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We study the class of entire transcendental maps of finite order with one critical point and one
asymptotic value, which has exactly one finite pre-image, and having a persistent Siegel disc.
After normalisation this is a one parameter family fa with a ∈ C∗ which includes the semi-
standard map λzez at a = 1, approaches the exponential map when a → 0 and a quadratic
polynomial when a → ∞. We investigate the stable components of the parameter plane
(capture components and semi-hyperbolic components) and also some topological properties
of the Siegel disc in terms of the parameter.

1. Introduction

Given a holomorphic endomorphism f : S → S on a Riemann surface S we consider

the dynamical system generated by the iterates of f , denoted by fn = f◦
n
· · · ◦f .

The orbit of an initial condition z0 ∈ S is the sequence O+(z0) = {fn(z0)}n∈N

and we are interested in classifying the initial conditions in the phase space or
dynamical plane S, according to the asymptotic behaviour of their orbits when n
tends to infinity.

There is a dynamically natural partition of the phase space S into the Fatou
set F (f) (open) where the iterates of f form a normal family and the Julia set
J (f) = S\F (f) which is its complement (closed).

If S = Ĉ = C ∪ ∞ then f is a rational map. If S = C and f does not extend
to the point at infinity, then f is an entire transcendental map, that is, infinity is
an essential singularity. Entire transcendental functions present many differences
with respect to rational maps.

One of them concerns the singularities of the inverse function. For a rational
map, all branches of the inverse function are well defined except at a finite number
of points called the critical values, points w = f(c) where f ′(c) = 0. The point c is
then called a critical point. If f is an entire transcendental map, there is another
possible obstruction for a branch of the inverse to be well defined, namely its
asymptotic values. A point v ∈ C is called an asymptotic value if there exists a
path γ(t) → ∞ when t → ∞, such that f(γ(t)) → v as t → ∞. An example is
v = 0 for f(z) = ez, where γ(t) can be chosen to be the negative real axis.

In any case, the set of singularities of the inverse function, also called singu-
lar values, plays a very important role in the theory of iteration of holomorphic
functions. This statement is motivated by the non-trivial fact that most connected
components of the Fatou set (or stable set) are somehow associated to a singular
value. Therefore, knowing the behaviour of the singular orbits provides information
about the nature of the stable orbits in the phase space.
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The dynamics of rational maps are fairly well understood, given the fact that
they possess a finite number of critical points and hence of singular values. This
motivated the definition and study of special classes of entire transcendental func-
tions like, for example, the class S of functions of finite type which are those with
a finite number of singular values. A larger class is B the class of functions with a
bounded set of singularities. These functions share many properties with rational
maps, one of the most important is the fact that every connected component of
the Fatou set is eventually periodic (see e.g. [7] or [11]). There is a classification of
all possible periodic connected components of the Fatou set for rational maps or
for entire transcendental maps in class S. Such a component can only be part of
a cycle of rotation domains (Siegel discs) or part of the basin of attraction of an
attracting, super-attracting or parabolic periodic orbit.

We are specially interested in the case of rotation domains. We say that ∆
is an invariant Siegel disc if there exists a conformal isomorphism ϕ : ∆ → D

which conjugates f to Rθ(z) = e2πiθz (and ϕ can not be extended further), with
θ ∈ R\Q∩ (0, 1) called the rotation number of ∆. Therefore a Siegel disc is foliated
by invariant closed simple curves, where orbits are dense. The existence of such
Fatou components was first settled by Siegel [24] who showed that if z0 is a fixed
point of multiplier ρ = f ′(z0) = e2πiθ and θ satisfies a Diophantine condition,
then z0 is analytically linearisable in a neighbourhood or, equivalently, z0 is the
centre of a Siegel disc. The Diophantine condition was relaxed later by Brjuno and
Rüssman (for an account of these proofs see e.g. [17]), who showed that the same is
true if θ belonged to the set of Brjuno numbers B. The relation of Siegel discs with
singular orbits is as follows. Clearly ∆ cannot contain critical points since the map
is univalent in the disc. Instead, the boundary of ∆ must be contained in the post-
critical set ∪c∈Sing(f−1)O+(c) i.e., the accumulation set of all singular orbits. In
fact something stronger is true, namely that ∂∆ is contained in the accumulation
set of the orbit of at least one singular value (see [15]).

Our goal in this paper is to describe the dynamics of the one parameter family
of entire transcendental maps

fa(z) = λa(ez/a(z + 1 − a) − 1 + a),

where a ∈ C \ {0} = C∗ and λ = e2πiθ with θ being a fixed irrational Brjuno
number. Observe that 0 is a fixed point of multiplier λ and therefore, for all values
of the parameter a, there is a persistent Siegel disc ∆a around z = 0. The functions
fa have two singular values: the image of the only critical point w = −1 and an
asymptotic value at va = λa(a− 1) which has one and only one finite pre-image at
the point pa = a− 1.

The motivation for studying this family of maps is manifold. On one hand this is
the simplest family of entire transcendental maps having one simple critical point
and one asymptotic value with a finite pre-image (see Theorem 3.1 for the actual
characterisation of fa). The persistent Siegel disc makes it into a one-parameter
family, since one of the two singular orbits must be accumulating on the boundary
of ∆a. We will see that the situation is very different, depending on which of
the two singular values is doing that. Therefore, these maps could be viewed as
the transcendental version of cubic polynomials with a persistent invariant Siegel
disc, studied by Zakeri in [28]. In our case, many new phenomena are possible with
respect to the cubic situation, like unbounded Siegel discs for example; but still the
two parameter planes share many features like the existence of capture components
or semi-hyperbolic ones.

There is a second motivation for studying the maps fa, namely that this one
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parameter family includes in some sense three emblematic examples. For a = 1
we have the function f1(z) = λzez , for large values of a we will see that fa is
polynomial-like of degree 2 in a neighbourhood of the origin (see Theorem 3.2);
finally when a → 0, the dynamics of fa are approaching those of the exponential
map u 7→ λ(eu − 1), as it can be seen changing variables to u = z/a. Thus the

parameter plane of fa can be thought of as containing the polynomial λ(z + z2

2 )
at infinity, its transcendental analogue f1 at a = 1, and the exponential map at
a = 0. The maps z 7→ λzez have been widely studied (see [10] and [8]), among
other reasons, because they share many properties with quadratic polynomials:
in particular it is known that when θ is of constant type, the boundary of the
Siegel disc is a quasi-circle that contains the critical point. It is not known however
whether there exist values of θ for which the Siegel disc of f1 is unbounded. In the
long term we hope that this family fa can throw some light into this and other
problems about f1.

For the maps at hand we prove the following.

