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Abstract 10 
11 

Microplastic pollution is a growing cause of concern for the marine environment, particularly in the 12 

Mediterranean Sea, which is considered to be one of the most polluted seas worldwide. In this study, 13 

the gastrointestinal tracts of 102 bogues (Boops boops), sampled from three areas off the Catalan 14 

coast (Spain) subject to different degrees of industrialization, were analysed to assess microplastic 15 

ingestion and thus estimate local levels of microplastic pollution. Microplastics were detected in 46% 16 

of samples analysed. As expected, the abundance and frequency of occurrence of ingested 17 

microplastics were higher off the most anthropized area of Barcelona. The majority of ingested 18 

microplastics were blue fragments ranging 0.1 - 0.5 mm, and the most common polymer type was 19 

polypropylene. The results of this study indicate the area off Barcelona as a possible area of 20 

concentration for microplastics, further supporting the use of B. boops as a bioindicator to assess 21 

microplastic pollution. 22 

23 
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25 

Capsule 26 
The results of this study indicate the area off Barcelona as a possible area of concentration of 27 

microplastics and support the use of Boops boops as a suitable bioindicator for monitoring 28 

microplastic pollution in the Mediterranean Sea.  29 
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Highlights 

 

1- Levels of microplastic ingestion were assessed in bogues from the Catalan coast. 

2- The occurrence of ingested microplastics was higher in bogues off Barcelona. 

3- Bogues from less anthropized areas had lower amounts of microplastics in their guts. 

4- The bogue is a suitable indicator of microplastic pollution in the Mediterranean Sea. 

Highlights
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1. Introduction 1 

 2 
The presence of marine litter has been reported in all marine compartments of seas and oceans 3 

worldwide (Cózar et al., 2014, Alomar et al., 2016). The largest component of marine litter is 4 

represented by artificial polymers, i.e., plastics (Geyer et al., 2017). Large plastic items that enter 5 

the sea are gradually broken into small pieces by the mechanical erosion caused by winds and 6 

waves, photodegradation, and biodegradation (Barnes et al., 2009; Thompson et al., 2004), and 7 

gradually become microplastics i.e., plastic items smaller than 5 mm in size (Arthur et al., 2009). 8 

Apart from these, microplastics can be of primary origin, which include the microbeads used in 9 

cosmetics and personal care products, capsules, textile microfibres, or virgin pellets used for 10 

manufacturing larger plastic items. Once in the sea, microplastics are driven by oceanic currents, 11 

travel long distances due to their buoyancy and durability (Eriksen et al., 2014), and they represent 12 

a considerable portion of the litter found in marine waters (de Haan et al., 2019). Recent studies 13 

estimated that 5 trillion microplastics are currently floating in the world’s oceans and that the 14 

concentration of plastic particles floating in the surface waters of the Mediterranean Sea is 890,000 15 

particles km
-2

 (Eriksen et al., 2014).  16 

 17 

Microplastics may pose a threat to the marine environment (Rezania et al., 2018). Marine species at 18 

all levels of the trophic chain, including zooplankton (e.g., Cole et al., 2014), worms (Wright et al., 19 

2013), shellfish (e.g., Digka et al., 2018), fish (e.g., Bellas et al., 2016), seabirds (Codina-García et 20 

al., 2013), sharks (Fossi et al., 2014) and cetaceans (Fossi et al., 2016) have been reported to ingest 21 

microplastics. Despite evidence of the translocation of microplastics from the gastrointestinal tract 22 

to other tissues, i.e., the presence of microplastics in the hepatic tissue of the mullet (Mugil cephalus) 23 

under laboratory conditions (Avio et al., 2015) and in eviscerated flesh of four commonly consumed 24 

dried fish species (Karami et al., 2017), related adverse effects in wild organisms are still lacking 25 

(Avio et al., 2015). Furthermore, although microplastics are chemically inert, the organic 26 

compounds used as plasticizers to improve the properties of plastics might produce adverse effects 27 

in some marine species, including alterations in the endocrine system and reproductive capacity 28 

(Lithner et al., 2011). Moreover, persistent organic pollutants such as polycyclic aromatic 29 

hydrocarbons (PAH), polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT) 30 

may be adsorbed and accumulated on post-consumed microplastics, increasing their toxic potential 31 

effects (Rios et al., 2007).  32 

 33 

Different methods are used to assess the extent of microplastic pollution in the sea and thus estimate 34 

its potential risk for marine fauna. Manta trawl nets are employed to assess the density of 35 

microplastics floating in the water column (e.g., de Haan et al., 2019), while analyses of sediment 36 

samples are used to determine microplastic densities in the ocean floor and beaches (e.g., Van 37 

Cauwenberghe et al., 2013; Alomar et al., 2016). Bioindicator species have also been proven 38 

particularly effective in assessing the microplastics levels in the biota (Fossi et al., 2018) and thus, 39 

potentially, their environmental concentrations. The EU Marine Strategy Framework Directive 40 

(MSFD) monitoring guidelines for the Mediterranean Sea indicate the analysis of the fish 41 

gastrointestinal tract (GI) as a viable method to assess microplastic pollution (Galgani et al., 2013). 42 

