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Abstract  

Podiform chromitites occur in mantle peridotites of the Late Triassic Puerto 

Nuevo Ophiolite, Baja California Sur State, Mexico. These are high-Cr chromitites 

[Cr# (Cr/Cr+Al atomic ratio = 0.61-0.69] that contain a range of minor- and trace-

elements and show whole-rock enrichment in IPGE (Os, Ir, Ru). These features are 

similar to those of high-Cr ophiolitic chromitites crystallised from melts similar to 

high-Mg island-arc tholeiites (IAT) and boninites in supra-subduction-zone mantle 

wedges. Crystallisation of these chromitites from S-undersaturated melts is consistent 

with the presence of abundant inclusions of platinum-group minerals (PGM) such as 

laurite (RuS2)-erlichmanite (OsS2), osmium and irarsite (IrAsS) in chromite, that yield 

TMA ≈ TRD model ages peaking at 325 Ma. Thirty-three xenocrystic zircons recovered 

from mineral concentrates of these chromitites yield ages (2263 ± 44 Ma to 278 ± 4 

Ma) and Hf-O compositions [ɛHf(t) = -18.7 to +9.1 and 
18

O values <12.4‰] that 

broadly match those of zircons reported in nearby exposed crustal blocks of 

southwestern North America. We interpret these chromitite zircons as remnants of 

partly digested continental crust or continent-derived sediments on oceanic crust 

delivered into the mantle via subduction. They were captured by the parental melts of 

the chromitites when the latter formed in a supra-subduction zone mantle wedge 

polluted with crustal material. In addition, the Puerto Nuevo chromites have 

clinopyroxene lamellae with preferred crystallographic orientation, which we interpret 

as evidence that chromitites have experienced high-temperature and ultra high-

pressure conditions (<12 GPa and 1600 °C). We propose a tectonic scenario that 

involves the formation of chromitite in the supra-subduction zone mantle wedge 

underlying the Vizcaino intra-oceanic arc ca 250 Ma ago, deep-mantle recycling, and 

subsequent diapiric exhumation in the intra-oceanic basin (the San Hipólito marginal 

sea) generated during an extensional stage of the Vizcaino intra-oceanic arc ca 221 

Ma ago. The TRD ages at 325 Ma record a partial melting event in the mantle prior to 

the construction of the Vizcaino intra-oceanic arc, which is probably related to the 

Permian continental subduction, dated at  311 Ma.  

 

Keywords: Chromitite, zircon, UHP conditions, mantle recycling, Baja California. 
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1. INTRODUCTION 

Chromitites are rocks that consist mainly of (Cr, Al)-rich spinel and can be 

counted among the most enigmatic components of the Earth’s mantle. Today, the 

application of advanced methods of mineral thermodynamics, geochemistry, isotope 

geology and geophysics, gives us a more accurate view of chromitite genesis and its 

implications for large-scale geodynamic processes. The most accepted hypothesis is 

that chromitites form as products of melt-rock reactions and subsequent mingling of 

basaltic melts in the shallower part of the upper mantle, above supra-subduction zones 

(González-Jiménez et al., 2011; Arai and Miura, 2016). However, the recent 

discovery of ultra-high pressure minerals (UHP ≥ 0.4 GPa; diamond, TiO2 II, 

stishovite pseudomorphs) coexisting with others that were formed under super-

reducing conditions (v.g., native elements, alloys, carbides, nitrides; i.e., the SuR-

UHP assemblage of Griffin et al., 2016) or in the continental crust (e.g., zircons, K-

feldspar, plagioclase, kyanite, garnet or quartz; Robinson et al., 2015) has renewed the 

controversy on the actual origin of mantle-hosted chromitites. Diamonds indicate 

depths > 120 km, whereas coesite pseudomorphs after stishovite and clinopyroxene 

exsolution lamellae in some chromite grains indicate metamorphism at depths of > 

300 km (Yang et al., 2007; Yamamoto et al., 2009; Zhang et al., 2017). Therefore, 

any petrogenetic model for mantle-derived chromitites must reconcile the presence of 

UHP minerals with abundant evidence for shallow formation. Nowadays the debate 

focuses on the (1) plume model, (2) slab contamination and (3) subduction-recycling 

model or their derivatives. 

The plume model explains the mixture of crustal minerals and the mantle SuR-

UHP assemblage as a result of the mechanical entrapment of all these minerals by 

chromite growing from Cr-rich melts during transport from the Mantle Transition 

Zone (MTZ) to the upper mantle (Ruskov et al., 2010; Xiong et al., 2015; Xu et al., 

2015; Yang et al., 2015; Wu et al., 2016). In this model, a mantle plume rises from the 

lower mantle through the MTZ or directly from the MTZ, where it collects a mixture 

of crustal materials brought there through earlier subduction and super-reducing 

minerals from the transition zone itself. These are then carried though the upper 

mantle on the upwelling plume to be incorporated in the magma system beneath a 

spreading system. However, as stressed by Rollinson (2016), this model requires the 
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“happy coincidence of mantle plume and spreading centre, which is not often 

observed” [sic]. In addition, recent experiments conducted by Zhang et al. (2017) in 

the system pyrolite+chromite at 15 GPa and 1800C have shown that Cr is 

preferentially partitioned into garnet, rather than melt. Thus, melts formed by the deep 

partial melting of pyrolite should be Cr-poor under both dry and hydrous conditions, 

and therefore neither chromite, nor its high-pressure and high-temperature 

polymorphs can be formed through direct crystallisation from melts at the top of the 

MTZ.  

The slab contamination model proposed by Zhou et al. (2014) and Robinson 

et al. (2015) requires the tearing and breakoff of a subducted slab during subduction 

initiation, which creates a slab window through which the underlying asthenosphere 

rises and melts to generate Cr-rich mafic magmas. In this model, highly reduced and 

ultra-high-pressure minerals may have been brought by the uprising asthenosphere at 

mid-ocean ridges due to mantle convection. Zhou et al. (2014) suggested that 

chromite grains could be transported by the ascending melts against gravity, attached 

to water-rich pools segregated from the decompressing basaltic melt. However, while 

some suprasubduction zone basaltic melts may be rich in volatiles, the exsolution of 

volatile-rich bubbles could only occur at very low pressures in the shallow mantle  (< 

0.5 GPa; Matveev and Ballhaus, 2002). Therefore, it is unlikely that a dense mineral 

like chromite could be carried up against gravity by basaltic melts over hundreds of 

kilometres from the slab window to the shallow mantle. Moreover, Electron 

Backscatter Diffraction (EBSD) maps of chromites with exsolved diopside needles 

from UHP Tibetan high-Cr chromitites have shown that large chromite grains with 

plastic deformation enclose relict chromite subgrains (Satsukawa et al., 2015; Xiong 

et al., 2017), suggesting the overgrowth of coarse-grained chromite on pre-existing 

chromite during high-temperature, high-pressure metamorphism. These 

microstructures of the chromite are inconsistent with the rise of single chromite 

grains, or even small volume of chromitites.  

The subduction-recycling model implies that chromitites initially crystallised 

in the upper mantle portion of oceanic or continental mantle wedges above a 

subducting slab, as products of melt-rock reaction and subsequent melt-melt mixing 

processes, were subducted to the Mantle Transition Zone where they became 
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metamorphosed at UHP conditions, and then were exhumed together with their host 

dunite/harzburgite at spreading centres as mantle diapirs (Arai, 2013; Miura et al., 

2012; McGowan et al., 2015; Arai and Miura, 2016; Griffin et al., 2016). Thus, Arai 

(2013) has suggested that two types of chromitites can coexist in the ophiolites, 

depending on whether they underwent mantle recycling or not. Concordant UHP 

chromitites with silicate lamellae and minerals of the Sur-UHP assemblage, and late 

generations of discordant low-pressure chromitites lack these minerals. In this model, 

crustal minerals (e.g., zircons) were trapped in chromite during its growth at low 

pressures in the shallow mantle whereas UHP minerals are incorporated into chromite 

during metamorphism in the MTZ (Griffin et al., 2016). However, the latter 

interpretation has been developed after the observations in the Tibetan chromitites and 

peridotites, and has not been tested yet in other scenarios.  

 

In order to contribute to the ongoing debate, we have examined chromitites of the 

Puerto Nuevo Ophiolite in the Baja California Sur state, Mexico. This is an example 

of a chromitite-bearing arc-basin ophiolite generated in the latest stage of evolution of 

an intra-oceanic arc (Kimbrough and Moore, 2003). This scenario gives us an 

opportunity to evaluate the genesis and evolution of chromitites within the framework 

of a previously unrecognised geotectonic setting: a passive continental margin that 

evolved into an arc-basin. We analysed whole-rock PGE contents and used in situ 

laser-ablation techniques to determine (1) the major-, minor, and trace-element 

composition of chromite, (2) the isotopic composition of Os in individual PGMs and 

U-Pb and Lu-Hf in zircons, and (3) micro-Raman to characterize the exsolved 

silicates in chromite. These data are integrated with recently published empirical and 

experimental data in order to better constrain the petrogenesis of the Puerto Nuevo 

chromitites in the geological context of the Cordilleran margin of Western North 

America.  