Theorem A .

a) There exists R,M > 0 such that if θ is of constant type and |a| > M then
the boundary of ∆a is a quasi-circle which contains the critical point. Moreover
∆a ⊂ D(0, R).

b) If θ is Diophantine and the orbit of c = −1 belongs to a periodic basin or is
eventually captured by the Siegel disc, then either the Siegel disc ∆a is unbounded
or its boundary is an indecomposable continuum.

c) If θ is Diophantine and fna (−1)
n→∞
−→ ∞ the Siegel disc ∆a is unbounded, and

the boundary contains the asymptotic value.

Part a) follows from Theorem 3.2 (see Corollary 3.3 below it). The remaining
parts (Theorem 3.4) are based on Herman’s proof [12] of the fact that Siegel discs
of the exponential map are unbounded, if the rotation number is Diophantine,
although in this case there are some extra difficulties given by the free critical
point and the finite pre-image of the asymptotic value.

In this paper we are also interested in studying the parameter plane of fa, which is
C∗, and in particular the connected components of its stable set, i.e., the parameter
values for which the iterates of both singular values form a normal family in some
neighbourhood. We denote this set as S (not to be confused with the class of finite
type functions). These connected components are either capture components, where
an iterate of the free singular value falls into the Siegel disc; or semi-hyperbolic,
when there exists an attracting periodic orbit (which must then attract the free
singular value); otherwise they are called queer.

The following theorem summarises the properties of semi-hyperbolic components,
and is proved in Section 4 (see Proposition 4.3, Theorems 4.6, 4.7 and Proposition
4.8 therein). By a component of a set we mean a connected component.

Theorem B . Define

Hc = {a ∈ C|O+(−1) is attracted to an attracting periodic orbit},

Hv = {a ∈ C|O+(va) is attracted to an attracting periodic orbit}.

a) Every component of Hv ∪Hc is simply connected.
b) If W is a component of Hv then W is unbounded and the multiplier map χ :

W → D∗ is the universal covering map.
c) There is one component Hv

1 of Hv for which O+(va) tends to an attracting fixed
point. Hv

1 contains the segment [r,∞) for r large enough.
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d) If W is a component of Hc, then W is bounded and the multiplier map χ : W →
D is a conformal isomorphism.

Indeed, when the critical point is attracted by a cycle, we naturally see copies of
the Mandelbrot set in parameter space. Instead, when it is the asymptotic value
that acts in a hyperbolic fashion, we find unbounded exponential-like components,
which can be parametrised using quasi-conformal surgery.

A dichotomy also occurs with capture components. Numerically we can observe
copies of quadratic Siegel discs in parameter space, which correspond to compo-
nents for which the asymptotic value is being captured. There is in fact a main
capture component Cv0 , the one containing a = 1 (see Figure 1), which corresponds
to parameters for which the asymptotic value va, belongs itself to the Siegel disc.
This is possible because of the existence of a finite pre-image of va. The centre of
Cv0 is the semi-standard map f1(z) = λzez, for which zero itself is the asymptotic
value.

The properties we show for capture components are summarised in the following
theorem (see Section 5: Theorem 5.3 and Proposition 5.5).

Theorem C . Let us define

Cc = {a ∈ C|fna (−1) ∈ ∆a for some n ≥ 1},

Cv = {a ∈ C|fna (va) ∈ ∆a for some n ≥ 0}.

Then

a) Cc and Cv are open sets.
b) Every component W of Cc ∪ Cv is simply connected.
c) Every component W of Cc is bounded.
d) There is only one component of Cv0 = {a ∈ C|va ∈ ∆a} and it is bounded.

Numerical experiments show that if θ is of constant type, the boundary of Cv0 is
a Jordan curve, corresponding to those parameter values for which both singular
values lie on the boundary of the Siegel disc (see Figure 1). This is true for the
slice of cubic polynomials having a Siegel disc of rotation number θ, as shown by
Zakeri in [28], but his techniques do not apply to this transcendental case.

H2

H2

H1

0 1 11

Figure 1. Left: Simple escape time plot of the parameter plane. Light grey: asymptotic orbit escapes, dark
grey critical orbit escapes, white neither escapes. Regions labelled H1 and H2 correspond to parameters
for which the asymptotic value is attracted to an attracting cycle. Right: The same plot, using a different
algorithm which emphasises the capture components. Upper left: (−2, 2), Lower right: (4,−4).
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As we already mentioned, we are also interested in parameter values for which fa
is Julia stable, i.e. where both families of iterates {fna (−1)}n∈N and {fna (va)}n∈N are
normal in a neighbourhood of a (see Section 6). We first show that any parameter
in a capture component or a semi-hyperbolic component is J -stable.

Proposition D. If a ∈ H ∪ C then fa is J -stable, where H = Hc ∪ Hv and
C = Cc ∪ Cv.

By using holomorphic motions and the proposition above, it is enough to have
certain properties for one parameter value a0, to be able to “extend” them to all
parameters belonging to the same stable component. More precisely we obtain the
following corollaries (see Proposition 5.6 and Corollary 6.3).

Proposition E.

a) If θ is of constant type and a ∈ Cv0 (i.e. the asymptotic value lies inside the
Siegel disc) then ∂∆a is a quasi-circle that contains the critical point.

b) Let W ⊂ Hv ∪ Cv be a component intersecting {|z| > M} where M is as in
Theorem A. Then,

i) if θ is of constant type, for all a ∈ W the boundary ∂∆a is a quasi-circle
containing the critical point.

ii) There exist values of θ ∈ R\Q∩(0, 1) such that if a component W ⊂ Cv∪Hv

intersects {|z| > M}, then for all a ∈ W , the boundary of ∆a is a quasi-
circle not containing the critical point.

The paper is organised as follows. Section 2 contains statements and references
of some of the results used throughout the paper. Section 3 contains the charac-
terisation of the family fa, together with descriptions and images of the possible
scenarios in dynamical plane. It also contains the proof of Theorem A. Section 4
deals with semi-hyperbolic components and contains the proof of Theorem B, split
in several parts, and not necessarily in order. In the same fashion, capture compo-
nents and Theorem C are treated in Section 5. Finally Section 6 investigates Julia
stability and contains the proofs of Propositions D and E.

2. Preliminary results

In this section we state results and definitions which will be useful in the sections
to follow.

2.1 Quasi-conformal mappings and holomorphic motions

First we introduce the concept of quasi-conformal mapping. Quasi-conformal map-
pings are a very useful tool in complex dynamical systems as they provide a bridge
between a geometric construction for a system and its analytic information. They
are also a fundamental pillar for the framework of quasi-conformal surgery, the
other one being the measurable Riemann mapping theorem. For the groundwork
on quasi-conformal mappings see for example [1], and for an exhaustive account
on quasi-conformal surgery, see [4].

Definition 2.1 . Let µ : U ⊆ C → C be a measurable function. Then it is a
k-Beltrami form (or Beltrami coefficient, or complex dilatation) of U if ‖µ(z)‖∞ ≤
k < 1.
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Definition 2.2 . Let f : U ⊆ C → V ⊆ C be a homeomorphism. We call it
k-quasi-conformal if locally it has distributional derivatives in L2 and

µf (z) =
∂f
∂z̄ (z)
∂f
∂z (z)

(1)

is a k-Beltrami coefficient. Then µf is called the complex dilatation of f(z) (or the
Beltrami coefficient of f(z)).

