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1. Introduction 17 

GPS geodesy is a useful and efficient tool for identifying tectonically active faults or 18 

regions and for quantifying their deformation in terms of slip and strain rates. Several 19 

studies based on permanent and non-permanent GPS networks (e.g. Alfaro et al., 2006; 20 

Echeverria et al., 2013; Gárate et al., 2014; Gil et al., 2002) and high-precision levelling 21 

profiles have been carried out in SE Spain (e.g. Galindo-Zaldívar et al., 2013; Giménez 22 

et al., 2000; Marín-Lechado et al., 2005) revealing an on-going tectonic activity of this 23 

part of the Iberian Peninsula. However, in many cases the presented results were 24 

inconclusive, since at slow deformation rates (<2 mm/yr), a long period of observation 25 

is required to obtain statistically significant results.  26 

In this paper, we focus on studying the present-day geodetic slip rate of the Carboneras 27 

fault zone (CFZ), which belongs to the NE-SW trending Eastern Betic Shear Zone 28 

(EBSZ) located in the SE Spain (Figure 1a). The EBSZ is composed, from north to 29 

south, by the Bajo Segura, Carrascoy, Alhama de Murcia, Palomares and Carboneras 30 

faults, has been subject to a NNW-SSE oriented shortening with an associated ENE-31 

WSW extension since Miocene time (Alfaro et al., 2008; Galindo-Zaldívar et al., 1999). 32 

The compression has resulted in the activation of the several brittle fault zones 33 

(Bousquet, 1979) and folding (Galindo-Zaldívar et al., 2003, Figure 1b). The extension 34 

is expressed through a number of NW-SE and WNW-ESE oriented normal faults (see 35 

for example, AdF and BF faults in Figure 1b), especially in the central Betics (Galindo-36 

Zaldívar et al., 2003) and west of the EBSZ, reaching the Guadix-Baza basin (Alfaro et 37 

al., 2008). At the scale of the Iberian Peninsula, the EBSZ absorbs part of the 38 

convergence between the Eurasian and Nubian plates (Masana et al., 2004), which is of 39 

the order of 4 to 6 mm/yr in the NW direction (e.g. Argus et al., 2011; McClusky et al., 40 

2003; Moreno, 2011; Serpelloni et al., 2007) (Figure 1b). As of CFZ, the previously 41 
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estimated geologic slip rates for this fault range between 0.05-2 mm/yr, depending on 42 

the data used and the covered time-period (Bell et al., 1997; Hall, 1983; Montenat et al., 43 

1990; Moreno, 2011). 44 

The main objective of this paper is to present the contemporary crustal deformation 45 

velocity field of the CFZ, with the aim of obtaining slip rates and comparing them to the 46 

mid-and-long-term geologic slip rates. The installation of the GATA continuous GPS 47 

station has enabled us to obtain continuous observations from both sides of the fault and 48 

consequently, to quantify its slip rate. Apart from our preliminary results (Khazaradze et 49 

al., 2010; 2014), no quantitative estimates of the present-day geodetic slip rates of the 50 

CFZ have been published previously. 51 

2. Active faults and seismicity in the SE Betics 52 

The south-eastern Betic Cordillera has gone through historical damaging earthquakes 53 

and shallow instrumental seismicity (Figure 2) with low to moderate magnitude (e.g. 54 

Buforn et al., 1995; Stich et al., 2003a). This seismicity is an evidence for the presence 55 

of on-going tectonic activity and active faults. The study area has a variety of faults with 56 

recent activity (Figure 1), where two types of faults dominate: i) major strike-slip fault 57 

zones like the right-lateral Alpujarras (AFZ) (Sanz de Galdeano et al., 1985) and the 58 

left-lateral Carboneras (CFZ) fault zones (e.g. Bousquet, 1979; Keller et al., 1995) and 59 

ii) normal faults of variable scale, oriented NNW-SSE to NW-SE, such as the Adra 60 

(Gràcia et al., 2012), the Balanegra (e.g. Galindo-Zaldívar et al., 2003), and the Loma 61 

del Viento (Pedrera et al., 2012b) faults. 62 

The CFZ is one of the longest continuous structures of the EBSZ. The 50-km long 63 

emerged portion of the CFZ is cut to the north by the Palomares fault (Gràcia et al., 64 