2. GEOLOGICAL BACKGROUND 

2.1. Ultramafic rocks in the Peninsula 

The Peninsula is a mountainous region located on the western side of the Baja 

California Peninsula, approximately 600 km south of the westernmost Mexico-U.S. 
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border (Fig. 1). Geologically, the Peninsula, together with the Cedros and San Benito 

islands to the north, belongs to the Cochimi tectonostratigraphic composite terrane 

(Sedlock et al., 1993). Along the southwestern edge of the Peninsula, slices of mafic-

utramafic rocks associated with volcanic and sedimentary rocks are discontinuously 

exposed in a northwest-trending belt from Punta Quebrada to Punta San Hipólito (Fig. 

1).  

The Puerto Nuevo sequence contains by far the best exposures of mafic-

ultramafic rocks on the Peninsula. It crops out in a N70W-trending belt that extends 

almost continuously for 32 km from the north of the Sierra del Placer to the Sierra 

Morro Hermoso, as well as scattered smaller outcrops north of Punta Quebrada (Fig. 

1). This sequence consists, from bottom to top, of three members separated by 

tectonic contacts: (1) ultramafic, (2) gabbroic and (3) extrusive complex (Castro-

Leyva et al., 2001). In the literature, the Puerto Nuevo sequence is referred as the 

shredded ophiolite, the Norte Terrane/ophiolite or the Puerto Nuevo 

Mélange/Ophiolite (Castro-Leyva et al., 2001 and references therein). 

Assemblages of mafic-ultramafic rocks associated with the volcanic rocks are 

also exposed further south and east of the Sierra de San Andrés, the Central part of the 

Sierra El Placer and along the south coast of the Peninsula from Punta San Pablo to 

Punta San Hipólito (Fig. 1). There, the sequence includes strongly serpentinised 

harzburgite with tectonite overlain by layered gabbros, which are topped by pillow 

basalts that include radiolarian cherts. Fossils of Halobia sp. and Monotis sp. have 

been reported in sediments intercalated with pillow basalts from Punta San Hipólito, 

Sierra de San Andrés and Punta Quebrada, which constrain the age of these extrusive 

rocks to the Carnian-Norian boundary (221 ± 9 Ma; Kimbrough and Moore, 2003). 

This sequence of rocks has been named the Coherent Ophiolite, La Costa ophiolite, 

the Sierra de Placeres Mélange and as part of the Sur Terrane/Ophiolite (Castro-

Leyva et al., 2001 and references therein). 

West of the Sierra del Placer, both the Puerto Nuevo Sequence and the La 

Costa Sequence are overthrust by the Late Triassic-Early Jurassic San Hipólito 

Formation (Castro-Leyva et al., 2001). This formation is made up of a sequence of 

volcanic and volcanoclastic rocks, with lesser amounts of fossiliferous carbonate 

rocks interpreted as the remnants of an intra-oceanic arc (Centeno-García, 2017). A 

Late Triassic paleontological age determined from radiolarians in the La Costa pillow 
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basalts and the San Hipólito Formation matches well that obtained for intruding 

plagiogranites in Puerto Nuevo; this coincidence has led to the suggestion that the two 

sequences are part of a single disrupted ophiolite complex (Kimbrough and Moore, 

2003). In this model, the Puerto Nuevo and La Costa mafic-ultramafic rocks would 

correspond to remnants of the mantle-crust transition of an oceanic marginal basin 

that developed very close to a volcanic arc represented by the San Hipólito Formation 

(Kimbrough and Moore, 2003). Kimbrough and Moore (2003) introduced the term “ 

Peninsula ophiolite” to refer collectively to both ophiolite remnants. In this second 

model, the two sequences mentioned above would correspond to ophiolites generated 

at different times and in different tectonic settings along the foreland of the 

Cordilleran margin of North America from Pre-Late Triassic to Liassic time. 

2.2. The Puerto Nuevo Sequence 

In the Peninsula, chromite deposits have only been reported from ultramafic 

rocks of the Puerto Nuevo sequence. Here we provide a brief summary of these rocks, 

based on the previous characterisations by Castro-Leyva et al. (2001), which divide 

the sequence into four main zones (Fig. 2): (1) Lower Serpentinite Breccia, (2) 

Peridotite Zone, (3) Critical Zone and (4) Gabbroic Zone.  

The Lower Serpentinite Breccia is the lowermost known part of the Puerto 

Nuevo Sequence. It crops out near the village of Puerto Nuevo and in the Sal-Si-

Puedes Canyon (Fig. 2). Following pre-existing interpretations, Castro-Leyva et al. 

(2001) have regarded this unit as a tectonic mélange, i.e., the Puerto Nuevo Mélange. 

The boundary between the serpentinite breccia and the overlying serpentinised 

harzburgite is unclear in the field. As noted above, this Lower Serpentinite Breccia 

contains isolated blocks of pyroxenite and amphibolite, identical to those reported in 

San Pablo Metamorphic Complex further south of Puerto Nuevo. 

The Peridotite Zone consists, from bottom to top, of variably (85-100%) 

serpentinised harzburgite, dunite hosting chromitite bodies, and lesser amounts of 

wehrlite and pyroxenite. Most of the sequence consists of harzburgite made up of 

olivine replaced by lizardite, and lesser amounts pyroxene transformed to bastite 

(Castro-Leyva et al., 2001). The dunites consist chiefly of olivine replaced by lizardite 

and chrysotile, with accessory chromite (< 5% modal) replaced by magnetite. At the 

localities of the Sierra del Tigre, Sierra de Puerto Nuevo and San Cristóbal chromitite 
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deposits are hosted in the uppermost part of the dunite section. These chromite 

deposits are the targets of this study and are described in more detail below. The 

wehrlites occur as irregular layers, less than 10 m thick, in the upper part of the 

dunites; they consist of olivine partly replaced by lizardite, pyroxenes and magnetite 

after chromite. In contrast, the pyroxenites are pockets and dykes of about 10 m 

dimension that are found above the wehrlites.  

The Critical Zone is a layered dunite-pyroxenite-gabbro sequence. This unit is 

observed in the Sierra del Tigre, Sal-Si-Puedes Canyon and San Cristóbal, and 

consists of up to 100 m of alternating tabular bodies and lenses of dunite, wehrlites 

(like those described above) pyroxenites and gabbros. The lower part of this zone is 

dominated by dunite containing bodies of gabbronorite, whereas upwards in the 

sequence the proportion of gabbronorite increases and it contains small bodies of 

dunite (Fig. 2). Pegmatoidal pyroxenites are increasingly more abundant from the 

middle part of this zone to the top of the sequence. 

The Gabbroic Zone overlies the gabbroic portion of the critical zone described 

earlier. It includes gabbros, pyroxene gabbro, olivine gabbronorite, gabbronorite (the 

most common rock type) and ferrograbbros on the top of the sequence (Fig. 2). 

A maximum age of Late Triassic has been determined for the mafic-ultramafic 

rocks by U-Pb dating on zircon from plagiogranites that intrude peridotites in Arroyo 

San Carlos (221 ± 2 Ma) on the southern flank of the Sierra de San Andrés antiform, 

and titanite (220 ± 2 Ma) from albitite on top of the gabbroic sequence (Fig. 2; 

Kimbrough and Moore, 2003, and references therein). 

2.3. Chromite deposits 

Ninety-seven chromite deposits have been described from the Puerto Nuevo 

Sequence (Castro-Leyva, et al., 2001; Vatin-Perignon et al., 2000; Radelli, 2008). 

Most of these deposits were mined (Appendix 1) during the 1980s and they cluster 

into three mining districts, namely El Tigre, San Agustín and San Cristóbal (Fig. 2).  

The El Tigre district is located to the north of the Arroyo del Tigre and 

comprises the north part of the Sierra del Tigre massif; it contains the largest chromite 

deposits of the region, with ca 6000 tonnes of chromite ore already mined. The El 

Tigre mining district groups a set of 18 medium-sized (up to 4 m thick and up to 40m 
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long) chromite deposits with podiform-like, rosary and irregular morphologies 

(Appendix 1). The long axes of these chromitite bodies are concordant with the 

mantle foliation of the host peridotite, striking NW80SE. The San Agustín district 

includes 6 smaller lenses and tabular bodies of chromitite (up to 2 m thick and 7m 

long; Appendix 1), also concordant with the foliation of the host peridotite, which 

strikes NW75SE but is locally distorted towards NW20SE by a regional fault. 

Additionally, abundant fragments and irregular bodies of massive chromitite are 

scattered at the top of the hills in this area (Appendix 1). The San Cristóbal district is 

located in the western part of the Arroyo de San Cristóbal and includes 77 medium- 

sized to small deposits of chromite (from a few centimetres up to 100 metres long) 

with a wide variety of morphologies that includes podiform, tabular, sill, veins and 

en-échelon (Appendix 1). These chromitite bodies are both concordant and 

subconcordant with the foliation of the host peridotite, which strikes NW70SE.  

The chromitite bodies of the three mining districts are systematically hosted 

by dunites in the uppermost part of the Peridotite Zone, near the Critical Zone. 

Chromite textures are mainly massive but some bodies show gradations of semi-

massive and disseminated-textured ores towards the host dunite (Appendix 1). 

Chromite grains are unaltered (Appendix 1) and contain inclusions (<50 μm across) 

of both anhydrous (pyroxene and olivine) and hydrous (amphibole, serpentine, 

chlorite) silicates, platinum-group minerals (PGM) and very rare base-metal sulphides 

(BMS). These microstructures and compositions of these mineral inclusions are 

described in more detail below. 

