UNIVERSITAT DE BARCELONA

FUNDAMENTALS OF DATA SCIENCE MASTER’S THESIS

Particle Swarm Optimization (PSO) and
two real world applications

Author: Supervisor:
Albert PRAT Dr. Gerard GOMEZ

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamentals of Data Science

in the

Facultat de Matematiques i Informatica

July 1, 2019

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract

Facultat de Matematiques i Informatica
MSc

Particle Swarm Optimization (PSO) and two real world applications

by Albert PRAT

Particle Swarm Optimization (PSO) belongs to a powerful family of optimization
techniques inspired by the collective behaviour of social animals. This method has
shown promising results in a wide range of applications, especially in computer
science. Despite this, a great popularity of such method has not been achieved.
Since we believe in the potential of PSO, we propose the following scheme to be
able to take advantage of its properties. First, an implementation from scratch in
C language of the method has been done, as well as an analysis of its parameters
and its performance in function minimization. Then, a second more specific part
of this thesis is devoted to the adaptation of the method for solving two real-world
applications. The first one, in the field of signal analysis, consists of an optimization
method for the numerical analysis of Fourier functions, whereas the second, in the
field of computer science, comprises the optimization of neural networks weights’
for some small architectures.

HTTP://WWW.UB.EDU
http://mat.ub.edu

Acknowledgements

Throughout the writing of this dissertation I have received a great deal of sup-
port and assistance. I would first like to thank my supervisor, Dr. Gerard Gémez,
whose expertise in formulating the research topic, setting directives and suggesting
methodology was unquestionable.

Secondly, I would also thank Dr. Jordi Vitria, for the opportunity given to de-
velop a topic of our liking and for the guidance regarding formal issues.

In addition, I thank Ndria Valls, my partner in developing this thesis, for her
invaluable help provided throughout all this dissertation: from the first moment
you have listened to all my doubts and concerns, specially in developing the library
and you have spent many hours teaching me C programming language. I have felt
understood at every moment and your willingness stands out.

Finally, I would also thank my sister, Dr. Judit Prat, Dr. Alex Alarcén and Ramon
Mir, for their support and patience: you have given me wise advice and emotional
support.

Contents

Abstract

Acknowledgements

1

2

Introduction

Theoretical framework

21 ThebasicPSOmethod
22 Versionsof PSO o .
2.2.1 Modifications considering momentum
2.2.2 Modifications considering individual and social experience
23 Thealgorithm o o
231 Initializationstep o o L
Implementation
3.1 Experimentalsetup L.
32 Softwaredesign L o
3.3 Parametricstudy L
34 Testsandresults L.

341 2DParabola
342 Ackley'sfunction oL
3.4.3 Multiple global minima function
3.4.4 Rosenbrock’sfunction
345 Comparison e

Numerical Fourier analysis

4.1
4.2
4.3

Brief introduction to signal processing
The frequency analysis problem
Adaptation of the algorithm
43.1 Firstapproach: allatonce

Testsandresults
43.2 Second approach: peakbypeak

Testsandresults

Neural Network weights optimization

51

52

5.3
54

The machine learning problem
5.1.1 Definition of an Artificial Neural Network
5.1.2 Feedforward Neural Networks
5.1.3 Feedforward neural networksanddata
Training a feedforward Neural Network using PSO
52.1 The simple pendulum classification problem
Adaptation of the algorithm
Testsanresults.

vii

iii

viii

6 Conclusions
A Specific Contributions
B GitHub Repository

Bibliography

33

35

37

39

Chapter 1

Introduction

Traditionally, intelligence is thought to be based on individual minds (Marini and
Walczak, 2015), not taking into account the relationship between individuals. Nev-
ertheless, we all may agree that enabling this kind of collaboration sometimes can
lead to higher performances.

One way in which individuals can be organized is as a swarm. With the word
“swarm” we are referring to a set of (generally, mobile) agents that communicate
with each other, either directly or indirectly, by acting on their local environment
(Jacob et al., 2007). Marini and Walczak, 2015, additionally state that each individual
of a swarm is simple, homogeneous and performs elementary tasks. Moreover, its
individuals are decentralized and self-organized (Talukder, 2011). Several examples
can be found in nature like ant colonies, bird flocks or fish schools.

Moving into the field of computer science, there is a group of Artificial Intelli-
gence methods called Swarm Intelligence (SI) centered around this concept of swarm.
Millonas, 1994, proposed five principles for SI in order to determine its behavior:

e Proximity principle: the population should be able to carry out simple space
and time computations.

e Quality principle: the population should be able to respond to quality factors
in the environment.

e Diverse response principle: the population should not commit its activities
along excessively narrow channels.

e Stability principle: the population should not change its mode of behavior
every time the environment changes.

e Adaptability principle: the population must be able to change behavior mode
when it’s worth the computational price.

One example of Sl is the so called Ant Colony Optimization (ACO). Briefly speak-
ing, ACO is a probabilistic optimization technique, aimed to finding the best path
along a graph that mimics the wandering behaviour of ants seeking a path between
their colony and a source of food (Marini and Walczak, 2015).

Another example of Sl is Particle Swarm Optimization (PSO). PSO was inspired
by the social behavior observed in bird flocks and fish schools. In this case, rather
than finding the best path along a graph, PSO is suited to optimize real-valued mul-
tidimensional functions. We will see that PSO fulfills the five Millonas” principles.

In this thesis, we will focus on the PS optimization method. Recently, a lot of
importance has been given to these non-deterministic methods. Therefore, the aim
of this work is to test PSO with several functions to know whether this method is
viable for solving more complex problems or not.

2 Chapter 1. Introduction

For this purpose, a library being able to run the algorithm for the cases we pro-
pose has been developed. Apart from that, an extensive analysis of a first approach
of the method using simple functions has also been done, as well as a parameter
analysis in order to understand both the strong and the weak points of the method.
Afterwards, two real-life applications have been done to actually test the degree in
which PSO can be generalized for more complex problems.

First, second and third chapters comprise all the tools needed for the develop-
ment of the library able to run the PSO algorithm. Within these chapters, a theoret-
ical framework is defined as well as details about the implementation of the library.
Also in these set of chapters, the parametric analysis of the model is done. Chapter
4 comprises the adaptation of the PSO algorithm for the numeric analysis of Fourier
functions and Chapter 5 includes the adaptation of the algorithm for optimizing the
weights of a neural network.

Chapter 2

Theoretical framework

Kennedy and Eberhart proposed PSO in 1995. They argued that the main hypoth-
esis which led them to develop PSO is that the members of a fish school can profit
from the discoveries and previous experience of all other members during the search
of food. This statement was presented by the sociobiologist Edward O. Wilson, in
1975. PSO follows exactly this logic: "the set of candidate solutions to the opti-
mization problem is defined as a swarm of particles which may flow through the
parameter space defining trajectories which are driven by their own and neighbor’s
best performances"(Marini and Walczak, 2015, p. 154).

In other words, swarm particles profit from the previous experience of other par-
ticles. Notice that this approach differs from the traditional nature-based methods
(like genetic algorithms) in how an improvement to the previous state is made. In
PSO, such improvement comes from cooperation and competition among individu-
als (Marini and Walczak, 2015).

2.1 The basic PSO method

We already defined swarm as a set of organized simple individuals without central
control. Let us change the term "individual" for "particle”. A potential solution to
the optimization problem is the position x of particle i, defined as x;. Therefore, if
we are aiming to optimize D parameters, a potential solution is:

xi = (xj1, X, ..., XiD), (2.1)
and N particles x constitute a swarm, defined as X:
X = (x1,%2,...,XN), (2.2)

For a moment, imagine a birds flock (X) looking for food. Within the group, each
bird looks to a specific direction, which depends on its current position. Later, they
communicate among themselves and the bird in the best position is identified. Once
determined the "best bird", each bird moves accordingly with a velocity, which de-
pends on the current velocity and some extra information obtained from the swarm.
This process is repeated until the desired position is found (Montalvo et al., 2008).

To translate this behaviour into equations we have to go back to 1995, to the
first pair of authors which proposed PSO. According to them, each particle position
changes following equation 2.3:

=l Vit (2.3)

4 Chapter 2. Theoretical framework

where v/ is the updated velocity defined as:

vitl=vl+ 2 Ry(pi—xi)+_2 Ro(g—xb). (2.4)

c1 2

In this way, velocity is a vector of length D, which means that for each coordinate
we have a different velocity. Since particles are in constant movement, we consider ¢
to be a given moment. Therefore, position x! corresponds to the position of particle
i at that specific given moment . This particle will move with velocity vf“ to reach
position x!*1. This process, for the N particles define an iteration. Three components
help us define velocity at t + 1:

e v!, which corresponds to velocity at ¢ is also called inertia or momentum and
prevents the particle from drastically changing its direction,

e 2Ry (p; — x!), where R; is a randomly generated number from a uniform distri-
bution in the [0,1] interval and p; is the best position attained by particle i. This
part is called cognitive component and corresponds to the individual intelligence
of the particle. This term increases the probability that the particle returns to
their previously best position found, and

e 2Ry(g — x!), where g is the global best, that is, the best position attained by
the whole swarm of particles at moment f, and R; is a randomly generated
number similar to R;. The whole term is called social component and identifies
the propensity of a particle to move towards the best position (Marini and
Walczak, 2015).

