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Abstract  

The control of ligand-gated receptors with light using photochromic compounds has evolved from 

the first handcrafted examples to truly engineered receptors whose development is supported on 

rational design, high-resolution protein structures, comparative pharmacology and molecular 

biology manipulations. Photoswitchable regulators have been designed and characterized for a 

large number of ligand-gated receptors in the mammalian nervous system, including nicotinic 

acetylcholine, glutamate and gamma amino butyric acid receptors. They conform a well-equipped 

toolbox to investigate synaptic and neuronal circuits in all-optical experiments. This focused 

review discusses the design and obtained properties of these photoswitches, their applications and 

shortcomings, and future perspectives of the field. 

 

 Abbreviations: AMPAR – α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;  

AP2 – azobenzene-propofol; ATA – azobenzene-tetrazolyl-AMPA;  azo-CarCh - N-p-

phenylazophenyl-N-phenylcarbamylcholine; azo-PTA – p-phenyl-azophenyl-

trimethylammonium chloride; GABAR – gamma-aminobutyric acid receptor; GluAzo – 

glutamate-azobenzene;  IR -  infrared; LiGABAR – light-activated gamma-aminobutyric acid 

receptor; LiGluR – light-activated ionotropic glutamate receptor; MAG – maleimide-azobenzene-

glutamate; MAB – maleimide-azobenzene-4-hydroxybenzylamine; MAM – maleimide-

azobenzene-muscimol; nAChR - nicotinic acetylcholine receptor; NMDAR – N-methyl-D-

aspartate receptor;  PCL - photochromic ligand;  PTL- photochromic tethered ligands;  TCPs  - 

targeted covalent photoswitches; UV – ultraviolet. 

 

 

Introduction 

Starting with Antoni van Leeuwenhoek and following highly important contributions of 

Camillo Golgi and Santiago Ramón y Cajal, optical methods are embedded at the heart of scientific 

research and are widely used in elucidating the morphology and functioning of different cell types, 

as well as determining principles of the organization of biological organisms. Rapid progress of 

molecular biology, fluorescent microscopy in combination with the use of genetically encoded 

sensors significantly expanded the possibilities of optical studies. The development of methods for 

the specific integration of proteins in certain cell types, as well as the detection of light-sensitive 

proteins, stimulated the explosion in the areas for remote control of cellular activity with high 

precision and specificity.  

As a result, in recent years, new areas, namely optogenetics, 

optopharmacology/photopharmacology, optogenetic pharmacology have been developed (Fenno 

et al., 2011; Repina et al., 2017; Broichhagen et al., 2015).  

The origin of optogenetics has been stimulated by cloning of the first light-gated cation-

selective membrane channel, channelrhodopsin (Nagel et al., 2003) and observations that its 
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expression in cells results in the ability of these cells to be activated by light, i.e. change the 

membrane potential, generate ion currents and cause light-evoked firing (Nagel et al., 2003; 

Boyden et al., 2005). Moreover, it was found that integration of the photosensitive proteins in 

neurons of multicellular organisms allows changing their behaviour upon application of light 

(Lima et al., 2005). Thus, it become evident that bacterial light-sensitive proteins represent rather 

simple and easy to use tools for rapid control of cell excitability and neural networks function. 

New light-sensitive proteins and their derivatives were embedded in cells of different species of 

animals from worms and insects to monkeys (Diester et al., 2011; Fenno et al., 2011; Han et al., 

2011; Gerits et al.,  2012; Welberg, 2012) and in human pluripotent cells (Busskamp et al., 2010; 

Steinbeck et al., 2015).  

Controlling the activity of cells with the help of light one can investigate their function  

(Tye and Deisseroth, 2012), measure the concentration of ions (Bregestovski et al. 2009), ATP 

(Imamura et al., 2009; Berg et al., 2009) and other cellular components (Marvin et al., 2013; Bilan 

et al., 2013), to control the behaviour of organisms (Covington et al., 2010; Haubensak et al., 2010; 

Miesenbock, 2011), as well as to seek for novel ways to treat certain diseases (Laprell et al., 2015; 

Rossi et al., 2015). Optogenetic approaches were used in many models with medical orientation, 

including the study of stress (Covington et al., 2010), schizophrenia, memory disorders, drug 

addiction, psychiatry and motor functions (Rossi et al., 2015); vision, pain, functional recovery 

after stroke and epilepsy (Tønnesen et al., 2009; Wagner et al, 2015; Gaub et al, 2015). However, 

one of the critical limitations of the optogenetics is the necessity to integrate foreign genes into 

organisms using viral gene therapy or development of transgenic animals. 

