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Abstract 
Grand Canonical Monte–Carlo simulations are used to assess ten faujasite structures, the well–

known family of zeolites with different Al content in post-combustion CO2 capture via Temperature 

Swing Adsorption (TSA) processes, at 313-473 K and 100 kPa. Selectivity, working capacity, 

regenerability, purity, isosteric heat and working capacity values, for each structure, have been 

calculated from simulations, providing a rather complete evaluation of adsorbents’ performance. 

Additionally, for all the structures the temperature dependence of the heat capacity has been 

modeled to estimate the thermal regeneration energy. Calculated heat capacities range from 0.78-

0.86 kJ/kg·K at 313K to 0.98-1.15 kJ/kg·K at 473K, values considerably lower than those 

corresponding to aqueous amine solutions. Comparison of TSA results with previous Vacuum and 

Pressure Swing Adsorption (VSA and PSA) ones shows that there is no structure that works well for 

all three processes. Instead, each process reaches optimum conditions for certain range of Al 

content. Results indicate that high Al content faujasites, 64-to-96-FAU, are the most effective for 

TSA with working capacities above 1.7 mol/kg, doubling PSA/VSA values. Intermediate Al content 

48-,64-FAU perform better at VSA conditions and low Al content 12-,24-FAU structures are more 

suitable for PSA processes. At moderate operative conditions (i.e., regeneration temperature of 413 

K), TSA shows the highest purities (above 99% for one-stage process), followed by VSA and PSA. 

Finally, TSA is more effective in cleaning faujasites with 48 or more Al, compared to PSA/VSA, 

leading to a higher regenerability (energetic cost index range between 2.3-2.4 GJ/tCO2).  
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1. Introduction 

 

Economic growth and industrial development have resulted in an increased burning 

of fossil fuels, leading to growing emissions of atmospheric CO2 [1]. These emissions may 

be reduced by a variety of measures, such as improving energy efficiency, and/or 

developing alternative energy sources, e.g. wind and solar power. However, the necessary 

transition into a sustainable energy mix, and the phasing out of fossil fuel combustion, is 

unlikely to occur at a sufficiently fast pace, unless additional, negative emission methods 

are considered. 

Reduction of energy-related CO2 emissions might be undertaken by means of 

Carbon Capture and Sequestration/Utilization (CCS/U) techniques. In CCS/U, carbon 

dioxide is separated from the flue gas of a power plant, compressed to supercritical 

conditions to transport it, and either stored or reused as a raw material in 

industry[2,3,4,5,6].  

Separation technologies with proven adequacy for post-combustion processes are 

absorption, membrane use, and adsorption.[7] Whereas the membrane technology is 

currently waiting its application to mass production, absorption is more mature, but it 

results in high-energy consumption during the absorbent regeneration step[8] (i.e., about 

30% of the output of the power plant).[9] Alternatively, CO2 can be captured through 

adsorption in the pores of solid materials [10,11]. Adsorption technology is based on the 

preferential affinity of CO2 to the adsorbent pores, compared to other flue gas components. 

After the adsorption step, molecules are desorbed from the solid by lowering the pressure 

(Pressure Swing Adsorption, PSA) or heating the solid material (Temperature Swing 

Adsorption, TSA) inside the column. The PSA process in which the desorption is 

performed below atmospheric pressure is called Vacuum Swing Adsorption (VSA). After 

this operation, the adsorbent is ready for a further cycle. All these methods have been used 

successfully for air fractionation, hydrogen production, carbon dioxide capture (CCS/U) 

and removal of volatile organic compounds (VOC) [12,13,14,15,16,17,18]. Among these 

methods, TSA is particularly promising, owing to difficulties with compressing or applying 

a vacuum to such large volumes of gas stream, as well as to the potential availability of 

low-grade heat in a power plant as a source of energy for regeneration [19]. 
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Zeolites, activated carbons and metal−organic frameworks (MOFs) are promising 

adsorption materials, presenting high CO2 working capacity and selectivity for CO2 over 

N2, together with low regeneration energy [10,20,21,22,23,24,25]. In particular, zeolites are 

inexpensive porous materials that are already produced on a large scale for many 

commercial applications. Thus, they have been used successfully in PSA and TSA 

processes for CCS/U [26,27,28]. Furthermore, they present higher thermal and mechanical 

stability than other common adsorbents such as MOFs, although the latest often possess 

higher surface areas [29,30]. 

Zeolites are molecular sieves with a 3D framework structure possessing orderly 

distributed micropores with diameters up to 2 nm. The different ways in which TO4 

tetrahedrals (T = Si or Al atom) can be connected lead to a rich variety of zeolite structures 

[31,32,33]. Faujasites are a zeolite family built from Si, Al and O atoms, with a crystal 

composition that vary with the Si/Al ratio (i.e., (Na2O)n/2(Al2O3)n/2(SiO2)192-n, 0≤ n ≤96) 

[34], and consist of sodalite cages which are connected through hexagonal prisms. The 

properties of the faujasites depend on the nature, number and distribution of the framework 

cations. As the Si/Al ratio decreases, the cation content increases, the thermal stability 

diminishes, the surface becomes more hydrophilic and the zeolite increases its catalytic 

properties. These changes are of great importance in the energetic cost of the CO2 capture 

and in the regenerability of the adsorbent material [35]. Thus, the open three-dimensional 

pore system of FAU-type zeolites allows exceptional properties for using it in adsorptive 

separations compared to other zeolite families [36]. 