Two additional comments should be made to fully understand equation 2.4. The
first comment is that Ry and R; are here to ensure that the social component and the
cognitive component affect in a stochastic way to the overall change in velocity and
the second comment, in contrast, tries to explain why the two constants c; and ¢,
take value 2.

According to this 1995 paper from Kennedy and Eberhart, ¢; = ¢, = 2 because,
in this way, it makes the weights for social and cognition parts to be 1, on average,
due to the random uniform part. They tried to improve this version of PSO in several
ways, however, the most noticeable attempt was the following: they tried to intro-
duce two additional roles: the "explorer" and the "settler". While the role of those
particles considered as explorers was to look far away from the target for potential
better place, the role of the settlers was to micro-explore regions that were found to
be good. In the end, the simpler version seemed to work better.

2.2 Versions of PSO

More than 300 papers related to PSO have been published aiming to improve the
basic PSO algorithm. Within this part, we will expose the conclusions of the most
relevant studies according to Eberhart and Shi, 2001a, and Xiaohui, Shi, and Eber-
hart, 2004.

Eberhart and Kennedy, as pioneers of the basic PSO algorithm, proposed a PSO
for binary discrete variables with success. This implementation may be used, for in-
stance, for variable selection purposes. Briefly speaking, the position of every parti-
cle is binary (either 0 or 1) and is, at each iteration, re-scaled to belong to this interval
(since the velocity part keeps being continuous).

2.2. Versions of PSO 5

One parameter that could affect the performance of the algorithm is the size of
the swarm (N). It seems that when N is larger than 50, PSO loses sensitiveness to this
parameter and leads to higher probabilities to premature convergence. However, it
also increases the exploration ability of the swarm.

Within the whole set of potential improvements of PSO, we will divide them
between two groups, depending on which part of the equation is modified. Equation
2.4 can be split in the following two parts:

t+1 t t t
v, = v, + c1R1(pi — x;) + c2Ra(g — xj) . (2.5)
~
momentum individual and social experience

Therefore, according to equation 2.5, we can perform the following classification:
e Modifications considering momentum

e Modifications considering individual and social experience

2.2.1 Modifications considering momentum

The simplest modification you can think of is removing the inertia component which
means that velocity is memory-less because it is equivalent to assuming that v! = 0.
In other words, particle i stays still until another particle takes over the best global
position (Shi and Eberhart, 1998a). Several experiments were done by the former
set of authors (Kennedy and Eberhart, 1995) regarding this potential improvement,
however, this interpretation was not desirable.

Other proposals were made to improve the initial PSO algorithm, like the one
from Shi and Eberhart, 1998a. They introduced a parameter w which they called
inertia weight. As the name denotes, w accounts for the weight on the inertia compo-
nent. As a consequence, equation 2.4 can be rewritten as:

vith = wvl + 2Ry (p; — x!) + 2Rz (g —). (2.6)

Their results show, yet, that when w is taken between 0.9 and 1.2 the algorithm
performs slightly better in terms of number of iterations and probability to find the
global maximum. Figure 2.1 was also retrieved from Shi and Eberhart, 1998a, and is
used to support their conclusions. As it can be seen, when w is around 1 the number
of failures of the algorithm is kept low. For this reason, practically speaking we
consider both equations to be equivalent with the constant optimal w.

6 Chapter 2. Theoretical framework

number of failures

00 02 04 06 08 10 12 14
inertia weight

FIGURE 2.1: Number of times PSO did not succeed to find the global
maximum as a function of w (Shi and Eberhart, 1998a).

But there was one aspect that actually improved the performance of the algo-
rithm: taking decreasing inertia weights. Since it controls the balance between local
and global search, it is a way to first give importance to global search and, as cycles
pass by, prioritize local search (Montalvo et al., 2008). According to Zhang et al.,
2018, a decrease in the value of w is needed for the algorithm in order not to fall in
local convergence.

This decrease can be linear or not. Xin, Chen, and Hai, 2009, proposed that w at
iteration t should be equal to:

(wmax - wmin) (tmax - t)
tmax + Wmin

, (2.7)

where Wmax and wmin are the initial and final values of w, t corresponds to the ac-
tual iteration number and fq.x the maximum number of iterations we want our al-
gorithm to perform. Eberhart and Shi, 2001a, suggest that when wpnax = 0.9 and
Wmin = 0.4, the algorithm performs significantly better.

Until now we have discussed choosing a constant or a linearly decreasing w, yet
other authors proposed alternative choices for the inertia weight. Apart from both
already seen methods, we have a third option, which is defined as stochastic. Within
the stochastic choices of w, we have Eberhart and Shi, 2001b and Feng et al., 2007,
within others, but any of them seemed to perform better than taking decreasing w.

2.2.2 Modifications considering individual and social experience

The first modification to consider takes into account the network topology. It partic-
ularly affects the social experience of the swarm individuals. Eberhart and Kennedy,
1995, presented a modified version of the same algorithm where the global best
position attained by the whole swarm (g) was substituted by the local best posi-
tion. Instead of enabling each particle to access the information about the best po-
sition attained by the whole swarm, it just could access the best position attained
by its neighbors. This number of neighbours was set to 2, according to Bratton and
Kennedy, 2007. This approach seemed to lead to lower convergence rates as well as
to propensity to be trapped in local minima (Xiaohui, Shi, and Eberhart, 2004).
Another set of parameters that can be tuned are ¢; and cy, the so called accel-
eration constants. Both parameters help us adjust the importance of each of the

2.3. The algorithm 7

experience-related components. As mentioned above, the former recommended val-
ues for ¢; and c; were 2. However, other approaches have been seen in literature.
While Marini and Walczak, 2015, propose that both c¢; and ¢, should be between
0 and 4, Clerc, 1999, introduces a constriction method, which, theoretically, ensures
the convergence of the algorithm the same way w does. According to Eberhart and
Shi, 2001a, this characteristic is achieved by changing the equation defining vitl as
follows:
Vit = K(v} + c1Ri(pi — xf) + c2Ra(g — x1)), (2.8)

where

2
K= , 2.9
PRrENCET 7
with ¢ = 4.1 = ¢; + ¢ we get K = 0.729. Therefore, to assume that the social compo-
nent has the same weight as the cognitive component (c; = c2) leads to the following
equation:

vith = 0.729v! + 1.49445R (p; — x}) + 1.49445R, (g — x!). (2.10)

This last approach, as we can see, involves modifications on both the inertia and
experience.

2.3 The algorithm

We have seen several approaches for the same optimization method, however, in
this part we will explain just the simple PSO algorithm since we consider the same
steps can be applied to every modification we have mentioned.

Summarizing, without considering the initialization step, the algorithm works
in the following way as long as we are minimizing:

for each iteration ¢ do

for each particle i do

calculate o' ! according to equation 2.4
update x/*! according to equation 2.3
calculate f(x!*1)

if f(x'*1) < f(p) then

update p
end
if f(x'!) < f(g) then
| update g
end
end
end

Algorithm 1: Basic PSO algorithm.

This 1%t algorithm just considers the iterative part, but we also need the initial-
ization step, which will be discussed in the following section.
2.3.1 Initialization step

According to Marini and Walczak, 2015, there is a general agreement in the literature
regarding the initialization for x?, which does not happen for v?:

8 Chapter 2. Theoretical framework

e x; initialization: Since x; € RP, where D is the number of parameters, x?j
will be the initial value of parameter j. This number will follow a uniform
distribution in the range of parameter j. In other words, xg- ~ U(Xjmin, Xj,max)
where X min and X;j max are the minimum and maximum values parameter j can
take respectively.

e v; initialization: According to Engelbrecht, 2012, the best initialization strat-
egy for v; is setting these numbers to 0 or to very small (making them follow
a uniform distribution in the range [—0.1,0.1], for instance). Since the initial
position of particles is on the whole domain, using this strategy does not jeop-
ardize the exploration diversity in the initial stage of the algorithm. The other
alternative it is proposed in literature is having the same initialization than
for x;. However, Engelbrecht, 2012, showed that, on average, this approach is
slower.

Another parameter which has to be initialized and does have an importance on
the performance of PSO algorithm is the maximum velocity a particle can travel at
(Vmax). Without setting a maximum velocity, the algorithm may actually diverge
(this phenomenon is the so called velocity explosion).

Shi and Eberhart, 1998b, studied how does vimax affect to the performance of the
algorithm. Their results show that if we choose to set a small maximum velocity (i.e.
Vmax < 2), w should be set to 1. On the other hand, if we choose to have greater
maximum velocities (i.e. vmax > 3), w should be 0.8.

A third case was also proposed: setting Vimax = Xmax. This method was said to be
appropriate in case we lack knowledge about the selection of this velocity. This last
option must be followed by setting w also to 0.8.

Nevertheless, we believe that the choice on v, must be relative to the problem,
therefore, we prefer to stick to the third proposal we have explained regarding this
choice or follow the findings of Adewumi and Arasomwan, 2015, which added a
parameter y multiplying both limits of x. Therefore:

Vmax = UXmax,

(2.11)

Vmin = #Xmin,

where 1 € (0, 1], for each parameter j.

