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Chemical space is estimated to contain over 1060 small synthetically feasible
molecules and so far only a fraction of the space has been explored. Experimental
techniques are time-consuming and expensive so computational methods, such as

machine learning, are needed for efficient exploration. Here we looked at
generative models, more specifically variational autoencoder (VAE) and

conditional variational autoencoder (CVAE), used for designing new molecules. In
the first part, we evaluated already written VAE and in the second part, we
upgraded it to the CVAE. For the conditional vectors in CVAE we used B4

Signatures generated from Chemical Checker describing molecular properties.
Both models performed well, however, CVAE showed many advantages.
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Chapter 1

Introduction

Machine Learning, especially its sub-field Deep Learning, has accomplished ex-
ceptional results in various areas of scientific research during recent years due to its
broad applicability. Chemoinformatics is just one of the disciplines that has bene-
fited greatly from the use of machine learning algorithms. While there are many
areas of chemoinformatics where artificial intelligence produced revolutionary re-
sults, de novo molecular design has been wholly transformed. The use of modern
algorithms for discovering new molecules speeds up the process, is way more effi-
cient than traditional methods and it also offers more pliability.

The number of potential organic molecules1 is enormous even when we take into
account only small molecules that are synthetically feasible and are not heavier than
500 Dalton2. The chemical space of such molecules is estimated to contain over 1060

unique members (Virshup et al., 2013), from which only a fraction of a percentage
have been identified and thus far only∼108 substances been synthesized (Kim et al.,
2015), leaving more than 99% of chemical space unexplored.

Until recently quite a large number of small molecules used for medical treat-
ments were natural products3 or molecules derived from them (Newman and Cragg,
2016). The rest were mainly discovered through trial and error and by using ed-
ucated guesses. The main challenge of drug discovery is to generate novel com-
pounds with desired properties (e.g. molecular weight, toxicity, solubility, etc.) and
with novel bioactivity4 profiles. Creating such molecules experimentally is time con-
suming and inefficient thus machine learning is necessary for exploration of the un-
familiar regions of the chemical space. Machine Learning is a much more robust
approach offering efficient search that optimizes the available resources and acceler-
ates the drug discovery pipeline.

1Molecules that contain mainly carbon (C) and hydrogen (H) atoms as well as nitrogen (N), sulfur
(S), phosphorus (P) and oxygen (O).

2 1
12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state

and at rest.
3drugs isolated from natural materials such as plants or are produced by microbes etc.
4Bioactive compounds interact with organism consuming them on cellular level
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1.1 Motivation

The aim of this thesis is to investigate the use of variational autoencoders (VAE)
and conditional variational autoencoders (CVAE) in terms of their capabilities of
designing novel drug-like molecules. VAEs and CVAEs are generative models, that
are capable of generating new data that resembles the input data. They convert
discrete representation of molecules into a continuous representation - latent space -
which can be easily manipulated.

Ideally a trained VAE should be able to generate valid molecules that are similar,
but not too similar to the input molecule while CVAE should generate molecules
following the input conditions. For evaluation of the results, similarity metrics and
comparison of molecular properties will be used.

In the first part I used already trained VAE and preformed analysis on specific
molecules to see how the model performs. I then upgraded this model to the CVAE,
repeat the analysis and compared results with VAE.
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Chapter 2

Molecular Representation

The format of the data used with machine learning algorithms is quite important
as the algorithm needs to learn from it efficiently. Molecules can be represented in
many different formats such as Coulomb matrix, 3D geometry, electronic density,
SMILES, fingerprints, InChl keys1 etc. The more detailed representation the more
computationally expensive it will be to process it. While none of the molecular rep-
resentations currently stores all of the molecular properties, each of the formats is
useful for specific task, for example, SMILES representation is currently preferred
format for generative models, although graph based models have become a popular
choice for designing novel molecules in the past couple of years as well.

FIGURE 2.1: Paracetamol: Examples of its representations.

1Another string based representation that encodes more complex information than SMILES.
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2.1 SMILES

The simplified molecular-input line-entry system (SMILES) is a one dimensional,
line representation of a two dimensional chemical drawing. SMILES is a language
with not many grammar rules and simple vocabulary that includes atom and bond
symbols only. Not only is this linguistic notation way more compact than other rep-
resentations, it also makes the use of natural language processing algorithms possi-
ble.