In parallel to optogenetics, in recent years, photopharmacology or optopharmacology - a 

direction based on the creation of chemical compounds capable of controlling the functions of 

biological molecules with the help of chemical photosensitive switches - has greatly developed 

(Kramer et al., 2013). Several classes of photochromic pharmacological compounds have already 

been successfully used to selectively modulate the activity of various proteins, including enzymes 

(Harvey and Abell, 2001), receptor-driven (Szobota et al., 2007; Tochitsky et al, 2012) and 

potential-dependent ion channels (Banghart et al., 2004; 2009; Fortin et al., 2008; 2011). 

While the use of some photoswitchable compounds requires mutation of target proteins, a 

number of improved soluble compounds with a high specificity of action has been developed that 

does not require genetic manipulations. It turned out that synthetic light-controlled compounds 

capable of enhancing or inhibiting the activity of key cellular proteins, are powerful tools for non-

invasive control of cellular activity, organs functioning and the behavior of living organisms.  

In this mini-review we will focus on the control of ligand-gated ion channels by using light-

sensitive molecules or photoswitches. In particular, we will introduce the early developments in 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=697&familyType=IC
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the photocontrol of cholinergic receptors of the neuromuscular junction, and more recent progress 

with the main excitatory and inhibitory receptor-channels in the vertebrate nervous system 

(glutamate and GABA, respectively). Wider scope reviews including voltage-gated, transient 

receptor potential and trimeric receptor ion channels have been recently published elsewhere 

(Bautista-Barrufet et al., 2014; McKenzie et al., 2015).  

In general, photoswitches can be divided on two main classes: (i) those acting as soluble 

photochromic ligands (PCL); (ii) those being covalently tethered to the target protein (PTL- 

photochromic tethered ligands). Each class has its own advantages and limitations.  

PCLs are convenient and simple to use in endogenous receptors and they do not require 

molecular modification (e.g. mutagenesis). However, it is difficult to obtain highly specific PCLs, 

as many receptor proteins show high similarity in ligand binding sites, which are conserved in 

most cases.   

The PTL strategy allows controlling the activity of voltage-gated or receptor-operated ion 

channels due to irreversible tethering of PTLs to the proteins, often targeted at cysteine residues, 

either naturally occurring or genetically introduced (Lester et al., 1980; Gorostiza and Isacoff, 

2007; 2008; Kramer et al., 2013). In general, this strategy requires both (i) chemical synthesis of 

PTL compounds and (ii) mutagenesis of the target protein to identify a suitable tethering site for 

optimal photoswitching. It offers the advantage of activating or inhibiting only this specific 

receptor or ion channel mutant. On the other side, because of the need in some cases of mutating 

target proteins, it poses limitations and difficulties to be used in experimental models in vivo, for 

instance, testing on humans. 

Photoswitches (both PCLs and PTLs) are chemically synthesized molecules containing at 

least two components: a ligand molecule (agonist, antagonist or ion channel blocker) and a 

photoisomerisable group. PTLs, in addition, have a reactive group for irreversible tethering to the 

target protein (Fig.1). 

The synthetic photoswitch that is most extensively used for channel applications is 

azobenzene (Fig.1,A), a molecule, which undergoes cis-trans-isomerization around the central 

double N=N bond (see rev Gorostiza and Isacoff, 2007; McKenzie et al., 2015). In the dark or 

under visible light azobenzene is in an extended trans configuration. Irradiation with near-

ultraviolet (UV) light (360-380 nm) induces a change from trans to cis configuration, which 

shortens the molecule by about 0.6 nm. Visible light switches the azobenzene back to the trans 

form (Fig.1, A). Isomerisation of azobenzene occurs in picoseconds upon absorption of an UV 

photon (Bortolus and Monti, 1979) and this permits high-speed switching of many azobenzene-

based molecules using bright light. Thermal back-relaxation lifetimes range between milliseconds 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=76
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=75
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=72
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and days and can be adjusted by synthetic design according to application requirements (Velema 

et al., 2014). 

 

Control of nicotinic acetylcholine receptor with light 

Nicotinic acetylcholine receptor (nAChR) was the first light-modulated receptor-operated 

channel. Almost 50 years ago Erlanger and co-authors (Deal et al., 1969) introduced azobenzene-

based photochromic ligands for regulating the activity of nAChR. Firstly the team demonstrated 

the capability of azobenzene-based compounds as photochromic regulators of enzymatic activity 

of chymotrypsin (Kaufman et al., 1968) and acetylcholinesterase (Bieth et al., 1969), and then 

extended the idea to the light-induced regulation of the excitability of the electroplax preparation 

of Electrophorus electricus. They used N-p-phenylazophenyl-N-phenylcarbamylcholine chloride 

(azo-CarCh) and p-phenyl-azophenyl-trimethylammonium chloride (azo-PTA) as light sensitive 

antagonists of acetylcholine receptor (Deal et al. 1969). This pioneer study was the first 

demonstration of the use of photochromic compounds to regulate the activity of cys-loop receptor 

channels.   