Computational methods have been employed in a complementary fashion to 

experimental investigations. Grand-canonical Monte Carlo (GCMC) simulations allow the 

prediction of adsorption isotherms, adsorption selectivities and preferred adsorption sites at 

a very moderate computational expense, making an important contribution to the 

microscopic understanding of gas adsorption and separation in porous materials [37]. In a 

previous work [38], we have employed GCMC simulations to study the separation of post-

combustion CO2/N2/O2 mixtures via PSA and VSA processes in FAU-type zeolites with 

different Si/Al ratio. An analysis of the influence of the Si/Al ratio on the CO2 capture 

performance revealed that faujasites having intermediate Al content are the most effective 

for P/VSA processes. In the present work, we have performed new GCMC simulations for 
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all faujasite structures considered in Ref. [38] to study the separation of post-combustion 

CO2/N2/O2 mixtures via TSA processes. Thus, we have calculated selectivities, working 

capacities and purities at TSA conditions and then, compared the results obtained with 

those for PSA and VSA processes. Moreover, we have calculated the thermal regeneration 

energy (i.e., the energy required for heating and desorb) and compare it with the adiabatic 

work for expansion/compression required in VSA/PSA processes.  

This document is structured as follows: Section 2 describes the methodology, the 

computational details and the evaluation criteria used to rank all the faujasite structures 

simulated. Section 3 reports the values for all the properties calculated and gives the 

comparison of TSA versus PSA and VSA processes. Finally, Section 4 provides the main 

conclusions obtained. 

 

 

 

2. Methods and computational details	

2.1 Faujasite structures 

 

Ten different Si/Al Faujasite structures have been studied in the present work. Since 

the full set of Faujasite structures are the same that those used in our previous work [38], 

here only a few details are given. These structures have been labeled as n–FAU, where n 

signifies the number of sodium or aluminum atoms per unit cell (i.e., n = 0, 6, 12, 24, 32, 

48, 64, 77, 88 and 96, which correspond to Si/Al ratio of +∞, 31, 15, 7, 5, 3, 2, 1.5, 1.2 and 

1, respectively). All the structures were obtained from 88-FAU (i.e., also named zeolite 

13X), by randomly replacing Al by Si atoms and satisfying the Löwenstein’s avoidance 

rule [39]. 

We considered all faujasites under study as rigid models. Nevertheless, the non-

framework sodium cations were allowed to move freely along the zeolite structure, 

changing their position depending on their interactions within the rigid structure, other Na+ 

cations and the adsorbed gas molecules, as recommended in previous studies [40,41].  
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2.2 Force field and simulation details 

 

Carbon dioxide, nitrogen and oxygen molecules were modelled rigid. The potential 

of the system was calculated as the sum of the guest-host and the guest-guest interaction 

energies, modeled as a combination of Lennard-Jones (LJ 12-6) and Coulomb potentials 

𝑈$% = 4𝜀$% )*
𝜎$%
𝑟$%
-
./

− *
𝜎$%
𝑟$%
-
1

2 +
1

4𝜋𝜀6
𝑞$𝑞%
𝑟$%

 (1) 

where 𝑈$% is the total potential energy between atoms 𝑖 and 𝑗 at distance 𝑟$%; 𝑞$, 𝑞% are the 

partial charges of atoms	𝑖 and 𝑗, respectively, 𝜀$% is the LJ potential well depth, 𝜎$% is the LJ 

potential diameter, and finally 𝜀6 is the vacuum permittivity. All the force field parameters 

were taken from Calero et al. [42,43]. These parameters are applicable to all Si/Al ratios, 

both at cryogenic and high temperatures.  

Ewald summation was used to calculate Coulombic interactions [44] with a relative 

precision of 10-6. A cutoff distance of 12 Å was used, and Lorentz-Berthelot mixing rules 

were used to calculate the van der Waals interactions between molecules. A summary of 

the Coulombic charges and LJ parameters used in this work, as well as the agreement 

between simulations and experimental data for selected structures (when available), can be 

found in the Supplementary data from our previous study [38]. 

Pure and ternary mixture adsorption isobars were computed using GCMC 

simulations by means of LAMMPS code [44]. At every simulation step, the GCMC 

algorithm attempts a number of insertions/deletions of guest molecules between the 

simulation cell and the imaginary reservoir, and a number of translations/rotations of guest 

molecules within the simulation box. Simulations have been run for at least 4×106 GCMC 

equilibration steps and 8×106 GCMC production steps for each temperature value. The 

number of molecules adsorbed was calculated using a statistically averaged approach after 

the equilibrium stage for every single point, allowing the construction of the adsorption 

isobars [45].  
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Both pure and ternary mixture isobars were computed at a pressure of 1 bar, in a 

temperature range between 313 and 473 K. The separation efficiency of the ternary mixture 

CO2/N2/O2 was studied, with a typical post-combustion gas composition of 15%/80%/5% 

[46] (i.e., we assume that water and other impurities have been removed from the tail gas in 

earlier stages).  

To relate the chemical potential with the pressure in the present simulations the 

Peng-Robinson Equation of State (EOS) [47] was used, taking the pure substance 

parameters from NIST database [48]. The van der Waals one-fluid mixing rule was used in 

mixture simulations [49], taking the binary parameters from Vrabec et al. [50]. Additional 

details regarding the GCMC simulations and force-field parameters can be found in our 

previous work [38]. 

 

2.3. Adsorbent evaluation criteria 

 

Five different evaluation criteria were considered in this work to analyze the CO2 

capture and separation performance for each faujasite under the studied conditions: 

selectivity (𝑠=>?/A?), CO2 working capacity (𝑊𝐶=>?), regenerability (𝑅=>?), purity at outlet 

(𝑋=>?) and thermal regeneration energy (𝑄GHIJKLM). All of them can be obtained, 

respectively, from the following expressions: 

𝑠=>?/A? = *
𝑥=>?
𝑥A?

- *
𝑦=>?
𝑦A?

-P  (2) 

𝑊𝐶=>? = 𝑁=>?
LRS − 𝜙𝑁=>?