A molecule usually has more than one valid SMILES notation (SEE FIGURE -
SMILES can be written starting from any atom of a molecule) so canonicalization
algorithm, an algorithm that assigns one specific SMILES to each molecule, is nor-
mally applied. SMILES represent only a subset of possible molecules meaning that a
syntactically non valid SMILES might still represent a valid molecular structure, but
its physics is not taken into account by the set grammar rules although the number
of such smiles seems to be negligible.

FIGURE 2.2: Molecular graph of Toluene and all of its SMILES repre-
sentation.

2.2 Molecular Fingerprints

Fingerprints are a way of representing molecular structure as mathematical objects
— typically vectors that correspond to the extracted molecular features. The features
represented by the fingerprints depend on which type of a fingerprint was used. To
evaluate the results of the VAE and CVAE we used Morgan Fingerprints.
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Morgan Fingerprints

Morgan fingerprints also known as circular fingerprints store information about
molecular connectivity. They look at the surroundings of each atom and store infor-
mation about connectivity up to a given radius(neighbouring atoms, usually from
0-3) encoding each possible connection. The results are compressed to a bit vec-
tor by using hash algorithm. Each fingerprint bit corresponds to a fragment of the
molecule.

FIGURE 2.3: Scheme of Morgan fingerprinting for different diame-
ters. Each one of the images is encoded into the fingerprint.

2.2.1 Tanimoto Similarity

There are several similarity and distance metrics methods that quantify the similar-
ity between different molecular fingerprints.

Tanimoto similarity of molecule a and molecule b is calculated by using the fol-
lowing formula:

d(a, b) =
n(A ∩ B)

n(A) + n(B)− (A ∩ B)
(2.1)

where:

n(A) = number of bits set to 1 in molecule a’s fingerprint.
n(B) = number of bits set to 1 in molecule b’s fingerprint.
(A ∩ B) = number of bits set to 1 that molecule a
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and molecule b have in common.
As we can see Tanimoto normalizes the degree of size in the denominator.

The higher the similarity the more similar the molecular fingerprints. The values
of similarity will be anywhere from 0 to 1, where higher the number the more bits
have the molecular fingerprints in common. It’s good to note that value of 1 does
not mean the molecules are identical. Value of 1 only implies that they have iden-
tical structural descriptors fingerprint. Moreover, smaller molecules will often have
lower similarity using Tanimoto coefficient.

Why is similarity important?

When scientists are looking for new drugs they usually start with already known
drug and try to adopt them for other treatments, or they look for molecules in a
database that are similar to the query molecule. The molecules that are similar to
each other tend to have quite similar properties meaning that we would like to cre-
ate molecules that are different from each other but still fairly alike. While Tanimoto
distance is widely used to compare molecular fingerprints as it incorporates sub-
structure matching and while is not the only similarity search metric it is one of the
best for fingerprint-based similarity comparison (Bajusz, Rácz, and Héberger, 2015).
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Chapter 3

Designing Molecules

The design of new molecules is categorized into two different approaches. The first
one is a direct approach where the new molecules are found by experimentation or
simulation. This approach starts in the chemical space and then moves onto deter-
mining the quantum properties1 of the molecules. The exact quantum properties
are calculated using the Schrödinger equation, which is computationally expensive.
This problem is partly solved by simply approximating the properties, however,
usually there are numerous molecules that we would like to analyze. The use of
computational methods can cut down the costs by looking for specific molecules to
get a smaller subset that is then analyzed further.

The Inverse design starts with the desired properties and looks for molecular
structure within the chemical space that fit them. The two methods that use the
inverse approach are high-throughput virtual screening and modern computational
methods; optimisation and generative models.

3.1 Virtual Screening

High-throughput virtual screening, takes the initial library of candidates and filters
them by their properties (such as solubility, toxicity, activity, etc.) which gives an
indication of closeness between the molecules. Only the ones that fit the initial crite-
ria, if there even are any, are then tested experimentally (Lionta et al., 2014; McInnes,
2007). The molecular structure of filtered molecules can then be modified to fit the
desired properties using genetic algorithms and optimisation techniques, but, this
process is highly inefficient (Rupakheti et al., 2015; Hartenfeller and Schneider, 2011;
Schneider, 2018).