By explicitly setting a limit on vmax, velocity explosion is controlled. However,
there are, at least, two more ways one can avoid divergence. Both methods have
already been explained and are:

o Adding decreasing inertia weights.

¢ Adding the constriction factor K.

Chapter 3

Implementation

3.1 Experimental setup

Before starting with the implementation, we must specify the experimental charac-
teristics. All the code generated in this thesis implementation is done in C language
(Ritchie, 1993) because it is a compiled language and so has a fast performance when
implementing iterative processes with simple calculations. Also codes in C can be
easily transformed into transparent libraries for users.

The development environment that we have chosen is CLion (JetBrains, 2019),
which is a cross-platform IDE for C and C++ that has a compact integration of a
terminal, which is useful for non Linux users.

Apart form the standard C libraries there has been one extra library included in
this project thesis:

e FFTW library (Frigo and Johnson, 2005): is a C subroutine library for com-
puting the discrete Fourier transform (DFT) in one or more dimensions, of
arbitrary input size, and of both real and complex data.

This library has been used in this thesis in the first application of the PSO algo-
rithm for DFT computations further explained in the respective section.

3.2 Software design

As a basic implementation of the PSO algorithm in this thesis we have started by
creating a project in which one can specify any finite 3-dimensional function to mini-
mize together some basic configurations so that its execution converges to one point
of the function, which will be the minimum. Consequently, we have decided that
the architecture of the mentioned program should be structured in a modular way
such that it can be further used as a public library to minimize any finite three-
dimensional function.

More in detail, the base program consists of two different modules named logica
and utils, the first one contains all the functions needed to execute the particle
swarm optimization procedure. The second one contains more general use functions
that are not related with the inner functions of the algorithm. But the way in which
all the functions of the modules must be used in order to execute the algorithm is
shown in the main file, which include all the modules said before.

There are only two things that a user must create in order to change the execution
of the algorithm:

e The configuration file (config_file.txt): This is a text file that contains the
basic configuration parameters for the program to run one single optimization

10 Chapter 3. Implementation

procedure. It has been done as a text file and not as constant declarations in
the code in order to abstract them from the inner functioning of the algorithm
as the configurations are treated as generic. As a consequence, the name of this
file needs to be passed as an argument when running the program.

The default configuration file that is given in the program has the following
parameters explained below:

1. Population size of the swarm: specifies the number of particles that the
swarm will have moving through the parameter space in an integer for-
mat.

2. Number of parameters to optimize: specifies the number of parameters
that each particle will have in an integer format

3. Range of the parameters: specifies the minimum and the maximum value
that a single parameter can have in [float, float] format. There are d range
lines in the configuration file, where d is the number of parameters, so
that there is a specific range for every parameter.

4. Maximum velocity fraction: specifies the maximum velocity that a pa-
rameter can have, which is computed with the equation 3.1.

With this variable we can regulate the maximum velocity of each parame-
ter as a fraction of its range space in order to avoid the exploding velocity
problem.

e The function to minimize (f): This is a function located at the main. c file that
must have two input float parameters and return a float value, which will be
minimized by the algorithm.

max_v = max_v_fraction x (range_max + |range_min|). 3.1)

Once specified the above parameters, the project is ready to be executed until
it finds a convergence point as the minimum of the minimum fit value that will be
achieved when the minimum value returned by the function f.

3.3 Parametric study

Our algorithm supports four different PSO methods:
0. Basic PSO without limiting maximum velocity at which particles can fly.
1. Basic PSO with a fixed velocity limit (Kennedy and Eberhart, 1995).
2. PSO with decreasing inertia weights (Xin, Chen, and Hai, 2009).
3. PSO with constriction factor K (Eberhart and Shi, 2001a).

All methods have been extensively explained in Chapter 2. In this section, we
will provide some evidence to explain how does the algorithm performs in each
of these four methods for the Ackley’s function, which serves as a benchmark for
optimization problems.

The aim of this study is to choose the most appropriate method and parameters
for the practical applications in this thesis. In all methods above, we consider the

3.3. Parametric study 11

algorithm to have converged if the best fit value (g) does not change in a period of
100 iterations.

As said at the end of the previous chapter, we may have divergence if particles
fly too fast. While methods 2 and 3 already incorporate mechanisms to avoid veloc-
ity explosion, method number 1 has to be provided with some V., the maximum
velocity at which particles can travel as a fraction of the range explained above. In
Method 0 though, velocity is not limited at all. For this reason, this method was
rapidly discarded because of frequent divergence.

Let’s discuss the first method. As said, according to our notation we have two
decisions to make: N and vpyax. Figure 3.1 shows the behaviour of the optimization
method provided both parameters. The size of the circle represents the precision
of the procedure measured as the fit value, and darker colors mean higher Ns. It-
erations and fit values are computed as the average of a thousand of runs of the
algorithm for each pair of (Vimax, N).

As we can see, higher values of v,y lead to worse precision and the other way
around. This is due to the fact that particles can fly much faster with higher limits of
velocities, therefore, when particles are closer to the minimum, they are not able to
explore the region precisely. In other words, the probability that a particle overflies
the minimum is higher with higher values of v On the other hand, increasing
Vmax also leads to less iterations, on average.

We can observe a similar behaviour looking at the size of the swarm. This pa-
rameter controls the exploration capabilities of the swarm. It can also be seen that if
the swarm is formed by less than five particles, the algorithm is less precise. Gen-
erally speaking, computational cost increases as N grows due to the fact that a fit
value has to be calculated for each particle of the swarm. As a consequence, looking
at the figure we can see, though, that a population size of 20 particles is enough to
not limit exploration capabilities of swarm without barely losing precision.

Method 1 tested on the Acklev's Function

200+ Pop. Size
4
10
180+ H O =20
Q50
¢ Fit value
160- Iy
E 0.5
2
140+ 8 08
5
= Cl
L}
J v
120 e C) o
1004
80

0001 02 03 04 05 06 07 08 0910
Max Velocity

FIGURE 3.1: Behaviour of method 1 on the Ackley’s function.

As a conclusion for the first method, we can say that the most balanced param-
eters are N = 20 and vmax = 0.4. However, we can always play with these pa-
rameters knowing the effect the switch will produce. Besides, we can compare the
first method with these parameters with the other additional methods we propose
to determine which method would fit better each of the two applications we are

12 Chapter 3. Implementation

proposing in this thesis. As explained above, in these additional two methods we
do not need to choose any maximum velocity. Therefore, the only parameter we
have to fix is N, which will be set to 20 because of the reasons also explained above.

The comparison of the convergence plot for each of the methods can bee seen in
Figure 3.2. Since we are running a thousand times each of the methods, the fit value
plotted is the average of the whole set of runs at each iteration. In the same way,
these vertical bars show at which point half of this thousand of runs had already
converged. In other words, if we look at the second method for a moment, we can
say that at iteration 105 approximately, 500 out of the 1000 runs of the algorithm had
already meet the convergence criteria. Using this logic, it can be clearly seen that the
best method, by far, is the second one, in which as time goes by, the parameter we
called inertia weight decreases. It increases the local exploration of potential regions
where extrema can be found.

Convergence plot for the Ackley's Function

2.54
Method 1: Limiting Welocity =t 0.4
Method 2: Decreasing w
2.0 @ Method 3: Constriction Factor
| =
&
@
= - =
=] 4 =}
- @
= =1
=10 <
) 2
o
0.5 \\//"‘_\
0.0 T r r T

0 20 40 60 80 100 120 140 160 180 200
Iterations

FIGURE 3.2: Convergence plot for each of the 3 methods we pro-
posed.

Another aspect worth mentioning is that method 1 initially converges faster.
However, we are missing precision when we are close to the extrema, which does
not happen for the second method. These results are coherent with the findings in
Eberhart and Shi, 2001a, Montalvo et al., 2008 and Zhang et al., 2018. On the other
hand, the constriction factor method works worse as expected. Clerc, 1999 claimed
that this method ensured convergence the same way w did, which, in our results,
did not happen.

As a conclusion, we can adjust the parameters of the algorithm depending on
our needs. If our goal is just to have a high precision, method 2 works best. Not
only converges faster, but it achieves a higher precision. Besides, we could always
play with different wmax and wmin for this same method depending on our needs.
However, if we consider we need a faster convergence in the first iterations method
1 would fit well enough.

3.4 Tests and results

After studying the parameter dependency of the algorithm in one function, we will
evaluate the same algorithm with several other functions with different character-
istics in order to test how the algorithm performs in this cases. We assume that to
achieve the best performance for every function, a complete parametric study should

3.4. Tests and results 13

be made, just like in the previous subsection, but in this case we only want to have
an idea of how the algorithm is able to achieve good results with simple functions
and more complex ones.

3.4.1 2D Parabola

Even though this is a very trivial example, it lets us have a clear idea of the behav-

ior of the algorithm. We can analyze the precision obtained with the convergence

parameters and its performance on the number of iterations that took it to converge.
The parabola function used in this case is defined by:

flx,y) = X+ yz. (3.2)

In figure 3.3 we can see the contour plot of the function that we want to optimize,
in other words, find its minimum value. The outputs resulting of the convergence of
one thousand executions of the optimization of the mentioned function are scattered
in it with the color according to the density of the points, meaning the more yellow
the more density and blue the other way around.