During these years, both classes of photoswitches (PCL and PTL) for modulation function 

of nAChR have been developed. They represent Bis-Q, compound whose two ligand moieties can 

bind reversibly to the receptor, and tethered QBr, which can be covalently linked to the native 

sulfhydryl groups in the vicinity of acetylcholine binding site (Fig. 1, B). Irreversible targeting 

could be achieved after the treatment of receptors with dithiothreitol, a reducing agent that causes 

reduction of disulfide (S-S) bonds and exposes free thiols to reaction (Karlin, 1969; Bregestovski 

et al., 1977). These compounds, called "tethered" agonists were successfully used to induce light-

flash relaxations and to analyse rate-limiting steps governing the opening and closing of channels 

(Bartels et al., 1971; Bartels-Bernal et al., 1976; Lester et al., 1979; 1980, Chabala et al. 1986).  

 These developments were to a large extent empirical and cumulative, but determination of 

the amino acid sequences and atomic structures of the channel proteins brought about the 

possibility of rationally designing photochromic compounds to regulate the activity of ligand- and 

voltage-gated channels, and a rebirth of the field in the XXI century (Banghart et al. 2004; Volgraf 

et al., 2006; Szoboda et al., 2007; Gorostiza et al., 2007; Stein et al., 2012; Yue et al., 2012; 

Damijonaitis et al., 2015a,b).  

Recently, new generations of PCLs and PTLs for effective light-dependent modulation of 

nAChRs were proposed. Based on the X-ray structure of an acetylcholine binding protein in 

complex with carbamylcholine (Celie et al., 2004) and distance measurements in the protein 

structures, in the beta-subunit of nAChR, several positions have been identified that face the 

ligand-binding site as a potential region for the attachment of agonists and antagonists. This 
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allowed performing site directed insertions of cysteines and synthesis of appropriate PTLs.  

After expressing in Xenopus oocytes of mutated nAChRs and labelling it with PTL agonist 

(MAACh) or antagonist (MAHoCh), illumination with 380 nm light produced either an inward 

current that could be reversed with 500 nm light (labelling with MAACh), or inhibition of 

acetylcholine-induced currents (labelling with MAHoCh (Fig.1, C). These PTL compounds 

enabled heteromeric neuronal nAChRs to be activated or inhibited with UV light, but respond 

normally to acetylcholine in the dark, which is important for more profound analysis of their 

physiological and pathological cholinergic functions (Tochitsky et al., 2012).  

Recently the team of D. Trauner reported a photoswitchable agonist for neuronal α7 

nAChRs, AzoCholine (Damijonaitis et al., 2015a). In heterologously expressed α7 nAChR/glycine 

receptor chimera in HEK293T cells, this compound was not effective upon illuminating with UV 

light, however it caused a large current at illumination with visible light, i.e. at transition to trans 

configuration (Fig. 1,D). AzoCholine thus activates α7 receptors in the dark, but on the other hand 

it displays subtype selectivity versus the muscular nAChR. Importantly, AzoCholine is a PCL 

compound, i.e. its application does not need molecular modification of the α7 nAChRs. 

AzoCholine effectively modulated neuronal activity of rat sensory neurons from dorsal root 

ganglia, in mouse hippocampal brain slices and it was able to perturb in a light-dependent manner 

swimming behaviour of C. elegans (Damijonaitis et al., 2015a). This demonstrates the main 

advantage of AzoCholine, as the other PCLs, is their ease of use for light-dependent control of 

cellular processes in vitro and in vivo. 

This area of research now develops extremely rapidly and in various directions. Below we 

will discuss just some of the studies, concentrating on two main functional classes of ionotropic 

receptors determining synaptic excitation and inhibition of nervous system in vertebrates. 

 

Photochromic modulators of glutamate receptors 

Glutamate receptors provide the main excitatory drive in the mammalian nervous system 

and are involved in a large variety of physiological processes, including brain development, 

synaptic plasticity, memory formation, pain, excitotoxicity and neurodegenerative diseases 

(Gonzalez et al., 2015; Zhuo, 2017). Disorders of glutamatergic transmission lead to imbalances 

of inhibition-excitation and have dramatic consequences for both cellular and network functions.  