3. SAMPLES 

Twenty chromitite samples representative of ten bodies hosted in dunites from 

the Puerto Nuevo sequence at El Tigre (bodies T1, T2, T3 and T4), San Agustín 

(bodies SA1 and SA-INDEF) and San Cristóbal (bodies SC1, SC2, SC3 and SC4) 

were collected for this study. In order to study the petrography of the chromitites and 

analyse the major-, minor- and trace-element chemistry of chromite and interstitial 

silicates, we prepared and examined 67 polished thin sections, including 16 massive, 

1 semi-massive and 3 disseminated chromitites. These samples were also studied 

under the scanning electron microscope in an effort to identify homogenous zones in 

chromite, and silicate and platinum-group mineral (PGM) inclusions suitable for in 
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situ microanalysis. Whole-rock PGE analyses were performed on 19 chromitite 

samples. A complete list of the samples used in this study is provided in Appendix 2; 

analytical procedures are described in detail in Appendix 3, and the results are 

presented in Tables 1 and 2, and the electronic Digital Appendixes 4 to 10. 

4. RESULTS 

4.1. Geochemistry of chromitite 

4.1.1. Chromite chemistry 

 

Electron microprobe analyses of chromite from chromitites of the three 

mining areas studied in this paper yield Cr2O3 contents of 47.6-53.1 wt% with 

correspondingly high Cr# [(Cr/(Cr+Al) atomic ratio; 0.61-0.69] and TiO2 <0.21 wt%, 

which overlap the compositional fields for typical podiform (ophiolitic) chromitites 

(Fig. 3a-d; Appendix 4). LA-ICP-MS analyses of chromite from the three areas from 

Puerto Nuevo yielded contents of the minor- and trace-elements that are also similar 

to those of other high-Cr ophiolitic chromitites (Fig. 6a-h; Appendix 5). They are 

characterised by small amounts of Sc (<6.2 ppm), Ga (24-41 ppm), Co (179-263 

ppm), Zn (307-662 ppm), and higher levels of V (716-1304 ppm), and Mn (977-1445 

ppm).  

4.1.2. Bulk-rock contents of platinum-group elements 

 

Bulk-rock contents of PGEs are relatively high (312-980 ppb) mainly due a 

strong enrichment in IPGE (296-930 ppb) relative to PPGE (16-55) (Table 1). This 

relative abundance of IPGE over PPGE is reflected in an almost continuous strong 

negative slope from Os to Pd (Pd/Ir = 0.02-0.07) and the lack of a positive Ru 

anomaly in chondrite-normalised PGE patterns. However, the chromitite samples 

from San Agustín are characterised by relatively flat segments from Os to Ru (Fig. 

5a-f). 

4.2. Elemental and isotopic compositions of mineral inclusions in the chromitites 

4.2.1. Silicates 

 

The Puerto Nuevo chromites contain sub-micron size needles of pyroxene 

with preferred crystallographic orientation (Fig. 6a-d). The Energy-Dispersive 
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Spectroscopy (EDS) spectra obtained using Field-Emission scanning electron 

microscopy (FESEM) and EMPA analysis on four relatively large grains indicate that 

the lamellar silicates are diopside and enstatite (Appendix 6 and 7). Furthermore, the 

measured Raman spectra of pyroxene lamellae within chromite grains have peaks at 

141, 231, 325, 360, 394, 667, 856, 1013 and 1048 cm
-1 

(Fig. 6e), which are coincident 

with those described by Prencipe et al. (2012) for diopside.  

These pyroxene lamellae in chromite are accompanied by rare olivine (Mg#= 

0.91) and abundant secondary inclusion trails of amphibole (edenite and pargasite), 

chlorite (clinochlore and penninite) and/or serpentine with variable amounts of MgO 

(33.9-39.7 wt%), Al2O3 (0.4-6.5wt%) and low SiO2 (34.1-42.7 wt%) and MnO (< 

0.08 wt%) (Fig. 5f-g; Appendix 7). The hydrous silicates also constitute the interstitial 

silicate matrix. 

4.2.2. Platinum-group minerals 

 

The remarkable whole-rock enrichment in Os, Ir and Ru has its mineralogical 

expression in abundant and exceptionally large grains (> 50 µm) of the laurite -

erlichmanite (RuS2 to OsS2) solid solution series, which are accompanied by smaller 

grains (< 15 µm) of osmium and irarsite (IrAsS) (Fig.7a-h; Table 2). Most of these 

grains were found inside chromite grains, and less commonly embedded in the silicate 

matrix between chromite grains. No differences in morphology or composition were 

observed among grains located in these different microstructural domains. Most 

grains of laurite and osmium are homogeneous in composition, although a few larger 

grains exhibit zoning (Fig.7b-c).  

In situ LA-MC-ICP-MS analyses of seventy-six individual grains of PGMs 

reveal significant differences in the Os-isotope composition among grains within a 

single thin section, although it is unrelated with the microstructural location of the 

grains (i.e., inside of chromite or embedded in the silicate matrix; Appendix 8). 

The
187

Re/
188

Os ratio is very low in most grains (<0.013±0.0008; 2 uncertainty), thus 

yielding TMA ≈ TRD model ages that span between 0.16 and 1.13 Ga and cluster around 

a single age peak at 325 Ma (see cumulative age plot in Appendix 8).  

 

4.2.3. Zircons 
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Thirty-three zircon grains larger than 50 m were recovered from the Puerto 

Nuevo chromitites, including 20 from San Cristóbal, 11 from San Agustín and 2 from 

the El Tigre (Figs. 8, 9, 10; Appendix 9 and 10).  

Ten of these zircons are euhedral-elongated grains with internal CL structures 

characterised by either oscillatory or sector zoning parallel to crystal faces (Fig. 8). In 

situ analyses of these grains yielded concordant or nearly-concordant ages that range 

between 278 ± 4 and 310 ± 3 Ma (1 uncertainty) and yield a mean 
206

Pb/
238

U age of 

294 ± 2 Ma (MSWD =1.19 and probability = 0. 31; Fig. 9 and Appendix 9). Most of 

these euhedral grains are characterised by low 
18

O, within or close to the mantle 

range (<5.3‰ ± 0.6‰; Valley et al., 2005), but two grains have higher values (6.10-

7.8). The LA-MC-ICP-MS analyses yielded radiogenic Hf-isotope values 

corresponding to Hf(t) between +1.8 and +9.1 (Fig. 10a-c; Appendix 9). 

The remaining zircons (n=23) are mostly rounded grains with either complex 

internal CL structures (partly resorbed cores overgrown by rims with no visible 

arrangement), or cloudy high-luminescence patterns, although a few grains exhibit 

continuous oscillatory zoning (Fig. 9). In situ analyses on 20 of these zircons yielded 

scattered concordant, sub-concordant and discordant U-Pb ages varying from 467 ± 3 

Ma to 2263 ± 44 Ma (Fig. 9; Appendix 9 and 10), with a main cluster composed of 5 

analyses at ~ 1150 Ma (i.e., 1152 ± 13 Ma, MSWD =1.2 and probability = 0. 29; Fig. 

9 and Appendix 10).  All these zircons, irrespectively of their ages (and whether 

concordant or discordant) have 
18

O higher than the mantle range (5.9-12.4‰) and 

variable Hf-isotope ratios (Hf(t) from -18.7 to +6.9; Figs. 9 and 10a-c; Appendix 9 

and 10). Thus, two main populations can be distinguished on the basis of Hf-isotope 

compositions (Fig. 10a-c): (1) juvenile Hf(t) (+0.7 to +6.9), which includes most of 

the Proterozoic zircons (ages between 912 ± 8 Ma and 1283 ± 23 Ma) and one grain 

467 ± 3 Ma old; (2) non radiogenic Hf(t) between -0.4 and -18.7 including zircons 

with ages from 571 ± 8 Ma to 1152 ± 10 Ma. 

5. DISCUSSION 

5.1. Pyroxene lamellae as evidence of ultrahigh pressure (UHP) 

The Puerto Nuevo chromitites contain pyroxene needles with preferred 

crystallographic orientation in chromite (Fig. 6), a petrographic feature that has been 
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only observed in chromitites hosted in the mantle section of ophiolites from Tibet and 

Oman (Yamamoto et al., 2009; Miura et al., 2012; Griffin et al., 2016; Xiong et al., 

2017). Recent experiments have demonstrated that magnesiochromite can incorporate 

only <0.5 wt% CaO at 12-15 GPa and minor amounts of SiO2 <1-2 wt% at <16 GPa 

(Wu et al., 2016; Zhang et al., 2017). In contrast, the chromite polymorph with a 

calcium ferrite structure (CF-type, CaFe2O4) can accommodate high amounts of SiO2 

(3-5 wt% at 14-18 GPa in the MgCr2O4-Mg2SiO4 system and up to 11-14 wt% in 

the MgAl2O4-Mg2SiO4 system; Wu et al., 2016) and Ca (7-8 wt% at 14-18 GPa; Wu 

et al., 2016). These two polymorphs of chromite can coexist at 14-18 GPa and 1400-

1600C (Zhang et al., 2017), although their relative stability is strongly dependent on 

the composition of the starting spinel. Thus, Ishii et al. (2014, 2015) observed in their 

experiments the decomposition of magnesiochromite (MgCr2O4) to a modified 

ludwigite-type phase (mLd; Mg2Cr2O5) and eskolaite at 12-16 GPa, whereas chromite 

was observed to transform to CF-type structure at pressures > 12.5 GPa by Chen et al. 