Parabola contour plot

-3 -2 -1 0 1 2 3

FIGURE 3.3: Contour plot of the parabola function with the conver-
gence points of 1000 executions of the algorithm.

With the results obtained, it can be seen that clearly all the executions have con-
verged to the same point that also matches with the minimum value of the function
situated at [0, 0].

3.4.2 Ackley’s function

In this case we want to see how the algorithm resolves a more complex function
typically used to check optimization performance. The Ackley’s function is non-
convex function proposed by Ackley, 1987, defined as:

f(x,y) _ _20670.2\/0.5(x2+y2) _ p0-5cos 27x+cos 2ty +20+e. (3.3)

14 Chapter 3. Implementation

It we repeat the same experiment as above and plot the results in figure 3.4, we
can see that this time not all the convergence points have reached the true global
minimum of the function, situated at [0, 0], some of them, in a much lower density
have fallen in local minima points near the global one. Although most of them do
have found the right global minima.

Ackley contour plot

w

Y

1 [J
— -
— ‘\"x)'\\\
o (@) °
Q :
& —
D P~

-3

FIGURE 3.4: Contour plot of the Ackley’s function with the conver-
gence points of 1000 executions of the algorithm.

3.4.3 Multiple global minima function

Although we have checked the performance of the algorithm for functions with one
global minima and several local minima, we still want to know how it behaves when
it has more than one global minima to find. In this case we will use a function that
is defined in the range x € [-2,2], y € [—1,1], and has two global minima at
[—0.089842,0.712656] and [0.089842, —0.712656].

This function is defined by:

flx,y) = x2(4 —21x% + %x“) +xy + yz(—4 + 4y2)). (3.4)

From the results in the figure 3.5 it can be seen that the convergence points are
equally distributed among the two global minima. As there is only one output point
from the algorithm, we can only find one global minima at a time, but the results are
consistent with the two points so we can conclude that the algorithm performs well
given this multiple solution situation.

3.4.4 Rosenbrock’s function

Finally we would like to test the algorithms performance in a more non-trivial func-
tion, like the Rosenbrock’s function (Rosenbrock, 1960). This is a non-convex func-
tion commonly used as a performance test problem for optimization algorithms.
The main characteristic of this function is that it has a global minima hidden inside
a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge
to the global minimum, however, is difficult.

3.4. Tests and results 15

Multiple global and local minima contour plot

1.00

A\

0.75 1

0000

0.50

0.00

-0.254

QV
@ % o
o
8 o
9, 2
° / @
0.5 1.0 15 2

0;0
FIGURE 3.5: Contour plot of the multiple global minima function
with the convergence points of 1000 executions of the algorithm.

—-0.50

-0.75 1

—-1.00 T T
-2.0 -15 -1.0

.0

The function is defined by:

flx,y) = (a—x)*+b(y — x*). (3.5)

In this case study we will use the values 2 = 1 and b = 100 which lead to a global
minima at [1,1].

Rosenbrock contour plot
= 800.000 7

FIGURE 3.6: Contour plot of the Rosenbrock’s function with the con-
vergence points of 1000 executions of the algorithm.

Analyzing the results in figure 3.6 we find that all the points have fallen inside
the valley but some of them have not been able to find the global minima point,
although the greatest part of them do have found the global minima, marked as the
yellow point.

16 Chapter 3. Implementation

3.4.5 Comparison

Once exposed the precision results obtained from the execution of the PSO algorithm
among four different functions, one shall not ignore the number of iterations taken
to achieve those results in each case.

In order to do so, a box plot is exposed in figure 3.7, where one can see the
distribution of the number of iterations for the one thousand executions in each of
the four functions.

Boxplot comparison of the number of iterations per function

800

700

o
=3
=3

o
=3
=3

IS
=3
=3

iterations until convergence

w
o
=3

100 o

200 4 %
= 8
2

| HH...MO

function index

FIGURE 3.7: Box plot comparison of the number of iterations for each
function. From left to right: parabola, Ackley, multiple global min-
ima, Rosenbrock.

The most remarkable difference id the higher mean number of iterations from
the Rosenbrock’s function. As mentioned in the respective section, it is the most
difficult function to optimize among the four chosen, this is clearly supported by the
results in iterations although it has a large variance. It is worth to mention that still
it got good accuracy in the convergence points.

Talking about the other functions, the most robust function in convergence iter-
ations is the parabolic one as expected. It can also be seen that with the two minima
function, the mean number of iterations is lower than with the Ackely’s function but
the first one has a higher variance. This makes sense having in mind that the double
global minima could be confusing for the particles of the swarm.

From all the results analyzed in this chapter, we can conclude that the imple-
mented version of the PSO algorithm in this thesis has a good behavior and so we
can proceed to test it in more complex problems from real world situations.

17

Chapter 4

Numerical Fourier analysis

Entering the field of signal analysis, the determination of frequencies and ampli-
tudes of quasi-periodic functions is a complex problem that has been solved in a
numerical way. However, this procedure requires a considerable amount of compu-
tational time due to equation solving.

A different approach to solve the problem is proposed in this chapter, where
the frequencies and amplitudes of a multi-frequency signal are detected, starting
from equally-spaced samples of if on a finite time interval, using the particle swarm
optimization technique.

4.1 Brief introduction to signal processing

In the field of signal analysis every waveform function that has a certain frequency
and amplitude can be expressed as a function of time. However, this functions can
be represented or approximated by sums of simpler trigonometric functions. This
decomposition procedure can be done with the Fourier transform (FT) technique,
that decomposes a function into its primary oscillatory components which are deter-
mined by frequencies and its corresponding amplitudes. The method that applies
the FT to an input signal is called discrete Fourier transform (DFT) and gives as an
output a complex-valued function of frequency.

4.2 The frequency analysis problem

Among all the possible combinations of signals in a certain frequency space, we will
take just one example for this thesis application, which can be expressed as follows.

Given N samples {f(jT/N)]Ii o' of a real-valued function f(t), equally spaced
on the interval [0, T], the main objective is to determine the trigonometric polyno-
mial,

Ny
Qf(t) = Aj+ Y (Af cos2myt/T) + (A] sin27vit/T), (4.1)
I=1

whose frequencies {vl}lN:fl, and amplitudes {Af}fifo, {Als}lN:fl, are good approxima-
tions of the ones of f(t). The number of frequencies, N¢, has to be determined in
terms of an input parameter.

A classical approach to find the above polynomial is based on looking at the
peaks of the modulus of the DFT of the signal. Each peak of the function is taken
as an approximation of a frequency of the signal, whose amplitude is also approx-
imated by the amplitude of the corresponding peak. The results obtained this way
will only be approximations as by definition there will be an error of order 1/T,

18 Chapter 4. Numerical Fourier analysis

where T is the length of the interval of the samples in the frequencies and ampli-
tudes detected, due to the discretization of the signal.

Because of that, many improvement methods have been proposed with excellent
results, such as Laskar, 1999 and Gomez, Mondelo, and Simg, 2010. But both meth-
ods require complex computations that may be time consuming. Consequently, in
this chapter, the basic PSO algorithm will be adapted to solve the frequency identi-
fication problem of the DFT modulus of a given signal.

4.3 Adaptation of the algorithm

The multi-frequency function that has been used as the input signal to analyze fol-
lows the equation:

f(t) — 0'5ei27fl/1t + eiZT[Vzt + O.4€i27ﬂ/34t, (42)

which consists of the sum of three primary tones supported at frequencies v; = 0.1,
V) = 0.3 and V3 = 0.4.

4.3.1 First approach: all at once

Following the structure of the basic PSO implementation explained in section 3.2
there are two different aspects of the low level performance that have been changed
in this approach:

1. The particle parameters: As there are only six unknown parameters in the
signal, three frequencies and three amplitudes, each particle of the swarm will
represent a three-frequency signal and will have six parameters.

2. The fit function: The chosen formula to calculate the fit value given a particle
is summarized in the following equation.

fit = Ijg; ‘f <]§) —f <JI§> ‘ (4.3)

where f(w) stands for the DFT modulus of the objective function and f(w)
stands for the DFT modulus of the signal formed with the parameters of a
certain particle p.

Tests and results

The results obtained from the analysis of one thousand executions of the algorithm
over the previously explained function are summarized in the table 4.1.

Mean (u) Standard deviation (o)

Fit value 2.8108 0.8933
Iterations 14206 4919
Time per iteration [s] 5.1762 x 104 3.9178 x 10~

TABLE 4.1: Summary of the results obtained with the first approach
implementation.

4.3. Adaptation of the algorithm 19

As it can be seen, the mean value for the fit is pretty high although it takes a lot of
iterations to converge. This leads us to conclude that the algorithm gets lost on the
parameter space when optimizing all the six parameters at once, because it is not
able to keep searching for better solutions as it gets stuck in local minimums. For
this reason, there is still a need to improve the convergence values achieved.

4.3.2 Second approach: peak by peak

The second proposed approach is based in the classical method that identifies each
frequency component looking for the highest peaks in amplitude of the modulus
one by one.

This procedure implies the segmentation of the original problem into thee dif-
ferent subsections, each of them with the objective of finding a different peak of the
modulus function. It has been implemented using three different optimization steps
sequentially executed where at each step the objective function is updated by the
subtraction of the previous step DFT modulus on the original objective modulus.