Among the possible fish species proposed, the bogue (Boops boops; Linneaus, 1758) stands out as a 43 

suitable bioindicator due to its ubiquitous distribution in the Mediterranean, the small size of its gut, 44 

and the high frequency of occurrence of microplastics in its digestive tract (Bray et al., 2019). In 45 

addition, as this species feeds on different types of bottoms including sand, mud, rocks and seagrass 46 

beds, performing vertical migrations at depths ranging from 0 to 350 m, it can be representative of 47 

several marine compartments (El-Haweet et al., 2005). Finally, its commercial value across the 48 

Mediterranean facilitates sample collection in local markets and thus further supports the use of the 49 

bogue as a commonly agreed upon bioindicator (Bray et al., 2019).  50 

 51 
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In the present study, the GI content of B. boops was analysed to assess the levels of microplastic 1 

ingestion in three differently urbanized and industrialized areas off the Spanish coast of the 2 

Mediterranean Sea: (1) the area off Barcelona, affected by several anthropogenic activities 3 

producing marine litter inputs, such as industrial outfalls, beach tourism, fishing, aquaculture and 4 

shipping; (2) the area off the small town of Blanes, characterized by local tourism and fishing 5 

activities; and (3) the area off Cap de Creus, a marine protected area (MPA), subject to heavy 6 

dominant winds and currents, where fishing and tourism are regulated. The aim of the study was to 7 

identify any differences in microplastic levels among the three areas and validate the use of the 8 

bogue as a bioindicator for microplastic pollution. 9 

 10 

2. Materials and methods 11 
 12 

2.1. Study area and sampling 13 

 14 

A total of 102 bogues were collected during spring 2018 in three different areas of the Spanish 15 

Catalan coast (34 specimens per area), selected according to a gradient of industrialization and 16 

urbanization: 1) a highly anthropized area, located off the city of Barcelona; 2) an intermediate-17 

anthropized area, near the town of Blanes; 3) an MPA, off Cap de Creus (Fig 1). Fish were caught 18 

by local fishermen using trawling (22 individuals from Cap de Creus and 13 from Barcelona), purse 19 

seine (34 individuals from Blanes and 21 from Barcelona) and trammel nets (12 individuals from 20 

Cap de Creus) in areas located between 3 and 9.5 km from the coastline, at depths ranging between 21 

22 and 90 m. After collection, fish were stored at −20 °C. Total length and total wet weight were 22 

measured for each fish (Table S1). 23 

 24 

2.2. Extraction of microplastics  25 

 26 

Fish were defrosted at 5 ºC before dissection. The fish GI were dissected and weighed (wet weight, 27 

GIWW). To eliminate organic matter and enable detection of microplastics, samples were digested 28 

with hydrogen peroxide according to the protocol defined within the MEDSEALITTER project 29 

(MEDSEALITTER consortium, 2019). The GI content of each individual was placed into a glass 30 

beaker in 1:20 (w/v) H2O2 (15% H2O2, Chem-Lab, Germany) and heated on a hot plate at 55–65 °C 31 

until H2O2 evaporation. Aliquots of 10 ml H2O2 were added gradually to the beakers until all the 32 

organic matter was digested (the digestion process taking between  48 and 96 hours). Samples were 33 

then diluted with 50 ml Milli-Q and vacuum-filtered on fibreglass filters (pore size 1.2 μm, 34 

Whatman, GE Healthcare, UK), which were dried at room temperature for 24 hours and 35 

subsequently stored in Petri dishes. 36 

 37 

2.3. Microplastic detection and quantification 38 

 39 

Filters were examined under a stereomicroscope (Olympus, SZE and SZX7), and the microplastics 40 

detected were photographed using a digital camera (Luminera) and the INFINITY ANALYZE 41 

software. Items were counted and classified in four categories according to maximum length (< 0.1, 42 

0.1 – 0.5, 0.5 – 1.0, 1.0 – 5.0 mm), colour, and type (fragment, fibre and granule). Average 43 

microplastic abundance was expressed as a) average number of microplastic items per individual 44 

considering the total number of examined individuals, b) average number of microplastic items per 45 

individual considering only individuals containing microplastics and c) average number of 46 

microplastic items per gram GIWW, considering only individuals containing microplastics. The 47 

frequency of occurrence of ingested microplastics was calculated as the percentage of the 48 

individuals containing microplastics out of the total number of sampled individuals. 49 

 50 

2.4. FT-IR analysis 51 

 52 

https://medsealitter.interreg-med.eu/
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Fourier-transform infrared spectroscopy (FT-IR) was used in microplastic items larger than 300 μm 1 

to identify the type of synthetic polymer. FT-IR analysis was carried out with an Agilent Cary 630 2 

FT-IR spectrometer using a self-generated polymer library. The confidence level for the comparison 3 

of the sample spectrum to that of the self-generated library database was set up to 80% (Digka et al. 4 