Contrarily, generative models aim to directly create novel molecules that fit wanted
properties.

1Quantum mechanics allows us to predict properties of elements and how they behave in molecu-
lar structures.
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3.2 Generative Models

3.2.1 Recurrent Neural Networks

Configuration of molecules can be expressed with SMILES strings (see subsection
2.1). New SMILES and hence new molecules can, therefore, be generated using nat-
ural language processing models such as recurrent neural networks (RNNs) that are
used for data of sequential nature. RNNs learn the probability distribution of the
order of characters in these strings.

In particular, much of this success has been achieved by the use of recurrent
networks of long short-term memory (LSTM) cells that are very efficient and very
precise at writing new strings. LSTMs are well-suited as they can process the entire
sequences of data and not only single data points. When the RNN model is given a
piece of a SMILES it will predict the probabilities of having any of the stated char-
acters placed after the said set of already given characters, producing new SMILES
strings.

Bjerrum and Threlfall (2017) explored how well can RNNs with LSTMs learn the
grammatical rules of SMILES and generate synthesizable molecules. The molecules
used for training and the novel molecules written by the model had very similar
distributions of their properties (molecular weight, predicted logP2). The majority
of the compounds created even had a good synthetic accessibility score3. Similar
results were seen by Segler et al. (2017). The team also fine-tuned the model us-
ing a subset of molecules to perform transfer learning and enabled the creation of
molecules with wanted activities and Gupta et al. (2018) mentioned that the fine-
tuned molecules showed significantly higher similarity to the training set than the
molecules that were not fine-tuned.

3.2.2 Autoencoders and Generative Adversarial Networks

Generative models have strongly influenced chemical design as they arguably could
fully automate the search for new compounds. Advance types of autoencoders, vari-
ational autoencoders and conditional variational autoencoders, as well as generative
adversarial networks (GANs) have already shown tremendous potential.

Autoencoders aim to recreate their inputs to their outputs by compressing the

2is a partition coefficient between octanol and water—very important property in drug design as
it tells us how soluble a molecule is in water.

3score that tells us how easy or hard it is to synthesize a molecule.
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input into a latent-space representation and decoding the output from this represen-
tation. In theory similar inputs are expected to have similar latent space representa-
tions and should be near each other. Team (Gómez-Bombarelli et al., 2018), exper-
imented with VAE by using continuous optimisation to produce new compounds.
Their autoencoder was trained using SMILES and their results showed that similar
molecules are indeed found close together in the latent space. The VAE was also
trained jointly with an additional neural network for predicting the properties of
generated molecules.

To further improve VAE for molecular design, Kusner, Paige, and Hernández-
Lobato (2017) wrote Grammar Variational Autoencoder (GrammarVAE) to solve the
problem of sampled data points being invalid when transformed to their SMILES
representation. They provided the VAE with explicit SMILES grammar rules that
were available during the generation process. Their model did not have to learn
grammar rules, but only semantic properties of the data. GrammarVAE generated
more valid outputs and the latent space was more logical which resulted in nearby
points being decoded to similar discrete outputs. Furthermore, Bjerrum and Sat-
tarov (2018) also concluded that properties of the latent space are influenced by the
choice of molecular representation.

VAEs generate new molecules by sampling the space around the query molecules.
The generated molecules are similar and so are their properties. While this is a good
strategy to find alike molecules we cannot use it to find molecules that have the ex-
act properties that we want. This problem can be solved by using CVAE. Because
molecular properties are correlated with each other, change in one might create a
change in the other property which is not what we normally want. with CVAE we
can control several properties at the same time. Lim et al. (2018) created a CVAE that
was able to generate drug-like molecules that fit five target properties concurrently
within an error range of 10%. The team also reported that it is possible to change one
target without other 4 being influenced and that properties can be increased above
the limits of the training set.

Blaschke et al. (2018) compared four different AE architectures for sequence gen-
eration. Their results not only depended on the architecture used, but also on the
distribution of latent vectors of the encoder. Their best performing autoencoder was
a Uniform adversarial autoencoder (AAE) — autoencoder that imposes a uniform
distribution onto the latent representation of the autoencoder. Kadurin et al. (2017)
created AAE and looked at its advantages compared to VAE. The results were com-
pared on the basis of the reconstruction error and by comparing the changes between
the molecular fingerprints. They have concluded that AAE enhanced the capacity
and efficiency of creation of molecular structures with specific properties. De Cao
and Kipf (2018) adapted GAN to use graph data and combined it with reinforcement
learning to generate the molecules with desired chemical properties. Almost all of
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the generated structures were valid.