(2003). All the aforementioned phases will finally transform into an orthorhombic 

CaTi2O4 [=CT]-type structure at 20 GPa (Chen et al., 2003; Zhang et al., 2017). 

Moreover, the experiments of Wu et al. (2016) and Zhang et al. (2017) indicate that if 

the “chromite” (re)-crystallises in the stability field of the CT-type phase, it breaks 

down to mLd+eskolaite during ascent, thus releasing SiO2 and CaO to the 

surrounding mantle and precluding the formation of pyroxene lamellae in low-

pressure chromites.  

The Puerto Nuevo chromitites, like other mantle-hosted chromites with ultra-

high pressure (UHP) minerals (e.g., coesite Arai and Miura, 2016, and references 

therein), do not preserve textures that indicate the presence of these two precursor 

phases (i.e., mLd and eskolaite), but may still contain pyroxene lamellae. These 

observations suggest that the chromitites in this study never experienced mantle 

conditions deeper than those corresponding to the stability field of the calcium-ferrite 

polymorph which, according to the experimental studies above, is stable in the P-T 

region between 12.5 and 20 GPa at >1400C. Moreover, the Puerto Nuevo chromites 

yielded micro-Raman spectra with positions at 481, 555-581-601, 655 and 697 cm
-1

, 

which overlap those of low-pressure cubic chromite and low-to-high pressure 

magnesiochromites (Fig. 6e). Therefore, we suggest that: (1) CaO and SiO2 could 

have been originally present in the high-pressure chromites (either CF-type or 
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magnesiochromite) and were later redistributed in lower-pressure cubic chromite 

during the decompression of high-pressure polymorphs, as described in natural 

samples and experiments, and (2) there could exist micro-scale intergrowths of the 

different chromite polymorphs within single chromite grains, thus evidencing a rapid 

decompression and allowing the preservation of an almost complete series of 

polymorphic changes (e.g., Satsukawa et al., 2015). However, further EDS and TEM 

studies are required to evaluate the latter possibility.  

It is noteworthy that exsolutions of coesite or other minerals of the SuR-UHP 

assemblage have not been identified in this study. Wu et al. (2016) have demonstrated 

in their experiments that SiO2 will exsolve from chromite once CaO and MgO have 

been completely consumed to form clinopyroxene and MgSiO3. Therefore, the 

absence of coesite exsolution in the Puerto Nuevo chromitites might simply reflect an 

incomplete reaction during the polymorphic change of the high-pressure 

magnesiochromite or CF-type polymorph to low-pressure chromite. It may also 

suggest that the Puerto Nuevo chromitites followed a different P-T path than the 

typical Tibetan UHP chromitites, which would be also consistent with the lack of 

other minerals of the SuR-UHP assemblage (e.g., diamonds). This latter scenario is 

similar to that reported for UHP chromitites that are concordant with mantle peridotite 

in the northern part of the Oman ophiolite and from the UHP Higashi-Akaishi 

peridotite complex in Japan, where chromite grains contain pyroxene lamellae but not 

minerals of the SuR-UHP assemblage (Arai and Miura, 2016 and references therein). 

Arai and Miura (2016) have interpreted the latter chromitites as an intermediate case 

between ordinary low-pressure chromitites and the typical Tibetan UHP chromitites, 

in which conversion to UHP could take place within the upper mantle and not at the 

P-T conditions prevailing in the Mantle Transition Zone (MTZ) or its vicinity. Thus, 

the Puerto Nuevo chromitites are more similar to those that were recycled from the 

deep upper mantle than to those in ultra-deep-seated environments (i.e., MTZ).  

5.2. Origin of hydrous-silicate inclusions in chromite 

The Puerto Nuevo chromitites are crosscut by trails of hydrous silicates, 

including amphibole, chlorite and serpentine (Fig. 6f-g), which clearly postdate the 

exsolution of the pyroxene lamellae. Experiments indicate that pargasitic amphibole is 

unstable at >3 GPa and 1150C (100 km depth; Frost, 2006), whereas the high-
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pressure serpentine polymorph antigorite is stable at >1.6 GPa but always below 

650C in the MgO–Al2O3–SiO2–H2O (MASH) system (Ulmer and Trommsdorff, 

1999). These P-T conditions suggest that hydrous silicate trails were formed after 

UHP metamorphism affected the chromitites. We suggest that different generations of 

fluid-filled fractures were formed in chromite during instantaneous tension fracturing 

that affected the chromitites, as happens in mantle peridotites, thus allowing fluid 

infiltration by crack propagation. These fractures later annealed by re-crystallisation 

of chromite at subsolidus conditions (600-950 C; Melcher et al., 1997) during their 

passage through the shallow mantle. Similar serpentine trails of “shallow mantle 

origin” have been reported in diamond-bearing chromitite pods of the Luobusa 

ophiolite (Arai and Miura, 2016). 

5.3. Low-pressure geochemical fingerprints in chromitite 

The relatively high contents of Cr2O3, the low contents of TiO2 and Fe2O3, and 

the patterns of minor- and trace elements in the Puerto Nuevo chromites are similar to 

those of high-Cr chromitite pods hosted in the mantle section of supra-subduction 

zone ophiolites (Figs. 5a-d; 6a-h; 15a-f). Remarkably, the MORB-normalised minor- 

and trace-element patterns of the Puerto Nuevo chromites are very similar to those of 

the chromites in low-pressure chromitites from the oceanic supra-subduction zone 

(SSZ) mantle (Fig. 11a-f). They exhibit slightly different distributions of minor- and 

trace-element sthan the chromites in the UHP chromitites of the Luobusa ophiolite 

(Fig. 11d). Moreover, the calculated melts in equilibrium with the Puerto Nuevo high-

Cr chromitites overlap those of boninitic-like and high-Mg IAT melts that have 

crystallised high-Cr chromitites in shallow portions of the oceanic and/or continental 

mantle of many SSZ ophiolites (Table 3; Appendix 4). Consistently, the Puerto 

Nuevo chromitites have chondrite-normalised PGE patterns, with Os, Ir, Pt and Pd 

similar to those reported in such types of chromitites (Fig. 5c, e, f) but slightly 

different to those reported for the UHP Luobusa chromitites (Fig. 5d). Arai (2013) 

also noticed differences in the PGE distribution between the Luobusa UHP 

chromitites and some discordant chromitites from Oman and other ophiolites.  

Therefore, the Puerto Nuevo chromitites have geochemical fingerprints for 

chromite and bulk-rock PGE that are compatible with those of ordinary low-pressure 

chromitites hosted in the oceanic/continental mantle section of SSZ ophiolites.   
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5.4. Platinum group minerals 

Exceptionally large (> 30 µm) grains of the laurite-erlichmanite (RuS2-OsS2) 

solid-solution series coexist with osmium alloys within chromite grains in the Puerto 

Nuevo chromitites (Fig. 7a-f). A series of experiments that involve the crystallisation 

of chromite from basaltic melts (P= 1 bar) have demonstrated that similar Ru-poor 

osmium alloys and laurite can co-precipitate in equilibrium at ~1275 °C and under 

relatively low sulphur fugacities (approximately log fS2= −2; Bockrath et al., 2004). 

These studies also show that Os solubility in laurite increases with decreasing 

temperature and/or increasing fS2. Therefore, the patterns of zoning observed in some 

laurites at Puerto Nuevo (Fig. 7b-d) indicate that either temperature and/or fS2 had to 

be variable in the melt before entrapment of laurite grains by crystallising chromite 

grains. The mixing (or mingling) of basaltic melts with contrasting physicochemical 

properties (i.e. different Si contents) would generate a heterogeneous environment 

with variable temperature and fS2 that promoted the crystallisation of zoned laurites 

(González-Jiménez et al., 2009). Melt mixing or mingling is also the most probable 

mechanism for the genesis of chromitites in the uppermost part of the mantle in SSZ 

environments (see reviews by González-Jiménez et al., 2014; Arai and Miura, 2016). 

Also, the exceptionally large size of some laurite grains suggests a very efficient 

collection of PGEs by chromite crystallising from basaltic melts (O’Driscoll and 

González-Jiménez, 2016). Alternatively, such characteristics may imply the 

entrainment of basaltic melt(s) that were particularly enriched in PGEs (Petrou and 

Economou-Eliopoulos, 2009). This is consistent with the crystallisation of the Puerto 

Nuevo chromitites from high-Mg basaltic melts of boninitic affinity in a SSZ (e.g., 

Prichard et al., 2008).  

Further, some of the biphasic grains of laurite + Os-Ir alloys are associated 

with pyroxene lamellae in chromite (Fig. 7e-f). Griffin et al. (2016) observed similar 

PGM-silicate assemblages in the UHP Luobusa chromitites. They suggested that 

PGM grains originally formed at low pressures and were nucleation points for the 

exsolution of diopside as high-pressure polymorphs (either CF-type phase or high-

pressure magnesiochromite) inverted to low-pressure cubic chromite. Following this 

model, the low-pressure magmatic PGM assemblages must have remained unscathed 

during the different polymorphic changes that affected their host chromite. 
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Considering that high-pressure magnesiochromite becomes stable at 1350°C and 

12 GPa (Zhang et al., 2017) the ‘survival’ of the laurite + Os-Ir assemblages appears 

to be inconsistent with the replacement of laurite by Ru-(Os-Ir) alloys at > 1275°C 

(Fonseca et al., 2012). The preservation of laurite and Os-Ir alloys in UHP chromitites 

from both Puerto Nuevo and Tibet may reflect the effect of high pressure in 

counterbalancing the Ru-(Os-Ir) sulphide/alloy equilibrium. It might also explain why 

PGM encased in the chromitite from both localities yield TRD ages that are consistent 

with known geological events —Puerto Nuevo PGM yielded TRD ages with a clear 

peak at 325 Ma that roughly correlates with the magmatic event at ca 300 Ma 

recorded in PGMs from ultramafic complexes in California (Pearson et al., 2007) and 

the Loma Baya chromite deposit in SW Mexico (González-Jiménez et al., 2017b). 