Given f(z) satisfying all above except being an homeomorphism, we call it k-
quasi-regular.

The following technical theorem will be used when we have compositions of
quasi-conformal mappings and finite order mappings.

Theorem 2.3 [9, p. 750]. A k-quasi-conformal mapping in a domain U ⊂ C is
uniformly Hölder continuous with exponent (1−k)/(1+k) in every compact subset
of U .

Theorem 2.4 (Measurable Riemann Mapping, MRMT). Let µ be a Beltrami form
over C. Then there exists a quasi-conformal homeomorphism f integrating µ (i.e.
the Beltrami coefficient of f is µ), unique up to composition with an affine trans-
formation.

Theorem 2.5 (MRMT with dependence of parameters). Let Λ be an open set of

C and let {µλ}λ∈Λ be a family of Beltrami forms on Ĉ. Suppose λ → µλ(z) is
holomorphic for each fixed z ∈ C and ‖µλ‖∞ ≤ k < 1 for all λ. Let fλ be the
unique quasi-conformal homeomorphism which integrates µλ and fixes three given
points in Ĉ. Then for each z ∈ Ĉ the map λ→ fλ(z) is holomorphic.

The concept of holomorphic motion was in [14] introduced along with the (first)
λ-lemma.

Definition 2.6 . Let h : Λ ×X0 → Ĉ, where Λ is a complex manifold and X0 an
arbitrary subset of Ĉ, such that

• h(0, z) = z,

• h(λ, ·) is an injection from X0 to Ĉ,

• For all z ∈ X0, z 7→ h(λ, z) is holomorphic.

Then hλ(z) = h(λ, z) is called a holomorphic motion of X.

The following two fundamental results can be found in [14] and [25] respectively.

Lemma 2.7 (First λ-lemma). A holomorphic motion hλ of any set X ⊂ Ĉ extends
to a jointly continuous holomorphic motion of X̄.

Lemma 2.8 (Second λ-lemma). Let U ⊂ C be a set and hλ a holomorphic motion
of U . This motion extends to a holomorphic motion of C.

2.2 Hadamard’s factorisation theorem

We will need the notion of rank and order to be able to state Hadamard’s factori-
sation theorem, which we will use in the proof of Theorem 3.1. All these results
can be found in [5].
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Definition 2.9 . Given f : C → C an entire function we say it is of finite order if
there are positive constants a > 0, r0 > 0 such that

|f(z)| < e|z|
a

, for |z| > r0.

Otherwise, we say f(z) is of infinite order. We define

λ = inf{a||f(z)| < exp(|z|a) for |z| large enough}

as the order of f(z).

Definition 2.10 . Let f : C → C be an entire function with zeroes {a1, a2, . . .}
counted according to multiplicity. We say f is of finite rank if there is an integer p
such that

∞∑

n=1

|an|
p+1 <∞. (2)

We say it is of rank p if p is the smallest integer verifying (2). If f has a finite
number of zeroes then it has rank 0 by definition.

Definition 2.11 . An entire function f : C → C is said to be of finite genus if it
has finite rank p and it factorises as:

f(z) = zmeg(z) ·
∞∏

n=1

Ep(z/an), (3)

where g(z) is a polynomial, an are the zeroes of f(z) as in the previous definition
and

Ep(z) = (1 − z)ez+
z2

2
+...+ zp

p .

We define the genus of f(z) as µ = max{deg g, rank f}

Theorem 2.12 . If f is an entire function of finite genus µ then f is of finite
order λ < µ+ 1.

The converse of this theorem is also true, as we see below.

Theorem 2.13 (Hadamard’s factorisation). Let f be an entire function of finite
order λ. Then f is of finite genus µ ≤ λ.

Observe that Hadamard’s factorisation theorem implies that every entire function
of finite order can be factorised as in (3).

2.3 Siegel discs

The following theorem (which is an extension of the original theorem by C.L. Siegel)
gives arithmetic conditions on the rotation number of a fixed point to ensure the
existence of a Siegel disc around it. J-C. Yoccoz proved that this condition is sharp
in the quadratic family. The proof of this theorem can be found in [17].

Theorem 2.14 (Brjuno-Rüssmann). Let f(z) = λz + O(z2). If pn

qn
=

[a1; a2, . . . , an] is the n-th convergent of the continued fraction expansion of θ, where
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λ = e2πiθ, and

∞∑

n=0

log(qn+1)

qn
<∞, (4)

then f is locally linearisable.

Irrational numbers with this property are called of Brjuno type.
We define the notion of conformal capacity as a measure of the “size” of Siegel

discs.

Definition 2.15 . Consider the Siegel disc ∆ and the unique linearising map
h : D(0, r)

∼
→ ∆, with h(0) and h′(0) = 1. The radius r > 0 of the domain of h is

called the conformal capacity of ∆ and is denoted by κ(∆).

A Siegel disc of capacity r contains a disc of radius r
4 by Koebe 1/4 Theorem.

The following theorem (see [26] for a proof) shows that Siegel discs can not shrink
indefinitely.

Theorem 2.16 . Let 0 < θ < 1 be an irrational number of Brjuno type, and let
Φ(θ) =

∑∞
n=1(log qn+1/qn) < ∞ be the Brjuno function. Let S(θ) be the space of

all univalent functions f : D → C with f(0) = 0 and f ′(0) = e2πiθ. Finally, define
κ(θ) = inff∈S(θ) κ(∆f ), where κ(∆) is the conformal capacity of ∆. Then, there is
a universal constant C > 0 such that | log(κ(θ)) + Φ(θ)| < C.

We will also need a well-known theorem about the regularity of the boundary of
Siegel discs of quadratic polynomials. Its proof can be found in [6].

Theorem 2.17 (Douady-Ghys). Let θ be of bounded type, and p(z) = e2πiθz+ z2.
Then the boundary of the Siegel disc around 0 is a quasi-circle containing the
critical point.

The following is a theorem by M. Herman concerning critical points on the bound-
ary of Siegel discs. Its proof can be found in [12, p. 601]

Theorem 2.18 (Herman). Let g(z) be an entire function such that g(0) = 0 and
g′(0) = e2πiα with α Diophantine. Let ∆ be the Siegel disc around z = 0. If ∆ has
compact closure in C and g|∆̄ is injective then g(z) has a critical point in ∂∆.

In fact, the set of Diophantine numbers could be replaced by the set H of Herman
numbers, where D ( H ( B, as shown in [27].

Finally, we state a result which is a combination of Theorems 1 and 2 in [20].

Definition 2.19 . We define the class B as the class of entire functions with a
bounded set of singular values.