3.2.3 Graph Models

As seen, most of the research on generating new compounds has been focused on
using SMILES strings as a representation of molecules. Generative graph models,
on the other hand, use graphs as inputs. Graph based generative models, outper-
form SMILES based models in many metrics, especially in the rate of valid outputs.
Simonovsky and Komodakis (2018) created a VAE that uses molecular graphs as its
inputs, but the GraphVAE only showed good results when generating smaller and
less complex graphs.

Li, Zhang, and Liu (2018) employed conditional graph generative model that was
effective at producing compounds similar to their input molecule and Li et al. (2018)
have created a graph generative model that performed much better than Grammar-
VAE, CVAE and GraphVAE.
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Chapter 4

Neural Networks

As we will see in the next chapter, autoencoders are built using neural networks. The
ones used in this thesis, include recurrent neural networks (RNNs), more specif-
ically, gated recurrent units (GRUs) and 1D convolutional networks (1D CNNs),
which will be the focus of this chapter.

4.1 Recurrent Neural Networks - RNNS

The main idea behind RNNs is to be able to make sense of sequential information.
In a traditional neural network all inputs, as well as the outputs, are assumed to be
independent of each other. However, sometimes we have tasks, such as generation
of SMILES, where the sequence of characters is important. We can think of RNNs as
multiple copies of the same network, passing the information forward.

RNNs perform the same task for every element of a sequence, with the output
being depended on the previous computations. Their loopy architecture passes in-
formation from one step of the network to the next, so at every step, the network
already has all of the information up until then.

Architecture of RNNs

FIGURE 4.1: Architecture of RNN
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Recurrent neural networks have the form of a chain of repeating cells of neural
network. In standard RNNs, this cell will have quite a simple structure (see Figure
4.1) that shows the structure of the network and its cells.

Mathematical description of RNNs:

ht = σh(Uhxt + Vhht−1 + bh)

ot = σy(Wyht + bh)

Where:

xt = input vector (m× 1)
ht = hidden vector (n× 1)
ot = output vector (n× 1)
bh = bias vector (n× 1)
U, W = parameter matrices (n×m)

V = parameter matrix (n× n)
σh, σy = activation functions

4.1.1 Gated Recurrent Unit - GRU

GRUs were introduced by Cho et al. (2014). The main idea behind them is that they
are able to solve the vanishing gradient problem that comes with standard RNNs.
Gradient is a value that is used to update weights of the neural network. In RNNs,
gradient shrinks as it back propagates through time and it does not contribute much
to learning once the values become small. Layers that get small gradient update
and that do not learn are usually the earlier layers. Because this layers do not learn,
RNNs suffer from memory loss.

Unlike vanilla RNNs, GRUs are trained to keep information from steps that hap-
pened a while back and if the information is not needed they are able to forget it.
They have an internal mechanism, Forget gate and Input gate, that solves this prob-
lem. These gates are regulating the flow of the information, they can learn which
data in a sequence will they forget and which data is important for making predic-
tions.
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FIGURE 4.2: Architecture of GRU

Mathematical description of GRUs:

zt = σ(Wz · [ht−1, xt] + bz)

rt = σ(Wr · [ht−1, xt] + br)

h̃t = tanh(Wh · [rt � ht−1, xt] + bh)

ht = (1− zt)� ht−1 + zt � h̃t

Where:

ht = hidden layer vectors.
xt = output vector.
bz, br, bh = bias vector.
Wz, Wr, Wh = parameter matrices.
σ, tanh = activation functions.

4.1.2 LSTMs

LSTMs (Hochreiter and Schmidhuber, 1997) are more complicated version of GRUs,
or rather GRUs are a simpler version of LSTMs as they were developed years after.
Just like GRUs, LSTMs avoid the vanishing gradient problem and can learn tasks
that require remembering events that happened many steps earlier.