2018). A minimum of 10% of the microplastics detected in the bogues GIs were analysed by FT-IR, 5 

as recommended by the marine litter monitoring guidelines provided by the MSFD technical group 6 

on marine litter (Galgani et al., 2013). 7 

 8 

2.5. Contamination precautions and quality control 9 

 10 

To prevent contamination throughout the analysis, the researchers performing the analyses wore 11 

white coats, and air currents were reduced to a minimum. All glass beakers were rinsed with 12 

purified water and fish samples were covered with aluminium foil during digestion. A glove bag 13 

was used for sample rinsing and filtration. Filters were protected with glass lids during stereoscope 14 

observation. Procedural blank samples were used during all steps, and items similar to those found 15 

in blank samples were excluded from statistical analyses, as they were considered airborne 16 

contamination.  17 

 18 

2.6. Statistical analysis 19 

 20 

Standardized data exploration techniques were used to identify outliers and possible collinearity 21 

between the physiological and spatial terms (Zuur et al., 2010). Microplastic abundance (calculated 22 

as in a), i.e., number of items per individual) in B. boops was modelled using GLMs (generalized 23 

linear models) with a negative binomial error distribution to account for overdispersion. Models 24 

were fitted with different combinations of the following explanatory variables: the level of 25 

anthropogenic impacts, categorized as low (MPA), medium (Blanes), high (Barcelona); the depth of 26 

the fishing area; the distance between the fishing area and the coastline, calculated using the 27 

measuring tool from Qgis (QGIS Development Team, 2018); the fishing method (trawling, purse 28 

seine and trammel nets); and the Fulton's condition factor, calculated as: K=100 ∗ (weight / total 29 

length
3
) (Froese, 2006). The information-theoretic approach was used for model selection 30 

(Burnham and Anderson, 2002) and models were compared using the AIC (Akaike's Information 31 

Criterion) (Akaike, 1974).  32 

 33 

A Tukey HSD test was performed to compare microplastic abundance (a) in the three sampling 34 

areas. Correlations between the number and size of the ingested microplastics, and the fish body 35 

length, weight and GIWW were tested using Spearman's rank correlations. Types of ingested 36 

microplastics (shapes, class sizes and colours) were compared using the Pearson's Chi-squared test. 37 

The significance level was set at p < 0.05. Calculations were carried out within the programming 38 

environment R (R Core Team, 2014). 39 

 40 

3. Results  41 
 42 

3.1. Microplastic quantification for each area 43 

  44 

In total, 46% of the fish had microplastics in their GI tracts. Microplastic abundance (a) ranged 45 

from 0 to 6 items per individual and the frequency of occurrence of ingested microplastics was 46 

higher in samples from the area off Barcelona (65%) than in those from the areas off Blanes and 47 

Cap de Creus (35% and 38%, respectively) (Table 1). 48 

 49 

A total of 32 different GLMs were fitted from the combination of the 6 variables plus the 50 

Depth*Coast interaction (Table 2). The model with the lowest AIC score was that including the 51 

level of anthropogenic impacts and the distance to the coastline (M19, AIC = 243; Table 2), 52 
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suggesting that higher ingestion rates of microplastics occur in locations near the coastline and with 1 

high anthropogenic impacts (Table 3). Accordingly, results from the Tuckey HSD test highlighted 2 

significant differences in microplastic abundance between the area off Barcelona and the other two 3 

areas (Table 4), while the difference in microplastic abundance between the area off Blanes and that 4 

off Cap de Creus was very small (0.50 ± 0.14 and 0.53 ± 0.14, respectively; Table 1). GLMs taking 5 

into account depth, fishing method and condition factor were not significant (Table 2).  6 

 7 

In the bogues sampled off Barcelona and Blanes, the number of ingested microplastics showed a 8 

significant negative correlation with the fish body length (Spearman's r, S = 10397, ρ = -0.59, p < 9 

0.001 and S = 8901, ρ = -0.36, p < 0.05; respectively) and the fish weight (Spearman's r, S = 88724, 10 

ρ = -0.62, p < 0.001 and S = 14842, ρ = -0.50, p = 0.001; respectively). Conversely, none of these 11 

correlations were significant in samples from the Cap de Creus MPA (Spearman's r, S = 6309, ρ = 12 

0.04, p = 0.84 and S = 8979, ρ = 0.09, p = 0.58) (Fig 2).  13 

No correlation was found between the number of ingested microplastics and GIWW in samples 14 

from Blanes and the Cap de Creus MPA (Spearman's r, S = 7911, ρ = -0.21, p = 0.24, and S = 6774, 15 

ρ = -0.36, p = 0.84; respectively), while the number of ingested microplastics showed a negative 16 

correlation with GIWW in samples from Barcelona (Spearman's r, S = 10377, ρ = -0.59, p < 0.001). 17 

Finally, no correlations were found between the microplastic size and the fish body length, weight 18 

or GIWW (Spearman’s r, p > 0.05). 19 
 20 
3.2. Microplastic characterization (shape, size, colour and polymer type) 21 

 22 

The proportion of shape, size class and colour categories did not differ among areas (Pearson's Chi-23 

squared test, p > 0.05). The majority of ingested microplastics in the three areas were fragments of 24 

different colours and sizes (Fig 3). The most common size class was 0.1 - 0.5 mm, found in the 25 

samples from all areas (Fig 3 B), and the most common colour was blue in the samples from 26 

Barcelona and Blanes and black in the samples from Cap de Creus MPA (Fig 3 C).  27 

Considering the microplastics analysed by FT-IR (n = 9), polypropylene was the most common 28 

polymer type (56%), followed by polyethylene (33%) and polystyrene (11%). Examples of 29 

microplastics found in the fish GI with the corresponding FT-IR spectra are shown in Fig 4.  30 