RIS (3) 

𝑅=>? = U𝑊𝐶=>?/𝑁=>?
LRSV × 100% (4) 

𝑋=>? =
𝑁=>?
YZG

𝑁[LSYZG =

𝑃=>?𝑉𝜖
𝑅𝑇 +𝑊𝐶=>?𝜌𝑉(1 − 𝜖)

𝑃c>c𝑉𝜖
𝑅𝑇 + U𝑊𝐶=>? +𝑊𝐶A? +𝑊𝐶>?V𝜌𝑉(1 − 𝜖)

 (5) 
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𝑄GHIJKLM = d 𝐶efgh𝑑𝑇
cjkl

ckml
+n𝑞ocp𝑊𝐶q

q

	 (6) 

 

where 𝑥$ is the molar fraction of i-component in the adsorbed phase and 𝑦$ is the molar 

fraction of i-component in the bulk/gas phase, and 𝑊𝐶=>? is calculated from the difference 

between the CO2 uptake under adsorption and desorption conditions per kg of adsorbent 

material and per cycle. The usual procedure of estimating the working capacity 

experimentally in TSA processes [51] consists in calculating 𝑁=>?
LRS from ternary mixture 

adsorption data and 𝑁=>?
RIS from pure CO2 adsorption data. However, this procedure assumes 

that after adsorption step the composition inside the bed is 100% CO2, which is only valid 

for high selective materials, as in Ref. [51]. However, faujasites structures with low Al 

content (i.e., 0-FAU to 24-FAU) also contain a non-negligible fraction of N2 and O2 

molecules adsorbed. Thus, for these structures, at desorption conditions the value of 𝑁=>?
RIS 

which has been calculated from pure CO2 adsorption data at 100 kPa must be corrected 

because 𝑃c>c does not equal 𝑃=>?. The correction is done by the 𝜙 factor [38] that varies 

between 0 and 1 and considers the molar fraction 𝑥=>?		in the adsorbed phase, providing a 

more realistic method of estimating the number of molecules that will remain adsorbed 

after the desorption step. As above-mentioned, this approach is necessary for low Al 

content structures where other uptakes are not negligible, and it makes results more realistic 

than those found in the literature based on pure adsorption data [14,52], which are only 

valid when the material is highly selective for one component. The values of 𝜙 used in this 

study correspond to 1.00, 0.99, 0.99, 0.98, 0.96, 0.93, 0.87, 0.75, 0.54 and 0.44 for n-FAU 

structures with n= 96, 88, 77, 64, 48, 32, 24, 12, 6 and 0, respectively. 

 Regeneration of CO2, Eq. (4), represents the fraction in percentage of carbon 

dioxide that can be desorbed by heating up the adsorbent material from the total uptake of 

gas species. On the other hand, the CO2 purity at the outlet of the bed, Eq. (5), is an 

important variable to consider, especially when is possible to reuse the captured CO2 for 

other applications. In Eq. (5), the ratio 𝑁=>?
YZG/𝑁[LSYZG indicates the molar fraction of CO2 in 

the mixture exiting the adsorbent material. This ratio is calculated considering the void 
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fraction of the bed (i.e., the ratio of the void volume to the total volume of the bed), 𝜖 =

	0.4, the feed composition, 𝑃=>? = 15 kPa and 𝑃c>c=100 kPa, the volume of the packed 

bed, 𝑉	= 0.1 m3, the working capacity of component i at desorption temperature T, 𝑊𝐶$ and 

the framework density, 𝜌. 

The total thermal regeneration energy (𝑄GHIJKLM) per unit mass of adsorbent has two 

main contributions: (i) the energy required for heating the adsorbent material, and (ii) the 

energy required to overcome the endothermic desorption process. According to Sculley et 

al., [53] this energy can be calculated per kg of adsorbent in one cycle from Eq. (6) where 

𝐶efgh is the heat capacity of the adsorbent, 𝑇LRS and 𝑇RIS are the adsorption and desorption 

temperatures, respectively and finally, 𝑞ocp and 𝑊𝐶q are the isosteric heat of adsorption 

and working capacity of 𝑘-component in the mixture, respectively. 𝑞ocp is a 

thermodynamic quantity that characterizes the enthalpy change associated with the 

adsorption of one molecule onto the surface. According to the energy/particle fluctuations 

in the GC ensemble, the isosteric heat of adsorption (𝑞SGp) corresponds to [54]: 

𝑞SGp = −
〈𝑈 × 𝑁〉 − 〈𝑈〉〈𝑁〉
〈𝑁/〉 − 〈𝑁〉/ + 〈𝑈[〉 + 𝑅𝑇 (7) 

where 𝑈 is the total potential energy of the 𝑁 adsorbed molecules and the brackets 〈… 〉 

denote an average in the GC ensemble. The bracket terms have been obtained from GCMC 

simulations by averaging over 10.000 different values for each loading. Moreover, we have 

assumed that the isosteric heat remains constant throughout the desorption step at the value 

corresponding to the adsorption uptake. This is a good approximation due to the flatness of 

the isosteric heat curves as a function of the CO2 uptake (Fig. 1). Finally, 〈𝑈[〉 is the 

average energy of an isolated adsorbate molecule in the ideal-gas state. For rigid molecules, 

this term vanishes.  

On the other hand, 𝐶w is an important parameter for the energy requirements 

calculation, since materials with low heat capacity would lead to lower energy penalties for 

the regeneration step, Eq. (6). Unfortunately, only a limited number of specific heat 

capacities have already been measured and reported in literature for cation-exchanged 

faujasites [55,56,57]. In the present work, heat capacities for all the structures have been 

computed by means of the predictive model from Vieillard [58], based on the oxide 
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summation technique. This method considers that the thermodynamic properties of silicate 

minerals can be described as a linear combination of the fractional properties of their 

constituent polyhedral, where only the crystallography of the mineral needs to be known. 