2006) and continues offshore into the Alboran Sea for 100 km (Figure 1) (Moreno, 65 
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2011). The CFZ is a major crustal-scale fault and according to some authors can reach 66 

down to the Moho (e.g. Pedrera et al., 2010). Soto et al. (2008) suggest that the CFZ 67 

reaches a domain with partial melting in the deepest crust. At surface, the fault has a 68 

clear morphologic expression, changing its width along the fault trace from a single 69 

narrow trace to a 2 km-wide fault zone (Moreno et al., 2008). Another major strike-slip 70 

fault has been defined northwest of the CFZ, namely the Alpujarras fault zone (AFZ), 71 

composed by a number of E-W oriented right lateral strike-slip faults located within a 72 

wide corridor and forming a transfer fault zone, active since the Miocene (Martínez-73 

Díaz and Hernández-Enrile, 2004; Martínez-Martínez et al., 2006; Sanz de Galdeano et 74 

al., 2010). These major strike-slip faults separate domains affected by different 75 

structural evolution: the CFZ separates the thinned crust with Neogene volcanics of the 76 

Cabo de Gata in the eastern part (Figure 1) from Neogene tilted block domains, 77 

consisting of sediments and metamorphic basement of the Internal Betics, in the western 78 

block (e.g. Martínez-Díaz and Hernández-Enrile, 2004; Pedrera et al., 2006; Rutter et 79 

al., 2012). The AFZ on the other hand, separates the tilted block domain to the south 80 

from the Sierra Nevada elongated core-complex to the north (Martínez-Martínez et al., 81 

2006). 82 

The WNW-ESE to NW-SE Quaternary normal faults are encountered across the central 83 

and eastern Betics (Galindo-Zaldívar et al., 2003; Marín-Lechado et al., 2005; Pedrera 84 

et al., 2006). In addition to WNW-ESE normal faults, Gràcia et al. (2006) described N-S 85 

oriented offshore normal faults on the northern block of CFZ. Many of these normal 86 

faults are found in the area bounded by the dextral AFZ and the sinistral CFZ (Figure 87 

2). For this reason, several authors (e.g. Giaconia et al., 2014; Martínez-Díaz and 88 

Hernández-Enrile, 2004; Martínez-Martínez et al., 2006; Sanz de Galdeano et al., 2010) 89 

have suggested that the CFZ and the AFZ strike-slip faults act in conjunction with the 90 
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normal faults. The CFZ and/or the AFZ have been interpreted as deeper transfer faults 91 

accommodating heterogeneous extension due to the shallower normal faults (Giaconia 92 

et al., 2014; Martínez-Martínez et al., 2006). Martínez-Díaz and Hernández-Enrile 93 

(2004) proposed a kinematic model, where a tectonic block bounded by both strike-slip 94 

faults escapes to the west, thus relating local extensional structures to the compressive 95 

tectonics.  96 

The historical seismicity record of the EBSZ shows the presence of damaging 97 

earthquakes with MSK intensities of VIII-IX. Some of the notable examples include 98 

destructive earthquakes that affected the city of Almeria in 1522 (I=VIII-IX), 1658 (I= 99 

VIII) and 1804 (I=VIII). The shallow (< 50 km depth) instrumental seismicity, covering 100 

a time period from 1926 to 2013, is characterized by low magnitude earthquakes, with 101 

no event larger than Mw5.0 (IGN catalogue, www.ign.es) (Figure 2). These earthquakes 102 

are usually related to minor faults (e.g. Martínez-Díaz and Hernández-Enrile, 2004) 103 

located within the crustal blocks bounded by the major strike-slip faults (Figure 2). 104 

Rodríguez-Escudero et al. (2013) interpret the events with Mw<5 as part of the 105 

background seismicity, which can occur at any point within the crustal blocks bounded 106 

by the large E-W to NE-SW strike-slip faults. Precisely along these major faults (i.e. 107 

CFZ or AFZ) is where earthquakes of Mw>5.5 are expected by these authors.  The 108 

instrumental and historical seismicity related to the CFZ is scarce, apart from the 1522 109 

Almería (MSK I=VIII-IX) earthquake that has been tentatively assigned to the 110 

Carboneras fault offshore section (Reicherter and Hübscher, 2007; Moreno, 2011). 111 