 31 

4. Discussion 32 
 33 

In this study, the ingestion of microplastics was investigated in bogue samples to assess the levels of 34 

microplastic pollution in three areas off the Catalan coast and validate the use of this species as a 35 

bioindicator for microplastic pollution. The use of bioindicator species is strongly recommended by 36 

the MSFD and other monitoring programmes (e.g. UNEP/MAP) to increase the knowledge on the 37 

extent of marine litter pollution and its impacts on marine species. Previous studies made using the 38 

same species as a bioindicator detected similar microplastic occurrence levels in the Balearic 39 

Islands of Mallorca and Ibiza (Mediterranean Sea) (Nadal et al., 2016). The occurrence of 40 

microplastic found by these authors in the full stomach and intestine of the 337 bogues analysed 41 

was 68%. However, only 9% of the 32 bogues sampled by Neves et al. (2015) in the North Atlantic, 42 

off the Portuguese cost, had microplastics in their digestive tracts, indicating a spatial variability in 43 

the levels of microplastic ingested by the bogues that reflects local levels of microplastics in the sea. 44 

 45 

4.1. Microplastic quantification  46 

 47 

Significant differences were detected in the levels of microplastics ingested by B. boops in the three 48 

areas. As expected, the results of microplastic quantification indicated that bogues sampled from the 49 

most anthropized area off Barcelona presented the highest abundance and frequency of occurrence 50 

of ingested microplastics. Our results are consistent with those obtained by Bellas et al. (2016), who 51 

analysed microplastic ingestion by the demersal fish species Mullus barbatus in three areas off the 52 
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Spanish Mediterranean coast and found the highest microplastic occurrence (33.3%) in the samples 1 

from the area off Barcelona.  2 

 3 

Barcelona is located between two rivers, the Besòs and the Llobregat, and hosts a population of 1.6 4 

million people (Instituto Nacional de Estadística, http://www.ine.es/welcome.shtml), a number of 5 

large industries, one of the most important commercial and tourist ports of the Mediterranean coast, 6 

and a large airport. Liubartseva et al. (2018) identify Barcelona as the second city of the 7 

Mediterranean Sea in terms of estimated inputs of plastic marine debris, with a total contribution of 8 

1,800 tons per year. Dominant marine currents along the Catalan coast follow a pattern from north 9 

to south parallel to the coast. They originate from the 30-km wide mesoscale Northern Current, 10 

which flows cyclonically along the continental slope from the Gulf of Genova to the southern Gulf 11 

of Valencia (Font et al., 1995). Indeed, urbanization has been reported to have a major influence on 12 

microplastic ingestion by fish (Peters and Bratton, 2016), and locations where currents converge 13 

accumulate marine litter and therefore marine biota more frequently ingest microplastics (Moore et 14 

al., 2001). Due to all these factors, bogues sampled in the marine area off Barcelona are exposed to 15 

higher microplastic concentrations than those occurring in other areas along the Catalan coast. 16 

 17 

The amounts of microplastics found in the GI tracts of the bogues sampled in the area off Blanes 18 

and in the Cap de Creus MPA were similar, and the average frequency of occurrence in both areas 19 

was consistent with the value of 37.5% found by Rios-Fuster et al. (2019) in B. boops from 20 

southern Spain. The same authors reported similar values of microplastic occurrence (≈ 30%) also 21 

in samples of Sardina pilchardus from Blanes and Trachurus mediterraneus and Engraulis 22 

encrasicolos from Cap de Creus MPA. Although lower abundance and frequency of occurrence 23 

might be expected in the marine protected area, consistently with our results, Nadal et al. (2016) 24 

also found high frequencies of microplastics occurrence in bogues sampled from Espardell, an 25 

island inside the MPA Ses Salines (Eivissa, Spain). These discrepancies indicate that microplastic 26 

presence in the sea must be interpreted from a wider perspective, evaluating levels of 27 

industrialization and urbanization in the proximity, but also the influence of seasonal currents, river 28 

discharges, wastewater treatments, rainfall, and tourism fluxes. The Cap de Creus MPA is very 29 

popular among international tourists due to its high natural and cultural values, and despite its high 30 

level of protection and preservation, high amounts of litter are generated on the land that may 31 

accidentally enter the sea. Furthermore, the dominant pattern of winds and currents may also 32 

generate local areas of microplastic accumulation during certain periods of the year. 33 

 34 

Results obtained from the best-fit model showed that bogues ingest higher rates of microplastics 35 

closer to the coastline. This result is consistent with those obtained by Rios-Fuster et al. (2019), and 36 

confirms the hypothesis that the greatest overlap between microplastics and marine fauna occurs in 37 

coastal waters (Clark et al., 2016), as higher concentrations of litter are often found in proximity of 38 

densely populated urban centres, touristic areas and shipping routes (Suaria et al., 2014). 39 

 40 

The abundance of ingested microplastics was inversely correlated with body length and weight in 41 

the bogues from Barcelona and Blanes but not in those from Cap de Creus MPA. Although similar 42 

studies show no effect of body length on microplastic ingestion occurrence in other fish species 43 

(e.g., Foekema et al., 2013, Digka et al., 2018), some authors suggest that larger individuals are less 44 

likely to ingest microplastics (e.g., Compa et al., 2018; Bessa et al., 2018), which may explain the 45 

higher abundance of microplastics in the GIs of the smaller individuals from Barcelona and Blanes. 46 