The 𝐶w value of our FAU structures were calculated in the following way:  

𝐶efgh(𝑇) = 𝑛o$>? · 𝐶e
o$>?(𝑇) + 𝑛z{?>| · 𝐶e

z{?>|(𝑇) + 𝑛}~?> · 𝐶e
}~?>(𝑇) (8) 

where 𝐶e$  are the heat capacities of the 𝑖-polyhedral, 𝑛$ is the total number of 𝑖-polyhedrals 

present in a unit cell, and the 𝐶e$ (𝑇) values are obtained from a polynomial correlation with 

temperature. Calculated heat capacities range from 0.78-0.86 kJ/kg·K at 313 K to 0.98-1.15 

kJ/kg·K at 473 K. Interestingly, there is a nearly linear relationship between the heat 

capacity and temperature for all the faujasite structures (see Fig. S1 in Supplementary data). 

These values of 𝐶e$ (𝑇) are considerably lower than those conventionally employed in 

aqueous amine solutions since the presence of water in which the amine molecules are 

dissolved must also be heated until desorption temperature. For example, the heat capacity 

for 30% wt monoethanolamine (MEA) solution at 298 K is 3.73 kJ/kg·K, more than four 

times larger[59]. These results highlight one of the main advantages of employing zeolites 

or other porous solid materials such as MOFs when TSA process is adopted. Details 

regarding the heat capacity calculation can be found in Section I of the Supplementary data.  

In the present work, we consider TSA processes in their simplest configuration 

including only two fixed beds in parallel by the so-called Skarstrom cycle [60]. When 

comparing among the different faujasite structures, both the total volume of the column and 

the fractional voidage were held constant, implying that the volumes of adsorbent materials 

used in the fixed beds are equal for all faujasite structures.  

Moreover, it needs to be mentioned that the different adsorption criteria used in the 

present work should be used with caution when aiming to predict the best material for post-

combustion CO2 capture. Our results provide key insights regarding the performance of 

different faujasites structures, but they must always be accompanied by kinetic studies 

under realistic process conditions. In fact, there have been a few works investigating the 

capability of adsorbent metrics to screen potential adsorbents. [61,62] These studies 
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indicated that adsorbent criteria could identify the adsorbents that eventually performed 

poorly. However, the relative ranking provided by various metrics can be different. 

 

3. Results and discussion 

 

3.1. Isosteric heat of adsorption 

 

Isosteric heat of adsorption (𝑞SG) is an important thermodynamic quantity for 

understanding the possible thermal effects related to adsorption. It can be used to compare 

the interaction strength of the adsorbates with various adsorbent materials. The isosteric 

heats of adsorption at different CO2 uptakes for the different faujasite structures analyzed in 

this work are plotted in Fig. 1. 

 

The isosteric heats of adsorption of CO2 at zero coverage increase from 14 to 42 

kJ·mol-1 from the pure silica zeolite (with a Si/Al ratio of +∞) to the 96-FAU zeolite (with a 

Si/Al ratio of 1), respectively. This fact comes from the increasing number of strong 

interactions between Na+ cations and gas molecules from 0-FAU to 96-FAU structures. 

This tendency is also observed for CO2 uptakes up to 5 mol/kg. Above this loading value, 

different adsorption behaviors start to appear, especially for faujasites with a high Al 

content. 
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Figure 1. Isosteric heat of adsorption (𝑞SG,=>?) as a function of the CO2 uptake per kg of 

adsorbent material obtained for the ten faujasite structures with different Si/Al ratio at 

T=313 K. Lines are guide to the eye.  

 

The flatness of the isosteric heat curves observed for intermediate Al content faujasites (i.e., 

from 12-FAU to 64-FAU) indicates that solid-gas interactions are dominant along the 

whole adsorption process until high loadings. Conversely, the increase of the adsorption 

heat with the loading for low Al content faujasites (i.e., 0-FAU and 6-FAU) suggests that 

the adsorption regime at low CO2 coverage is dominated by solid-gas interactions, while 

this interaction becomes less important as the CO2 loading increases due to the formation of 

new gas-gas interactions, which are stronger. However, high Al content structures (from 

77-FAU to 96-FAU) show a different behavior and the heat of adsorption decreases upon 

reaching a certain value. Above this value, the CO2 molecules and the Na+ cations are so 

close together that the gas-gas and Na+-gas interactions become more repulsive (i.e., the 

structure reaches saturation). Fig. 1 shows that 96-FAU structure is the one that presents the 

isosteric heat decay at a lower loading, since it contains a higher number of Na+ cations 

than the other structures. A similar behavior has been reported previously for LTA 
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structures with different Si/Al ratios [28]. The values of the isosteric heat at different 

loadings will be used to calculate the thermal regeneration energy. 

 

3.2. Selectivity, purity and regenerability 

 

Fig. 2 shows the selectivity for CO2 relative to N2 for the ten structures evaluated as 

a function of temperature according to Eq. (2). As expected, 96-FAU has the highest CO2 

selectivity in all the temperatures considered, ranging from 1150 (313K) to 46 (473K), 

while 0-FAU has the lowest value, between 4.1-2.1 in the same temperature range. This is 

due to the strong interactions between CO2 and Na+ cations and the increasing value of the 

isosteric heat of adsorption, which are dominant in structures with high Al content. 

Moreover, as the thermal energy of the gas molecules increases, the difference in 

adsorption between CO2 and N2 becomes less significant, so decreasing the selectivity. The 

drop in selectivity with temperature is more pronounced for structures with higher 

selectivity (e.g., a factor of 25 for 96-FAU compared to a factor of 2 for 0-FAU in the same 

temperature range). The fact that systems with large selectivity are more sensitive to 

temperature has been observed also in MOFs [63].  