These receptors are among the primary targets for development of photopharmacological 

regulators.  

The first photoswitch of glutamate receptors was engineered ten years ago (Volgraf et al., 

2006; Gorostiza et al., 2007) and termed MAG to highlight its components: a cysteine-reactive 

maleimide group, an azobenzene photoswitch and a glutamate ligand (Fig. 2,A,a). Maleimide 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=468
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=468
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allowed tethering the compound to the GluK2 kainate receptor after introducing a cysteine 

substitution (L439C), close to the glutamate-binding site (Fig. 2,B,a). This type of receptors was 

called LiGluRs – light-activated ionotropic glutamate receptors. Illumination with 380 nm light 

induced transition of MAG to the cis state, in which the glutamate head was bound to the agonist-

binding site with subsequent activation (opening) of the ion channel. Back isomerisation of MAG 

and receptor deactivation were triggered with 500 nm light (Volgraf et al., 2006). Light pulses 

reliably induced depolarization and firing of neurons due to activation of GluK2 channels by MAG 

(Fig.1, B,b; Szobota et al., 2007). 

Later the same group proposed the first nontethered photochromic agonist of iGluRs that 

could modulate function of wild-type receptors, GluAzo (Fig.2,A,d). This compound, representing 

PCL series, was based on using a potent and selective agonist of GluK1 kainate receptor 

chemically conjugated to an azobenzene (Volgraf et al., 2007). The photoswitchable ligand was 

controlled with the same wavelengths as MAG and its activity was competitively blocked by the 

non-NMDA receptor antagonist DNQX. In contrast to MAG, this compound activated kainate 

receptors in the trans-state and lost its activity in the cis-configuration induced by UV light. This 

PCL successfully caused light-induced modulation of depolarization in cultured hippocampal 

neurons from wild type rats demonstrating that the cysteine substitution in the target receptor is 

not required for its action (Volgraf et al., 2007).  

The results of these pioneering works were further elaborated in a number of subsequent 

studies, demonstrating that photoregulation of glutamate receptors represent an efficient tool to 

control glutamatergic neurotransmission. One of the aspects to be optimised was the photoswitch 

action spectrum. The requirement of UV light for azobenzene isomerisation is not ideal for 

biological systems because (i) prolonged UV exposure can be damaging and (ii) UV light poorly 

penetrates mammalian tissue. To overcome this problem, synthesis of the light-sensitive 

azobenzene-based GluR ligand with about 100 nm redshift of the absorption has been performed 

(Kienzler et al., 2013). The compound, called MAG460 (Fig.1,A,b), can be switched into cis-

configuration by visible light (460 nm) and rapidly return to the trans-state by thermal relaxation 

in the darkness (Fig.2). Whole-cell patch-clamp recording from HEK 293 cells expressing 

GluK2(439C) and incubated with the red-shifted L-MAG0460 showed that illumination with blue 

light induced a large inward currents (Fig. 2, C, a). In the dark the recovery of currents was 

observed due to closing of the channels after transition of MAG460 to the trans configuration. Other 

MAG variants allowed, with slow kinetics, activation with red light (625 nm) (Rullo et al., 2014).  

Recently LiGluRs have been expressed in the visual cortex of mice using an adeno-

associated virus under the control of the specific promoter. In conjunction with fiber-based 

optogenetic technologies it has been shown that MAG0460 can activate LiGluRs in cultured 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=451
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=450
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hippocampal neurons (Fig. 2,C,b) and in vivo conditions increasing neuronal cell firing in mouse 

cortex upon blue light illumination (Levitz et al., 2016). These experiments have proven that 

LiGluRs-MAG technique is compatible with existing fiber-based in vivo light control technologies 

and can be used to manipulate the activity of neuronal circuitry.  

Similar blue-shifted MAG derivatives were developed for the purpose of enhancing two-

proton activation of the azobenzene switch using pulsed infrared (IR) light (Izquierdo-Serra et al., 

2014; Gascón-Moya et al., 2015), which enables deeper penetration in tissue and focal activation 

in neurons and astrocytes. Two photon activation and digital holography were further used to shape 

stimulation patterns in three dimensions for the purpose of studying neural circuits (Carroll et al., 

2015). 

The development of MAG derivatives isomerised by visible light also expanded the 

application of LiGluRs in vision restoration research (Kienzler et al., 2013).  The first attempt at 

using light-sensitive glutamate ligands for vision restoration has been performed with UV-

modulated MAG. The gene encoding for cysteine substituted GluK2 subunit of glutamate receptor 

(LiGluR) was delivered to retinal ganglionic cells by intravitreal injection of adeno-associated 

virus (AAV), and the photoswitchable tethered ligand maleimide-azobenzene-glutamate (MAG) 

was delivered in a subsequent intravitreal injection. This resulted in restoration of light responses 

of blind retina degeneration mice (Caporale et al., 2011). 