However, explanations for the discrepancy of the relationship between microplastics and body 47 

length between areas remain unknown, and it should be highlighted that the bogues from Cap de 48 

Creus were, on average, larger in size and weight, which likely had an effect on that relationship 49 

(Fig 2). In addition, no correlation with the Fulton's condition factor (K) was found in the bogues 50 

sampled for this study, despite Compa et al. (2018) reported that individuals of S. pilchardus with 51 

lower condition factor ingested more microplastics than those in individuals in better conditions. 52 

http://www.ine.es/welcome.shtml
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Although Compa et al. (2018) did not find any difference in the abundance of ingested 1 

microplastics between mature and immature individuals, microplastic ingestion rates could be also 2 

related with the fish developmental stages, as mature and immature individuals often show 3 

behavioural and feeding habits dissimilarities.  4 

 5 

4.2. Microplastic characterization   6 

 7 

Microplastics ingested by B. boops from the Catalan coast were primarily fragments (⁓60%) and 8 

secondly fibres (⁓40%) (Fig 3A). Fragments are the result of the degradation of larger plastic items, 9 

while fibres are the most abundant component of primary microplastics in seas and oceans 10 

worldwide (Bessa et al., 2018). Our results revealed, proportionally, a smaller contribution of 11 

fragments and a larger contribution of fibres than those detected in fish of the Northern Ionian Sea 12 

by Digka et al. (2018), who reported approximately 80% fragments and 20% fibres, respectively, 13 

showing a similar order of prevalence. Conversely, other studies (e.g., Lusher et al., 2013; Bellas et 14 

al., 2016; Güven et al., 2017; Compa et al., 2018; Bessa et al., 2018) found a higher percentage of 15 

fibres than fragments in fish GIs. These contrasting results may be related to different sources and 16 

waste management strategies in the sampling areas, which could prevent or reduce the amounts of 17 

plastic items that reach the sea from land, brought by rivers or wind (Digka et al., 2018; Boucher 18 

and Friot, 2017).  19 

 20 

In the present study, microplastics were classified into 4 size categories according to their largest 21 

dimensions. The main microplastic size class was 0.1 - 0.5 mm (Fig 3B), supporting the role of 22 

indirect intake from microplastics ingested by prey (i.e., zooplankton) as an important mechanism 23 

of microplastic ingestion in fish (Avio et al., 2017; Neves et al., 2015). However, future research is 24 

needed to improve knowledge regarding the mechanisms of microplastic ingestion by bogues 25 

(Nadal et al., 2016). In addition, Digka et al. (2018) also found that microplastics between 0.1 - 0.5 26 

mm were the most prevalent in mussels and fish from the Adriatic Sea. However, microplastics < 27 

0.1 mm may have been underestimated due to the reduced recovery rates for smaller particles (Avio 28 

et al., 2015).  29 

 30 

The predominant colour of the microplastics ingested by bogues was blue (Fig 3C), a result 31 

consistent with other studies (e.g., Romeo et al., 2015; Güven et al., 2017; Peters et al., 2017; 32 

Compa et al., 2018; Digka et al. 2018). The prevalence of this colour may suggest that fish ingest 33 

microplastics regardless of their colour, as blue microplastics are not distinctively visible to fish 34 

(Peters and Bratton, 2016). 35 

 36 

Finally, the most common polymer types detected in the litter ingested by B. boops were 37 

polypropylene, polyethylene and polystyrene. These results were expected because these three 38 

polymers are present in most plastic litter found in the water column worldwide (Suaria et al., 2016; 39 

Cózar et al., 2017). Polyethylene is used to manufacture plastic bags and bottles (Suaria et al., 2016; 40 

Cózar et al., 2017), which makes it the most abundant plastic in the world; polypropylene is highly 41 

abundant in bottle caps and packages (Suaria et al., 2016); and polystyrene is used widely for 42 

fishing boxes and other common containers. Consistently with our findings, polypropylene and 43 

polyethylene were also predominant in other studies of microplastic ingestion in fish from the 44 

Mediterranean Sea (Avio et al., 2017; Digka et al., 2018) and other European seas (Collard et al., 45 

2017). 46 

 47 

4.3. The use of bioindicators for marine litter monitoring in the international  legislative framework 48 

 49 

New international and EU directives are focusing on the reduction of waste and on the 50 

implementation of monitoring programs to assess the extent of marine litter pollution and its 51 

impacts in order to plan adequate mitigation measures. Among others, the Waste Directive 52 
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(amending 2008/98/EC), the Packaging Directive (94/62/EC), the Plastic Carrier Bags Directive 1 

(2015/720/UE amending 94/62/EC), the Single Use Plastic Directive (2018/0172/EC) and the 2 

Directive on Port reception facilities for the delivery of waste from ships (directive COM(2018) 33) 3 

are addressing these issues. In addition, the UNEP/MAP Regional Plan for Marine litter 4 

Management in the Mediterranean (UNEP/MAP IG.21/9) highlights the urgent need to act against 5 

marine litter. From the UN Environment Integrated Monitoring and Assessment Programme of the 6 

Mediterranean Sea and Coast and Related Assessment Criteria (IMAP), adopted in 2016, the use of 7 

bioindicator species for marine litter monitoring is clearly recommended by the Candidate Indicator 8 

24: Trends in the amount of litter ingested by or entangling marine organisms, focusing on selected 9 

mammals, marine birds, and marine turtles, under Ecological Objective 10 (EO10). Moreover, the 10 