Selectivity values in Fig. 2 have been obtained directly from ternary mixture 

isotherms obtained from GCMC simulations. In addition, selectivity has been also 

evaluated using adsorption isotherm fits for pure components followed by IAST 

calculations (Fig. S4 in Supplementary data). Selectivity values obtained from IAST 

calculations are substantially larger than those values obtained directly from ternary 

mixture isotherms, specially for low Al-content faujasites, as reported previously in Ref. 

[38] since IAST does not consider the interaction among all the species in the mixture, as 

GCMC does.  
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Figure 2. Calculated selectivities for CO2 relative to N2 as a function of temperature, for 

ten different n-FAU structures (𝑃c>c = 100 kPa).  

 

Fig. 3 shows calculated values of CO2 purity at outlet and regenerability as a 

function of desorption temperature for all the faujasite structures, assuming a packed bed 

with a total volume of 0.1 m3 (i.e., L = 0.1 m, A = 1 m2) and a void fraction of 𝜖 = 0.4. The 

highest purities are obtained for high Al-content structures, with values above 90% for 

structures containing more than 48 Na+ atoms per unit cell. This degree of purity agrees 

with real feed experimental value of 94% of purity at outlet obtained in Ref. [18] for 13X 

(FAU-88) performing TSA processes with a smaller amount of CO2 (10%) and a bit 

different operative conditions (Tads = 288 K, Tdes = 423 K). Purity values corresponding to 

77-FAU, 88-FAU and 96-FAU structures are coincident, and therefore they cannot be 

distinguished in the plot. Conversely, purity values for 0-FAU, 6-FAU and 12-FAU 

structures are very low, making them not attractive for the process. Note that the final CO2 

purity depends on the selectivity, the working capacities for CO2/N2/O2, and on the void 

fraction 𝜖. Higher purity values can be achieved by reducing the void fraction.  
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Figure 3. CO2 purity at outlet (%) in the gaseous mixture exiting the bed (left) and 

regenerability (right) as function of desorption temperature, assuming a packed bed with a 

total volume of 0.1 m3 (L = 0.1 m, A = 1 m2) and a void fraction of 𝜖 = 0.4. Simulations 

performed at Tads = 313 K and 𝑃c>c = 100 kPa.  

 

Unlike purity, maximum regenerability values are obtained for intermediate Al 

content structures, with 48-FAU having the highest value at all temperatures explored. 

Even though, it should be noted that although certain structures such as 12-FAU and 24-

FAU present moderately high regenerability, their uptake is so low that the amount of 

recovered CO2, in absolute terms, is small. It can be expected that regenerability will be 

even higher at temperatures above 473K. Purity and regenerability values corresponding to 

lower desorption temperatures have not been plotted in Fig. 3, since the working capacity at 

these conditions is nearly zero for most of the structures, and hence the CO2 purity and 

regenerability tend to 15% and 0%, respectively.  

 

Pure adsorption isobars for CO2 and ternary mixture isobars for CO2 and N2 can be 

found in Section II and Section III in the Supplementary data, respectively.  
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3.3. Working capacity, thermal regeneration energy and optimal 

desorption temperature 

 

Desorption temperature can significantly affect both the CO2 working capacity and 

the thermal regeneration energy, which are the two main parameters to study the 

performance of the adsorbent materials for carbon capture and sequestration [53]. Fig. 4 

shows the variations of these two quantities as a function of desorption temperature in the 

range 353-473 K.  

As it can be seen in Fig. 4a, the working capacity initially increases quickly with 

increasing temperature and then nearly reaches a plateau for most of the structures. The 

initial sharp increase can be attributed to the fact that the influence of temperature on the 

gas/solid interactions is more remarkable at low temperatures [63], and can be also deduced 

from the shape of the CO2 adsorption isobars (see Section III in the Supplementary data). 

Low and intermediate Al content structures reach the plateau at temperature values around 

473 K, whereas for high Al content structures this plateau is beyond the temperature range 

considered in the present work. 

 

Figure 4. Influence of TSA desorption temperature on the CO2 working capacity (a) and 

required thermal regeneration energy (b) for the different faujasite structures (Tads = 313 K, 

CO2 (15%), N2 (80%), O2 (5%) and 𝑃c>c = 100 kPa). 𝑊𝐶=>? and 𝑄GHIJKLM values plotted 

are per cycle. 
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Table 1. Mass and volumetric working capacity values per cycle for selected faujasite 

structures from this work and other promising adsorbents found in literature. The 

temperature range considered is Tads = 313 K – Tdes = 443 K and 𝑃c>c=100 kPa for all the 

materials except for en-M(dobpdc) MOFs. a,b Values for X-FAU structures correspond to a 

ternary CO2 (15%)/N2(80%)/O2(5%) mixture, whereas the other values correspond to a 

binary CO2(15%)/N2(85%) mixture. 

Material Working capacity Ref. 

 (mol/kg) (mol/dm3)  

64-FAU 2.40 3.20 this work 

88-FAU 2.45 3.41 this work 

96-FAU 2.46 3.47 this work 

CaX 2.20 3.14 [61] 

MgX 2.37 3.38 [61] 

PS-MFI 0.36 0.67 [61] 

CaA 2.79 4.22 [51] 

CuBTC 0.88 0.84 [61] 

Ni-MOF-74 1.71 2.05 [61] 

Zn-MOF-74 1.13 1.38 [61] 

Mg-MOF-74 4.25 3.36 [14] 

ZIF-68 0.21 0.19 [61] 

PPN-6-SO3Li 0.62 0.32 [53] 

PPN-6-SO3H 0.36 0.12 [53]  

en-Mg2(dobpdc) a 0.60 0.52 [64] 

mmen-Mg2(dobpdc) b 3.60 3.13 [65] 

mmen-Mn2(dobpdc) b 2.80 2.35 [65] 
a temperature range: Tads = 298 K – Tdes = 423 K. 
b temperature range: Tads = 313 K – Tdes = 413 K. 