Recent paleoseismological studies (Gràcia et al., 2006; Moreno, 2011) provided 112 

evidence for the seismogenic nature of the CFZ based on the occurrence of surface 113 

rupturing earthquakes during late Pleistocene and Holocene. 114 
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To facilitate the interpretation of the seismo-tectonic activity in the SE Betics, a 115 

database of earthquake moment tensors based on available literature and public 116 

catalogues was compiled (see Figure 2 and Table A1). The master catalogue used was 117 

the IAG Regional Moment Tensor catalogue (Stich et al., 2003a, 2006, 2010), since it 118 

was specifically created to perform time-domain moment tensor inversion of small to 119 

moderate events (mb >3.5) in the Ibero-Maghreb region. In the cases where only the 120 

fault plane solutions were available, we used the MoPaD software (Krieger and 121 

Heimann, 2012) to obtain the moment tensor. The final catalogue has 37 focal 122 

mechanisms, from 1910 to 2013, with magnitudes ranging from Mw3.3 to 6.1. The 1910 123 

Adra Mw6.1 earthquake (Stich et al., 2003b), the largest event in the catalogue, accounts 124 

for 90% of the total seismic moment release in the area. A majority of the focal 125 

mechanisms indicate normal or strike-slip kinematics (or a combination of both). The 126 

orientation of P and T axes, obtained with ObsPy software (Beyreuther et al., 2010) is 127 

similar for all the events (Figure 2). The average P axis is oriented N338º (NNW-SSE), 128 

roughly parallel to the plate convergence vector (Figure 1), while the T axis has an 129 

average orientation of ENE-WSW (N68º), compatible with the NW-SE striking normal 130 

faults. 131 

3. GPS data and analysis 132 

The geodetic study was carried out with continuous GPS stations (CGPS), including the 133 

new stations GATA (University of Barcelona), and two Topo-Iberia network stations: 134 

NEVA (installed in October 2008) and PALM (installed in June 2008) and survey mode 135 

GPS stations (SGPS) located in the study area belonging to the CuaTeNeo network. The 136 

CuaTeNeo geodetic network was built in 1996 and has been observed 5 times: 1997, 137 

2002, 2006, 2009 and 2011 (Echeverria et al., 2013). The GATA continuous GPS 138 

station was installed in December 2008 as part of the EVENT Project with the specific 139 
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objective of quantifying the present-day slip-rates of the CFZ (Khazaradze et al., 2010). 140 

The station was installed 2 km SW from the village of Rodalquilar in the Sierra de Cabo 141 

de Gata, ~200m from CuaTeNeo campaign monument RELL. The GATA 142 

monumentation consists of the short drill brace type monument designed by UNAVCO 143 

(Figure 3), with 4 solid stainless steel rods, anchored at least half a meter into the 144 

bedrock (Miocene volcanic rocks). This type of monumentation ensures a good long-145 

term stability of the station. The monument is equipped with the SCIGN type antenna 146 

adapter and a dome. The hardware includes the Leica GRX1200+GNSS receiver and 147 

the AT504GG choke-ring antenna, powered by an 80-watt solar panel. Since 2011, the 148 

station has experienced hardware problems, related to the malfunction of the solar 149 

power system and GPRS modem (see gaps in the time series in Figure 3).  150 

In total, we processed 4.5 yr data from 75 continuously recording GPS (CGPS) stations 151 

located both in the eastern Betics and throughout Eurasia and Africa. GPS data were 152 

processed using GAMIT/GLOBK software 10.4 (Herring et al., 2010). The data 153 

analysis methodology is described in detail in Echeverria et al. (2013) and Asensio et al. 154 

(2012). The time-span of the analysed data was nearly uniform, from 2008.8 to 2013.3, 155 

which equals to 4.5 yr of observations. According to Blewitt and Lavallé (2002) this 156 

time-span is sufficient to appropriately model the annual oscillations in the resulting 157 

time-series and achieve an optimal resolution in the velocity estimates. The formal 158 

errors were obtained firstly by removing the annual signal and secondly by applying the 159 