Theorem 2.20 (Rempe). Let f ∈ B with S(f) ⊂ J (f), where S(f) denotes the
set of singular values of f . If ∆ is a Siegel disc of f(z) which is unbounded, then
S(f) ∩ ∂∆ 6= ∅.

2.4 Topological results

To prove Theorem 3.4 we need to extend a result of Rogers in [21] to a larger class
of functions, namely functions of finite order with no wandering domains.

The result we need follows some preliminary definitions.

Definition 2.21 . A continuum is a compact connected non-void metric space.
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Definition 2.22 . A pair (g,∆) is a local Siegel disc if g is conformally conjugate
to an irrational rotation on ∆ and g extends continuously to ∆̄.

Definition 2.23 . We say a bounded local Siegel disc (f |∆ ,∆) is irreducible if
the boundary of ∆ separates the centre of the disc from ∞, but no proper closed
subset of the boundary of ∆ has this property.

Theorem 2.24 . Suppose ∆ is a Siegel disc of a function f in the class B, and ∂∆
is a decomposable continuum. Then ∂∆ separates C into exactly two complementary
domains.

For the proof of this theorem we will need the following ingredients which will
be only used in this proof. The topological results can be found in any standard
reference on algebraic topology.

Theorem 2.25 . If (∆, fθ) is a bounded irreducible local Siegel disc, then the
following are equivalent:

• ∂∆ is a decomposable continuum,

• each pair of impressions is disjoint, and

• the inverse of the map ϕ : D → ∆ extends continuously to a map Ψ : ∂ ∆ → S1

such that for each η ∈ S1, the fibre Ψ−1(η) is the impression I(η).

Proof . See [21].
�

Theorem 2.26 (Vietoris-Begle). Let X and Y be compact metric spaces and f :
X → Y continuous and surjective and suppose that the fibres are acyclic, i.e.

H̃r(f−1(y)) = 0, 0 ≤ r ≤ n− 1, ∀y ∈ Y,

where H̃r denotes the r-th reduced co-homology group. Then, the induced homo-
morphism

f∗ : H̃r(Y ) → H̃r(X)

is an isomorphism for r ≤ n− 1 and is a surjection for r = n.

Theorem 2.27 (Alexander’s duality). Let X be a compact sub-space of the Eu-
clidean space E of dimension n, and Y its complement in E. Then,

H̃q(X) ∼= H̃n−q−1(Y )

where H̃∗, H̃∗ stands for Čech reduced homology and reduced co-homology respec-
tively.

Remark 1. The case E = S2,X = S1 (orH1(X) = Z) is Jordan’s Curve Theorem.

Definition 2.28 . If X is a compact subset of C, then the three following condi-
tions are equivalent:

• X is cellular,

• X is a continuum that does not separate C,

• H1(X) = 0 = H̃0(X),

where H̃r(X) stands for reduced Čech co-homology and Hr(X) for Čech co-
homology.
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Definition 2.29 . We say a map f : X → Y is cellular if each fibre f−1(y) is a
cellular set.

Remark 2. Recall that H̃1(X) ∼= H1(X).

Remark 3. By definition and in view of the Vietoris-Begle Theorem, cellular maps
induce isomorphisms between first reduced co-homology groups.

Proof of Theorem 2.24. We first show that any Siegel disc ∆ for f ∈ B is a bounded
irreducible local Siegel disc. Recall that we define the escaping set of a function
f : C → C as:

I(f) = {z| fn(z) → ∞ as n→ ∞}.

Clearly (f |∆ ,∆) is a local Siegel disc. It is also bounded by assumption. The only
thing left to prove is it is irreducible. If X is a proper closed subset of ∂∆ and if
x is a point of ∂∆\X, then there is a small disc B containing x and missing X.
Since x ∈ ∂∆, the disc B contains a point of ∆. As x ∈ ∂∆ ⊂ J (f), the disc B
contains a point y ∈ I(f). Now, Theorem 3.1.1 in [23] states that for f ∈ B the
set I(f) ∪ {∞} is arc-connected, and thus y can be arc-connected to ∞ through
points in I(f). It follows that the centre of the Siegel disc and infinity are in the
same complementary domain of C\X.

Clearly Ψ(η) for η ∈ S1 is a continuum, which is called the impression of η
and denoted Imp(η). Furthermore, Imp(η) does not separate C. Indeed, ff U is a
bounded complementary domain of Imp(η), then either fn(U)∩U = ∅ for all n or
there are intersection points. Clearly fn(U) ∩U = ∅, as if fn(U) ∩U 6= ∅ for some
n, then fn(∂U) ∩ ∂U 6= ∅, but this implies Imp(η) = Fn(Imp(η)) = Imp(η + nθ)
and as ∂∆ is a decomposable continuum, each pair of impressions is disjoint by
Theorem 2.25 and this intersection must be empty. Hence, fn(U) ∩ U = ∅ for all
n ∈ N which implies U is a wandering domain, and for functions in B it is known
there are no wandering domains (see [7]).

Therefore Imp(η) is a cellular set and thus Ψ is a cellular map. The Vietoris-
Begle theorem implies that the induced homomorphism Ψ∗ : H̃1(S1) → H̃1(∂∆)
is an isomorphism (see Remark 3). Then H̃1(∂∆) = Z and by Alexander’s duality
∂∆ separates C into exactly two complementary domains (see Remark 1).

�

3. The (entire transcendental) family fa

In this section we describe the dynamical plane of the family of entire transcen-
dental maps

fa(z) = λa(ez/a(z + 1 − a) − 1 + a),

for different values of a ∈ C∗, and for λ = e2πiθ, with θ being a fixed irrational Br-
juno number (unless otherwise specified). For these values of λ, in view of Theorem
2.14 there exists an invariant Siegel disc around z = 0, for any value of a ∈ C∗.

We start by showing that this family contains all possible entire transcendental
maps with the properties we require.

Theorem 3.1 . Let g(z) be an entire transcendental function having the following
properties



June 29, 2009 15:45 Journal of Difference Equations and Applications AnETFWithAPersis-
tentSiegelDisk

11

(1) finite order,
(2) one asymptotic value v, with exactly one finite pre-image p of v,
(3) a fixed point (normalised to be at 0) of multiplier λ ∈ C,
(4) a simple critical point (normalised to be at z = −1) and no other critical

points.

Then g(z) = fa(z) for some a ∈ C with v = λa(a− 1) and p = a− 1. Moreover no
two members of this family are conformally conjugate.

Proof . As g(z) − v = 0 has one solution at z = p, we can write:

g(z) = (z − p)meh(z) + v,

where, by Hadamard’s factorisation theorem (Theorem 2.13), h(z) must be a poly-
nomial, as g(z) has finite order. The derivative of this function is

g′(z) = eh(z)(z − p)m−1(m+ (z − p)h′(z)),

whose zeroes are the solutions of z − p = 0 (if m > 1) and the solutions of m +
(z − p)h′(z) = 0. But as the critical point must be simple and unique, m = 1 and
deg h′(z) = 0. Therefore

g(z) = (z − p)eαz+β + v,

and from the expression for the critical points,

α =
1

p+ 1
.