 

 

In post-combustion CO2 capture, the solid adsorbent will likely be packed into a 

large fixed bed, and, as such, the volumetric working capacity in units of mol/dm3 is also a 

vital consideration from the perspective of minimizing the size of the column towers, which 

may affect the heating efficiency during the regeneration step. Alternatively, the bed 

porosity or void fraction (𝜖 = 0.4) could be used to estimate the bed densities and use those 
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values to obtain a volumetric working capacity values that are related to the size of the 

fixed beds. For the faujasite structures considered in the present work, both mass capacity 

and volumetric capacity analysis lead to the same ranking due to their similar density. 

However, when comparing between different materials, a volumetric capacity ranking is 

more useful. Framework density was used to convert from mass-specific to volume-specific 

working capacity. Table 1 compares our results for mass capacity and volumetric capacity 

with those for promising adsorbent materials found in literature. We found that high Al-

content faujasite structures have competitive capacity values beating the vast majority of 

the other zeolites and being only surpassed in volumetric capacity by zeolite CaA, although 

it presents a higher heat of adsorption of 58 kJ/mol[51], which may imply more energy 

required to overcome the endothermic desorption process. In the case of MOFs, some of 

them also present higher working capacities. To name a few, Mg-MOF-74 [14] and mmen-

Mg2(dobpdc) [65] present higher mass capacity and similar volumetric capacity than high 

Al-content faujasites at Tads = 313 K – Tdes = 443 K, 413 K, respectively. Additionally, it is 

important to note that experimental materials are not fully activated and then some 

discrepancies could appear in their performance compared to simulated perfect crystals. 

Moreover, small temperature changes can occur during the adsorption and desorption steps 

due to the exothermic and endothermic processes that take place, respectively.  

In contrast, Fig. 4b shows that there is a nearly linear relationship between the 

required thermal regeneration energy per cycle and the desorption temperature. This fact 

can be explained analyzing both terms in Eq. (6) separately. Both terms increase with 

temperature, however, the first one increases in a concave manner while the second 

increases in a convex manner, resulting in a total increase that is almost constant with 

temperature. 

To seek out the optimal desorption temperature, both contributions should be 

considered. Hence, by calculating the required thermal regeneration energy per unit mass of 

CO2 recovered as a function of desorption temperature (presented in Fig. 5) it is possible to 

estimate the optimal desorption temperature. According to Sculley et al. [53], this simplest 

ratio will be the most telling, as it will give a true direct comparison between materials, 

independent of assumptions about the process. Of course, the values obtained in GJ/kg do 

not represent the real cost for the whole capture process. There are other factors that will 
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come into play during the industrial process, such as the efficiency of types of heat 

exchangers, capital costs of equipment and adsorbent materials and costs associated to post-

separation (e.g., compression and transport), among others. 

 

Figure 5. Thermal regeneration energy per ton of CO2 recovered as a function of 

desorption temperature at 𝑃c>c = 100 kPa. Lines are guide to the eyes.  

 

Fig. 5 shows that the optimum desorption temperature is between 413 and 443 K. In 

addition, it can be observed that TSA process is only profitable for faujasites with more 

than 48 Al atoms per unit cell. The low working capacity for structures with lower Al 

content does not compensate their lower heat capacity. Moreover, the values obtained for 

64-, 77-, 88- and 96-FAU structures are very similar in all the temperature range 

considered. This is due to similar values of density, heat capacity, isosteric heat and 

working capacity. Among these structures, 64-FAU has the minimum thermal regeneration 

energy per unit mass of CO2 recovered at 413 K, with a value of 2.42 GJ/tCO2. This value 

is in line with the real feed experimental value of 2.02 GJ/tCO2 reported in Ref. [17] using 

PTSA at operative conditions Tads = 323 K – Tdes = 373 K, at pressures 15% below 

atmospheric conditions, with 11.5% of CO2 at feeding and using CaX zeolites (same as 



 20 

FAU-88 with Ca2+ instead of Na+ cations). On the other hand, Ref. [18] reports a real feed 

value of 8.8 GJ/tCO2 for TSA, FAU-88 although for 10% of CO2 in the incoming mixture. 

This value is higher than that obtained here but they operated at larger range of 

temperatures Tads = 288 K – Tdes = 423 K. As they stated the adiabatic estimate of the 

thermal regeneration energy halves the previous value to 4.4 GJ/tCO2.  

 

Finally, flue gas can be used directly from the stack stream to pre-heat the bed at the 

desorption step, allowing to reduce the regeneration thermal energy for the process [66]. 

For instance, assuming a stack temperature of 400 K, a reduction of 10% could be 

achieved. 