One of the main differences between the two is the number of gates and their
role. LSTM has three gates while GRU has only two. The GRU’s Update gate is
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similar to the Input and Forget gates in the LSTM, the new memory content is con-
trolled differently. Another difference between the two is that GRU stores log-term
dependencies and short-term memory in a single hidden state while LSTM stores
short-term memory in the hidded state and log-teerm dependencies in the cell state.

Due to fewer number of gates, GRUs have to update less weights and parameters
during the training and are faster to train than LSTMs. Both of this variants of RNNs
achieve similar results for the same tasks and can be used interchangeably. For some
problems one might be better than the other, so it is advisable to try both and see if
one is in fact superior.

FIGURE 4.3: Architecture of LSTM

4.2 Convolutional neural networks - CNNs

Convolutional Neural Networks are mostly used in areas such as image recognition
and classification but they are starting to become popular for solving problems in
natural language processing as well.

Simply put, CNNs are layers of convolutions, mathematical combination of two
functions that produce a third function, with nonlinear activation functions. In a
traditional, feed-forward neural network, each input neuron is connected to each
output neuron in the next layer. However in CNNs we do not use fully connected
layers like in traditional NNs. Instead, the convolutions are used over the input
layer to compute the output. The layers are connected locally and each part of the
input is connected to a neuron in the output.
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4.2.1 1D-CNN

CNNs share the same characteristics, the shape of the input data narrates how will
the algorithm go through the data provided. To use CNNs on NLP tasks1 they need
to be one hot encoded and presented as a matrix, where each row is a vector that
corresponds to one word or a character. When CNNs are used for image processing,
the data is two-dimensional and two-dimensional kernels are used to slide over the
data horizontally and vertically over the pixels, but when processing text we have
only one-dimensional kernel that will slide horizontally over the matrix. All inputs
should be the same size, so it is needed to define the maximum length of the input
and add white space to the inputs that are smaller than the maximum length.

FIGURE 4.4: Scheme of 1D CNN

1Sentences or words are one-dimensional data as they follow each other sequentially to form a
meaning.
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Chapter 5

Autoencoders

Autoencoder (AE) is a type of unsupervised learning algorithm build with neural
networks. The goal of an autoencoder is to learn an encoding for input data. It is
composed of an encoder and a decoder. The task of the encoder is to take a high
dimensional input and map it to a lower dimensional latent space and the job of the
decoder is to generate the original input by trying to reconstruct it from the latent
space representation. The size of the hidden representation will influence the recon-
struction. The less dimensions it has, less information it will be able to extract. The
autoencoder will prioritize the important features of the input data and the output
data will only be an approximation of the input data.

The downside of a simple autoencoder is that they cannot be used as genera-
tive models and cannot produce new data samples. If we give an AE input that it
has never seen before, the decoder will not be able to produce a reasonable output.
Decoder of VAE, on the other hand, will be able to give us a reasonable output.

FIGURE 5.1: Autoencoder architecture
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5.1 Variational Autoencoder

Variational autoencoders work as a generative model unlike plain autoencoders.
The inputs are defined by using a standard normal distribution and the job of the
decoder is to sample points from this distribution and produce a reasonable output.
Encoder does not only create a single point in the latent space, but it creates a proba-
bility distribution. These latent distributions are Gaussian distributions of the same
dimensional as the latent space.

The VAE objective:

E[logP(X|z)]− DKL[Q(z|X)||P(z)] (5.1)

where:

E: expectation value
P, Q: probability distributions
DKL: Kullback-Leibler divergence
X: data
z: latent spaces

In autoencoders Q(z|X) approximated by an encoder and P(X|z) approximated
by a decoder. New data x is generated from latent variables z. The goal is to have
encoding distribution, P(X|z), to be close to the data. But instead of using P(X|z),
approximated posterior Q(z|X) is used.

As we can see the VAE objective, or the loss function of VAE, has two parts, the
first part measures the quality of the autoencoding (the error between the original
sample and its reconstruction) and the job of the second part, the Kullback-Leibler
divergence, is to make the distribution of the encoder output as close as possible to
a standard multivariate normal distribution.

5.2 Conditional Variational Autoencoder

The ultimate goal of molecular design for new materials and drugs is to directly
generate molecules with the desired properties. Decoder in VAE cannot produce
an output with specific properties on demand, but CVAE can. During the training
time, the input data is being fed with its labels concatenated. The latent space does
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FIGURE 5.2: Architecture of VAE

not encode the data point, but it encodes information about the provided points, so
CVAE allows us to generate the data with specific attribute.