Similarly, laurites of the UHP Luobusa chromitites yield TRD ages similar to 

coexisting metasomatic zircons (McGowan et al., 2015). Therefore, PGMs 

encapsulated in chromite (an oxide with negligible Os contents) would keep their Re-

Os system undisturbed, even at high temperatures and pressures, unless these minerals 

reacted with an external high-temperature Os-bearing fluid or melt (González-

Jiménez et al., 2012).  

5.5. Origin and provenance of chromitite zircons  

Belousova et al. (2015) suggested that inherited zircons in chromitites and 

host peridotites of the Coolac Belt in SE Australia were physically incorporated 

during the injection of granite-related melts/fluids nearby. However, the 

plagiogranites that intrude the ultramafic rocks of the Puerto Nuevo sequence have a 

single population of zircons (U-Pb) at ~221 Ma (Kimbrough and Moore, 2003). 

Moreover, zircons of Mesozoic granitic rocks associated with the ultramafic rocks of 

the Puerto Nuevo sequence yield much younger U-Pb ages, and Hf and O isotopic 

compositions distinct from those studied in this paper (Shaw et al., 2014 and 

references therein). Thus, it is unlikely that zircons in the chromitite with ages over 

~294 Ma were physically incorporated from younger intruding rocks. 

Zircons with U-Pb ages ranging between Early Proterozoic (2263 ± 44 Ma) 

and Ordovician (467 ± 3 Ma) exhibit large variations in Hf(t) (between -18.7 and +6) 

and 
18

O values (between 5.9 and 12.4‰) that are much higher than those of the 

normal mantle (Figs. 8, 9 and 10; Appendix 9 and 10). Many of these zircons are 
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abraded or well-rounded grains that have residual cores with overgrowths (Fig. 8), 

suggesting a detrital history with several events of corrosion during transport in 

sedimentary settings and/or dissolution/(re)-crystallisation during magmatic and/or 

metamorphic events. Their ages and Hf and O isotopic compositions broadly match 

the age distribution of zircons in neighbouring continental crust in southern North 

America (Fig. 9 and references in Appendix 11). 

In contrast, the well-developed external faces of the subset of zircons that 

yield an age peak of ~294 Ma (Fig. 9) suggest that these were not subjected to such 

intensive abrasion as the xenocrystic zircons described above (e.g., Rojas-Agramonte 

et al., 2016). As there are no signs of secondary alteration or metamictisation that 

would reset the U-Pb isotopic system, the inferred crystallisation age (ca 294 Ma) is 

interpreted to be the maximum possible age of the formation of the chromitites in the 

SSZ mantle. All these zircons, except two, yielded almost identical low 
18

O and 

positive Hf(t) values, suggesting derivation from a mantle-like source. This may 

reflect an origin related to melts/fluids that contributed to the formation of either 

mafic oceanic or continental crust. A possible source for these zircons could be 

undeformed felsic to mafic igneous rocks that were dated by U-Pb zircon 

geochronology between 311 and 255 Ma, and which intrude different units of the 

Palaeozoic Oaxacan and Acatlán complexes in southwestern Mexico. For example, 

zircons from two of these magmatic units (Cuanana pluton and Honduras batholith; 

dated at 290-311 Ma) have Hf(t) values (between +3.8 and +7.6) that overlap those of 

the chromitite zircons reported here (Fig. 10 and Appendix 9; Ortega-Obregón et al., 

2014). 

Further, zircon age distributions comparable to those from the studied 

chromitites have been described in the Arteaga Complex (Fig. 9), which is interpreted 

as part of a submarine sedimentary fan (the Potosí Fan) with sedimentary sources in 

the former Oaxaquia subcontinental block and their Carboniferous-Permian 

continental arc-related igneous rocks (Centeno-García, 2017 and references therein). 

Rocks of the Arteaga Complex underwent subduction beneath a west-facing intra-

oceanic arc that extended along western Mexico since the Early Triassic (~ 250 Ma; 

Centeno-García, 2017). Therefore, zircons in the Puerto Nuevo chromitites could 

represent remnants of partly digested continental crust or continent-derived sediments 
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in oceanic crust delivered into the mantle via subduction of the Potosí Fan (e.g., 

Rojas-Agramonte et al., 2016).  

5.6. Chromitite formation in a mantle wedge polluted with crustal material  

Yamamoto et al. (2013) explained the presence of crustal zircons in the UHP 

Luobusa chromitites as the result of the initial formation of chromitites at low 

pressures in a supra-subduction zone mantle peridotite wedge “polluted” with crustal 

material. Crustal contamination of the mantle wedges above supra-subduction zones 

can be produced by (1) oceanic crust and sediments dragged down by the subducting 

slab (Rojas-Agramonte et al., 2016), (2) subduction erosion of the fore-arc regions 

(Scholl and von Huene, 2009), or (3) delamination of dense, thickened lower crust 

beneath a volcanic arc (Zandt et al., 2004). Although at this stage of research the latter 

two options cannot be ruled out, the occurrence of inherited zircons in the Puerto 

Nuevo chromitites, with provenances from varied crustal blocks and complex detrital 

history, suggests that these were part of sediments that were incorporated into the 

upper mantle via subduction.  

Subducted slabs can transport significant volumes of sediments to depths 

greater than 50 km (Scholl and von Huene, 2007) and these, in turn, may be 

transferred to the mantle wedge by (1) fluids/melts channelised in melt conduits or 

fractures (González-Jiménez et al., 2017a), and/or (2) detachment and buoyancy-

driven diapiric upflow of plumes of slab-derived sediments (Gerya and Yuen, 2003).  

The first mechanism links the transfer of slab-derived zircons to the 

introduction of silica- and alkali-rich fluids/melts due to the dehydration/anatexis of 

subducted sediments through fractures in mantle peridotites. This may result in a suite 

of metasomatic veins and dykes of pyroxenite and amphibole-rich rocks (Berly et al., 

2006; Marocchi et al., 2010; Grant et al., 2016) that may also incorporate relict 

zircons (Gebauer, 1996; Zanetti et al., 2016; González-Jiménez et al., 2017a).  

 The second mechanism is based on petrological-thermomechanical 

subduction models that predict the formation of large ascending diapirs (“cold 

plumes”; Gerya and Yuen, 2003) in the mantle wedge as a result of Raleigh-Taylor 

instabilities caused by hydration and melting in the upper surface of subducting slabs. 

Cold plumes can be present in all types of subduction zones and consist of partly 

molten crustal (including sediments, continental crust and basalts) and mantle rocks 
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mixed on length scales from a few tens of metres to hundreds of kilometres (e.g., 

Castro et al., 2010; Blanco-Quintero et al., 2011; Castro, 2014). Laboratory 

experiments indicate that cold plumes initially develop as ascending plumes that may 

become stationary and underplated on a time scale of several million years (e.g., 

Sizova et al., 2009). At the interface of the cold plume with the surrounding mantle, 

reaction with peridotites results in hybrid pyroxene- and/or amphibole-rich rock 

shields that prevent further reaction, making it possible for the plumes to survive in 

the mantle for a long time (e.g., Castro et al., 2010). Sizova et al. (2009) and Castro et 

al. (2010) have demonstrated that temperatures in ascending and stationary plumes 

usually do not exceed 900C, which is close to the blocking temperature of zircon (> 

900 C; Cherniak and Watson, 2000). Therefore, these relatively cool plumes offer a 

mechanism by which zircon xenocrysts with a wide spectrum of ages and Hf- and O- 

isotope compositions can be transferred from the slab to the mantle wedge. 

The geochemical composition of the Puerto Nuevo chromitites indicates that 

they precipitated from melts akin to high-Mg IAT and boninites (Table 3 and 

Appendix 11). Pulses of SiO2-undersaturated high-Mg IAT melts that migrate through 

the mantle may promote consumption of pyroxenes from peridotites, thus generating 

dunite sheaths and a secondary melt with a local boninitic affinity, according to the 

following reaction: SiO2-poor melt + pyroxenes + hydrous phases  olivine + SiO2-

rich melt (Arai and Miura, 2016). A continuous supply of batches of primitive SiO2-

undersaturated melt may produce a self-sustaining system with mixing of melts with 

variable degrees of fractionation enabling the precipitation of chromite within the 

dunite channels (González-Jiménez et al., 2011, 2014).   