Real Sigma (RS) algorithm implemented in the GLOBK module (Herring, 2003). As a 160 

result, to obtain the final velocity solution and the error estimate, the estimated random 161 

walk through the RS algorithm was included for each component of the individual 162 

station (Reilinger et al., 2006; Shen et al., 2011). In order to validate the formal errors 163 

we compared the resulting uncertainties with the uncertainties calculated using the 164 
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CATS software (Williams, 2008), where we estimate velocity uncertainties from the 165 

time-series using a model of an annual term, white noise and flicker noise. The mean 166 

difference between both models is 0.04 mm/yr for CGPS stations components for which 167 

the CATS analysis produced a valid estimate of uncertainty. 168 

 The obtained ITRF2008 velocity field was rotated to western Europe reference frame 169 

as defined by Echeverria et al. (2013). The rotation was performed using the Velrot 170 

program included in GAMIT/GLOBK package (see stations in common used for the 171 

rotation in Table A2). The Velrot was also used to combine the SGPS station velocities 172 

of Echeverria et al. (2013) with the CGPS velocity field. The resulting average root 173 

mean square of the combination is 0.28 mm/yr, indicating a good adjustment. 174 

4. Results 175 

The present-day horizontal velocity field in the region of the Carboneras fault is shown 176 

in Figure 4 with numerical results provided in Table A2. The estimated velocities range 177 

between 1.1 and 3.1 mm/yr. As expected, the stations located closer to the 178 

Nubia/Eurasia plate boundary, along the coast, move faster than the stations located 179 

farther inland (CUCO, CAAL and NEVA). As mentioned earlier, the overall 180 

convergence rate between the Nubia/Eurasia plates is 4 to 6 mm/yr, which means that a 181 

significant portion of this overall budget is being accommodated within the study area. 182 

The most important feature of the obtained velocity field is a significant change in the 183 

orientation of the calculated velocities from east to west (Figure 4). In the western 184 

Europe reference frame, the easternmost stations move at rates of 1.3-2.0 mm/yr in the 185 

direction of the Nubia (i.e. Africa)-Eurasia convergence. Stations located to the west, 186 

starting from HUEB SGPS station, show a more westerly-south-westerly motion, 187 

exhibiting a counter-clockwise rotation. The westernmost PALM and MOTR CGPS 188 
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stations show the highest velocities (2.8±0.1 and 3.1±0.1 mm/yr, respectively) with SW 189 

direction (Figure 4 and Table A2). In respect to the CFZ, the stations of the eastern 190 

block of CFZ move at 1.6-1.8 mm/yr with an azimuth of 325º (with respect to the 191 

western Europe reference frame), while the western block stations move at a rate of 1.5-192 

1.9 mm/yr in an average direction of 280º. To assess the present-day slip-rates related to 193 

the CFZ we have constructed a CFZ trace perpendicular velocity profile (azimuth 194 

N138ºE) shown in Figures 4 and 5. Although there are only a few stations at each side 195 

of the fault, the differential motion between each group is evident and can be estimated. 196 

To derive the geodetically estimated slip rate we assume that the differential motion 197 

between the two groups of stations, located on each side of the CFZ, is related solely to 198 

the CFZ. By projecting the velocities to the profile parallel and perpendicular direction, 199 

we attempt to estimate the compressive or extensive (ΔVc) and strike-slip (ΔVss) fault 200 

slip-rate components, respectively. Despite the presence of NW-SE normal faults and E-201 

W to ENE-WSW folds (Pedrera et al., 2012a), to calculate the fault slip rate we assume 202 

that each block is rigid, without any internal deformation. This assumption is supported 203 

by the fact that the velocities of various stations located at each side of the fault are 204 

almost identical. Only the strike-slip component shows a significant differential motion 205 

across the CFZ (Figure 5). Taking into account the velocity errors, we obtain a 206 

minimum and maximum values for ΔVss of 1.1 to 1.5 mm/yr, which are equivalent to an 207 

average present-day strike-slip rate of 1.3±0.2 mm/yr. The fault-normal (i.e. profile 208 

parallel) component (ΔVc) across the CFZ is statistically insignificant.  209 

5. Discussion  210 

In this work, for the first time, we were able to quantify the present-day horizontal 211 

crustal deformation rates across the CFZ, using continuous and campaign GPS 212 

observations conducted during the last decade. Almost identical velocity vectors 213 



10 
 

observed at two closely located stations, GATA (CGPS, 4.5 yr processed) and RELL 214 

(SGPS, 15 yr processed, Figure A3), evidence the high accuracy of the presented 215 

results. This good agreement between the two independent observations also reaffirms 216 

the usefulness of the campaign-style GPS observations, even when the deformations are 217 

slow, like in eastern Betics. 218 

The obtained horizontal velocity field for the SE Betics confirms the continuing tectonic 219 

activity of the on-shore segment of the CFZ. We find that the left-lateral motion 220 

dominates the kinematics of the CFZ at rate of 1.3±0.2 mm/yr along N48º direction. 221 