Moreover from the fact that g(0) = 0 we can deduce that v = peβ, and from
condition (3), i.e. g′(0) = λ, we obtain eβ = λ(1 + p). All together yields

g(z) = λ(z − p)(1 + p)ez/(1+p) + λp(1 + p).

Writing a = p+ 1 we arrive to

g(z) = λa(z − a+ 1)ez/a + λa(a− 1) = fa(z),

as we wanted.
Finally, if fa(z) and fa′(z) are conformally conjugate, the conjugacy must fix 0,-1

and ∞ and therefore is the identity map.
�

3.1 Dynamical planes

For any parameter value a ∈ C∗, the Fatou set always contains the Siegel disc ∆a

and all its pre-images. Moreover, one of the singular orbits must be accumulating
on the boundary of ∆a. The other singular orbit may then either eventually fall in
∆a, or accumulate in ∂∆a, or have some independent behaviour. In the first case
we say that the singular value is captured by the Siegel disc. More precisely we
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define the capture parameters as

C = {a ∈ C∗|fna (−1) ∈ ∆a for some n ≥ 1 or

fna (va) ∈ ∆a for some n ≥ 0}

Naturally C splits into two sets C = Cc ∪ Cv depending on whether the captured
orbit is the critical orbit (Cc) or the orbit of the asymptotic value (Cv). We will
follow this convention, superscript c for critical and superscript v for asymptotic,
throughout this paper.

In the second case, that is, when the free singular value has an independent
behaviour, it may happen that it is attracted to an attracting periodic orbit. We
define the semi-hyperbolic parameters H as

H = {a ∈ C∗|fa has an attracting periodic orbit}.

Again this set splits into two sets, H = Hc ∪Hv depending on whether the basin
contains the critical point or the asymptotic value.

Notice that these four sets Cc, Cv, Hc, Hv are pairwise disjoint, since a singular
value must always belong to the Julia set, as its orbit has to accumulate on the
boundary of the Siegel disc.

In the following sections we will describe in detail these regions of parameter
space, but let us first show some numerical experiments. For all figures we have

chosen θ = 1+
√

5
2 , the golden mean number.

Figure 1 (in the Introduction) shows the parameter plane, where the left side is
made with a simple escaping algorithm. The component containing a = 1 is the
main capture component for which va itself belongs to the Siegel disc. On the right
side we see the same parameters, drawn with a different algorithm. Also in Figure
1, we can partially see the sets Hv

1 and Hv
2 (and infinitely many others), where the

sub-indices denote the period of the attracting orbit.
In Figure 2 (left) we can see the dynamical plane for a chosen in one of the

semi-hyperbolic components of Figure 1, where the Siegel disc and the attracting
orbit and corresponding basin are shown in different colours.

Figure 2 (right) shows the dynamical plane of f1(z) = λzez , the semi-standard
map. In this case the asymptotic value v1 = 0 is actually the centre of the Siegel
disc. It is still an open question whether, for some exotic rotation number, this
Siegel disc can be unbounded. For bounded type rotation numbers, as the one in
the figure, the boundary is a quasi-circle and contains the critical point [10].

Figure 3, left side, shows a close-up view of the parameter region around a = 0,
and in the right side, we can see a closer view of a random spot, in particular a
region in Hc, that is, parameters for which the critical orbit is attracted to a cycle.

One of these dynamical planes is shown in Figure 5. Observe that the orbit of
the asymptotic value is now accumulating on ∂∆a and we may have unbounded
Siegel discs.

Finally Figure 4 shows some components of Cv, where the orbit of the asymptotic
value is captured by the Siegel disc.

We start by considering large values of a ∈ C∗. By expanding fa(z) into a power
series it is easy to check that as a → ∞ the function approaches the quadratic
polynomial λz(1 + z/2). It is therefore not surprising that we have the following
theorem, which we shall prove at the end of this section.

Theorem 3.2 . There exists M > 0 such that the entire transcendental family
fa(z) is polynomial-like of degree two for |a| > M . Moreover, the Siegel disc ∆a
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Figure 2. Left: Julia set for a parameter in a semi-hyperbolic component (for the asymptotic value).
Details: a = (−0.62099, 0.0100973), upper left: (−4, 3), lower right: (2,−3). In light grey we see the at-
tracting basin of the attracting cycle, and in white the Siegel disc and its pre-images. Right: Julia set
of the semi-standard map, corresponding to f1(z) = λzez. Upper left: (−3, 3), lower right: (3,−3). The
boundary of the Siegel disc around 0 is shown, together with some of the invariant curves. The Fatou set
consists exclusively of the Siegel disc and its pre-images.

0

Figure 3. Left: “Crab”-like structure corresponding to escaping critical orbits (dark grey). Upper left:
(−0.6, 0.6), lower right: (0.6,−0.6). In light grey we see parameters for which the orbit of va escapes.
Right: Baby Mandelbrot set from a close-up in the “crab like” structure. Upper left: (−0.336933, 0.1128),
lower right: (−0.322933, 0.08828).

(and in fact, the full small filled Julia set) is contained in a disc of radius R where
R is a constant independent of a.

Figure 6 shows the dynamical plane for a = 15 + 15i, λ = e2π( 1+
√

5

2
)i where we

clearly see the Julia set of the quadratic polynomial λz(1 + z/2), shown on the
right side.

An immediate consequence of Theorem 3.2 above follows from Theorem 2.17.
This is Part a) of Theorem A in the Introduction.

Corollary 3.3 . For |a| > M , and θ of constant type the boundary of ∆a is a
quasi-circle that contains the critical point.

In fact we will prove in Section 5 (Proposition 5.6) that the same occurs in many
other situations like, for example, when the asymptotic value lies itself inside the
Siegel disc or when it is attracted to an attracting periodic orbit. See Figures 2
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Figure 4. A close up of Figure 1, Right. A quadratic Siegel disc in parameter space, corresponding to a
capture zone for the asymptotic value. Upper left: (7.477, 4.098), Lower right: (7.777, 3.798).

Figure 5. Left: Julia set for a parameter in a semi-hyperbolic component for the critical value. By Theorem
3.4 this Siegel disc is unbounded. Details: a = (−0.330897, 0.101867), upper left: (−1.5, 1.5)., lower right:
[3,−3]. Right: Close-up of a basin of attraction of the attracting periodic orbit. Upper left: (−1.1, 0.12),
lower right: (−0.85,−0.13).