Considering the two scenarios proposed above for the transfer of crustal 

material from the slab to the mantle wedge, the more SiO2-rich component in the 

parental melts of the chromitite could also be (1) the more silica- and alkali-rich 

melt/fluid migrating through melt conduits, or (2) pre-existing pyroxenites (or their 

derived partial melts) that precipitated from hybrid mafic melts with a significant 

contribution of crustal sediments (e.g., Marchesi et al., 2012). The mixing of these 

two components at a new transition of the melt composition (i.e., from SiO2-

undersaturated to SiO2-richer) may have significantly lowered the solubility of Cr in 

the primitive high-Mg IAT, thus triggering the precipitation of chromite (Bédard and 

Hérbert, 1998). The segregation of pyroxene (or pyroxenites) would then follow, as 
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observed in many low-pressure chromitites elsewhere (e.g., Zanetti et al., 2016). At 

Puerto Nuevo, these pyroxene components are apparently absent, thus suggesting that 

pyroxenes would have dissolved into chromite (or into its HP polymorphs) during 

high-pressure metamorphism, and later reappeared as pyroxene lamellae exsolved 

from low-pressure chromite when decompressed en route to the surface (Arai, 2013). 

In the proposed model, chromitite crystallising from the hybrid melts that 

were generated by melt-melt or melt-rock interaction/assimilation would inherit the 

old zircons from (1) acid/hybrid melts channelised through melt conduits or fractures, 

or (2) more likely from partial melting/assimilation of pre-existing zircon-bearing 

pyroxenites (or their derived partial melts), either veining the mantle or forming the 

external shield of cold plumes. González-Jiménez et al. (2017a) have recently noted 

that chromitites that crystallised within melt conduits in the SCLM of the Ronda 

massif contain “crustal” zircons transported by melts with a secondary boninitic 

affinity. The latter melts were also generated as a result of (1) hybridisation of 

primitive SiO2-undersaturated basaltic melts with fluids/melts derived from the 

dehydration/anatexis of subducted metasediments, and (2) partial melting of pre-

existing zircon-bearing pyroxenites corresponding to UHP recycled crustal material in 

the mantle.  

5.7. Tectonic scenario for the deep mantle recycling of the chromitite  

The structure of the present margin of western North America in Mexico is the 

result of the accretion of several convergent-basin complexes between the Late 

Palaeozoic and the Mesozoic (e.g., Busby, 2004). During the Late Carboniferous-

Early Permian the northwestern boundary of Gondwana in northwestern Mexico 

developed as a passive and/or trailing margin (Centeno-García, 2017 and references 

therein). This continental crust of Proterozoic (mainly Grenville) age was intruded by 

a series of Late Palaeozoic to Triassic age (311-232 Ma) granitoids, which are 

interpreted as part of a continental magmatic arc that extended from the southwestern 

USA, through Mexico and Guatemala into the Northern Andes in Colombia (Fig; 12a-

c). The upper volcanic-sedimentary levels of this continental arc were not preserved 

in Mexico, but the belt of granitoids crosscuts and links the Pennsylvanian-Early 

Permian units of the North American craton (Chihuahua and Sonora) with the 

Coahuila, Maya, Chortis and Sierra Madre terranes. The onset of this magmatism in 
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the western margin of Gondwana was roughly coeval with the mid-Permian cessation 

of Gondwana-North America convergence that led to the formation of Pangea along 

the Ouachita-Marathon suture at ca 290 Ma (Centeno-García, 2017). It also marks a 

change in the tectonics of Mexico from being dominated by circum-Atlantic collision 

to the accretionary tectonics of circum-Pacific terranes. Therefore, it records the 

subduction of oceanic lithosphere of one or more plates of the Paleo-Pacific basin that 

initially lay beneath western margin of Gondwana, and later, beneath western Pangea 

(Ortega-Obregón et al., 2014, and references therein). Apparently, this subduction and 

the associated magmatic ceased drastically ca 270 Ma ago at the geographic location 

of the  peninsula (Solari et al., 2001) whereas the former Pacific margin of Oaxaquia 

evolved into a passive margin. Then, a large submarine fan developed along the 

western margin of Oaxaquia between the Middle and Late Triassic time (i.e., the 

Potosí Fan; Centeno-García et al., 2017). Regional stratigraphic relationships suggest 

that the distal facies of the Potosí Fan was deposited in a marginal ocean basin known 

as the Arteaga basin. Rocks of the Arteaga Complex underwent subduction along 

western margin of Mexico from Early Triassic to Middle Jurassic (Kimbrough and 

Moore, 2003; Busby, 2004; Centeno-García, 2017). According to Centeno-García 

(2017), the subduction zone that consumed the oceanic crust of the Arteaga Basin and 

its sedimentary cover (the Potosí Fan) dipped under the  intra-oceanic arc to the west. 

This model is supported by the occurrence of volcanic rocks with island-arc affinity 

(IAT, andesitic and MORB) in the San Hipólito Formation and blocks of basalts with 

similar arc affinity within the Las Ollas Complex in the Guerrero Composite Terrane 

in SW Mexico (Kimbrough and Moore, 2003; Busby, 2004; Talavera-Mendoza, 2005; 

Centeno-García et al., 2017). 

Figure 12 shows a possible scenario for the formation and evolution of the 

Puerto Nuevo chromitites within the evolution of the paleo-margin of western North 

America. During the Early Triassic the northwestern boundary of Pangea developed 

as a passive margin once the Late Permian to Early Triassic continental arc 

magmatism waned (Fig. 12a-b). The erosion of the Precambrian to Palaeozoic rocks 

produced large volumes of sediments that were later deposited on the western edge of 

the platform and in the submarine Potosí Fan in the Paleo-Pacific Arteaga oceanic 

basin (Fig. 12a-b). Sediments that included the crustally-derived zircons of the 

oceanic basin were dragged into the mantle by subduction, thus contaminating the 

supra-subduction mantle wedge —either transferred to the mantle wedge by 
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fluid/melts channelised through fractures and/or by means of diapiric upflow. The 

dehydration of the subducted slab released large volume of fluids that promoted 

hydrous partial melting of mantle-wedge peridotite, thus generating primitive basaltic 

melts. Once these ascending melts crossed the overlying mantle wedge polluted with 

crustal material or the hybrid products of crustal contamination (e.g., pyroxenites), 

they became more enriched in silica and consequently generated hybrid mafic melts 

with the ability to crystallize chromitites (Fig. 12b). Such processes roughly coincide 

with the start of subduction at ca 250 Ma and thus the subduction zone began to be 

fed with sediments. In this scenario, some continental zircons already present in the 

supra-subduction mantle wedge were incorporated into chromitite as a result of melt-

melt and melt-rock interaction. Zircon could have been already present in the hybrid 

rocks formed shortly before chromitites, or could have been rapidly captured by early 

minerals that formed from the same parental melts as chromitites (e.g., chromite, 

olivine, pyroxene), thus preventing their dissolution in mafic melts (Jiang et al., 

2012). 

Meanwhile, PGM originally formed as liquidus phases from the same parental 

melt were mechanically trapped during the precipitation of chromite, thus inheriting 

the Os isotope values of older melting events in the mantle. The Os-isotope model 

ages of 1.13 Ga overlap the period of construction of the Oaxaquian continental crust 

during the Grenvillian orogeny. In contrast, the model age peak at ~ 325 Ma reflects 

melt depletion in the mantle associated with the formation of the continental 

magmatic arc in the western Mexico ca 311-232 Ma ago. The input of mantle melts 

during the construction of the Carboniferous-Permian continental crust is recorded in 

the positive Hf(t) and low 
18

O values of the Late Carboniferous to Early Permian 

granite-derived zircons (Ortega-Obregón et al., 2014) and their equivalent populations 

of idiomorphic zircons in the Puerto Nuevo chromitites (Figs. 8, 9 and 10; Appendix 

9).These observations suggest that Proterozoic SCLM underlying the continental crust 

of Oaxaquia was unroofed and altered during the Mesozoic, thus contributing to the 

generation of new oceanic lithosphere. The latter would have been the basement for 

the development of the Arteaga basin and the Vizcaíno intra-oceanic arc.  

During the Late Triassic (Ladinian-Carnian) the large-scale downward flow of 

the mantle convection drove chromitites (and possibly host peridotites) down into the 

deeper mantle. Numerical simulations ((McGowan et al., 2015; Griffin et al., 2016) 
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and empirical observations (Xiong et al., 2017) have demonstrated that a significant 

volume of SSZ mantle peridotites can be carried downward along with the slab in this 

way. During progressive UHP metamorphism of the low-pressure chromitites, silicate 

inclusions in chromite (e.g., pyroxenes) that were formed at low pressures were 

subsequently dissolved in the UHP chromite polymorph(s) while PGMs and zircon 

remained unscathed. After a period of extension that ended at about the Carnian-

Norian boundary, the intra-arc marginal basin of San Hipólito was developed (Fig 

18c-d; Kimbrough and Moore, 2003; Busby, 2004). This extension was possibly 

driven by downward penetration of the slab into the mantle and its rollback, which led 

to the formation of a low-viscosity upwelling channel (Griffin et al., 2016 and 

references therein) that allowed the exhumation of deep-seated recycled chromitites 

(Fig. 12c). During this uplift, the high-pressure polymorph(s) of chromite reverted 

back to the low-pressure cubic phase while pyroxene lamellae were exsolved from the 

chromite. The recycled chromitites that contained the record of UHP metamorphism 

reappeared beneath the spreading centre as part of a mantle diapir. During their 

exhumation through the shallow mantle, the recycled chromitites were veined by 

melts/fluids that generated late trails of hydrous silicates, which postdate the 

exsolution of pyroxenes in chromite. Finally, the peridotites that formed such mantle 

diapirs constituted the basis of the new oceanic lithosphere that includes the future 

Puerto Nuevo ophiolite (Fig. 12c-d). The crustal section of this ophiolite was 

developed during the formation of the San Hipólito marginal basin. It consists of 

gabbros and pillow lavas with fossiliferous sediments of the San San Hipólito 

Formation, dated at 221 ± 9 Ma, that overlie the chromitie-bearing peridotite, and the 

contemporaneous intrusion of dykes of plagiogranites (Figs. 2 and 12c).  