UNEP/MAP (Galgani, 2017) reported recently that bioindicator species are highly needed to 11 

monitor microplastics and marine litter in general. To comply with legal requirements and the 12 

urgent need to address the issues posed by marine litter, several studies focusing on microplastic 13 

ingestion are investigating suitable bioindicator species (Bray et al., 2019; Fossi et al., 2018). In this 14 

framework, furthermore, MSFD (Commission Decision 2017/848) aims to achieve the Good 15 

Environmental Status, and it will be possible when we achieve the D10 criteria, which  states: 16 

Properties and quantities of marine litter do not cause harm to the coastal and marine environment. 17 

Results from the present article provide a further support for the adoption of B. boops as a 18 

bioindicator species for marine litter (i.e. the ever-increasing microplastics) monitoring.  19 

 20 

5. Conclusions  21 

 22 
Our results identify the area off Barcelona as a possible area of concentration for microplastics and 23 

further support the use of B. boops as bioindicator of microplastic pollution in the Mediterranean 24 

Sea, potentially reflecting both environmental microplastic loads and their main characteristics. In 25 

addition, the results from this study contribute to increasing the knowledge about levels of 26 

microplastic pollution in the Mediterranean, highlighting that highly anthropized areas can be 27 

potential hotspots for microplastic accumulation and thus ingestion by marine fauna. The 28 

assessment of microplastic levels and the identification of potential hotspots of microplastic 29 

accumulation and/or higher risk for marine fauna is a necessary requirement for planning targeted 30 

measures to reduce the potential risks related to marine litter.  31 

 32 
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 43 

Figures and Tables 44 
 45 
Table 1. Biological parameters, frequency of occurrence and abundance of ingested microplastics (MP) in B. boops 46 
from the three sampling areas.  47 

Area Barcelona Blanes Cap de Creus MPA 

Number of individuals examined 34 34 34 

Mean fish length (cm) 19.41 ± 2.81
 

19.86 ± 1.11
 

23.97 ± 3.93
 

Mean fish weight (g) 74.43 ± 28.69 103.92 ± 18.05 178.10 ± 111.65 

https://medsealitter.interreg-med.eu/what-we-achieve/deliverable-database/detail/?tx_elibrary_pi1%5Blivrable%5D=6774&tx_elibrary_pi1%5Baction%5D=show&tx_elibrary_pi1%5Bcontroller%5D=Frontend////Livrable&cHash=3a505bc70229244a185e86ddb84f1fed
http://qgis.osgeo.org/
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Fulton's condition factor (K) 0.99 ± 0.11 1.32 ± 0.12 1.17 ± 0.17 

Mean GIWW (g) 4.98 ± 2.26 8.17 ± 2.04 9.81 ± 3.66 

Number of individuals containing MP 22 12 13 

MP frequency of occurrence (%) 64.71 35.29 38.24 

MP number 57 17 18 

MP longest dimension length range (μm) 50 - 2960 66 - 3300 88 - 4700 

MP abundance (mean ± SD)  

a) Number of items per individual in all 

individuals examined 
1.68 ± 0.31

a 0.50 ± 0.14
b 0.53 ± 0.14

c 

b) Number of items per individual in 

individuals containing MP 
2.59 ± 0.35 1.42 ± 0.23 1.38 ± 0.18 

c) Number of items per gram weight in 

individuals containing MP 
0.83 ± 0.15

 
0.20 ± 0.05

 
0.16 ± 0.02

 

a, b, c 
Indicate significant differences between fish sampling areas (Tuckey HSD test).  1 

 2 
Table 2. Results from the GLMs fitted with a negative binomial error distribution and ranked by Akaike Information 3 
Criterion corrected (AICc) for microplastic abundance (a) in B. boops. Explanatory variables included in the models: 4 
level of anthropogenic impacts (low, medium and high), depth (m), coastline distance (km), fishing method (trawling, 5 
purse seine and trammel nets) and condition factor (Fulton's K). The best-fit model is shown in bold.  6 

 Model AIC 

M1 Level of anthropogenic impacts + Coast * Depth + K + Method 251 

M2 Level of anthropogenic impacts + Coast + Depth + K + Method 251 

M3 Level of anthropogenic impacts + Coast + Depth + K 247 

M4 Level of anthropogenic impacts + Coast + Depth + Method 249 

M5 Level of anthropogenic impacts + Coast + K + Method 249 

M6 Level of anthropogenic impacts + Depth + K + Method 259 

M7 Coast + Depth + K + Method 276 

M8 Level of anthropogenic impacts + Coast + Depth  245 

M9 Level of anthropogenic impacts + Coast +  K  245 

M10 Level of anthropogenic impacts + Depth + K  260 

M11 Level of anthropogenic impacts + K + Method 257 

M12 Level of anthropogenic impacts +  Depth + Method 257 

M13 Level of anthropogenic impacts + Coast + Method 247 

M14 Depth + K + Method 275 

M15 Coast + K + Method 274 

M16 Coast + Depth + Method 274 

M17 Coast + Depth + K  274 

M18 Level of anthropogenic impacts + Depth  260 

M19 Level of anthropogenic impacts + Coast  243 

M20 Level of anthropogenic impacts + K 259 

M21 Depth + Method 276 

M22 K + Method 274 

M23 Coast + Method 273 

M24 Level of anthropogenic impacts + Method 255 

M25 K + Depth 272 

M26 Coast + K 273 

M27 Coast + Depth 273 

M28 Level of anthropogenic impacts  259 

M29 Method 274 

M30 Coast 274 

M31 K 271 

M32 Depth 272 
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 1 
Table 3. Summary of the results from the best-fit GLM, fitted with the variables “level of anthropogenic impacts” and 2 
“distance to the coastline” (M19). 3 