 

3.4. Comparison of TSA separation performance versus PSA and VSA 

processes  

 

In Sections 3.2 and 3.3 we have shown that the best faujasite structures to be used in 

TSA processes for post-combustion CO2 capture are those with a higher Al content, from 

64-FAU to 96-FAU. These structures stand out in all the five different evaluation criteria 

considered, especially when the temperature of desorption is raised between 413 and 473 

K. In order to determine whether TSA is more effective in separating CO2 than PSA and 

VSA processes, the calculated values of purity, regenerability, working capacity and 

energetic requirement for the ten different faujasite structures are plotted in Fig. 6. For 

comparison, moderate conditions were selected for TSA (P=100 kPa, Tads=313 K, Tdes=413 

K), PSA (T=313 K, Pads=1000 kPa, Pdes=100 kPa) and VSA (T=313 K, Pads=100 kPa, 

Pdes=10 kPa). Fig. 6a shows that TSA presents the highest purity values for almost all the 

structures, followed by VSA and PSA. Even reducing the vacuum in VSA process to 5 kPa 

such high purity provided by TSA is not achieved. In addition, TSA is more effective in 

cleaning faujasites with 24 or more Al atoms per unit cell compared to PSA and VSA (see 

Fig. 6b), leading to a higher value of regenerability. These differences in regenerability are 

more pronounced in structures with high Al content, where the values obtained for PSA and 

VSA are extremely low. Moreover, Fig. 6c shows that TSA far surpasses PSA and VSA in 
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working capacity for intermediate and high Al content structures. For faujasite structures 

like 0-FAU to 24-FAU, with a low Henry coefficient (10-5 to 10-4 mol·kg-1·Pa-1), the 

working capacity under TSA conditions is very small (red bars in Fig. 6c). This fact 

requires heating up the entire sorbent to relatively high temperatures to get the capture of a 

small amount of CO2, resulting in a very expensive heating cost. In this case, the energy 

required for heating the system is much greater than the energy required for overcoming the 

endothermic desorption process (i.e., first and second terms in Eq. (6), respectively). Thus, 

materials with low Henry coefficient are not suitable for operating under TSA conditions. 

However, in a PSA process, these materials present high working capacities due to their 

low CO2 uptake at the desorption step (i.e., atmospheric pressure). On the contrary, 64-

FAU to 96-FAU structures present higher Henry coefficients (around 10-3 mol·kg-1·Pa-1) 

due to the electrostatic interactions with the guest molecules and the Na+ cations, resulting 

in much higher working capacities under TSA conditions. For these materials, it is worth 

investing energy in heating the system due to the large amount of CO2 desorbed. Therefore, 

we expect that these results could be generalized to some extent at least for zeolite 

structures. 

Finally, Fig. 6d shows that TSA process allows to obtain much higher values of 

purity, regenerability and working capacity for 64-, 77-, 88-and 96-FAU structures at a very 

similar energetic cost compared to P/VSA. Nevertheless, the thermal regeneration energy 

per ton CO2 captured for low Al content structures is extremely high, even out of the scale, 

due to the poor working capacity. Therefore, although TSA process is not appropriated for 

low Al content faujasites, it is highly recommended against PSA and VSA for high Al 

content structures. To complement the study, these three processes have been also 

evaluated at different operative conditions. The resultant metrics for TSA, VSA and PSA 

(i.e., purity, working capacity and thermal regeneration energy or adiabatic work) at these 

conditions are available in Sections V, VI and VII of the Supplementary data. 

Note that for a true comparison between thermal energy and adiabatic work, it is 

necessary to consider a conversion coefficient, which would reduce the energetic 

requirements plotted for TSA. 
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Figure 6. Comparison for a) CO2 purity at outlet, b) regenerability, c) working 

capacity per cycle, and d) energetic requirement per ton CO2 between TSA (red, Tads=313 

K, Tdes=413 K), PSA (orange, T=313 K, Pads=1000 kPa, Pdes=100 kPa) and VSA (blue, 

T=313 K, Pads=100 kPa, Pdes=10 kPa) processes. The Y-axis in Fig. 6d represents the 

thermal regeneration energy (for TSA process) or the adiabatic work for 

expansion/compression (for VSA/PSA processes). Calculated values for PSA and VSA 

processes are taken from our previous work [38]. 
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4. Conclusions 

 

Five different evaluation criteria are considered in this work to analyze the CO2 

capture performance for each faujasite under the studied conditions: selectivity, working 

capacity, regenerability, purity and thermal regeneration energy, considering the difference 

between the uptake under adsorption and desorption conditions.  

The total thermal regeneration energy is obtained considering both the energy 

required for heating the adsorbent material and the energy required to overcome the 

endothermic desorption process. To this end, the heat capacity of the adsorbent material is 

needed. Since only a limited number of specific heat capacities have already been measured 

and reported in literature for cation-exchanged faujasites, the heat capacities for all the 

structures were calculated by means of the oxide summation technique. The calculated heat 

capacities for all the structures range from 0.78-0.86 kJ/kg·K at 313 K to 0.98-1.15 kJ/kg·K 

at 473 K. These values are considerably lower than those conventionally employed in 

aqueous amine solutions, highlighting one of the main advantages of employing zeolites or 

other porous solid materials in TSA processes. 

The 96-FAU structure presents the highest CO2 selectivity at all the temperatures 

considered, ranging from 1150 (313 K) to 46 (473 K), while 0-FAU has the lowest values. 

Highest purities are obtained for high Al-content structures, with values above 90% for 

structures containing more than 48 Na+ atoms per unit cell. Purity values corresponding to 

77-FAU, 88-FAU and 96-FAU structures are coincident. Conversely, purity values for 0-

FAU, 6-FAU and 12-FAU structures are very low, making them not attractive for TSA. 

Maximum regenerability values are obtained for intermediate Al content structures, with 

48-FAU having the highest value at all temperatures explored. Even though, it should be 

noted that although certain structures such as 12-FAU and 24-FAU present moderately high 

regenerability, their uptake is so low that the amount of recovered CO2, in absolute terms, is 

small.  

The results for mass capacity and volumetric capacity are compared with those for 

promising adsorbent materials found in literature. Thus, high Al-content faujasite structures 
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present competitive capacity values, beating the clear majority of the other materials and 

being only surpassed in volumetric capacity by zeolite CaA. 