Regarding low level configurations only changes in the particle parameter have
been done. In this case only two parameter particles are needed.

Tests and results

The results obtained from the analysis of one thousand executions of the algorithm
using this second approach are summarized in table 4.2 segmented by steps.

Mean (u) Standard deviation (o)

First step 47167 1.4775
Fit value Second step 2.5654 0.5912
Third step 1.3617 0.8541
First step 10559 1213
Tterations Second step 11033 2616
Third step 10839 1505
Firststep 3.4086 x 1074 3.0439 x 107°
Time per iteration [s] gocond step 3.4100 x 10~ 3.0416 x 105
Third step 3.4112 x 10* 29891 x 107°

TABLE 4.2: Summary of the results obtained with the second ap-
proach implementation.

From the above results one can make three conclusions. First of all, when looking
at the mean fit values for the three steps, one can see that the fit value of the third
one, at the moment when all the three peaks have been detected, has decreased
more than a half compared with the fit value from the first approach. Also, the
number of iterations per step has decreased but taking into account that the three
steps are executed sequentially, the total number of iterations per execution will be
the sum of the three, leading to a much higher number of iteration than the first
one. Regarding the computational time per iteration, it is maintained through the
steps and has decreased compared with the first approach. This can be explained

20 Chapter 4. Numerical Fourier analysis

as the complexity of the calculus required has been reduced in the second approach
although they are executed much more times.

21

Chapter 5

Neural Network weights
optimization

Another application of PSO can be found in the Deep Learning setting, more con-
cretely, in the optimization of Neural Networks weights. To be able to optimize
these weights, we have to be knowledgeable about the role these weights play. For
this reason, we will introduce briefly the learning problem, how a Neural Network
is structured as well how to train a network with such characteristics.

5.1 The machine learning problem

In general, learning can be defined as the modification of behavior tendency accord-
ing to experiences which have been acquired. While a human starts learning from
the day they are born and never stops doing it, the same for a machine is hard to
imagine at this moment. Nevertheless, methods with the aim of emulating, at least
partly, human learning do exist.

According to Domingos, 2012, machine learning algorithms can figure out how
to perform tasks by generalizing from examples. To do so, therefore, we need exam-
ples (data) and a task to perform.

We could think of data as N vectors of length n. Therefore, while a sample can
be defined as x; = (xj1, X2, ..., Xin), a stack of samples constitute our data. In this
way, data can be arranged in a matrix X € RN*". In particular cases, a sample may
have an additional dimension, y, which is the label of the sample. If this mapping
from x to y exist for all i from 1 to N, the problem is said to be supervised.

For a machine learning algorithm to learn in this setting, we have to expose them
to some samples. This set of samples D : {(x;, ;) }Y, is called the training set. In
this way, the machine learning algorithm actually learns how to map each sample
in the training set to its label. However, more than knowing how to perform such
mapping, we are interested in mapping a sample which has not been seen for the
algorithm. If we are able to do such thing, we would be attaining generalization,
which is our goal. The set of samples unseen by the algorithm that will allow us
to test whether the algorithm has learned to generalize for the task we are aiming
to perform is called "test set". The machine learning pipeline can be visualized in
Figure 5.1.

22 Chapter 5. Neural Network weights optimization

TRAIN training process

DATA @DEL

from which we
can extract some

TEST uses Parameters to EVALUATE

DATA THE MODEL

FIGURE 5.1: Representation of the machine learning pipeline.

The other ingredient we need to design a machine learning algorithm is the task
we are aiming to perform. Depending on the nature of this task, we can have clas-
sification or regression problems. Given a discrete set of m different classes, i.e. m
different labels, a classification task consist of being able to tell which class does a
sample belong to. On the other hand, in a regression problem we are aiming to
predict a real valued quantity, often in a continuous space.

These tasks, that are sometimes effortless for human beings, proved to be im-
mensely difficult. From early 19* century, several methods to attain such achieve-
ment have been proposed. Bayes’ theorem, Least Squares or Markov chains belong
to this group of methods. However, for the purpose of this thesis we are interested
in literature considering Artificial Neural Networks. Frank Rosenblatt, in 1957, pub-
lished "The perceptron”, which is considered to be the first paper regarding this
topic. From then on, researches have studied deeply neural networks.

5.1.1 Definition of an Artificial Neural Network

According to Kriesel, 2007, a neural network is formed by two sets, N and V, and
a function w : V. — R. N is a set of neurons, V is a set {(i,j) | i,j € IN}, which
define directed connections between neurons and w;; is defined as the weight of
connection between neurons i and j. These weights can be arranged in a square
weight matrix W € RN*N. The row number and the column number indicate where
the connection begins and ends respectively. If the connection between neuron i and
neuron j is nonexistent, the position i, j of the matrix is set to the numeric 0.

Moreover, to the end of emulating the behavior of the human brain, each neuron
can be either activated or not. The process of activation can be visualized in Figure
5.2. It has three different steps and each step is performed by a function:

1. Propagation function: since neuron j often receives several values from other
neurons, the propagation function transforms the vector of inputs to a scalar,
which we will call net;. It is normally computed as a weighted sum of outputs
from other neurons, i.e. net; = Y, (0; - w;j) where I is the set of neurons
connected to j and o, is the output of the i neuron belonging to I.

2. Activation function, 4;: the output of the propagation function, net; is passed
to the activation function. If this exceeds a threshold ©®, the neuron is activated.
Formally, a; = fact(net;, ©;).

3. Output function, f,,: calculates the values which are transferred to other neu-
rons connected to j (Kriesel, 2007, p. 38). It is often the identity function which
makes this translation, therefore, fout(a;) = 0; = a;.

5.1. The machine learning problem 23

\ Neuron j

Q Propagation Activation Output

——

S
Function Function Function \\

FIGURE 5.2: Activation process of a single neuron j.

After being knowledgeable of the core components of a neural network, we can
think of a practically infinite number of possible designs. One of the simplest archi-
tectures we can think of is the so called feedforward neural network design.

5.1.2 Feedforward Neural Networks

In such networks, neurons are grouped in three different types of layers: one input
layer, n;, hidden layers and one output layer. Moreover, if we consider these groups
to be stacked sequentially, we can number each layer [with an integer from 1 to L,
the total number of layers. Another characteristic of forward neural networks is that
connections of a neuron in one layer are only set in a directed way to neurons in the
next layer. More particularly, if neuron i is connected to every neuron in the next
layer, the network is considered to be completely linked.

For clarification purposes, consider the network in Figure 5.3. This network is
a simple completely linked feedforward neural network with 6 neurons, grouped
in three different sets, the input layer, with neurons i; and i, a hidden layer of 3
neurons (h1, hy, h3) and one output neuron (Q2):

Input Layer Hidden Layer Output Layer

0\’0
Q) () (2)
()

FIGURE 5.3: A simple neural network architecture.

Therefore, our weights matrix W for this architecture has non-null elements over
the diagonal in the following way:

24 Chapter 5. Neural Network weights optimization

=~ |4 i, h hy hs Q

" W@

iy

hl
h, W(Z)
hs
Q

FIGURE 5.4: W matrix for the example we are working with.

Notice that we have split this matrix W into two different ones. W(1) and W(?) are
a subset of the total set of weights. The former matrix gathers all weights connecting
neurons i; and i, to neurons h1, hy and hs. The latter matrix, on the other hand, re-
lates these three neurons to the output neuron Q). For general forward architectures,
W) is the subset of weights relating layers [and + 1.

5.1.3 Feedforward neural networks and data

Finally, we must look at the fact that many types of neural networks permit the input
of data. A feedforward neural network is not different. As defined above, these data
are processed by the network and produces an output (Kriesel, 2007). This process
of going from the input layer to the output layer will be explained in this section.

Let us, for example, look at the example above. Allocating 2 neurons to the input
layer implies that the length of a sample, 1 as defined above, is 2. Thereby, having N
samples implies that the network will receive N instances of two numerical inputs.
Similar occurs for the output layer. Allocating 1 neuron to this layer means that
the network will just output one numerical value. For a general case, the output
can be m-dimensional and arranged in vector § = (#1,72,-..,9m). The length of
this vector will be the amount of neurons we decide to put in our output layer of
the network. But we are missing the key question: how does a feedforward neural
network process these data X? In other words, how do we go from the input data to
the output?

To make such forward pass, we need to relate how a neuron is activated (see
Section 5.1.1) with the fact that we have layers with more than one neuron. Recall
that the propagation function commonly used to compute the net input for neuron
j is Yier(o; - wij). With this notation, if we are looking at the first neuron of the
first hidden layer for our concrete example with two numerical inputs, we would
compute the whole activation of this neuron as:

net; = 01w11 + 02W31,
a; = fact(netl>/ (51)
01 = ag.