The shortening component is significantly lower and poorly constrained. Thus, the GPS 222 

measurements suggest a dominance of the strike-slip motion in the transpressional 223 

kinematics of the CFZ, coherent with the positive flower structure observed in La 224 

Serrata (e.g. Moreno, 2011; Reicherter and Reiss, 2001). The GPS derived geodetic 225 

fault slip rates presented here can be considered as maximum values, since we assumed 226 

that all the observed differential motion is solely due to the CFZ and distributed 227 

deformation along secondary faults was not considered. We have also assumed that the 228 

entire on-shore CFZ moves with the same slip rate and ignored the possibility of along-229 

strike variations. With a denser GPS coverage, it would have been possible to provide 230 

an estimate of this variability and to confirm whether or not the easternmost segment 231 

with almost no differential motion between CUCO-MOJA and CARB is inactive. 232 

The most recent study, integrating both onshore and offshore paleoseismic and 233 

geomorphologic results, using the youngest faulted features, suggest the lower bound  234 

for the Quaternary strike-slip rate of 1.1 mm/yr (Moreno, 2011). This result is in good 235 

agreement with the geodetic slip rates presented in this work, suggesting that most of 236 

the deformation registered by GPS can be attributed solely to the activity of the CFZ. 237 

Combining the geologic (minimum values) and geodetic (maximum values) slip rates, 238 
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we can conclude that the long-term strike-slip rate of the CFZ must be enclosed between 239 

the minimum geologic slip rate of 1.1 mm/yr and the maximum geodetic slip rate of 1.5 240 

mm/yr.  241 

We calculated the strain rate field (Figure 6) by the inversion of the GPS data using 242 

SSPX software (Cardozo and Allmendinger, 2009) for the 6 GPS stations located at 243 

both sides of the CFZ. Horizontal principal strain rate axes obtained at the centre of 244 

these 6 stations show a predominance of a compressive strain rate: 𝜀#̇$%= -26.2±8 245 

nstrain/yr oriented N354º. The extensional component is lower: 𝜀#̇&'= 18.1±7 nstrain/yr 246 

with an azimuth of N84º. The orientation of the geodetic compressive and extensive 247 

strain rate axes is in agreement with the N338º and N68º orientation of the mean P-T 248 

axes obtained from the earthquake focal mechanisms (Figure 2). The resulting left-249 

lateral shear plane of the maximum shear strain rate (𝜀(̇)*#&') has an orientation of 250 

N39º, sub-parallel to the CFZ trace (N48º). Unfortunately, due to the sparse spatial 251 

distribution of GPS stations, we cannot discern with certainty whether the accumulated 252 

strain is released aseismically (e.g. creep) or the fault is locked and is being loaded for 253 

the occurrence of the earthquake. However, taking into account the paleoseismological 254 

results that point to repetitive large paleoearthquakes along the CFZ (e.g. Gràcia et al., 255 

2006; Moreno, 2011), a locked fault scenario seems more plausible. In contrast, 256 

Faulkner et al. (2003) suggested a mixed mode fault slip behaviour (when fault creep is 257 

interspersed with seismic locking) for the CFZ, drawing an analogy with the Parkfield 258 

section of the San Andreas fault. The clarification of the seismic or aseismic behaviour 259 

of the CFZ is crucial for seismic hazard calculations in this region and thus, the future 260 

studies should include the densification of the measurements. 261 

The north-eastern termination of the CFZ continues into the Palomares fault (PF), a 262 

sinistral strike-slip fault oriented N-S (Figures 1 and 6). Given the current distribution 263 
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of the GPS points, especially the absence of points on the eastern side of the PF, we are 264 

unable to quantify the current activity of this fault. However, it should be mentioned 265 

that some authors do attribute a tectonic activity to the PF, but the suggested slip-rates 266 

are of the order of sub-millimetre per year (e.g. Booth-Rea et al., 2004; García-267 

Mayordomo and Jiménez-Díaz, 2010) and are not detectable using the GPS technology. 268 

The kinematics of the CFZ is better observed by fixing the GATA station (Figure 6). 269 