The optimal desorption temperature for the ten faujasite structures evaluated varies 

in the range 413 – 443 K whereas the minimum value of thermal energy per ton of CO2 

recovered at 413 K is for the 64-FAU framework with a value of 2.42 GJ/tCO2. 

Comparison of present TSA results with our recent PSA and VSA ones shows that 

there is no structure that works well for all three processes. Thus, each process reaches 

optimum conditions for certain range of Al content. The best faujasite structures to be used 

in TSA processes for post-combustion CO2 capture in the range 413 K – 473 K are those 

with a higher Al content, from 64-FAU to 96-FAU. Intermediate Al content 48-,64-FAU 

perform better at VSA conditions, and low Al content 12-,24-FAU structures are more 

suitable for PSA processes.  

Moreover, at moderate operative conditions, TSA presents the highest purity values 

for almost all the structures, followed by VSA and PSA. Even reducing the vacuum in VSA 

process the TSA purity is not reached. In addition, TSA is more effective in cleaning 

faujasites with 24 or more Al atoms per unit cell compared to PSA and VSA leading to a 

higher value of regenerability. These differences in regenerability are more pronounced in 

structures with high Al content, where the values obtained for PSA and VSA are extremely 

low.  

Finally, the forgoing results demonstrate that from a thermodynamic point of view, 

TSA processes can be an excellent choice for high Al content faujasites structures, due to 

the good compromise between high working capacity and moderate thermal regeneration 

energy. However, it should be noted that these results are based purely on equilibrium 

properties. Kinetic studies of diffusion coefficients and full process simulations are 

necessary to unequivocally determine whether TSA performance is better than V/PSA for 

these materials. In fact, although TSA processes are easier to implement and can benefit 

from the low-grade heat in a power plant as a source of energy for regeneration, the 

variation (swing) of temperature is much slower than the pressure change, requiring longer 

step times than V/PSA. Hence, further investigations need to be conducted to get more 

reliable predictions including kinetic effects and real flue gas conditions.  
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Appendix	A.	Supplementary	data	

 

Supplementary data associated with this article can be found, in the online version, at 

http://dx.doi.org/…..  

Section I contains n-FAU heat capacity calculation procedure; Section II includes pure 

component adsorption isobars for CO2; Section III reports the mixture adsorption isobars 

for CO2 and N2, Section IV describes the selectivities obtained from IAST calculations 

using pure isotherm data and Sections V, VI and VII compare the purity, the working 

capacity and the thermal regeneration energy or the adiabatic work, respectively at different 

operative conditions. 
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Nomenclature 

 

BTC  Benzene-1,3,5-tricarboxylate 

𝐶  ideal gas concentration at the feeding-gas conditions (kmol·m-3) 

𝐶e$   heat capacity of i component (kJ·kg-1· K-1) 

CCS/U  Carbon capture and sequestration/utilization 

dobpdc  4,4’-dioxidobiphenyl-3,3’-dicarboxylate 

en  ethylenediamine 

EOS  Equation of state 

FAU  Faujasite 

GC  Grand canonical 

GCMC  Grand canonical Monte Carlo 

IAST  Ideal adsorbed solution theory 

𝐿  length of packed bed (m) 

LJ  Lennard-Jones 

LSX  Low silica X  

LTA  Linde type A 

MC  Monte Carlo 

MEA  Monoethanolamine 

mmen  N,N’-dimethylethylenediamine 

MOF  Metal organic framework 

𝑁  amount adsorbed per mass of adsorbent (mol·kg-1)  

NIST  National Institute of Standards and Technology 
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𝑁q,SLG   maximum loading (saturation) of component A (kmol·m-3) 

𝑃c>c   total initial pressure (kPa) 

PSA  Pressure swing adsorption 

𝑞$   partial charge of atom	𝑖 (e-) 

𝑞oc   isosteric heat of adsorption at infinite dilution (kJ·mol-1) 

𝑅  gas constant (8.314 kPa·m3·kmol-1·K-1) 

𝑟$%   distance between a pair of atoms 𝑖 and 𝑗 (m) 

𝑆g/�  selectivity 

𝑡  time (s) 

𝑇  temperature (K) 

TSA  Temperature swing adsorption 

𝑢  superficial gas velocity (m·s-1) 

𝑈$%  potential energy between a pair of atoms 𝑖 and 𝑗 (kJ·mol-1) 

𝑈[  total potential energy of an isolated guest molecule (kJ·mol-1) 

𝑉  total volume of packed bed (m3) 

VOC  Volatile Organic Compounds 

VPSA  Volume Pressure Swing Adsorption 

VSA  Volume Swing Adsorption 

𝑊  adiabatic energy requirement for compression/vacuum (kJ) 

𝑊𝐶  working capacity of the targeted component in the mixture (mol·kg-1) 

𝑥g  mole fraction of component A in the adsorbed phase 

𝑦g  mole fraction of component A in the gas (bulk) phase 

𝑧  distance along the adsorber (m) 
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Greek symbols: 

𝜖  voidage of bed 

𝜀$%   Lennard-Jones potential well depth (kJ·mol-1) 

𝜀6  vacuum permittivity (F·m-1) 

𝜅  polytropic parameter of gases 

𝜂  feeding/vacuum blower efficiency 

f  adsorbed composition factor [adim.] 

𝜌o  framework density (kg·m-3) 

𝜎$%  Lennard-Jones potential diameter (m) 

𝜏  time necessary per saturation in a cycle [adim.] 

𝜇  chemical potential (kJ·mol-1) 

𝑣  intersticial gas velocity (m·s-1) 

Suscripts: 

ads/feed adsorption or feeding conditions 

des/regen desorption or regeneration conditions 

𝑘	 	 species in the gas mixture	(𝑘 = 𝐴, 𝐵, 𝐶, …)	

out  mixture exiting the adsorber 
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