth pointing out that a comparison between theoretical and available 

experimental ∆G0 values, specially for the overall reaction, can and should be done to 

check even more the quality of the DFT data, which may slightly affect the PED but largely 

affect the final kMC or MM results. Most often, commonly used GGA type functionals are 

accurate enough to provide physically meaningful results. Table 2 compares the 

experimental values of the equilibrium constants (K_�) and ∆G°[32] for the WGSR at two 

temperatures (525 and 625 K) with some calculations carried out by means of GAUSSIAN 

code [ 33 ], using different quantum chemistry methods. Despite being the most used 

functionals for metallic systems, both PW91 and PBE poorly describes the 

thermochemistry of WGSR, although the agreement with experiment is better at higher 

temperature. Even the broadly used B3LYP functional, which was designed precisely to 

improve the thermochemistry of gas-phase molecules[34, 35] reports an equilibrium constant 

which is around 45 times larger than the experimental value at 625 K. Only the golden 

standard CCSD(T) method exhibits a pretty good agreement, though not perfect, with 

experiment.  

At this point, one may argue that results obtained from DFT calculations of 

reactions taking place at metallic surfaces are doubtful. However, this claim is incorrect 

because, unlike for gas-phase chemistry, when a reaction takes place above a metallic 

surface the electrons in the reacting species are largely screened by the electrons in the 
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conduction band and, in addition, constitute a fraction of the total number of electrons. This 

is an important remark since it is well-established that both PBE and PW91 GGA type 

functionals provide a very good description of the metal properties,[36,36- 38] while hybrid 

functionals, describing better the thermochemistry in gas-phase, fail[39,40] because of the 

failure to attain the exact homogeneous electron gas limit.[41] The large body of literature 

showing good agreement between DFT calculations at the GGA level with experimental 

values for adsorption and reaction energies[20, 21] supports this view, and it is reinforced by 

the evidence that the transition states for reactions catalysed by non-magnetic metals do not 

evidence any spin polarization.[42] Moreover, note that most of the available kMC studies 

correspond to open systems in a nonequilibrium state. Thus, even if the calculated results 

for reaction rates and related properties are by no means exact, it is very likely that the 

overall physical description is correct.  

3.3 Modelling fast processes  

A diffusion (usually fast) process can be represented as a hopping of an adsorbate 

from one site to a neighbouring one on the lattice model. Although sometimes ignored,[43] it 

is important to include diffusion steps of the mobile species into the reaction model since 

diffusion controlled processes cannot be discarded beforehand. When various site types are 

distinguished in the lattice model, ignoring diffusion processes can have as a consequence 

that important intermediate species are not formed during the simulation. For instance, in 

the kMC model of the WGSR on the stepped Cu(321) surface, OH species are produced 

from water dissociation on bridge sites, but they must migrate to hollow sites to react with 

CO species in order to produce the COOH species. On the other hand, in the kMC study of 

the WGSR on the flat Cu(111) surface, all adsorption sites were considered equivalent (i.e., 

all sites are labelled as terrace sites). However, in spite of product molecules can be formed 

without including diffusion in the reaction model for this simple lattice model, calculated 

values of TOFs and coverages (Table 3) are different enough from the values obtained 

when including diffusion processes.  

The vast majority of complex heterogeneous reactions contain processes with very 

dissimilar reaction rates. The slowest surface processes are commonly chemical reaction 

processes with high energy barriers of up to 2 eV. On the other hand, the fastest ones are 

usually diffusion processes with energy barriers of only a few hundredths of eV and quite 
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often adsorption/desorption processes can be also very fast. At a temperature of 625 K a 

slow surface process with an energy barrier of 1.6 eV will have a reaction rate of around 1 

s-1, while the reaction rate for a fast diffusion process with an energy barrier of only 0.05 

eV will be around 1012 s-1, implying that along the kMC simulation the diffusion will 

dominate and extremely long simulation are required to observe some evolution of the 

overall chemical process. Some solutions to improve the performance of kMC simulations 

were mentioned in section 2.1. For instance, a reduction by some constant factor of the 

reaction rates of these fast processes has been successfully applied in many kMC 

studies,[10,10,21, 44] but not all fast processes can be correctly scaled. Another alternative but 

equivalent solution is to increase all the energy barriers of these processes by the same 

amount.[45]  

Chatterjee and Voter[7] developed a temporal acceleration scheme by automatically 

modifying the reaction rates of fast processes without the need for the user to specify these 

processes in advance. In this method, called accelerated superbasin kinetic Monte Carlo 