This way, the resulting GPS velocities show a clearly opposite sense of kinematics 270 

across the Alpujarras and the Carboneras fault zones. The former shows right-lateral 271 

motion (CAAL-CUCO stations move to the south while HUEB moves to the south-272 

west), while the latter shows left-lateral motion (compare GATA-RELL to HUEB-273 

ALMR-ALME stations). With the current spatial GPS distribution along the AFZ it is 274 

impossible to characterize possible along-strike velocity variations. In the proposed 275 

simplified kinematic model (Figure 7), we treat AFZ as a continuous fault, although we 276 

are conscious that this corridor is composed by several E-W oriented individual fault 277 

segments. This simplification also ignores the fact that some of these segments seem to 278 

be inactive (e.g. Pedrera et al., 2012a). Martínez-Díaz and Hernández-Enrile (2004) 279 

proposed that this type of movement of the AFZ and CFZ induces a westward tectonic 280 

escape of the wedge bounded by these two strike-slip faults (Figure 7). According to 281 

them, deformation gradient in the escaping block favours the formation or reactivation 282 

of NNW-SSW normal faults perpendicular to the east-west extensional motion of the 283 

block. Our GPS results clearly show an increase in the observed velocity magnitudes of 284 

the escaping block for the westerly group (PALM and MOTR) with respect to the 285 

easterly stations (HUEB, ALME and ALMR) (Figures 4 and 6). This observation is in 286 

agreement with the escaping block model proposed by the authors. Although the 287 

absence of data in-between the two groups, prevents the clarification of the exact nature 288 
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of strain repartitioning. However, the picture is more complex. East-to-west increase in 289 

the southward motion of the stations located north of the AFZ in GATA fixed reference 290 

frame (compare NEVA with CAAL or CUCO in Figure 6) and an apparent counter-291 

clockwise rotation of the stations belonging to the escaping block (compare the stations 292 

GATA, HUEB, ALME, PALM and MOTR in Figures 4 and 6) cannot be satisfactorily 293 

explained solely by the convergence of the Nubia plate, resulting in a block escape. 294 

Simple push cannot cause the above-mentioned rotation and acceleration in the GPS 295 

velocities. For this reason, we hypothesize that an additional pulling force must exist in 296 

order to satisfactorily explain the observed crustal deformation pattern. Considering the 297 

proximity of the oceanic slab in depth (Figure 1a), which is located further west and 298 

possibly attached to the continental crust in central Betics and eastern Rif (e.g. Bonnin 299 

et al., 2014), sub-lithospheric processes such as a rollback of the subducting slab, can 300 

hypothetically be responsible for such a pull. An observed change in the motion of the 301 

GPS velocities, starting from the location of station HUEB (2.5°W, Figures 4 and 6), 302 

coincides approximately with the area where a significant east-to-west increase of the 303 

lithospheric thickness is deduced from seismic studies (Levander et al., 2014). On a 304 

more regional scale, Pérouse et al. (2010), combined GPS data with numerical 305 

modelling, and suggested a combined effect of plate convergence, low rigidity of the 306 

Alboran Sea region and a S-SW directed traction related to sub-lithospheric processes, 307 

as an explanation for the regional geodynamics. In this simplified kinematic model 308 

(Figure 7), we propose that the Carboneras fault zone acts as a boundary between the 309 

eastern block that moves parallel to the plate convergence vector and the western block 310 

that moves westward due to the block escape and deeper sub-lithospheric processes. For 311 

this reason, an area affected by deeper sub-lithospheric processes (shaded region in 312 

Figure 7) does not extend south of the CFZ. This assumption can be supported by the 313 
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description of the CFZ as a major crustal-scale fault that reaches the Moho (e.g. Pedrera 314 

et al., 2010).   315 

6. Conclusions 316 

The analysis of GPS data in the SE Betics confirm and quantify the on-going tectonic 317 

activity of the onshore segment of the CFZ as a left-lateral strike-slip fault. For the first 318 

time, we were able to provide a quantitative measure of the present-day horizontal 319 

geodetic slip-rate of the CFZ, suggesting a maximum left-lateral motion of 1.3±0.2 320 

mm/yr. The coincidence of geologic and geodetic strike-slip rates along the CFZ, 321 

illustrates how during Quaternary its northern segment has been tectonically active and 322 

has been slipping at a rate of 1.1 to 1.5 mm/yr. Further investigations should concentrate 323 

in determining the nature of the strain accumulation along the CFZ (e.g. creep vs. 324 

locking), since this question is crucial for a better estimation of the seismic hazard in the 325 

area.   326 

The presented GPS measurements also corroborate that the eastern Alpujarras fault zone 327 