However, as mentioned above the use of UV illuminations raises some problems, 

particularly in the case of retina. The second generation of red-shifted LiGluR-MAG0460 has been 

shown to be much more promising. Upon administration of MAG0460 light-evoked responses in 

retinal ganglion cells as well as in ON-bipolar cells were recorded. Moreover, visual guided 

behaviour of animals was demonstrated in the functional tests in blind mouse and dog models 

(Gaub et al., 2014).  

The structural data combined with mutagenesis and electrophysiological observations 

(Sobolevsky, 2015) greatly facilitated the design of efficient photoswitches for AMPA, kainate 

and NMDA receptors. Photoswitchable activators of AMPA receptors were developed on the basis 

of AMPA with azobenzene substitution and were called ATAs (azobenzene tetrazolyl AMPAs). 

They were proven to be potent AMPA-activators in trans-state, and could be used to control 

neuronal activity in acute cortical brain slices (Stawski  et al., 2012; Reiner et al., 2015). 

MAG-based ligands also enabled the photoregulation of NMDA-selective glutamate 

receptors. The previously described method of cysteine substitution yielded light-activated 

GluN2A, light-activated GluN2B, light-antagonized GluN2A and light-antagonized GluN1 

subunits of NMDA receptor (Berlin et al., 2016). This model of light-controlled NMDA receptor 

subunits provides precise, fast and reversible remote control of specific receptor subtypes in 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4131
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=456
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=457
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=455
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localized areas, modulation of excitatory synaptic currents, long-term plasticity and spine-specific 

regulation of intracellular calcium transients.  

Variants in the reactive group of MAG derivatives have also been explored, with the aim of 

achieving covalent conjugation (PTL) without requiring the introduction of cysteine residues by 

mutagenesis, thus targeting endogenous receptors (Fig. 2,A,c; Izquierdo-Serra et al. 2016) A 

modular library of photoswitchable ligands and reactive groups was optimised for GluK1 and 

allowed identifying efficient photoswitches that covalently conjugated to a lysine residue in the 

receptor following an affinity labelling process. Thus they can be termed photoswitchable affinity 

labels (PALs) (Harvey and Trauner, 2008) or targeted covalent photoswitches (TCPs) in analogy 

with targeted covalent drugs, an important class of medicines including aspirin, penicillin and 

omeprazole. These compounds activate GluK1 under UV light and deactivate it under 500 nm 

illumination, providing photocontrol of untransfected neurons and restoration of the 

photosensitivity of degenerated retina. 

 Currently available photochromic modulators of glutamate receptors offer a wide choice 

of pharmacologic function (agonist, antagonist), selectivity (kainate, AMPA, NMDA) and optical 

properties (from violet to red to IR stimulation using multiphoton processes, and diverse relaxation 

lifetimes in the dark). In addition, it is possible to take advantage of genetic targeting using 

cysteine-conjugated MAG derivatives, or aim at endogenous receptors using either freely 

diffusible PCLs or lysine-targeted photoswitches that are conjugated by affinity. Overall, the 

photoswitch toolbox is well furnished to approach a systematic investigation of glutamatergic 

neurotransmission in the mammalian brain. 

 

Light-induced modulation of GABA receptors 

Since GABA provides the main inhibitory neurotransmission in the CNS of vertebrates, 

the search for specific photoswitchable regulators of GABA receptor function constitutes a very 

important task. Due to efforts of several teams, a rich pharmacology of optically switched ligands 

of GABAA receptors has been developed, including PTLs and PCLs, activators, allosteric 

potentiators and antagonists.  

One of the first compounds that served as a basis for development of light-sensitive 

potentiators of GABAA receptor was propofol. This lipophilic anaesthetic has been shown to act 

as potentiator of GABA-induced currents (Sieghard, 1995). A propofol/azobenzene based photo-

isomerisable soluble ligand MPC088 (Fig.3,Aa) was developed by the team of David Pepperberg 

(Yue et al., 2012). Using α1β2γ2 GABAARs expressed in Xenopus laevis oocytes, authors showed 

that in trans-form this freely diffusible, i.e. PCL type, compound efficiently potentiated GABA-

induced currents at concentration 1µM, while at higher concentrations it directly activates the 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4231
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4268
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067
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receptors (Fig. 3,B,a). In cis-form generated by UV-illumination (365 nm) the compound caused 

little effect on the amplitude of GABA-induced currents. Moreover, in cerebellar brain slices, 

MPC088 co-applied with GABA, caused bidirectional photomodulation of Purkinje cell 

membrane current (Fig.3,B,b) and changes in spike-firing rate (Yue et al., 2012). The results of 

this study suggest that MPC088 interact with GABA receptor in the same site of β subunit as 

propofol, but the efficiency of this interaction is higher than in the case of propofol.  