Notice we are using wi; and w1, which can be found in positions (1,1) and
(2,2) of matrix W(1). Besides, there exist a bunch of activation functions we can use,
however, we will present both ReLu and sigmoid activation functions. For j = 1:

Relt = Max(0,nety), fog " = T onen” (5.2)

5.2. Training a feedforward Neural Network using PSO 25

In a general way, we can proceed using equation 5.1 for each of the neurons in
layer I. Moreover, the activation function is often decided for a whole layer. There-
fore, we can arrange the both net inputs and activated values in matrices. The former
matrix will be called Z(!*1). In our example:

7@ = (net; net, netz). (5.3)

Afterwards, we can apply the activation function directly to the net input for
each of the neurons. a!*1) will be, then, the activation values arranged in a matrix
with the same dimensions as Z(/*1) for the whole set of neurons of layer I. Also in
our example:

0@ = (fat(nety) fact(nety) fact(nets)). (5.4)

Therefore, we can process our data with just 2 steps per layer: a matrix multi-
plication and an element-wise application of the activation function. To clarify, the
whole process of going from the input to the output can be written as:

7@ = xw®),
a2 — fact(Z(z))/
7(3) — H(Z)W(Z),

11(3) == fact(Z(g))/ (55)

Z(+1) — (WD)

7

y= fact(Z(l+1))~

This process can be repeated as many times as needed to teach a neural network
how to do a certain task, as long as the conditions of learning hold.

5.2 Training a feedforward Neural Network using PSO

Due to the fact that X is fixed and we can’t modify it, looking at equation 5.5 we
can see that by adjusting W, the neural network can yield one prediction or another.
Hence, the learning process consists of learning the optimal set of weights that yield
the most accurate predictions. If the network is able to give accurate predictions
for unseen samples (test samples as explained in section 5.1), we can say that the
network has learned to perform either the classification or the regression task.

As explained above, we need to expose the network to a set of samples to allow
the algorithm to learn from them. As you can see in Figure 5.1, this learning pro-
cess is undertaken just using training samples. Entering into detail, we perform a
forward pass of these training samples and obtain a prediction (7).

Once we have our prediction, we need to compare it to the actual label (y). Here
is where the learning process happens. Since at the end of the day we want our
predictions to be similar to y, our aim is to minimize this distance. To measure such
distance, we can use any function we want, depending on the problem we are aiming
to solve. This function is the so called "loss function" and is our objective function
in the optimization process. Until now, the best optimizer for neural networks in
most situations seems to be the gradient descent or its variants. One of its problems,

26 Chapter 5. Neural Network weights optimization

though, is the possibility that gradients may explode or vanish. One way to solve
this problem is correctly initializing these weights.

In our case, though, we will not be using gradient descent but Particle Swarm
Optimization algorithm to adjust these weights. Each particle of the swarm will be
the whole set of weights needed to compute 7). In this way, we get rid of gradient-
related problems.

To summarize, from a simplified perspective, each iteration of the process of
training a neural network using forward propagation and PSO has the following
steps (without the initialization step):

1. Adjust the weights using PSO.
2. Compute 7 using these weights and according to equation 5.5.

3. Assess the value of the loss function and proceed again. If the process is de-
signed correctly, this loss should be smaller than the loss of the previous itera-
tion.

Eventually, the algorithm will converge. Afterwards, we can retrieve this optimal
set of weights to test if the weights learned help us to perform the task accurately.
To do so, we can make a forward pass according to equation 5.5 with the optimal set
of weights and test our loss function.

5.2.1 The simple pendulum classification problem

The simple pendulum is an idealization of a real pendulum. It consists of a point
mass, m, attached to an infinitely light rigid rod of length [that is itself attached
to a friction-less pivot point (Baker and Blackburn, 2005, p. 9). When the pendu-
lum is displaced from its resting (equilibrium position), since no friction is assumed,
this idealized pendulum will oscillate with a constant amplitude forever. Newton’s
second law, F = mg provides the equation of motion for the pendulum:

#o
dt?
In equation 5.6, 6 is the angular displacement of the pendulum from the vertical

equilibrium and g the acceleration of gravity. The manipulation of this same equa-
— 4%
p—t d? 7

ml = —mgsin0. (5.6)

tion, assuming both acceleration and length equal to 1 for simplicity, and 8
leads to:

6 = —sin®. (5.7)

Equation 5.7 can be seen as a differential equation representing the motion of the
pendulum since we would like to calculate how does the angle 6 evolves across time,
i.e. 6(t). By solving this second order differential equation, we can calculate such
function given some initial conditions (6, 90). 6) can also be viewed as the angular
velocity at which we throw the pendulum. These inital conditions can be visualized
in figure 5.5.

5.2. Training a feedforward Neural Network using PSO 27

FIGURE 5.5: The simple pendulum graph.

If we allow our pendulum to be thrown from an angle greater than 17 in absolute
value and we do not limit the initial angular velocity, two things can happen as time
goes by:

e 0 varies within a fixed interval without never being greater than 7. In this case
the pendulum would oscillate.

e 0 eventually becomes greater than 77 at some point. In this case we will say
that the pendulum "circulates".

These are the two classes we consider an initial position (6y,6p) may belong to.
Figure 5.6 shows which initial pairs would lead to a pendulum oscillation and which
ones to a pendulum circulation. The initial conditions (6, 6y) = (0,0) lead to a third
class, in which pendulum stays in equilibrium neither oscillating nor circulating.
Practically speaking, the probability of having these as initial conditions is 0. That is
the reason why our problem will not be a multi-class but a binary class classification
problem. The same happens for those initial conditions in the separatrix, which at
infinite time would lead to the unstable equilibrium where the pendulum stays at
— 7t or 7T without actually moving.

= Class 0 - Pendulum Oscillates
—— Class 1 - Pendulum Circulates

6 rad

FIGURE 5.6: Initial conditions type as a function of 8 and 6.

We will teach some neural networks to perform this task and compare its archi-
tectures. Apart from different neural network architectures, we will also use two
two different types of training sets to train each network:

e 0y and 6y will be living in intervals [—7, 7] and [—15,15] respectively. We
will retrieve n evenly spaced samples over each of the intervals and pair them

28 Chapter 5. Neural Network weights optimization

together. This operation can be seen as a Cartesian product between both sets.
Therefore, we will have n? samples in this approach. We will reference this
training set as GRID_nsquared.

e In the second case, instead of making a grid of both parameters, we will re-
trieve n? values of 6 from a uniform distribution in the interval [—7, 77] and
another set of n? of from the same distribution in the interval [—15,15]. We
will make pairs from this two sets to create our training set. We will reference
this training set as UNIF_nsquared.

For both ways to create a training set, we will consider n = 20 and n = 50. The
test set, though, will be fixed to 400 samples retrieved using the second approach.
The aim of this design is to have a training set which actually knows the distribution
of the data (GRID) and another training set which would be more realistic (UNIF, in
which you don’t have access to the whole distribution of the variable).

5.3 Adaptation of the algorithm

Once the problem has been exposed, we need to specify both the method to use
and with which parameters. The decreasing inertia weights method with 20 particles
seemed appealing to the problem, since, on average, it performed better than the
others. We have to specify two additional elements, the fit function and the number
of parameters and its ranges.

The fit or objective function will be a mean squared error loss (mse, equation
5.8). However, we may think of other fit functions that could perform similar jobs.

mse = % Z(J/i — 7). (5.8)

To evaluate the performance of PSO for Neural Networks, we consider that study-
ing how does the algorithm perform depending on the number of parameters is
crucial because when facing a machine learning problem, one can think of design-
ing several models that would fit their needs. Each of these models or architectures
has a different number of parameters to optimize. Table 5.1 summarizes how is the
nature of each of the architectures. For us, the third architecture would be big despite
having only 18 parameters. We acknowledge that in the world of neural networks
we can have architectures with millions of parameters to optimize. However, for the
purpose of testing PSO, for us 18 parameters to optimize enough to be considered
as "big".

Architecture | Parameters to opt. | Layers | Hidden layers | Hidden neurons
small 3 3 1 [1]
medium 9 3 1 [3]
big 18 4 2 [3,3]

TABLE 5.1: Nature of all architectures we considered.

In all cases, the input layer has two neurons (because we have two numerical
inputs) and the output layer has one neuron (whether the sample belongs to class
1 or 0). For this reason, in all architectures, the activation function for the last layer
will be a sigmoid, which outputs a number between 0 a 1. If the prediction for one
sample is bigger or equal to 0.5, we will say the sample belongs to class 1. The

5.4. Tests an results 29

vector of classes of all samples will be called #*. On the other hand, due to common
agreement, the activation function for all hidden layers will be set to ReLu activation.
Finally, another common aspect between models is that the ranges of all weights will
be [—5,5].

Provided these different models, we have to modify the specification of the con-
figuration text file. To summarize, in table 5.2 we can see the specification of this
file for each of the architectures. Notice we added several lines to be able to gener-
alize for different structures. n stands for "none" r stands for ReLu and s stands for
sigmoid:

Config. file lines small | medium | big
Population size 20 20 20
Number of parameters 3 9 18
Weights range [-5,5] | [-5,5] | [-5,5]
Number of layers 3 3 4
Neurons layer 1 (input), fact 2n 2n 2n
Neurons layer 2 (hidden), fact 1r 3,r 3,r
Neurons layer 3 (hidden), fact - - 3,r
Neurons layer 3 (output), fact 1, 1,s -
Neurons layer 4 (output), fact - - 1,5

TABLE 5.2: Configuration parameters for all architectures considered.