(Left) and 6 (Left).
In fact we believe that this family provides examples of Siegel discs with an

asymptotic value on the boundary, but such that the boundary is a quasi-circle
containing also the critical point. A parameter value with this property could be

given by a0 ≈ 1.544913893 + 0.32322773i ∈ ∂Cv0 , λ = e2π( 1+
√

5

2
)i (see Figure 7)

where the asymptotic value and the critical point coincide.
The opposite case, that is, the Siegel disc being unbounded and its boundary

non-locally connected also takes place for certain values of the parameter a, as we
show in the following theorem, which covers parts b) and c) of Theorem A.

Theorem 3.4 .
Let θ be Diophantine1, then:

a) If fna (−1) → ∞ then ∆a is unbounded and va ∈ ∂∆a,
b) if a ∈ Hc∪Cc either ∆a is unbounded or ∂∆a is an indecomposable continuum.

1Diophantine numbers can actually be replaced by the larger class of irrational numbers H (see [27], [18])
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Figure 6. Left: Julia set corresponding to a polynomial-like mapping. Details: a = (15,−15), upper left:
(−4, 3), lower right: (2,−3). Right: Julia set corresponding to the related polynomial. Upper left: (−4, 3),
lower right: (−2, 3)

Figure 7. Julia set for the parameter a ≈ 1.544913893+0.32322773i. The parameter is chosen so that the
critical point and the asymptotic value are at the same point, hence both singular orbits accumulate on
the boundary. Upper left: (−1.5, 1.5), lower right: (3,−3).

Proof . The proof of the first part is a slight modification of Herman’s proof for the
exponential map (see [12]). The difference is given by the fact that the asymptotic
value of fa(z) is not an omitted value, and by the existence of a second singular
value. For both parts we need the following definitions. Suppose that ∆ := ∆a

is bounded and let ∆i denote the bounded components of C\∂∆. Let ∆∞ be the

unbounded component. Since ∆ and ∆i are simply connected, then ∆̂ := C\∆∞ is
compact and simply connected. By the Maximum Modulus Principle and Montel’s
theorem, {fna |∆i

}n∈N form a normal family and hence ∆i is a Fatou component.
We also have that ∂∆ = ∂∆∞, although this does not imply a priori that ∆i = ∅
(see Wada lakes and similar examples [22]).

Proof of Part a). Now suppose the critical orbit is unbounded. Then c ∈ J (fa),

but ∆̂ ∩ J (fa) is bounded and invariant. Hence c /∈ ∆̂.

We claim that there exists U a simply connected neighbourhood of ∆̂ such that U
contains no singular values. Indeed, suppose that the asymptotic value va belongs
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to ∆̂. Since va ∈ J (f), then va ∈ ∂∆. But ∆ is bounded, and f |∂∆ is surjective,
hence the only finite pre-image of va, namely a−1, also belongs to ∂∆. This means
that va is not acting as an asymptotic value but as a regular point, since f(z) is a
local homeomorphism from a− 1 to va.

Hence there are no singular values in U . It follows that

f |f−1(U) : f−1(U) → U

is a covering and f−1 : ∆ → ∆ extends to a continuous map h(z) from ∆̄ to
∆̄. Since hf = fh = id, it follows that f |∂∆ is injective. As this mapping is
always surjective, it is a homeomorphism. We now apply Herman’s main theorem
in [12] (see Theorem 2.18) to conclude that ∂∆ must have a critical point, which
contradicts our assumptions. It follows that ∆ is unbounded. Finally Theorem 2.20
implies that va ∈ ∂∆a.

Proof of part b). The work was done already when proving Theorem 2.24. Since
fa has 2 singular values, it belongs to the Eremenko-Lyubich class B. Hence, if
we assume that ∆a is bounded, it follows from Theorem 2.24 that ∂∆a is either
and indecomposable continuum or ∂∆a separates Ĉ in exactly two complementary
domains. This would imply that ∆̂ = ∆̄ and by hypothesis −1 /∈ ∆̄. The same
arguments as in Part a concludes the proof. �

Remark 1. In part a) it is not strictly necessary that the critical orbit tends to
infinity. In fact we only use that the critical point is in J (fa) and some element of
its orbit belongs to ∆∞.

Figure 8. Point in a capture component for the critical value, so that the Siegel disc is either unbounded
or an indecomposable continuum. Details: a = (−0.33258, 0.10324), upper left: (−1.5, 1.5), lower right:
(−3,−3).
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3.2 Large values of |a|: Proof of theorem 3.2

Let D := {w ∈ C||w| < R}, γ = ∂D, g(z) = λz(z/2 + 1). If we are able to find
some R and S such that

|g(z) − w| z∈γ
w∈D

≥ S,

|f(z) − g(z)|z∈γ < S, (5)

then we will have proved that D ⊂ f(D) and deg f = deg g = 2 by Rouché’s
theorem. Indeed, given w ∈ D f(z) − w = 0 has the same number of solutions as
g(z) − w = 0, which is exactly 2 counted according with multiplicity. Clearly,

< S

f(z)

g(z)
R

> S

Figure 9. Sketch of inequalities

|g(z) − w| z∈γ
w∈D

≥ |g(z)|z∈γ − |w|w∈D ≥ (R2/2 −R) −R.

Define S := R2/2 − 2R. Since we want S > R > 0, we require that R > 4. Now
expand exp(z/a) as a power series and let |a| = b > R. Then

|f(z) − g(z)| =

∣∣∣∣∣∣
z3

2a
+
z2

2a
− a(z + 1 − a)

∞∑

j=3

zj

j!aj

∣∣∣∣∣∣
≤

≤
R3

2b
+
R2

2b
+
R3

6b3
(3b2eR/b) =

R2

2b
(1 + (1 + eR/b)R).

This last expression can be bounded by R2

2b (1 + 4R) as b > R. Now we would like

to find some R such that for b > R, R
2

2b (1 + 4R) < S. It follows that

R+ 4R2

R− 4
< b,

and this function of R has a local minimum at R ≈ 8.12311. We then conclude
that given R = 8.12311 b must be larger than 65.9848.

This way the triple (fa,D(0, R), f(D(0, R))) is polynomial-like of degree two for
|a| ≥ 66.

Remark 2. Numerical experiments suggest that |a| > 10 would be enough.
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4. Semi-hyperbolic components: Proof of Theorem B

In this section we deal with the set of parameters a such that the free singular
value is attracted to a periodic orbit. We denote this set by H and it naturally
splits into the pairwise disjoint subsets

Hv
p = {a ∈ C|O+(va) is attracted to a periodic orbit of period p}

Hc
p = {a ∈ C|O+(−1) is attracted to a periodic orbit of period p}.

where p ≥ 1. We will call these sets semi-hyperbolic components.
It is immediate from the definition that semi-hyperbolic components are open.

Also connecting with the definition in the previous section we have Hc = ∪p≥1H
c
p

and Hv = ∪p≥1H
v
p .