Another chemically synthesized azo-propofol compound, AP2, which contained 

azobenzene group at the para-position of phenol has been reported (Fig.3,A,b; Stein et al., 2012). 

In trans-configuration the AP2 potentiated GABA-induced currents with EC50 of micromolar, 

while irradiation with UV light, which transferred the compound in cis-configuration, prevented 

development of the potentiation. Activity of propofol-based AP2 was demonstrated on Xenopus 

oocytes, HEK cells and in animal model – Xenopus laevis tadpoles, where AP2 caused light-

dependent anaesthesia. Future studies in other experimental models should demonstrate the 

usefulness of azo-propofols for acting as light-dependent anaesthetic and modulator of 

GABAergic activity in the brain. The broad possibilities remain that trans-MPC088 and AP2 could 

modulate the function of non-GABAARs ion channels or other proteins of neural tissues. 

More recently, two effective inhibitory PTLs, LiGABAAR, were tethered to the mutant 

GABA receptor that contains cysteine-substituted α1 subunit (T125C) (Lin et al., 2014). One of 

the compounds (MAM-6) consists of muscimol (as element responsible for the specific interaction 

with GABA-binding site) combined with azobenzene photoswitch conjugated to maleimide. 

Effective allocation of the compound to the active site was achieved using a 6-carbon spacer 

between the muscimol pharmacophore and the azobenzene group (Fig. 3,A,c).  

Although muscimol is an agonist for ionotropic GABA receptors (Johnston, 1996; 

Krogsgaard-Larsen et al., 1997), the MAM-6 acted as photoswitchable antagonist, capable to bind 

or to retract from the GABA-binding pocket with 500 and 380 nm illumination respectively (Fig. 

3,C,a). This inhibitory effect of the agonist-based molecule was observed previously for the 

nicotinic acetylcholine receptor (Tochitsky et al., 2012) and could be caused by disrupting 

concerted reorganization of the agonist binding site during activation and consequent 

conformational changes required for ion channels opening (Miller and Smart, 2010).  

Another compound, MAB-0, that contained neutral analogue of muscimol and did not 

contain any carbon spacer was even more effective in light-sensitive inhibition of GABA 

receptors. After treatment with MAB-0, cultured hippocampal neurons expressing α1(T125C) 

subunit were effectively modulated by light (Lin et al., 2014). 

A series of PTLs were further developed for the efficient light-mediated control of all alpha 

subunits (alpha 1- alpha 6) of GABAA receptors. For each isoform the best PTL/mutant pair was 
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selected based on two criteria: (1) GABA-elicited currents are robustly photo-controlled 

(preferably >50% photo-antagonism at EC50) and (2) receptor function is unaffected by cysteine 

mutation and PTL conjugation. Moreover, mutated GABA subunits were incorporated in living 

animals by generating a knockin mouse in which the ‘‘photoswitch-ready’’ version of a GABAA 

receptor subunit genetically replaces its wild-type counterpart, ensuring normal receptor 

expression (Lin et al., 2015). This elegant approach allowed to perform mapping of subcellular 

distribution of different alpha subunits in neurons and characterize the differential distribution 

pattern of GABAARs in the brain of living animals (Fig. 3, D).  

In general, the team of Kramer (Lin et al., 2014; 2015) proposed a "toolkit" for efficient 

optogenetic control of GABAA receptors. Similarly to proposed previously for nAChR and 

glutamate receptors (Volgraf et al., 2006; Tochitsky et al., 2012), it consists of (1) a 

photoswitchable tethered ligand composed of cysteine-reactive maleimide group for receptor 

conjugation, an azobenzene core for photoswitching and a GABA-site ligand for competitive 

antagonism like GABA or its guanidinium analogues and (2) the alpha subunits of GABA receptor 

with a genetically-engineered cysteine near the GABA-binding site. This optogenetic 

pharmacology toolkit allows scalable interrogation of endogenous GABAA receptor function with 

high spatial, temporal, and biochemical precision. However, antagonism of gabaergic transmission 

results in excitatory stimuli, which limits the applications of these switches to study neuronal 

circuits and complicates the interpretation of photomanipulation experiments. Future studies 

should be oriented on development of selective optopharmacological potentiators of GABAR 

function. 