(AFZ) is active and exhibits a right-lateral motion. These opposite type strike-slip 328 

motion across the AFZ and CFZ is a result of a push-type force due to Nubia and 329 

Eurasia plate convergence, that results in the westward escape of the block bounded by 330 

these two faults. In addition, due to the observed gradually increasing westerly motion 331 

and counter-clockwise rotation of the GPS stations located west of longitude 2.5°W, we 332 

propose the existence of additional pull-type forces related to deep sub-lithospheric 333 

processes. The implications of the presented results and the simplified kinematic model 334 

in terms of the regional geodynamics will require further investigations, that should 335 

employ the densification of the GPS observations, combination of various geophysical 336 

and geological data, as well, as numerical modelling.  337 
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Figure 1. Simplified neotectonic map of the Betic-Rif arc. A) Regional setting. Arcuate 574 

shaped shaded region in Figure 1b indicates an approximate location of the high-575 

velocity seismic anomaly at 135 km depth, according to the seismic tomography model 576 

(Bonnin et al., 2014). B) Study area. Quaternary active faults are from Gràcia et al. 577 

(2012) and QAFI database (García-Mayordomo et al., 2012), fold traces from Pedrera et 578 

al., (2012a). A thick arrow indicates a convergence between Nubia and Eurasia plates. 579 

Abbreviations: EBSZ: Eastern Betic Shear Zone; BSF: Bajo-Segura fault; CaF: 580 

Carrascoy fault, AMF: Alhama de Murcia fault; PF: Palomares fault;CFZ: Carboneras 581 

fault zone; BF: AFZ: Alpujarras fault zone; Balanegra fault; AF: Adra fault; LVF: 582 

Loma del Viento fault. 583 

 584 

 585 

 586 

Figure 2. Seismotectonic map of the study area showing the seismicity from IGN 587 

catalogue (1926-2013) with depths ranging from 0 to 50 km (www.ign.es). Historical 588 

seismicity (white triangles) are from IGN catalogue and are labelled by the year of 589 

occurrence. P and T axes of the focal mechanisms (Table A1) are shown as grey and 590 

white dots, respectively. Stereographic projection of the P and T axes orientations for 591 

the displayed focal mechanisms are included in the upper left corner of the figure. 592 

 593 
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 594 

Figure 3. SDBM type monument and time-series of GATA CGPS station, installed in 595 

December of 2008. North-south (top) and east-west (bottom) components with 1σ errors 596 

are given in global ITRF2008 reference frame. 597 

 598 

 599 

Figure 4. GPS velocities with 95% confidence error ellipses in western Europe 600 

reference frame. Plate convergence velocity from NNR-MORVEL56 model (Argus et 601 

al., 2011). CGPS and SGPS stations shown in black and dark grey, respectively. 602 

Stations included in A-A’ profile (Figure 5) are marked by an asterisk. 603 

 604 
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 605 

Figure 5. A-A’ profile perpendicular GPS velocities with 1σ error bars. Location of the 606 

profile is shown in Fig. 4. Topography is represented with an irregular line on the 607 

bottom. ΔVss is the fault parallel strike-slip differential motion (velocity offset) between 608 

the two blocks. The intersection of the CFZ trace with the profile is shown as short 609 

dashed vertical line on the topographic profile. 610 

 611 

 612 

Figure 6. Map of the GPS horizontal velocities in GATA-fixed reference frame. 613 

Calculated strain rates determined at the centre of the 6 stations (marked by an asterisk) 614 

are shown as a white cross.  615 

 616 

 617 
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 618 

Figure 7. Simplified sketch of a proposed kinematic model. GPS velocities are given 619 

with respect to the GATA station. Block escape due to combined movement of CFZ and 620 

AFZ is shown in light gray. Striped area, extending to the east up to a longitude 2.5ºW 621 

and limited by the CFZ to the southeast, delimits an area possibly affected by deeper 622 

sub-lithospheric processes. 623 

 624 

TABLES 625 

Table A1. Compilation of focal mechanisms in the study area. 626 
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 651 

 652 

Table A2. Horizontal GPS velocities and 1σ uncertainties of the stations included in the study 653 
area are given in bold followed by the global stations used for defining a western Europe 654 
reference frame as used by Echeverria et al. (2013). Ve, Vn and HorV, Az are E-W, N-S and 655 
horizontal components of the GPS velocity vectors. Rho is the correlation between Ve and Vn 656 
and 1sig are the 1σ uncertainties. Stations shown in bold letters refer to the GPS sites presented 657 
in Figures 4 and 6. 658 