5.4 Tests an results
For each metric we consider we will present a separate table. In this case, we will
recognize two different measures of performance:

e The value of the loss function, which can be calculated according to equation
5.8.

e Accuracy measure, that can be seen as the portion of a set of samples that have
been classified correctly. It can be computed as:

1 A 4. bin
acc=1— =Y [P —y,. (5.9)
Ni=

In both cases, each number is the mean of 5 training process for a given training
set and an architecture. Let’s begin with the measure of the loss function:

small [2,1,1] medium [2,3,1] big [2,3,3,1]
train loss | testloss | train loss | testloss | trainloss | test loss
GRID_2500 0.144 0.154 0.030 0.050 0.063 0.076
UNIF_2500 0.143 0.143 0.044 0.050 0.070 0.075
GRID_400 0.143 0.154 0.030 0.050 0.034 0.063
UNIF_400 0.137 0.143 0.040 0.050 0.039 0.050

Training data

TABLE 5.3: Results of different architectures (measured as the value
of the fit function).

Several aspects of these results are worth mentioning. Recall that these results
are just for the binary classification pendulum problem:

30 Chapter 5. Neural Network weights optimization

e The loss in the test set is higher than the training loss: this happens in all cases
as expected. Weights are optimized exposing the algorithm to the training
data, therefore, these weights are specific for this set of samples.

e 3 parameters are not enough to characterize our data: for the small architecture
with just 3 parameters, we are not able to get a loss below 0.100 compared to
the other two architectures. As a consequence, we may conclude that data is
more complex than our model is.

e For medium and big architectures the value of the loss function is good enough:
considering the minimum value one can get is 0, these values for the loss func-
tion seem not bad at all.

The other measure is the accuracy score:

small [2,1,1] medium [2,3,1] big [2,3,3,1]
train acc | test acc | train acc | test acc | train acc | test acc
GRID_2500 0.920 0.900 0.924 0.918 0.927 0.91
UNIF_2500 0.906 0.900 0.912 0.903 0.906 0.900
GRID_400 0.9300 0.900 0.930 0.900 0.930 0.925
UNIF_400 0.913 0.900 0.928 0.910 0.917 0.930

Training data

TABLE 5.4: Results of different architectures (measured as accuracy).

In this case, results are not good as expected because roughly 90% of the data
belong to class 1. For this reason, these values contrast with the values of the fit
function. In other words, we are minimizing the function correctly but we are not
classifying the majority of samples whose initial conditions lead to an oscillation of
the pendulum correctly.

A recent paper published, Nandi and Jana, 2019, explain that optimizing the
weights of a neural network often leads to the problem of trapping in local minima
with a very good convergence rate. This seems to fit our needs because, each time
we train two equal neural networks, we have different optimal weights with very
similar fit values. We can say, therefore, that we have multiple local minima.

In their paper, they propose another variant of PSO, PPSO. These variations
would help to avoid the problem of being trapped in a local minimum. They claim
that this method leads to a better accuracy and outperforms other variants of PSO.
The modifications are very simple:

e Number of swarm particles must be set to 50.
e Maximum number of iterations is set to 500 instead of 100.
e 1 and c; are changed from 2 to 1.6 and 1.7 respectively.

o Instead of decreasing inertia weights, we have a linear increase from 0.4 to 0.9
of such weights. In their paper, they state that w(t) must be equal to:

Win + tanh(# x M) (5.10)

tmax

As you can see, every change is aimed to increase the balance between explo-
ration and exploitation, as they claim in their paper. We will test this PPSO method
with the medium architecture because, as you can see in table 5.4, the difference

5.4. Tests an results 31

of results between medium and big architectures is meaningless and, on the other
hand, with just 3 parameters we are not able to characterize our training set. Roughly
speaking, an architecture with just three weights is not complex enough to charac-
terize our data. On the other hand, if we increase a lot the number of parameters to
be optimized, the fact that all of them are optimized simultaneously plays against it.

medium [2,3,1] LOSS | medium [2,3,1] ACC

Training data

train loss | testloss | trainacc | testacc
GRID_2500 0.038 0.047 0.924 0.908
UNIF_2500 0.043 0.046 0.917 0.915
GRID_400 0.035 0.050 0.930 0.900
UNIF_400 0.039 0.046 0.925 0.915

TABLE 5.5: PPSO results for medium architecture for the binary clas-
sification problem of the pendulum.

As you can see, even by increasing the possibilities that each particle explores an-
other region to escape from a local minimum, the training process does not perform
noticeably different. It is true that accuracy have increased slightly, but not enough
to talk about a major improvement. On the other hand, fit values are small enough
to tell that PSO succeeds in minimizing the function, at least, locally. Further possi-
ble improvements to increase the performance of fitting our data with some weights
are discussed in the conclusions.

33

Chapter 6

Conclusions

As suggested at the beginning, the Particle Swarm Optimization algorithm seemed
promising but few applications have actually used it. For this reason, we started
claiming that our thesis was aimed to exploit some of the potential of the method.
To do so, the development of the library had to be undertaken and, once done, we
could think of some real-world applications to test its performance.

Before actually developing both applications, studies regarding its performance
in different functions have shown very interesting results. It has been noticed the
excellent performance in functions such as the parabola or the multiple global min-
ima function, but in more complex cases the algorithm converged to local minima in
some executions. It is also important to mention that the computational time of an
execution of the algorithm is fast enough so that a hundred of runs on a row doesn’t
imply more than a few seconds to finish. Further problems arose when we moved
forward to real-world applications.

In both cases, further development had to be done because what actually worked
for benchmark functions did not for these applications. For the former application,
the Fourier analysis problem, parameters had to be refined one by one in order to
make the algorithm optimize correctly the parameters because optimizing the set of
parameters at the same time did not lead to pleasant results. With this methodol-
ogy, the mean and deviation rates for the fit value decreased to a considerably good
precision. Although the computational resources have augmented as the number
of iterations performed by the algorithm have increased, the structure of the swarm
and its particles have reduced complexity, leading to similar execution times when
compared to the first approach results. On the other hand, results for the Neural
Network weights optimization part were not as good as expected.

First of all, as already explained, the swarm get stuck in local minima although
this did not happen for the benchmark functions. The main fact behind this be-
haviour is the assumption that at each iteration, we are approaching the global min-
imum with higher precision. As explained in the theoretical framework, the modi-
fication of the algorithm putting decreasing inertia weights was thought, precisely,
to this aim. In contrast, since we have hundreds of data points whose label has to
be predicted, optimizing for such number of points is challenging. In other words,
if we change the whole set of optimal weights for another set very far away from
the former, results could improve substantially. For this reason, the algorithm was
changed to give more importance to exploration rather than exploitation. On top
of that, the fact that all weights are optimized simultaneously does not allow the
method to efficiently explore the space.

Putting this all together, it is clear that by making a more efficient exploration
throughout the optimization process of the parameter space results could be im-
proved. For this reason, deterministic optimization methods, which do not have

34 Chapter 6. Conclusions

these kind of problems, like gradient descent still are a better choice when optimiz-
ing neural network weights.

To summarize, one can conclude that Particle Swarm Optimization technique is
a worthy candidate for function optimization procedures as long as the algorithm is
adapted to the problem. In other words, for each optimization procedure in which
we want to use PSO, the method has to be correctly adapted if we aim to have higher
performances. Therefore, a lot of specific research should be done in the topic of
interest in order to achieve better results, which makes the algorithm difficultly scal-
able.

35

Appendix A

Specific Contributions

As this thesis has been made by a group of two students, Albert Prat and Ntria
Valls, the contributions of each of the members will be specified below.

From the beginning of the thesis, both of us started a research about the Particle
Swarm Optimization technique. Once obtained a little bit of context, we splitted our
work into two tasks. On the one hand, Albert started to learn more about the state
of the art of PSO implementations and improvements, which has ended up being
Chapter 2. On the other hand, Nuria started to implement a basic PSO algorithm
from scratch supported by the notes from Albert on the theoretical part. This imple-
mentation was explained by Ntria in the first two sections of Chapter 3. Also in the
same chapter, Albert was in charge of doing the parametric study of the algorithm
implemented, whereas Ntria was in charge of the tests and results section.

Chapter 4 has been entirely made by Nuria, starting from the comprehension of
the problem, implementation of the adaptation of the algorithm and evaluation of
the results, up to the implementation of the improved approach and its correspond-
ing performance evaluation.

Finally, Chapter 5 has been entirely made by Albert following a similar structure
than the previous chapter. First of all with the definition of the problem, followed
by the implementation of the algorithm adaptation and the evaluation of the results
obtained.

Since we consider Chapters 1, 2 and 3 to be necessary in order to understand
further sections of the thesis, the whole original document without cuts have been
included despite having it split as exposed above. On the other hand, only one of
the following chapters has been summarized: Chapter 4, 5. In this thesis, the latter
Chapter has been included in its whole.

37

Appendix B

GitHub Repository

All the code regarding the implementation of this thesis is available in a public
GitHub repository which can be accessed through following link to QPSO and two
real world applications.

https://github.com/NuriaValls/TFM_PSO
https://github.com/NuriaValls/TFM_PSO

39

Bibliography

Ackley, D.H. (1987). “A connectionist machine for genetic hillclimbing”. In:

Adewumi, A.O. and A.M. Arasomwan (2015). “Improved Particle Swarm Optimizer
with Dynamically Adjusted Search Space and Velocity Limits for Global Op-
timization”. In: International Journal on Artificial Intelligence Tools 24.5. DOI: 10 .
1142/50218213015500177.