As a first observation note that, by Theorem 3.2, every connected component of
Hc
p for every p ≥ 1 is bounded. Indeed, for large values of a the function fa(z) is

polynomial-like and hence the critical orbit cannot be converging to any periodic
cycle, which partially proves Theorem B, Part d). We shall see that, opposite
to this fact, all components of Hv

p are unbounded. We start by showing that no
semi-hyperbolic component in Hc

p can surround a = 0, by showing the existence of
continuous curves of parameter values, leading to a = 0, for which the critical orbit
tends to ∞. These curves can be observed numerically in Figure 3 in the previous
section.

Proposition 4.1 . If γ is a closed curve contained in a component W of Hc∪Cc,
then ind(γ, 0) = 0.

Proof . We shall show that there exists a continuous curve a(t) such that

fna(t)(−1)
n→∞
−→ ∞ for all t. It then follows that a(t) would intersect any curve

γ surrounding a = 0. But if γ ⊂ Hc ∪ Cc, this is impossible. For a 6= 0 we conju-
gate fa by u = z/a and obtain the family ga(u) = λ(eu(au+1−a)−1+a). Observe
that g0(u) = λ(eu − 1). The idea of the proof is the following. As a approaches
0, the dynamics of ga converge to those of g0. In particular we find continuous
invariant curves {Γak(t), k ∈ Z}t∈(0,∞) (Devaney hairs or dynamic rays) such that

Re Γak(t)
t→∞
−→ ∞ and if z ∈ Γak(t) then Re gna (z) → ∞. These invariant curves move

continuously with respect to the parameter a, and they change less and less as a
approaches 0, since ga converges uniformly to g0.

On the other hand, the critical point of ga is now located at ca = −1/a. Hence,
when a runs along a half circle around 0, say ηt = {teiα, π/2 ≤ α ≤ 3π/2}, ca runs
along a half circle with positive real part, of modulus |ca| = 1/t.

If t is small enough, this circle must intersect, say, Γa0 in at least one point.

This means that there exists at least one a(t) ∈ ηt such that gna(t)(ca(t)
n→∞
−→ ∞).

Using standard arguments (see for example [8]) it is easy to see that we can choose

a(t) in a continuous way so that a(t)
t→0
−→ 0. Undoing the change of variables, the

conclusion follows.
�

We would like to show now that all semi-hyperbolic components are simply con-
nected. We first prove a preliminary lemma.

Lemma 4.2 . Let U ⊆ Hv
p with Ū compact. Then there is a constant C > 0 such

that for all a ∈ U the elements of the attracting hyperbolic orbit, zj(a), satisfy
|zj(a)| ≤ C, j = 1, . . . , p.
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a(t)

0 0
Γa

0

Γa

1

Γa

−1

Figure 10. Right: Parameter plane Left: Dynamical plane of ga(z).

Proof . If this is not the case, then for some 1 ≤ j ≤ p, zj(a) → ∞ as a→ a0 ∈ ∂U
with a ∈ U . But as long as a ∈ U , zj(a) is well defined, and its multiplier bounded
(by 1). Therefore,

p∏

j=1

|f ′a(zj(a))| =

p∏

j=1

|λezj(a)/a||zj(a) + 1| < 1.

Now, we claim that zj(a) + 1 does not converge to 0 for any 1 ≤ j ≤ p as a
goes to a0. Indeed, if this was the case, zj(a) would converge to -1, which has
a dense orbit around the Siegel disc, but as the period of the periodic orbit is
fixed, this contradicts the assumption. Hence

∏p
j=1 |zj(a)+1| → ∞ and necessarily

∏p
j=1 |e

zj(a)/a| → 0 as a goes to a0. This implies that at least one of these elements

goes to 0, say |ezj(a)/a| → 0. But this means that zj+1(a) → λa0(a0 − 1) = va0

as a → a0. Now the first p − 1 iterates of the orbit of va0
by fa0

are finite. Since
fa is continuous with respect to a in Ū , these elements cannot be the limit of a
periodic orbit, with one of its points going to infinity. In particular we would have
fp−1
a (zj+1(a)) = zj(a) → fp−1

a0
(va0

) which contradicts the assumption.
�

With these preliminaries, the proof of simple connectedness is standard (see [2]
or [3]).

Proposition 4.3 . (Theorem B, Part a) For all p ≥ 1 every connected component
W of Hv

p or Hc
p is simply connected.

Proof . Let γ ⊂W a simple curve bounding a domainD. We will show thatD ⊂W .
Let gn(a) = fnpa (va) (resp. fnpa (−1)). We claim that {gn}n∈N is a family of entire
functions for a ∈ D. Indeed, fa(va) has no essential singularity at a = 0 (resp.
fa(−1) has no essential singularity as 0 /∈ D), neither do fna (fa(va)), n ≥ 1 (resp.
fna (fa(−1)), n ≥ 1) as the denominator of the exponential term simplifies.

By definition W is an open set, therefore there is a neighbourhood γ ⊂ U ⊂W .
By Lemma 4.2 |zj(a)| < C, j = 1, . . . , p and it follows that {gn(a)}n∈N is uniformly
bounded in U , since it must converge to one point of the attracting cycle as n
goes to ∞. So by Montel’s theorem and the Maximum Modulus Principle, this
family is normal, and it has a sub-sequence convergent in D. If we denote by G(a)
the limit function, G(a) is analytic and the mapping H(a) = fpa (G(a)) − G(a) is
also analytic. By definition of Hp, H(a) is identically zero in U , and by analytic
continuation it is also identically zero in D. Therefore G(a) = z(a) is a periodic
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point of period p.
Now let χ(a) be the multiplier of this periodic point of period p. This multiplier is

an analytic function which satisfies |χ(a)| < 1 in U , and by the Maximum Modulus
Principle the same holds in D. Hence D ⊂ Hv

p (resp. D ⊂ Hc
p).

�

The following lemma shows that the asymptotic value itself can not be part of
an attracting orbit.

Lemma 4.4 . There are neither a nor p such that fp(va) = va and the cycle is
attracting.

Proof . It cannot be a super-attracting cycle since such orbit must contain the
critical point and its forward orbit, but the critical orbit is accumulating on the
boundary of the Siegel disc and hence its orbit cannot be periodic.

It cannot be attracting either, as the attracting basin must contain a singular
value different from the attracting periodic point itself, and this could only be the
critical point. But, as before, the critical point cannot be there. The conclusion
then follows.

�

We can now show that all components in Hv
p are unbounded, which is part of

Part b) of Theorem B. The proof is also analogous to the exponential case (see [2]
or [3]).

Theorem 4.5 . Every connected component W of Hv
p is unbounded for p ≥ 1.

Proof . From Lemma 4.2 above, the attracting periodic orbit z(a) of Proposition
4.3 above is not only analytic in W but as lim sup|χ(a)| ≤ 1 for a ∈ W , z(a) has
only algebraic singularities at b ∈ ∂W . These singularities are in fact points where
χ(b) = 1 by the implicit function theorem. This entails that the boundary of W is
comprised of arcs of curves such that |χ(a)| = 1.