 

Conclusion  

Since the first reports almost 50 years ago, the engineering of light-gated receptors has greatly 

expanded. Highly efficient photoswitches of many neuronal receptor-channels have been reported, 

based on rational design, high-resolution protein structures, comparative pharmacology and 

molecular biology manipulations. Several studies demonstrated that photochromic compounds 

could be used for optical control of behaviour, and function of different organs. It has been shown 

that AzoCholine, which specifically activates neuronal nAChRs, modulates behaviour in the 

nematode C.elegans. The other photoswitches, AzoCarbachol, modulated in a light-dependent 

fashion the beat frequency of a whole heart preparation of the mouse (Damijonaitis et al., 2015b). 

Photoswitches can restore electrophysiological and behavioural light responses in mutant strains 

of blind mice (Polosukhina et al., 2012). Also ATA, a freely diffusible specific photochromic 

agonist for AMPA receptors, in a light-dependent manner modulated function of amacrine and 

retinal ganglion cells, although a minor effect on bipolar cells has been observed (Laprell et al., 
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2015). These observations suggest the powerful potential of photochromic compounds for 

ophthalmology. 

Still, several aspects can be improved considerably. Regarding the optical properties, red-

shifted variants are not available for all photoswitches, and efficient two-photon switching is also 

desirable for localized activation at the micrometer (subcellular) scale. In addition, a disadvantage 

found for most PCLs and many PTLs is that ligand action (agonist or antagonist) is exerted in the 

dark (trans isomer) (nAChR: Tochitsky et al., 2012; GABAA: Lin et al., 2014), and this results in 

the requirement to illuminate with UV light in order to maintain normal receptor activity. TCPs 

allow reversing the photoswitch action (Izquierdo-Serra et al., 2016) although this possibility 

depends on the actual localization of suitable reactive residues in each receptor protein. 

In general, photopharmacological compounds represent efficient tools for reversible and 

reproducible activation or block of specific neurotransmitter-gated receptors and ion channels in 

specific cells. However, the subtype selectivity is a very desirable pharmacological property that 

is found in few cases. The covalent attachment of the PTL to the target protein provides high 

subtype specificity compared to soluble pharmacological agents. PTLs allow precise 

spatiotemporal control since the photoisomerization of azobenzene is a picosecond process and 

binding is not limited by diffusion (Levitz et al., 2016).  Successfully engineered PTLs include 

light-gated glutamate receptors activated by MAG (Volgraf et al., 2006) or L-MAG0460 (Kienzler 

et al., 2013), ATA (Laprell et al., 2015) and TCP (Izquierdo-Serra et al., 2016), and neuronal 

acetylcholine receptors activated or inhibited by MAACh or MAHoCh (Damijonaitis et al., 

2015a). These approaches, however, need genetic manipulation of the target protein. Development 

of highly specific soluble pharmacological agents is still an urgent and important problem. 

Combination of expanding knowledge in crystal structure, pharmacological analysis and chemical 

synthesis will provide the basis for further precision of photochromic compounds.  

 

Nomenclature of Targets and Ligands  

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide 

to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in The Concise Guide 

to PHARMACOLOGY 2015/16: Ligand-gated ion channels. Br J Pharmacol. 172: 5870-5903.  
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Figure legends  

 

Figure 1. Optical switches for modulation activity of nicotinic acetylcholine receptors.  

A, Light-induced conformations of azobenzene.  

B, Chemical structures of the first azobenzene-based photochromic ligands for regulating the 

function of nAChRs (modified from Lester et al., 1980). 

C, PTLs for photochemical control of neuronal AChRs.  

a, Modular organization of maleimide–azobenzene–acetylcholine (MAACh) in trans 

configuration.  

b, Scheme of a tethered agonist action. At illumination, with visible light (500nm) or in darkness 

the compound is in trans-configuration and not capable of activating heteropentameric nAChRs 

(upper part). Under UV light (380 nm) the tethered agonist is converted into its cis-configuration 

and thus activates receptors causing channels opening (bottom part).  

c, Photoactivation of the α3β4E61C mutant receptors by tethered MAACh in Xenopus oocyte. 

Illumination at 380 nm (violet line) triggers ionic current and at 500 nm (green line) shuts it off. 

For comparison, the right trace shows the response to acetylcholine 100 µM.  

d, Photoinhibition of the current induced by 300 µM acetylcholine (green line) by tethered to the 

α3β4E61C mutant receptors antagonist MAHoCh at 380 nm illumination (violet line). (Modified 

from Tochitsky et al., 2012). 