(AS-kMC), the algorithm keeps track of how often configurations are revisited. When this 

occurs too often one has an indication of the system being stuck in a set of configurations 

connected by fast processes (i.e., the superbasin). The reaction rates of these processes are 

then decreased. This procedure may be repeated until the fast processes are slowed down 

enough so as escape from the superbasin finally occurs. However, the fact that AS-KMC 

identifies processes based on the configuration of the entire system is likely to makes it not 

efficient enough for complex reaction models such as, WGSR or Fischer-Tropsch synthesis 

where an enormous number of possible configurations needs to be considered. This latter 

problem was addressed in the recently developed algorithm by Dybeck and coworkers,[8] 

where the acceleration is accomplished by reducing the reaction rates of the fast-quasi-

equilibrated processes to enable more frequent execution of the slower reactive surface 

processes. The main improvement is that the partitioning and the scaling is applied to all of 

the processes in a given reaction channel rather than to the individual processes as done in 

the Voter scheme. This method has been successfully applied to model the Fischer-Tropsch 

synthesis reaction over ruthenium. However, the procedure may not be optimum since 

Andersen et al. used this algorithm to model the CO methanation on stepped transition 

metal surfaces finding poor accuracy in certain situations.[6] 
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3.4 Coadsorption and lateral interactions 

A physically meaningful representation of the description of the kinetics of complex 

surface reactions requires a quantitative account of the lateral interactions between 

coadsorbed species. Figure 4 shows the PED for a bimolecular surface reaction A + B →

C + D at zero-coverage limit, this is in a situation where only reactants or products and no 

spectator species are present at the surface. These interactions can be attractive or repulsive 

for either reactants or products as shown in Figure 4. At low temperature, these interactions 

can lead to any correlation in the occupation of neighbouring sites or even result in island 

formation or ordered adlayers. Only at very high temperatures they will become negligible, 

which is where mean field approximation is valid and MM simulations meaningful. 

Lateral interactions in small systems are commonly described with a cluster 

expansion model [22,23, 46]. This expansion can be made so as to reproduce both the energy 

profile for reactants at infinite separation and for coadsorbed states (Figure 4) for all the 

elementary steps. Moreover, energy barriers at a given coverage can be parameterized 

relying on Brønsted–Evans–Polanyi (BEP) relationships.[47,48] As an example, consider the 

COOH	→ CO + OH step of the WGSR on Cu(321).[21] The energy barrier value used for 

the calculation of the reaction rate is 0.24 eV, without any neighbouring adsorbates (i.e., 

zero-coverage limit). However, the presence of other adsorbed molecules can increase the 

value of the energy barrier of this step up to 0.30 eV, depending on the new lateral 

interactions that could appear if this process was executed in kMC simulations. Table 2 

shows the significant effect of the lateral interactions between coadsorbed species in the 

kMC calculations for the WGSR on Cu(321)[21] even at low pressures and high temperature, 

where these effects should be lesser. 

Due to the high number of species and site types present in complex reaction 

mechanisms (e.g., in WGSR), it is impossible to obtain a complete data set of DFT energies 

for all possible lateral interactions, which could appear through the reaction (i.e., at high 

coverages). Thus, kMC models for such complex systems typically employ simpler models 

for the adlayer energetics. One possibility is then to truncate the cluster expansion to one-

body terms and pairwise interactions only for all possible reactant and product pairs, as 

done in Ref. 21. Fortunately, many lateral interactions are small enough and a cheaper, 

although less accurate, an alternative is to use the energy barriers at infinite separation and 
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to include only the most important lateral interactions between nearest neighbours, 

assuming that those lateral interactions are pairwise additive; this was the choice in Refs. 9 

and 10. 

 

3.5 Quality of reaction rates 

The accuracy of the reaction rates used in MM and kMC calculations completely 

determines the quality of the final results of these simulations. Usually rates are obtained 

from canonical TST and CT. Most likely, variational TST[3] would be more appropriate, as 

shown for gas-phase reactions when comparing calculated to experimental data.[ 49 ] 

However, VTST requires a significantly large set of DFT data including many 

configurations along the minimum energy path between the TS and reactants and products. 