To create CVAE from VAE, conditional vectors are simply concatenated into the
existing neural net, to both encoder and decoder. A key difference of the CVAE
from the VAE is to embed the conditional information in the objective function of the
VAE, leading to the revised objective function as follow: where c denotes a condition
vector. The condition vector c is directly involved in the encoding and decoding
processes.

The CVAE objective:

E[logP(X|z, c)]− DKLQ(z|X, c)||P(z|c)] (5.2)

where:

E: expectation value
P, Q: probability distributions
DKL: Kullback-Leibler divergence
X: data
z: latent spaces
c: condition vector

CVAE objective only differs from the VAE in term of the conditin vector c.
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FIGURE 5.3: Architecture of CVAE - as seen the only difference be-
tween VAE and CVAE is the condition y.

5.3 Overview of Other Generative Models

5.3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) can learn to mimic any distribution of
data. They consist of two neural networks, one called generator that generates new
data and the discriminator that evaluates the generated images. The job of the dis-
criminator is to determine if the outputs of the generator belong to the actual training
data set or not, in other words, it is trying to recognize if they are authentic or fake.

As seen in Figure 5.4, generator is fed some data and it generates real looking
fake images. Those images are then fed with the real images to the discriminator
that then tries to classify them as real or not.

FIGURE 5.4: Illustration of Generative Adversarial Network architec-
ture: The generator is creating new synthetic images, that should pass
as authentic and gives them to the discriminator. The discriminator

is trying to identify those images as fake.
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5.3.2 Graph based Models

Graphs are fundamental data structures that capture the relational structure well.
We would like to generate realistic graphs that are similar to the training data set
and we would like to achieve graphs that optimize given constraints. Graph models
can be used for generating drug like molecules either from an empty graph or add
to an existing graph to achieve desired molecular properties.

Both graph generative models (Li, Zhang, and Liu, 2018; Li et al., 2018) men-
tioned in subsection 3.2.3 are a sequential graph generators. They start to build new
compounds from an empty graph and then the generator creates one node at a time
and connects each node to already generated nodes by creating edges.

FIGURE 5.5: Depiction of the steps taken during the generation pro-
cess (Li et al., 2018).
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VAE for Molecule Generation

6.1 Model Description

The Variational Autoencoder used was written by the team from ChEMBL (Blog,
2017) and is based on paper written by Gómez-Bombarelli et al. (2018). The model
was trained on SMILES from ChEMBL 231 database. The team decided to only use
SMILES that are no longer than 120 characters, same was done in the original paper.
This excluded∼3% of their data. 80% of the data was used for training and 20% was
used for their test set, the model was trained with a validation accuracy of 0.99.

The authors of the original paper Gómez-Bombarelli et al. (2018) mention that
they performed a random optimization over hyperparameters specifying the deep
autoencoder architecture and training, such as the number of hidden layers, layer
sizes, regularization and learning rates. They trained the model on different data
sets with different latent space dimensions.

Their final model has the following architecture: encoding layer has three 1D
convolutional layers, a flattening layer and a dense layer while the decoder consists
of a dense layer, repeat vector and 3 layers of gated recurrent units. The ChEMBL
team followed the architecture of the encoder and the decoder and set the number of
dimensions in their latent space to 292. Architecture of the full model can be found
in Appendix A.

Once the smiles shorter than 120 characters are padded with white space and
one hot encoded they are fed into the encoder. The encoder encodes the input data
and outputs parameters describing a distribution for each dimension in the latent
space. In this case the latent space is 292-dimensional. The two output vectors are
describing the mean and variance of the latent state distributions because it is as-
sumed that prior follows a normal distribution. So, for a given SMILES, the encoder
produces a distribution. A latent vector is then sampled and fed into the decoder

1Database of bioactive molecules with drug-like properties.
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which decodes it into artificial SMILES.

6.2 Latent Space Visualization

I wanted to visualize the latent space of SMILES to see if the model will generate
smooth and nicely populated. The latent space was visualized in two dimensions us-
ing principal component analysis. As we can see in Figure 6.1 by visualizing sim8000
SMILES from the DrugBank database, the latent space is nicely populated without
any large empty areas.