D, Photoswitchable PCL agonist for neuronal α7 nAChRs.  

a, Chemical structure of the AzoCholine.  

b, Light-dependent effect of BisQ or AzoCholine on α7/GlyR chimera expressed in HEK293T 

cells. Note that illumination with light 440 nm triggered large inward current (bottom trace) 

while BisQ was not effective (top trace).  

c, Effect of BisQ or AzoCholine on neuromuscular nAChR (α1/β1/δ/ε) expressed in HEK293T 

cells. Note that on this receptor AzoCholine is not active, in contrast to BisQ. (Modified from 

Damijonaitis et al., 2015a).  

 

Figure 2. Optical switches for modulation activity of glutamate receptors. 

A, Modular design of azobenzene−glutamate photoswitches.  

a,b, PTLs in trans configuration for modulation of ionotropic glutamate receptor. They are 

composed of three parts: maleimide−azobenzene−glutamate (MAG). In section (a), for clarity 

different components of the synthetic photoswitcher are highlighted and labeled.  For MAG380 
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(a) the most efficient isomerization from trans to cis configuration is triggered by illumination at 

380 nm (Volgraf et al., 2006), while for L- MAG0460 (b) this transition occurs at visible light 

with optimal wavelength 460 nm (Kienzler et al., 2013).   

c,  PTL  agonist for native affinity labeling via lysines. No need to introduce cysteine by 

mutagenesis (from Izquierdo-Serra et al 2016). 

d, PCL version of azobenzene−glutamate photoswitcher, which reversibly interacts with glycine 

receptor (modified from Volgraf et al., 2007).  

B, a, The ribbon structure of apo-iGluR2 together with the ball-and-stick structure of MAG 

attached to cysteine at  L439C (yellow) in the extended (trans) and unbound conformation. 

(modified from Gorostiza et al., 2006). 

b, A neuron transfected with iGluR6 (L439C) and labeled with MAG is illuminated at 380 nm 

for 500 ms, yielding reproducible depolarization that trigger trains of action potentials. 

Illumination at 500 nm turns the response off and permits repolarization. (Modified from 

Szopota et al., 2007).   

C, The photo-induced activation of LiGluR with "red-shifted" covalently tethered MAG460.   

a, Patch-clamp recording from HEK 293 cells expressing GluK2 (439C). Illumination by 500 nm 

light causes generation of inward currents, while in the dark MAG460 relaxes back to trans 

configuration, resulting in closing of the channels (modified from Kienzler et al., 2013). 

b, The effect of blue light illumination (blue bar) on activity of cultured hippocampal neuron 

expressing mutant of GluK2 with a cysteine substitution (L439C). Current-clamp recording. 

(Modified from Levitz et al., 2016).  

 

Figure 3. Optical switches for modulation activity of ionotropic GABA receptors. 

A, Examples of chemical structures of some PCL (a,b) and PTL (c) photochromic ligands of 

GABARs.  

B, Ion current induced on Xenopus oocyte expressing 1ß22 GABAAR. a, Left trace; current 

induced by 3 μMGABA; right trace:  co-application of 3 μMGABA and 1 μMMPC088 at visible 

light and during illumination with UV light.  

b, Ion current induced by application of 15 μM MPC088 at visible light and during repetitive 

illumination of the oocyte with UV light. Note that UV illumination causes decrease of the 

responses, while at visible light the currents slowly recover.  

c, Whole-cell recording from the mouse brain slice. Effect of MPC088 photoactivation on 

GABA-evoked currents in cerebellar Purkinje neuron. Cells were exposed to multiple UV/blue 

light flashes during application of GABA and MPC088 (indicated above the trace). (Modified 

from Yue et al., 2012).  
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C, a, Scheme of photoswitchable PTL antagonist MAM-6 action. Being conjugated to GABA 

receptor it reversibly isomerizes between cis- and trans- states.  In cis-configuration (UV 

illumination) it is not active, while at illumination with visible light, it isomerizes to trans-

configuration and prevents GABA binding and the subsequent opening of the channels.  

b, Photoregulation of GABA-induced currents by the tethered MAM-6 on cells expressing the 

mutant S68C of α1 GABAR subunits. (Modified from Lin et al., 2014) 

D, Differential photo-control of inhibitory postsynaptic currents (IPSCs) in cerebellar molecular 

layer interneuron (top traces) and a Golgi cell (bottom traces) of the mouse expressing the 1-

GABAA with a single point mutation (T125C) and treated with PCL compound PAG-1C. Note 

that on a Golgi cell the currents are not modulated by light, suggesting absence of the 1-

GABAA on these cells. (Modified from Lin et al., 2015). 
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