Hence, it has seldom used in this kind of studies. Additionally, for surface processes 

involving light atom/molecule transfers, a one-dimensional tunnelling correction factor in 

the reaction rates can be introduced, for instance assuming an Eckart barrier.[10] 

As mentioned above, the use of TST implies obtaining the necessary DFT data of 

the adsorbed reactants and products and TSs which implies not only structural data but 

energy barrier and vibrational frequencies as well which are needed to apply Eq. 5. 

Unfortunately, most of the published works describing the main elementary surface 

processes of a given complex reaction at a DFT level, report the largest vibrational 

frequencies of the stationary points (i.e., minima and TS) only.[50, 50-52] Neglecting these 

frequencies has almost no effect on the PED of the reaction, but it can lead to large errors in 

the Gibbs free energy diagrams and in the calculation of the reaction rates, as discussed 

above. Figure 5 shows the effect of neglecting the frequencies below 500 cm-1 on the Gibbs 

free energy diagram for the WGSR on Cu(321). The most drastic changes are found in the 

adsorption and desorption processes, due to the underestimated value of Qe, resulting in an 

erroneously high value of rdes. 

3.6 Proposal of plausible mechanisms and catalysts 

 Compared to PED profiles, Gibbs free energy diagrams provide a more detailed 

picture of the overall surface reaction network. Both diagrams should be used to unravel the 

underlying molecular mechanism although with the necessary caution when aiming to 
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make predictions regarding the performance of a given catalyst for a given complex gas-

surface reaction. Establishing a ranking of plausible reaction mechanisms and the most 

efficient catalysts based only on the values of energy barriers of some forward processes 

(e.g., the rate-determining steps (RDSs)) is not always fully justified although this is often 

the choice in many studies.[54, 53- 55] Very low energy barriers for reverse processes can 

greatly hinder reactivity, even if the forward energy barrier is affordable. Moreover, the 

RDSs may change from one catalyst to another, or even simply by changing the 

temperature or the reactants partial pressures, and these steps may not coincide with the 

processes having the highest energy barriers in the energy diagrams.[21] For instance, 

consider again the WGSR on Cu-based catalysts. It is commonly accepted that the initial 

water dissociation is the RDS on pure metal surfaces.[¡Error! Marcador no definido.] The forward 

energy barrier for this process on the stepped Cu(321) surface is 0.78 eV,[21] lower than the 

1.01 eV energy barrier for the flat Cu(111) surface.[10] Thus, one may assume that the 

stepped surface is more efficient than the flat surface. However, the values for the energy 

barrier of its reverse process are 0.60 eV and 1.15 eV for the stepped and the flat surface, 

respectively, making the Cu(111) surface more suitable for WGSR, as found by computing 

the H2 TOF. Moreover, inspection of the RDSs using a combination of kMC simulations 

and Campbell’s degree of rate control[ 56 , 57 ] shows that CO2 formation by carboxyl 

intermediate is really more limiting than water dissociation in all temperature and pressure 

range studied for the WGSR on Cu(321).[21] 

Therefore, in order to draw any reliable conclusion on the overall complex reaction, 

apart from the construction and the previous examination of the mentioned minimum 

energy diagrams, it is also necessary including the contribution of all reverse processes 

together with the concentrations of all adsorbed species (or their coverages). Thus, kMC or 

MM methods along with reliable determination of RDSs are the appropriate methods to 

obtain a detailed information of the time evolution of complex heterogeneously catalysed 

reactions catalysis. 
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4. Concluding remarks 

In the present work, kinetic Monte Carlo and Microkinetic Modelling methods 

applied to the study of the heterogeneous catalysis by using first-principles data based 

mainly on Density Functional Theory are critically reviewed yet details on both methods 

are given, which also could serve as a short tutorial for beginners in this area.  Several 

important issues that need to be taken into account appear usually in kMC and MM kinetic 

studies of complex gas-surface reactions are highlighted. To illustrate the discussions, we 

rely on recent work on the water gas shift reaction on the flat Cu(111) surface and in the 

stepped Cu(321) surface. Several additional kMC calculations were also carried out to 

better support our conclusions. 

The effect in kMC and MM studies of the inclusion of dispersion energies in the 

DFT calculations, of the inclusion of diffusion processes into the reaction model or of the 

addition of adsorbate-adsorbate lateral interactions has been analysed in detail. Moreover, 

the accuracy of calculated reaction rates, with a noteworthy effect in the final results, is also 

examined.  