CODE Lat. Long. Ve 1sig Vn 1sig Rho HorV 1sig Az 
 (ºN) (ºE) (mm/yr)  (mm/yr) (ºN) 
ALME -2.459 36.852 -1.5 0.1 0.0 0.1 0.000 1.50 0.14 269 
ALMR -2.441 36.863 -1.8 0.1 0.5 0.2 0.001 1.88 0.14 284 
CAAL -2.548 37.221 -1.1 0.2 0.2 0.3 0.000 1.14 0.17 281 
CARB -1.885 37.012 -0.8 0.2 1.4 0.2 0.003 1.57 0.22 329 
CUCO -2.093 37.184 -0.8 0.2 1.0 0.2 0.005 1.33 0.23 321 
GATA -2.061 36.835 -1.0 0.2 1.5 0.2 0.003 1.76 0.15 326 
HUEB -2.231 36.999 -1.8 0.3 0.6 0.3 0.008 1.93 0.25 288 
MOJA -1.856 37.134 -1.3 0.3 1.6 0.3 0.015 2.06 0.27 321 
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MOTR -3.521 36.755 -2.9 0.1 -1.2 0.2 0.002 3.13 0.14 247 
NEVA -3.386 37.063 -1.6 0.2 -0.4 0.2 -0.001 1.62 0.16 254 
PALM -3.562 36.809 -2.5 0.1 -1.1 0.1 0.000 2.75 0.13 247 
RELL -2.059 36.836 -1.0 0.2 1.3 0.2 0.003 1.66 0.19 323 
ALAC -0.481 38.339 -0.4 0.2 0.3 0.1 0.009 0.50 0.14 312 
CAGL 8.973 39.136 -0.5 0.1 0.5 0.1 -0.009 0.72 0.13 314 
CASC -9.418 38.693 -0.7 0.1 0.2 0.1 0.001 0.74 0.13 288 
EBRE 0.492 40.821 -0.2 0.1 -0.1 0.2 0.000 0.24 0.14 242 
GRAS 6.921 43.755 -0.2 0.1 0.0 0.1 0.005 0.16 0.13 259 
GRAZ 15.493 47.067 0.3 0.2 0.5 0.2 0.020 0.61 0.19 32 
HERS 0.336 50.867 -0.2 0.2 -0.2 0.2 0.006 0.28 0.19 215 
LAGO -8.668 37.099 -1.3 0.2 0.9 0.2 0.011 1.55 0.16 306 
LPAL -17.894 28.764 -3.6 0.2 0.4 0.2 0.071 3.57 0.16 276 
MAS1 -15.633 27.764 -3.5 0.2 1.4 0.2 0.048 3.75 0.17 292 
MATE 16.704 40.649 0.4 0.2 4.5 0.2 -0.013 4.54 0.16 5 
MEDI 11.647 44.52 1.2 0.3 2.5 0.3 -0.001 2.75 0.26 26 
ONSA 11.925 57.395 -0.6 0.2 -0.7 0.2 0.041 0.87 0.15 219 
PDEL -25.663 37.748 -3.2 0.2 0.4 0.2 0.020 3.20 0.20 276 
POTS 13.066 52.379 -0.2 0.2 -1.1 0.2 0.074 1.07 0.17 192 
RABT -6.854 33.998 -3.7 0.1 1.7 0.1 0.005 4.02 0.14 294 
SFER -6.206 36.464 -3.3 0.1 0.6 0.1 0.001 3.32 0.12 281 
TETN -5.363 35.562 -4.9 0.2 0.6 0.2 0.011 4.94 0.16 277 
TLSE 1.481 43.561 0.1 0.2 0.4 0.2 0.004 0.39 0.17 10 
TORI 7.661 45.063 -0.7 0.5 -0.1 0.2 0.008 0.72 0.47 261 
VILL -3.952 40.444 -0.4 0.2 -0.4 0.2 0.000 0.62 0.16 224 
WTZR 12.879 49.144 0.2 0.2 0.2 0.2 0.024 0.28 0.21 38 
YEBE -3.089 40.525 -0.5 0.1 -0.3 0.1 -0.001 0.59 0.13 238 
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