6. CONCLUSIONS 

The Puerto Nuevo podiform chromitites preserve evidence for both low- and high-

pressure assemblages, in this order of formation. Evidence for a shallow origin 

includes: 

(1) the geochemical composition (major-, minor- and trace elements) in 

chromite and bulk-rock PGEs, which are similar to ordinary low-

pressure chromitites that crystallised from arc-type basaltic melts that 

overlap IAT and boninites, and are found in both the oceanic and 
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continental mantle sections of ophiolites in supra-subduction zones 

(SSZ), 

(2)  PGM assemblages dominated by inclusions of laurite-erlichmanite, 

Os-Ir alloys and sulpharsenides, which are typically formed from S-

undersaturated basaltic melts generated in the SSZ mantle,  

(3) the Re-Os signatures of the PGM that, despite the UHP conditions 

experienced by the host chromites, remain undisturbed and yield Os-

model ages that are consistent with known geological events,  

(4) xenocrystic zircons of crustal origin derived from nearby crustal 

terranes. 

Evidence for the deep recycling in the mantle of the Puerto Nuevo includes the 

presence of (1) oriented pyroxene lamellae encapsulated in chromite, and (2) chromite 

micro-Raman spectra that overlap those of magnesiochromite synthesised in high-

pressure and high-temperature experiments. The lack of coesite and other minerals of 

the SuR-UHP assemblage (e.g., diamonds) in the Puerto Nuevo chromitites parallels 

those in the northern part of the Oman ophiolite and the UHP Higashi-Akaishi 

peridotite complex in Japan, which these experienced UHP conditions while in the 

upper mantle (not in the Mantle Transition Zone, as in the UHP Tibetan chromitites). 

Further, magmatic (amphibole) and low-temperature (chlorite and serpentine) hydrous 

silicates in the Puerto Nuevo chromitite postdate the polymorphic changes in chromite 

and the subsequent formation of pyroxene lamellae. 

The above observations rule out previous interpretations of the Puerto Nuevo 

chromitites as layers of cumulate chromite associated with a mafic-ultramafic body 

that intruded the continental crust (Vatin-Perignon et al., 2000; Radelli, 2008). 

Instead, the Puerto Nuevo chromitites were formed in the SSZ mantle wedge beneath 

an intra-oceanic arc, which underwent deep recycling in the mantle, and finally was 

exhumed in an intra-arc spreading centre.  
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FIGURE CAPTIONS  

Figure 1. Regional geological sketch map of the Peninsula based on Castro-Leyva et 

al. (2001) and Kimbrough and Moore (2003), showing the studied area. 

Figure 2.  Geological map of the studied area in the northern part of the Peninsula 

showing the location of the chromite deposits studied in this study and the 

pseudostratigraphy of the Puerto Nuevo Sequence. The map and the 

stratigraphic column are based on Castro-Leyva et al. (2001). 

Figure 3. Chemistry of primary chromites from Puerto Nuevo chromitites as 

compared to chromian spinel from various tectonic settings in terms of (a) 

Al2O3 vs Cr2O3, (b) TiO2 vs Cr2O3. (c) Cr# [Cr/(Cr+Al) atomic ratio] vs 

Mg# [Mg/(Mg+Fe) atomic ratio] and (d) Al-Cr-Fe
3+

 compositions. Data 

sources for chromian spinel of different tectonic settings are Bonavia et al. 

(1993), Kamenetsky et al. (2001) and Proenza et al. (2007). Legend is inset 

in the figure. 

Figure 4. Compositional variation in terms of Cr# vs Ti, Ni, V, Co, Zn, Mn, Sc and 

Ga in chromites from the Puerto Nuevo chromitites. Data sources are listed 

in Appendix 11. 

 

Figure 5. C1-chondrite (Naldrett and Duke 1980) normalised patterns of the Puerto 

Nuevo chromitites and comparison with chromitites from different crustal 

settings and hosted in the mantle section of ophiolites: (a) chromitites in 

Ural-Alaskan-type complexes (Garuti et al.,2005) of the Urals and the 

Bushveld (UG2) Layered Complex (Naldrett et al. 2011), (b) banded 

chromitites hosted in the oceanic mantle of suprasubduction ophiolites 

(Pedersen et al., 1993; Economou-Eliopoulos, 2010), (c) and (d) podiform-

type chromitites of low-pressure (LP) and high-pressure (HP) origin hosted 

in the oceanic or continental mantle of suprasubduction zone ophiolites 

(Economou, 1993; Melcher et al., 1997; Arai, 2013, and references therein), 

(e) and (f) podiform-type chromitites hosted in the subcontinental 
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lithospheric mantle (SCLM) of suprasubduction zone and continental 

margin ophiolites (Grieco et al., 2006; Zaccarini et al., 2004, and references 

therein). Legend is inset in the figure. 

 

Figure 6. Raman spectra of chromite and diopside lamellae inclusions in the Puerto 

Nuevo chromitites. Spectra of chromite and magnesiochromite from natural 

examples and experimental works are shown by comparison. The spectrum 

for high-pressure chromite polymorph (Chr-12 GPa, 1600C) is from 

Zhang et al. (2017). 

 

Figure 7. Backscattered electron (BSE) images of representative platinum-group 

mineral assemblages in the Puerto Nuevo chromitites: (a to d) euhedral 

laurite grains hosted in unaltered chromite, (e and f) composite assemblages 

including osmium in unaltered chromite, (g and h) euhedral grains of 

osmium released to the interstitial silicate matrix.  

 

Figure 8. Cathodoluminescence (CL) images of representative zircon grains from the 

Puerto Nuevo chromitites.  

 

Figure 9. Probability density plot showing comparison of U/Pb zircon ages of zircon 

grains recovered from the Puerto Nuevo chromitites compared with zircons 

ages from magmatic, metamorphic and sedimentary rocks from Mexican 

terranes (note that zircons with ages older than the Carboniferous-Permian 

continental magmatic arc intruding these crustal terranes were not 

included). Data sources are listed in Appendix 11. 

 

Figure 10. Hf and O isotopic composition of zircons recovered from the Puerto 

Nuevo chromitites: (a and b) 
18

O and Hf(t) vs age, (c) 
18

O vs Hf(t). 

Legend is inset in the figure. 

 

Figure 11. Spider diagrams showing the composition of minor and trace elements of 

chromites from chromitites of the three mining districts at Puerto Nuevo (a-

c) and comparison with other representative low- and high-pressure 

chromitites from fore-arc and back-arc regions of supra-subduction zone 

ophiolites (d-f). Data sources for low-pressure chromitites are Thetford 

Mines (Pagé and Barnes, 2009) and Sagua de Tánamo (González-Jiménez 

et al., 2015), and for high-pressure chromitite are Luobusa (Zhou et al., 

2014). Data sources for high-Cr chromitites from the supra-subduction zone 

mantle-hosted podiform chromitite array, komatiites and layered 

continental intrusions are the same of Figure 4. 

 

Figure 12. An illustration of the evolution of the northwestern Mexico showing the 

formation, deep recycling and final exhumation of the Puerto Nuevo 

chromitites (after Centeno-García, 2017). (a and b) The northwestern part 

of Pangea was a passive margin where exhumed crustal terranes were 

eroded and produced large volumes of sediments that were deposited at the 

edge of the continental block and by the Potosí submarine fan in the 

Arteaga oceanic basin. The beginning of the subduction of the Arteaga 

oceanic lithosphere beneath the Paleo-Pacific oceanic plate led to the 

formation of the intra-oceanic arc; former sediments of the oceanic basin 
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were already and being subducted and the mantle wedge was 

metasomatised by crustal derived fluids/materials; chromitites were formed 

in this polluted mantle, thus inheriting old recycled crustal zircons. (c and 

d) Low-P igneous chromitites were converted to UHP chromitites via 

dragging by subducting slab/mantle convection during the Ladinian-

Carnian, whereas a period of extension that ended in the Carnian-Norian 

was associated with slab-roll back and generated a low-viscosity upwelling 

channel that exhumed deep-seated chromitites in the San Hipólito intra-arc 

marginal basin.  

TABLES 

Table 1. Platinum-group elements of chromitite samples from Puerto Nuevo (in ppb). 

Table 2. Representative analyses of platinum-group from the Puerto Nuevo 

chromitites. 

Table 3. Melts in equilibrium with the Puerto Nuevo chromitites. 
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Table 1. Platinum-group elements of chromitite samples from Puerto Nuevo (in ppb). 