Baker, Gregory L. and James A. Blackburn (2005). The pendulum: a case study in physics.
Oxford University Press.

Bratton, Daniel and James Kennedy (2007). “Defining a Standard for Particle Swarm
Optimization.” In: 2007 IEEE Swarm Intelligence Symposium, Swarm Intelligence
Symposium, 2007. SIS 2007. IEEE, p. 120. 1SSN: 1-4244-0708-7.

Clerc, Maurice (1999). “The swarm and the queen: towards a deterministic and adap-
tive particle swarm optimization.” In: Proceedings of the 1999 Congress on Evolu-
tionary Computation-CEC99 (Cat. No. 99TH8406), Evolutionary Computation, 1999.
CEC 99. Proceedings of the 1999 Congress on, p. 1951. 1SSN: 0-7803-5536-9.

Domingos, Pedro (2012). “A Few Useful Things to Know About Machine Learning”.
In: Commun. ACM 55.10, pp. 78-87. 1SSN: 0001-0782. DOI: 10 . 1145 /2347736 .
2347755. URL: http://doi.acm.org.sire.ub.edu/10.1145/2347736.2347755.

Eberhart, Russell C. and James Kennedy (1995). “A new optimizer using particle
swarm theory.” In: MHS'95. Proceedings of the Sixth International Symposium on
Micro Machine and Human Science, Micro Machine and Human Science, 1995. MHS
'95., Proceedings of the Sixth International Symposium on, p. 39. ISSN: 0-7803-2676-8.

— (1997). “A discrete binary version of the particle swarm algorithm.” In: 1997 IEEE
International Conference on Systems, Man, and Cybernetics. Computational Cybernet-
ics and Simulation, Systems, Man, and Cybernetics, 1997. Computational Cybernetics
and Simulation., 1997 IEEE International Conference on, p. 4104. 1SSN: 0-7803-4053-1.

Eberhart, Russell C. and Yuhui Shi (2001a). “Particle swarm optimization: develop-
ments, applications and resources.” In: Proceedings of the 2001 Congress on Evo-
lutionary Computation (IEEE Cat. No.01TH8546), Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, Evolutionary computation, p. 81. 1ISSN: 0-7803-
6657-3.

— (2001b). “Tracking and Optimizing Dynamic Systems with Particle Swarms”. In:
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546.

Engelbrecht, Andries (2012). “Particle Swarm Optimization: Velocity Initialization”.
In: 2012 IEEE Congress on Evolutionary Computation, pp. 1-8. DOI: 10.1109/CEC.
2012.6256112.

Feng, Yong et al. (2007). “Chaotic Inertia Weight in Particle Swarm Optimization”.
In:

Frigo, Matteo and Steven G. Johnson (2005). “The Design and Implementation of
FFTW3”. In: Proceedings of the IEEE 93.2. Special issue on “Program Generation,
Optimization, and Platform Adaptation”, pp. 216-231.

https://doi.org/10.1142/S0218213015500177
https://doi.org/10.1142/S0218213015500177
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755
http://doi.acm.org.sire.ub.edu/10.1145/2347736.2347755
https://doi.org/10.1109/CEC.2012.6256112
https://doi.org/10.1109/CEC.2012.6256112

40 BIBLIOGRAPHY

Gomez, Gerard, Josep-Maria Mondelo, and Carles Sim¢ (2010). “A collocation method
for the numerical Fourier analysis of quasi-periodic functions. II: Analytical er-
ror estimates”. In: Discrete and Continuous Dynamical Systems. Series B 1. DOI: 10.
3934/dcdsb.2010.14.75.

Jacob, Christian J. et al. (2007). “"SwarmArt": Interative Art from Swarm Intelli-
gence”. In: Leonardo 40.3, pp. 248-255.

JetBrains (2019). CLion. URL: https://www. jetbrains.com/clion/.

Kennedy, James and Russel Eberhart (1995). “Particle swarm optimization”. In: IEEE
International Conference on Neural Networks. Vol. 4, pp. 1942-1948.

Kriesel, David (2007). A Brief Introduction to Neural Networks. URL: availableathttp:
//www.dkriesel. com.

Laskar, Jacques (1999). “Introduction to Frequency Map Analysis”. In: Hamiltonian
Systems with Three or More Degrees of Freedom. DOI: 10.1007/978-94-011-4673-
9_13.

Marini, Federico and Beata Walczak (2015). “Particle swarm optimization (PSO). A
tutorial”. In: Chemometrics and Intelligent Laboratory Systems 149, pp. 153-165.
Millonas, Mark M. (1994). “Swarms, Phase Transitions, and Collective Intelligence”.

In: pp. 137-151.

Montalvo, Idel et al. (2008). “Particle Swarm Optimization applied to the design
of water supply systems”. In: Computers and Mathematics with Applications 56,
pp- 769-776.

Nandi, Arijit and Nanda Dulal Jana (2019). “Accuracy Improvement of Neural Net-
work Training using Particle Swarm Optimization and its Stability Analysis for
Classification”. In: CoRR abs/1905.04522. arXiv: 1905.04522. URL: http://arxiv.
org/abs/1905.04522.

Ritchie, Dennis M. (1993). “The Development of the C Language”. In: SIGPLAN Not.
28.3, pp. 201-208. 1SSN: 0362-1340. DOI: 10 . 1145 /155360 . 1565580. URL: http:
//doi.acm.org/10.1145/155360.155580.

Rosenbrock, H. H. (1960). “An Automatic Method for Finding the Greatest or Least
Value of a Function”. In: The Computer Journal 3.3, pp. 175-184. DOI: 10 . 1093/
comjnl/3.3.175. URL: https://doi.org/10.1093/comjnl/3.3.175.

Shi, Yuhui and Russell C. Eberhart (1998a). “A modified particle swarm optimizer.”
In: 1998 IEEE International Conference on Evolutionary Computation Proceedings.
IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Evolution-
ary Computation Proceedings, 1998. IEEE World Congress on Computational Intelli-
gence., The 1998 IEEE International Conference on, p. 69. ISSN: 0-7803-4869-9.

— (1998b). “Parameter selection in particle swarm optimization”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 1447, pp. 591-600.

Talukder, Satyobroto (2011). “Mathematical Modelling and Applications of Particle
Swarm Optimization”. MA thesis. Blekinge Institute of Technology.

Wilson, Edward O. (1975). Sociobiology: The Abridged edition. The Belknap Press.

Xiaohui, Hu, Yuhui Shi, and Russel C. Eberhart (2004). “Recent advances in parti-
cle swarm.” In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE
Cat. No.04TH8753), Evolutionary Computation, 2004. CEC2004. Congress on, Evolu-
tionary computation, p. 90. ISSN: 0-7803-8515-2.

Xin, Jianbin, Guimin Chen, and Yubao Hai (2009). “A particle swarm optimizer with
multi-stage linearly-decreasing inertia weight”. In: International Joint Conference
on Computational Science and Optimization 1, pp. 505-508.

https://doi.org/10.3934/dcdsb.2010.14.75
https://doi.org/10.3934/dcdsb.2010.14.75
https://www.jetbrains.com/clion/
available at http://www.dkriesel.com
available at http://www.dkriesel.com
https://doi.org/10.1007/978-94-011-4673-9_13
https://doi.org/10.1007/978-94-011-4673-9_13
http://arxiv.org/abs/1905.04522
http://arxiv.org/abs/1905.04522
http://arxiv.org/abs/1905.04522
https://doi.org/10.1145/155360.155580
http://doi.acm.org/10.1145/155360.155580
http://doi.acm.org/10.1145/155360.155580
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175

BIBLIOGRAPHY 41

Zhang, Fengge et al. (2018). “Rotor Optimization Design of Brushless Doubly Fed
Machine Based on Improved Particle Swarm Optimization.” In: 2018 21st Inter-
national Conference on Electrical Machines and Systems (ICEMS), Electrical Machines
and Systems (ICEMS), 2018 21st International Conference on, p. 564. ISSN: 978-89-
86510-20-1.

	Abstract
	Acknowledgements
	Introduction
	Theoretical framework
	The basic PSO method
	Versions of PSO
	Modifications considering momentum
	Modifications considering individual and social experience

	The algorithm
	Initialization step

	Implementation
	Experimental setup
	Software design
	Parametric study
	Tests and results
	2D Parabola
	Ackley's function
	Multiple global minima function
	Rosenbrock's function
	Comparison

	Numerical Fourier analysis
	Brief introduction to signal processing
	The frequency analysis problem
	Adaptation of the algorithm
	First approach: all at once
	Tests and results

	Second approach: peak by peak
	Tests and results

	Neural Network weights optimization
	The machine learning problem
	Definition of an Artificial Neural Network
	Feedforward Neural Networks
	Feedforward neural networks and data

	Training a feedforward Neural Network using PSO
	The simple pendulum classification problem

	Adaptation of the algorithm
	Tests an results

	Conclusions
	Specific Contributions
	GitHub Repository
	Bibliography