A throughout description regarding the construction, use and interpretation of 

minimum potential energy and minimum Gibs free energy diagrams is presented. The 

results of kMC simulations show that extracting reliable conclusions on the overall 

complex reaction based on these diagrams, specially using PEDs, only may lead to 

misleading conclusions. A meaningful simulation requires also including the contribution 

of all reverse processes together with the concentrations of all adsorbed species. Hence, 

kMC or MM methods should be applied to correctly treat complex reactions with 

heterogeneous catalysis. 

From the overall discussion, it appears that kMC method offers a more detailed 

picture of the overall process than that arising from MM. In fact, kMC facilitates an easier 

and deeper introduction of several important features: refined lattice models, diffusion 

processes and lateral interactions. However, kMC involves higher computational cost and 

the need to construct appropriate lattice models, which is far from being automatic. 

Moreover, more efficient kMC algorithms are needed to better account for surfaces 

processes with very dissimilar reaction rates. 
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Figure 1. Simplified reaction model of the WGSR with an associative mechanism on 

Cu(111) and Cu(321) surfaces. Note that forward and backward reactions have to be taken 

into account. 
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Figure 2. Simplified PEDs for the associative mechanism of the WGSR on Cu(321) with 

(blue) and without (red) the ZPE correction. The energy barriers are calculated for reactant 

species at infinite separation. 
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Figure 3. Comparison between PED with ZPE(black) and two Gibbs free energy diagrams 

(P = 1 bar, T = 525 K, blue and T = 625 K, red) for the associative mechanism of the 

WGSR on Cu(321) surface (adsorbates at infinite separation). 
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Figure 4. Potential energy profile for a bimolecular surface reaction A + B → C + D at 

zero-coverage limit.  
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Figure 5. Gibbs free energy diagrams for the associative mechanism of the WGSR on 

Cu(321) (P = 1 bar, T = 625 K). The correct profile computed using all the vibrational 

frequencies is plotted in solid line, whereas the same profile neglecting the frequencies 

below 500 cm-1 is plotted in dashed line.   

  



28 
 

 

 

 

Surface process |ΔVZ� − ΔGZ�| (eV) Q�/Qe 
Forward Reverse Forward Reverse 

H2O → OH+H 0.08 0.01 0.22 1.26 
2OH → H2O+H 0.06 0.09 0.34 0.18 
CO+O → CO2 0.09 0.28 0.17 < 0.01 

CO+OH → COOH 0.04 0.01 0.51 0.87 
COOH+OH	→ CO2+H2O 0.13 0.35 0.09 < 0.01 

H+H → H2 0.05 0.10 2.33 0.16 
 
Table 1. Values of |ΔVZ≠ − ΔGZ≠|  (eV) and Q�/Qe  for different elementary surface 

processes of the WGSR on Cu(321) at 625 K. 

 

  



29 
 

 

 

 

 

T (K) 
∆G°  

525K 

∆G°  
625K 

K_� 

525K 

K_� 

625K 

PBE -0.48 -0.41 41627 1905 

PW91 -0.48 -0.41 43079 2046 
B3LYP -0.40 -0.36 7561 877 

CCSD(T) -0.12 -0.07 13 4 
exp.[32] -0.20 -0.16 80 20 

 
 
Table 2. Comparison between experimental data and calculated values of the equilibrium 

constant ( K_� ) and ∆G°  of the overall WGSR, using an aug-cc-pVTZ basis set with 

different DFT functionals and the post-HF CCSD(T) method. 
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 TOF 
(molec.·s-1·site-1) coverage 

  CO  H2O  OH  H 
Diffusion 7826 2.7·10-4 1.2·10-2 1.8·10-1 1.3·10-1 

No diffusion 6391 2.3·10-4 1.1·10-2 2.7·10-1 1.6·10-1 
 
 
Table 3. Calculated turnover frequency and coverages of several adsorbates for the WGSR 

on Cu(111) with and without including diffusion processes. kMC simulation conditions: T 

= 625 K, PCO = 26 Torr and PH2O = 10 Torr.  
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 TOF 
(molec.·s-1·site-1) coverage 

  CO  H2O  OH  H  
Lateral int.  199 1.3·10-1 7.3·10-2 2.1·10-1 3.6·10-2 

No lateral int. 130 1.6·10-1 5.1·10-2 2.8·10-1 4.9·10-2 
 
Table 4. Calculated turnover frequencies and coverages of several adsorbates for the 

WGSR on Cu(321) with and without including lateral interactions in kMC simulations for 

T = 625 K, PCO = 26 Torr and PH2O = 10 Torr. 
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