FIGURE 6.1: 2D vizualisation of ∼8000 molecules encoded into the
latent space.

6.3 Experiments

For model evaluation, I looked at some specific examples of SMILES of different
lengths and performed different experiments. Generally the longer the smile, the
more complex the molecule. I visualized results using RDKit Python package.
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Reconstruction of SMILES

First experiment was a simple reconstruction of a few different sized SMILES. SMILES
were fed one by one into the model. The encoder created latent representation and
the decoder tried to reconstruct the SMILES from that representation. I repeated
the process 1000 times for each molecule. The model had no trouble reconstruct-
ing smaller, less complex molecules. It also occasionally changed an atom but those
changes were usually very small. Example of such reconstruction can be seen in
Figure 6.2. When I tried to repeat the process the more complex SMILES, there were
only a few valid reconstructions and they were quite different from the original out-
put.

Sampling from the noised Latent Space

The main goal is to generate molecules that are similar to the input molecule. To
achieve that we can encode the molecule to its latent representation and add Gaus-
sian noise. The results varied depending on the standard deviation chosen. After
some experiments, I noticed that adding standard deviation around 0.05 produced
wanted results. For smaller standard deviations the model only created a few unique
smiles which were very similar to the original molecule or were original molecule
and larger standard deviation produced molecules that were very different from the
input one. Figure 6.3 shows results for standard deviation of 0.05. To see how close
the valid SMILES are to the original, I visualized the latent space of all sampled
points with PCA (see Figure 6.4).

Tanimoto Similarity

In Figure 6.5 we can see the difference between the similarity of molecules when
using different standard deviation when sampling from noised latent space for Mor-
gan Fingerprint radius of 2. When using standard deviation of 0.05, we can that the
number of samples (frequency) is much larger and that there are many samples that
are highly similarity to the input. On the other hand, when using standard devia-
tion of 0.1 the number of produced samples is smaller and their structure is not very
similar to the original.

In summary, standard deviation bigger than about 0.05 results in fewer valid
samples that are not as closely related to the original molecule. Standard deviation
of around 0.05 produced molecules closely related to the input molecules. Besides
that, such standard deviation produced more samples. That kind of behaviour is
expected. The higher the standard deviation the further we are away from the mean,
the bigger difference in samples is expected to be seen.
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FIGURE 6.2: Left count plot is showing how many times the recon-
struction of the input molecule was valid. The right count plot is
showing how many time the reconstructed molecule was the same as
original and how many times it was reconstructed differently. The

bottom three molecules are all different reconstructions produced.

Interpolation

6.3.1 Interpolation

Some AEs (e.g. VAEs and CVAEs) are capable of learning smooth latent space rep-
resentations of the input data and are being able to perform interpolations for real
samples along any arbitrary axis. We need to choose a starting point and an end
point and do the interpolation.
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FIGURE 6.3: Examples of sampled molecules. std = 0.05

However we have to be careful in high dimensional spaces because the volume
of the space is enormous and the data it contains is sparse. Interpolating between
the two points linearly might go through an area of low probability, so spherical
interpolation is needed.Path between two points being interpolated is a circular arc
lying on the surface of a N-dimensional sphere.

Function for interpolation was already added to the code, but it was written for
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FIGURE 6.4: 2D visualisation of 1000 sampled data points using PCA.

FIGURE 6.5: Tanimoto similarity done by comparing Morgan Finger-
prints.

linear and not polar interpolation. Because the latent space has 292 dimensions we
need to perform spherical interpolation. Figure 6.6 shows the results of spherical
and linear interpolation between Aspirin and Paracetamol. Spherical interpolation
produced twice as many results fro the same about of steps than linear interpola-
tion. This is due to the fact that when interpolating linearly the path went through
populated space.
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FIGURE 6.6: Polar vs. Linear interpolation
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CVAE for Molecule Generation

Although variational autoencoders are quite good at generating new samples, these
samples do not necessary have the properties we want. Conditional variational au-
toencoders allow us to generate molecules with desired properties. The difference
between the two is that CVAE needs an extra input that is going to denote these
properties. For this project the properties are so called Signaturesduran2019extending.
Signatures are vector format of bioactivity data. Each kind of signatures expressed
different molecular properties. There are 25 different signatures and in this project
we used signature B4 which stores information about binding. The model was
trained using ∼400 000 samples.