 

 Os Ir Ru Rh Pt Pd 

SA1-100D 108 102 154 16 21 5 

SA1-100F 113 102 135 12 9 4 

SC1-101C 285 245 133 11 27 10 

SC1-101C A 345 233 137 10 25 10 

SC1-102B 245 189 111 8 30 9 

SC1-102C 278 204 119 9 26 9 

SC1-103B 324 200 136 10 12 4 

SC2-100A 319 204 125 11 12 4 

SC3-101A 127 115 185 8 7 3 

SC4-100A 100 90 106 9 5 2 

SC4-101D 122 126 122 11 130 3 

T1-100B 204 155 129 16 23 6 

T1-101C 177 126 103 13 15 5 

T2-100B 450 263 217 18 27 5 

T2-100D 433 285 172 18 10 3 

T3-100A 235 197 214 15 12 3 

T3-100B 176 150 161 17 33 5 

T4-100E 332 208 184 13 18 6 

T4-100G 190 129 168 14 16 21 
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Table 2. . Representative analyses of platinum-group from the Puerto Nuevo chromitites. 
Sample/Grai

n 

Mineral Os Ir Ru Pt Pd  R

h  

Fe  Cr  Ni  C

u  

C

o  

S As  Tot

al 

Os 

apfu 

Ir 

apfu 

Ru 

apfu 

Pt 

apfu 

Rh 

apfu 

Fe 

apfu 

Ni 

apfu 

S 

apf

u 

As 

apfu 

T2-100B-1-

PTO1-6 

Laurite 14.

18 

6.7

2 

41.

85 

0.

00 

1.

52 

0.

60 

0.

43 

0.

92 

0.

23 

0.

00 

0.

00 

34.

27 

0.0

0 

100.

72 

0.14 0.07 0.77 0.00 0.01 0.01 0.01 1.99 0.00 

T2-100B-1-

PTO1-7 

Laurite 10.

53 

3.5

7 

48.

68 

0.

00 

1.

75 

0.

57 

0.

27 

0.

15 

0.

15 

0.

02 

0.

00 

35.

29 

0.0

0 

100.

98 

0.10 0.03 0.87 0.00 0.01 0.01 0.00 1.98 0.00 

T2-100B-D-

pto3-2 

Laurite 12.

41 

6.7

9 

43.

86 

0.

00 

0.

00 

1.

08 

0.

11 

0.

22 

0.

05 

0.

10 

0.

00 

34.

89 

0.0

0 

99.5

2 

0.12 0.06 0.80 0.00 0.02 0.00 0.00 2.00 0.00 

T2-100B-D-

pto3-3 

Laurite 12.

50 

6.7

3 

44.

00 

0.

00 

0.

00 

1.

10 

0.

13 

0.

32 

0.

05 

0.

08 

0.

01 

34.

92 

0.0

0 

99.8

4 

0.12 0.06 0.80 0.00 0.02 0.00 0.00 1.99 0.00 

T2-100B-D-

pto3-4 

Laurite 12.

42 

6.6

9 

43.

98 

0.

00 

0.

00 

1.

10 

0.

15 

0.

39 

0.

04 

0.

08 

0.

00 

34.

92 

0.0

0 

99.7

7 

0.12 0.06 0.80 0.00 0.02 0.00 0.00 1.99 0.00 

T2-100B-D-

pto3-5 

Laurite 12.

43 

6.8

1 

44.

00 

0.

02 

0.

00 

1.

13 

0.

11 

0.

18 

0.

05 

0.

08 

0.

01 

34.

91 

0.0

0 

99.7

3 

0.12 0.06 0.80 0.00 0.02 0.00 0.00 1.99 0.00 

SC2-100A-F-

pto2-2 

Laurite 12.

94 

6.7

2 

43.

36 

0.

00 

0.

00 

0.

62 

0.

49 

1.

18 

0.

06 

0.

08 

0.

02 

34.

42 

0.0

0 

99.8

7 

0.13 0.06 0.79 0.00 0.01 0.02 0.00 1.99 0.00 

SC2-100A-F-

pto2-3 

Laurite 12.

78 

6.7

6 

43.

29 

0.

00 

0.

00 

0.

70 

0.

54 

1.

21 

0.

05 

0.

08 

0.

00 

33.

99 

0.0

0 

99.4

0 

0.13 0.07 0.80 0.00 0.01 0.02 0.00 1.98 0.00 

T2-100B-5-

PTO6-1 

Os-

Laurite 

23.

91 

4.0

5 

37.

06 

0.

00 

1.

35 

0.

49 

0.

30 

0.

90 

0.

09 

0.

00 

0.

00 

32.

57 

0.2

2 

100.

94 

0.24 0.04 0.71 0.00 0.01 0.01 0.00 1.97 0.01 

T2-100B-5-

PTO6-2 

Os-

Laurite 

28.

15 

3.8

0 

32.

91 

0.

00 

1.

24 

0.

38 

0.

31 

0.

87 

0.

09 

0.

02 

0.

00 

31.

23 

0.1

8 

99.1

8 

0.30 0.04 0.66 0.00 0.01 0.01 0.00 1.97 0.00 

T2-100D-F-

PTO1-2 

Erlichm

anite 

56.

06 

12.

77 

0.1

4 

0.

00 

0.

04 

4.

16 

0.

39 

0.

90 

0.

10 

0.

17 

0.

01 

25.

05 

0.0

0 

99.7

9 

0.74 0.17 0.00 0.00 0.10 0.02 0.00 1.96 0.00 

T2-100B-6-

PTO6-1 

Osmium 60.

06 

32.

16 

4.7

3 

0.

48 

0.

15 

0.

24 

0.

69 

2.

25 

0.

03 

0.

01 

0.

00 

0.0

0 

0.0

0 

100.

80 

0.60 0.32 0.09 1.00 0.00 0.00 0.00 0.00 0.00 

T2-100B-5-

PTO5-1 

Irarsite 1.9

2 

59.

00 

0.0

0 

0.

00 

0.

09 

0.

58 

0.

65 

1.

66 

0.

10 

0.

03 

0.

00 

12.

17 

22.

23 

98.4

3 

0.03 0.92 0.00 0.00 0.02 0.00 0.00 1.14 0.89 
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Table 3. Calculation of Al2O3 and TiO2 contents and FeO/MgO ratios (wt.%) of the 

melts in equilibrium with chromite from Puerto Nuevo and other mantled-derived 

"podiform" high-Cr chromitites. The values for boninites, MORB, komatiites and 

layered intrusions are also presented for comparison. Ti values in the melt have been 

computed using the values obtained from the EMPA analysis. Details of 

computations are given in the Appendix 3. References: (a) Pagé and Barnes (2009); 

(b) Zhou et al. (2014); (c) González-Jiménez et al. (2011); (d) Proenza et al. (1999); 

(e) Rollinson (2008); (f) Melcher et al. (1997); (g) Ghosh et al. (2009); (h) Uysal et 

al. (2009); (i) Akmaz et al. (2014); (j) Uysal et al. (2016); (k) Akbulut et al. (2016); 

(l) Acvi et al. (2017); (m) Augé (1987); (n) Hicky and Frey (1982); (o) Wilson 

(1989); (p) Jayananda et al. (2008); (q) Fan and Kerrich (1997); (r) Mondal et al. 

(2006 and references therein). 

 

  Al2O3 liquid TiO2 liquid FeO/MgO liquid 

  (wt.%) (wt.%) (wt.%) 

Fore arc podiform chromitites 

Thetford Mines, Canada 
(a)

 9.3-13.0 0.12-0.3  

Lobousa, Tibet 
(b)

 13.8 0.31 0.97 

Back arc podiform chromitites 

Sagua de Tánamo, Cuba 
(c, d)

 12.91-14.15 0.22-0.39 0.9-1.5 

Arc-related podiform chromitites 

Omán 
(e)

 11.8-12.9 0.23-0.34  

Suprasubduction zone podiform chromitites 

Mayarí-Cristal Massif, Cuba 
(d)

 11.9  0.74 

Kempirsai, Kazakhstan 
(f)

 9-10.6  0.3-0.5 

Rutland Island, Andaman 
(g)

 10.0-11.0  0.67-1.78 

Muğla, Turkey 
(h)

 8.8-10.5   0.3-1.1 

Afşin, Turkey 
(i)

 10.2-11.9 0.17-0.39  

Antalya-Isparta ophiolite, Turkey 
(j)

 

9.3-13.2 0.17-0.30 0.66-1.61 

Lycian and Antalya, Turkey 
(k)

 8.8-14.5 0.10-0.44  

Pozanti-Karsanti, Turkey 
(l)

 10.7-13.7 0.19-0.44  

High-Mg IAT 
(m)

 11.4–16.4  0·62±0·02 

Boninitite 
(n)

 10.6-14.4 0.1-0.5 0.7-1.4 

MORB 
(o)

 15-16 1.2-1.6  

Komatiitic basalts 

Western Dharwar Craton, India 
(p)

 7.9-8.91 0.66 0.40-0.46 

Abitibi greenstone belt, Canada 
(q)

 8.58-9.38 0.74-0.85   0.53-0.57 

Archean Layered Intrusion 

Stillwater, USA 
(r)

 12.3-12.6 1.48-1.58  

Layered Intrusion 

Bushveld, South African 
(r)

 11.5 0.74  

Great Dyke, Zimbabwe 
(r)

 11.1 0.61  
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Highliths 

 

Chromitites occur in ultramafic rocks of the Puerto Nuevo Ophiolite in the Mexican 

Baja California. 

 

They are uncommon example of chromitites with low- and high-pressure assemblages 

 

The chromitite contain crustal zircons, PGMS and pyroxene lamellae in chromite. 

 

Formation and deep mantle recycling of chromitite is related to the evolution of intra-

oceanic arc. 
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