Term Coefficient estimate Standard error Z value Pr(> |z|) 
Intercept 5.20 1.10 4.73 < 0.001 
Level of anthropogenic 

impacts (Low) 
-3.36 0.61 -5.48 < 0.001 

Level of anthropogenic 

impacts (Medium) 
-1.87 0.33 -5.69 < 0.001 

Coast -0.62 0.15 -4.20 < 0.001 
 4 
Table 4. Summary of the results from the Tuckey HSD multiple comparisons of means for the factor “level of 5 
anthropogenic impacts” (categorized in: Low (“L”), Medium (“M), High (“H”). 6 
Linear hypotheses Coefficient estimate Standard error Z value Pr(> |z|) 

L – H == 0 -3.36 0.61 -5.48 < 0.001 
M – H == 0 -1.87 0.33 -5.69 < 0.001 
M – L == 0 1.49 0.54 2.75 0.02 

 7 

Figure 1. Study area showing the three sampling areas: Barcelona, Blanes and Cap de Creus MPA.  8 
 9 
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 1 
Figure 2. Box plot showing the relationship between the bogues body length and the number of microplastics ingested. 2 
The central line indicates the median fish length for each area and number of microplastics; the edges of the box 3 
indicate the 25

th
 and 75

th
 percentiles; whiskers extend to extreme data points not considered outliers, and outliers are 4 

plotted individually as circles. 5 

 6 
Figure 3. Shape (A), size (B) and colour (C) of microplastics detected in B. boops from the three sampling areas. 7 

 8 
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Figure 4. Examples of microplastics found in fish gastrointestinal tract with relative Fourier-transform infrared 

spectroscopy spectra (level of certainty of 82 and 95% for the first and second microplastic item spectra, respectively). 
 

Annex 1 
 2 
Table S1: Fishing methods, spatial parameters of the fishing location, biometric parameters, and ingested microplastics 3 
for the 102 B. boops sampled.  4 

Area 
Fishing 

method 

Distance 

to the 

coastline 

(m) 

Depth 

(m) 
Biometric parameters 

Ingested 

microplastics 

    

Total 

fish 

length 

(mm) 

Total 

fish 

weight 

(g) GIWW (g) 

Occurrence 

(0/1) 
Number 

of MP 

Barcelona Trawling 7.0 90 170 43.4 2.2 1 5 

Barcelona Trawling 7.0 90 195 75.9 4.9 0 0 

Barcelona Trawling 7.0 90 185 65.3 4.0 0 0 

Barcelona Trawling 7.0 90 175 63.4 4.1 1 2 

Barcelona Trawling 7.0 90 185 61.3 4.5 1 2 

Barcelona Trawling 7.0 90 160 43.9 2.0 1 1 

Barcelona Trawling 7.0 90 175 59.2 2.8 1 2 

Barcelona Trawling 7.0 90 170 45.8 2.9 0 0 

Barcelona Trawling 7.0 90 180 59.1 4.1 1 4 

Barcelona Trawling 7.0 90 165 50.4 2.4 1 5 

Barcelona Trawling 7.0 90 160 47.9 2.8 1 5 

Barcelona Trawling 7.0 90 170 48.9 2.6 1 3 

Barcelona Trawling 7.0 90 155 39.3 1.9 1 4 

Barcelona Purse seine 9.5 25 160 47.9 2.4 1 2 
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Barcelona Purse seine 9.5 25 175 54.0 3.9 1 3 