In CVAE model, the molecular properties we want to control are represented as
the condition vector. The CVAE model’s training data is a composed of two parts
SMILES and its corresponding signatures which are our condition vectors. There-
fore, the desired molecular properties should be embedded in the final structure
by determining a condition vector. The structure can be controlled separately from
properties, unless the physical and chemical laws do not allow it. So, when we
change the signature, we would like to see molecular structure change according to
those.

7.1 Experiments

Reconstruction

CVAE seemed to perform better when reconstructing signatures. For the first experi-
ment I encoded and decoded SMILES with the same signature and the valid SMILES
were decoded as input molecule most of the time. More complex molecules were
decoded with minor changes as well. Example for ’O=C(c1ccc(F)cc1)C1CCNCC1’
SMILES can be seen in Figure ??. Just like in the first part I encoded and decoded
the molecule and the signature 1000 times.
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FIGURE 7.1: Original and decoded SMILES with original signature -
O=C(c1ccc(F)cc1)C1CCNCC1.

For the second reconstruction I changed the SMILES’s signature to see how that
would change the outcome. As expected the structure of the input SMILES was
changed. The rate of invalid SMILES was slightly lower, however, still quite high
for more and less complex smiles. Figure 7.2 shows an example of the change seen
in SMILES.

FIGURE 7.2: Original and decoded SMILES with changed signature -
O=C(c1ccc(F)cc1)C1CCNCC1. The molecule on the left is the original

molecule.

Sampling from Noised Latent Space

Just like with VAE, the standard deviation had large influence on generated molecules.
I adopted standard deviation of 0.05 for the experiments. For the first example I used
the original signature to compare with results when I changed it. As can be seen
from Figures 7.3 and 7.4 that the sampled molecules are similar to the original one,
but when comparing they look quite similar, even when looking at their Tanimoto
plots.
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FIGURE 7.3: Sampled molecules using original signature and stan-
dard deviation of 0.05.

CVAE Conclusion

Because the CVAE is meant for building molecules with desired properties, inter-
polation does not seem necessary as molecules can be redesigned by changing their
signatures.

in conclusion CVAE was able to reconstruct original molecules even when we
change their signatures, which is its main purpose. Because signatures are quite
complex it was hard to come to any solid conclusions when changing them when
looking at specific molecules. It is safe to say that it works as the decoded molecules
have different structures. To completely conclude if the CVAE is useful, we have to
perform more detailed analysis.

I think that in the case of CVAE I should also try comparing the signatures and
not the molecular structures to better understand the changes when the condition is
adjusted.
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FIGURE 7.4: Sampled molecules using different signature and stan-
dard deviation of 0.05.

FIGURE 7.5: Tanimoto distances for molecules sampled with the orig-
inal signature on the left and changed signature on the right.
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Discussion and Conclusion

Generative models have been emerging in the field of drug design. For this project
we looked at two generative models: variationa autoencoder and conditional varia-
tional autoencoder.

While it was easy to see where VAE had problems, CVAE was much harder to
evaluate the same way. Both of the models seemed to work, but to really know how
well the VAE and CVAE performed at generating novel compounds, further analysis
of results, such analysis includes calculation of drug likeness, synthetic accessibility
score and physical properties, should be done.

Even though they both worked fairly well there is a lot that can be done to im-
prove them. Both of had to learn grammar rules of the SMILES, so adding the rules
while training would improve their Reconstruction results. According to the liter-
ature, the best choice for such task would be graph based models and generative
adversarial networks. These models are much better at generating synthetic data
than autoencoders but are much harder and much more expensive to train.
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Appendix A

Model Architecture

FIGURE A.1: VAE Architecture
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Appendix B

Appendix

B.1 GitHub Repository

https://github.com/spela-z/Thesis

B.2 Bibliography

General

• “Semi-supervised learning with deep generative models”, Kingma et al. (2014)

• “The rise of deep learning in drug discovery”, Chen et al. (2018)

• “Tutorial on variational autoencoders”, Doersch (2016).

• “Inverse molecular design using machine learning: Generative models for
matter engineering”, Sanchez-Lengeling and Aspuru-Guzik (2018)
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