Barcelona Purse seine 9.5 25 185 62.9 4.1 1 3 

Barcelona Purse seine 9.5 25 180 52.8 3.5 1 6 

Barcelona Purse seine 9.5 25 175 48.6 4.0 1 1 

Barcelona Purse seine 9.5 25 200 70.4 4.1 1 1 

Barcelona Purse seine 9.5 25 220 106.3 8.1 1 1 

Barcelona Purse seine 9.5 25 260 131.7 9.5 1 1 

Barcelona Purse seine 9.5 25 215 98.5 6.3 1 3 

Barcelona Purse seine 9.5 25 225 96.1 8.6 1 1 

Barcelona Purse seine 9.5 25 235 122.4 7.9 0 0 

Barcelona Purse seine 9.5 25 205 77.4 5.4 1 1 

Barcelona Purse seine 9.5 25 210 81.0 5.5 0 0 

Barcelona Purse seine 9.5 25 235 135.4 9.5 0 0 

Barcelona Purse seine 9.5 25 215 83.7 4.9 0 0 

Barcelona Purse seine 9.5 25 215 95.6 6.2 0 0 

Barcelona Purse seine 9.5 25 210 84.7 6.4 1 1 

Barcelona Purse seine 9.5 25 245 151.5 8.5 0 0 

Barcelona Purse seine 9.5 25 205 72.0 5.9 0 0 

Barcelona Purse seine 9.5 25 195 78.0 5.3 0 0 

Barcelona Purse seine 9.5 25 190 76.3 8.1 0 0 

Blanes Purse seine 6.5 25 200 114.0 8.1 0 0 

Blanes Purse seine 6.5 25 195 101.4 9.2 0 0 

Blanes Purse seine 6.5 25 205 100.0 8.7 0 0 

Blanes Purse seine 6.5 25 210 108.0 8.6 0 0 

Blanes Purse seine 6.5 25 190 87.7 8.8 0 0 

Blanes Purse seine 6.5 25 190 85.1 6.9 1 1 

Blanes Purse seine 6.5 25 185 89.1 5.2 0 0 

Blanes Purse seine 6.5 25 195 88.5 7.5 0 0 

Blanes Purse seine 6.5 25 200 79.5 6.0 1 2 

Blanes Purse seine 6.5 25 200 126.0 9.0 1 1 

Blanes Purse seine 6.5 25 190 88.7 7.5 0 0 

Blanes Purse seine 6.5 25 210 131.0 11.2 0 0 

Blanes Purse seine 6.5 25 195 91.1 5.7 0 0 

Blanes Purse seine 6.5 25 195 105.5 7.0 0 0 

Blanes Purse seine 6.5 25 195 97.0 8.7 1 1 

Blanes Purse seine 6.5 25 190 90.2 6.1 0 0 

Blanes Purse seine 6.5 25 180 86.1 7.5 1 1 

Blanes Purse seine 6.5 25 210 116.0 11.1 1 1 

Blanes Purse seine 6.5 25 200 117.1 9.3 0 0 

Blanes Purse seine 6.5 25 240 167.9 9.1 0 0 

Blanes Purse seine 6.5 25 200 112.3 15.3 0 0 

Blanes Purse seine 6.5 25 205 101.5 9.8 1 1 

Blanes Purse seine 6.5 25 210 119.4 9.2 0 0 

Blanes Purse seine 6.5 25 200 98.6 6.6 0 0 

Blanes Purse seine 6.5 25 195 88.8 7.0 1 1 

Blanes Purse seine 6.5 25 210 118.5 8.5 0 0 

Blanes Purse seine 6.5 25 195 96.2 6.2 0 0 
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Blanes Purse seine 6.5 25 190 97.4 7.4 1 3 

Blanes Purse seine 6.5 25 205 109.1 8.5 0 0 

Blanes Purse seine 6.5 25 210 130.3 11.4 0 0 

Blanes Purse seine 6.5 25 185 87.1 6.9 1 1 

Blanes Purse seine 6.5 25 185 85.8 5.0 1 3 

Blanes Purse seine 6.5 25 200 115.5 7.0 0 0 

Blanes Purse seine 6.5 25 190 102.9 8.1 1 1 

MPA Trammel nets 3.0 20 220 128.0 9.3 1 1 

MPA Trammel nets 3.0 20 240 162.9 10.0 0 0 

MPA Trammel nets 3.0 20 220 124.7 6.5 1 2 

MPA Trammel nets 3.0 20 340 520.0 22.2 0 0 

MPA Trammel nets 3.0 20 300 411.7 15.0 1 1 

MPA Trammel nets 3.0 50 280 327.0 8.9 0 0 

MPA Trammel nets 3.0 50 345 474.6 12.4 0 0 

MPA Trammel nets 3.0 50 300 336.2 15.4 1 2 

MPA Trammel nets 3.0 50 270 263.9 15.0 0 0 

MPA Trammel nets 3.0 50 250 203.7 16.1 1 1 

MPA Trammel nets 3.0 50 220 146.6 8.5 1 3 

MPA Trammel nets 3.0 50 190 98.7 4.8 1 1 

MPA Trawling 5.0 90 230 137.2 11.6 0 0 

MPA Trawling 5.0 90 230 141.5 9.2 0 0 

MPA Trawling 5.0 90 220 166.5 11.4 0 0 

MPA Trawling 5.0 90 225 125.7 9.1 0 0 

MPA Trawling 5.0 90 235 127.2 10.2 1 2 

MPA Trawling 5.0 90 220 99.4 8.7 0 0 

MPA Trawling 5.0 90 215 105.2 8.6 0 0 

MPA Trawling 5.0 90 195 86.0 4.9 1 1 

MPA Trawling 5.0 90 185 61.8 8.5 0 0 

MPA Trawling 5.0 90 195 72.3 8.2 0 0 

MPA Trawling 5.0 90 185 70.6 5.8 0 0 

MPA Trawling 5.0 90 190 78.7 8.6 0 0 

MPA Trawling 5.0 90 245 126.9 7.4 0 0 

MPA Trawling 5.0 90 245 141.6 5.6 0 0 

MPA Trawling 5.0 90 220 126.3 5.3 0 0 

MPA Trawling 5.0 90 225 143.0 11.0 1 1 

MPA Trawling 5.0 90 240 152.4 8.5 0 0 

MPA Trawling 5.0 90 260 191.9 12.2 0 0 

MPA Trawling 5.0 90 255 192.0 10.0 0 0 

MPA Trawling 5.0 90 255 175.2 7.7 1 1 

MPA Trawling 5.0 90 255 159.2 8.0 1 1 

MPA Trawling 5.0 90 250 176.9 8.6 1 1 
1 

2 