The multiplier in W is never 0 by Lemma 4.4, thus if W is bounded, it is a
compact simply-connected domain bounded by arcs |χ(a)| = 1. Now ∂χ(W ) ⊂
χ(∂W ) ⊂ {χ||χ| = 1} but by the minimum principle this implies 0 ∈ χ(W ) against
assumption.

�

To end this section we show the existence of the largest semi-hyperbolic compo-
nent, the one containing a segment [r,∞) for r large, which is Theorem B, Part
c).

Theorem 4.6 . The parameter plane of fa(z) has a semi-hyperbolic component
Hv

1 of period 1 which is unbounded and contains an infinite segment.

Proof . The idea of the proof is to show that for a = r > 0 large enough there is a
region R in dynamical plane such that fa(R) ⊂ R. By Schwartz’s lemma it follows
that R contains an attracting fixed point. By Theorem 3.2 the orbit of va must
converge to it. Not to break the flow of exposition, the detailed estimates of this
proof can be found in the Appendix.

�

Remark 1. The proof can be adapted to the case λ = ±i showing that Hv
1 contains

an infinite segment in iR. Observe that this case is not in the assumptions of this
paper since z = 0 would be a parabolic point.
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4.1 Parametrisation of Hv

p
: Proof of Theorem B, Part b

In this section we will parametrise connected components W ⊂ Hv
p by means

of quasi-conformal surgery. In particular we will prove that the multiplier map
χ : W → D∗ is a universal covering map by constructing a local inverse of χ. The
proof is standard.

Theorem 4.7 . Let W ⊂ Hv
p be a connected component of Hv

p and D∗ be the
punctured disc. Then χ : W → D∗ is the universal covering map.

Proof . For simplicity we will consider W ⊂ Hv
1 in the proof. Take a0 ∈ W , and

observe that fna (va) converges to z(a) as n goes to ∞, where z(a) is an attracting
fixed point of multiplier ρ0 < 1. By Königs theorem there is a holomorphic change
of variables

ϕa0
: Ua0

→ D

conjugating fa0
(z) to mρ0(z) = ρ0z where Ua0

is a neighbourhood of z(a0).
Now choose an open, simply connected neighbourhood Ω of ρ0, such that Ω̄ ⊂ D∗,

and for ρ ∈ Ω consider the map

ψρ : Aρ0 // Aρ

reiζ
� // rαei(ζ+β log r),

where Ar denotes the standard straight annulus Ar = {z|r < |z| < 1} and

α =
log |ρ|

log |ρ0|
, β =

arg ρ− arg ρ0

log |ρ0|
.

This mapping verifies ψρ(mρ0(z)) = mρ(ψρ(z)) = ρψρ(z). With this equation
we can extend ψρ to mρ(Aρ),m

2
ρ(Aρ), . . . and then to the whole disc D by setting

ψ(0) = 0. Therefore, the mapping ψρ maps the annuli mk
ρ(Aρ) homeomorphically

onto the annuli {z||ρk+1| ≤ |z| ≤ ρk}.
This mapping has bounded dilatation, as its Beltrami coefficient is

µψρ
=
α+ iβ − 1

α+ iβ + 1
e2iζ .

Now define Ψρ = ψρϕa0
, which is a function conjugating fa0

quasi-conformally to
ρz in D.

Let σρ = Ψ∗
ρ(σ0) be the pull-back by Ψρ of the standard complex structure σ0 in

D. We extend this complex structure over Ua0
to f−na0

(Ua0
) pulling back by fa0

, and
prolong it to C by setting the standard complex structure on those points whose
orbit never falls in Ua0

. This complex structure has bounded dilatation, as it has
the same dilatation as ψρ. Observe that the resulting complex structure is the
standard complex structure around 0, because no pre-image of Ua0

can intersect
the Siegel disc.

Now apply the Measurable Riemann Mapping Theorem (with dependence upon
parameters, in particular with respect to ρ) so we have a quasi-conformal integrat-
ing map hρ (which is conformal where the structure was the standard one) so that
h∗ρσ0 = σρ. Then the mapping gρ = h ◦ f ◦ h−1 is holomorphic as shown in the
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following diagram:

(C, σρ′)
ψfaψ−1

//

hρ′

��

(C, σρ′)

hρ′

��

(C, σ0)
gρ′

// (C, σ0)

Moreover, the map ρ 7→ hρ(z) is holomorphic for any given z ∈ C since the almost
complex structure σρ depends holomorphically on ρ. We normalise the solution
given by the Measurable Riemann Mapping Theorem requiring that -1, 0 and
∞ are mapped to themselves. This guarantees that gρ(z) satisfies the following
properties:

• gρ(z) has 0 as a fixed point with rotation number λ, so it has a Siegel disc around
it,

• gρ(z) has only one critical point, at -1 which is a simple critical point,

• gρ(z) has an essential singularity at ∞,

• gρ(z) has only one asymptotic value with one finite pre-image.

Moreover gρ(z) has finite order by Theorem 2.3. Then Theorem 3.1 implies that
gρ(z) = fb(z) for some b ∈ C∗. Now let’s summarise what we have done.

Given ρ in Ω ⊂ D∗ we have a b(ρ) ∈ W ⊂ Hv
1 such that fb(ρ)(z) has a periodic

point with multiplier ρ. We claim that the dependence of b(ρ) with respect to
ρ is holomorphic. Indeed, recall that va has one finite pre-image, a − 1. Hence
hρ(a− 1) = b(ρ) − 1 which implies a holomorphic dependence on ρ.

We have then constructed a holomorphic local inverse for the multiplier. As a
consequence, χ : H → D∗ is a covering map and as W is simply connected by
Proposition 4.3 and unbounded by Theorem 4.5, χ is the universal covering map.

�

4.2 Parametrisation of Hc

p
: Proof of Theorem B, Part d

Let W be a connected component of Hc
p which is bounded and simply connected

by Theorem 3.2. The proof of the following proposition is analogous to the case of
the quadratic family but we sketch it for completeness.

Proposition 4.8 . The multiplier χ : W → D is a conformal isomorphism.

Proof . Let W ∗ = W\χ−1(0). Using the same surgery construction of the previous
section we see that there exists a holomorphic local inverse of χ around any point
ρ = χ(z(a)) ∈ D∗, a ∈ W ∗. It then follows that χ is a branched covering, ramified
at most over one point. This shows that χ−1(0) consists of at most one point by
Hurwitz’s formula.

To show that the degree of χ is exactly one, we may perform a different surgery
construction to obtain a local inverse around ρ = 0. This surgery uses an auxiliary
family of Blaschke products. For details see [4] or [6]. �

5. Capture components: Proof of Theorem C

A different scenario for the dynamical plane is the situation where one of the singu-
lar orbits is eventually captured by the Siegel disc. The parameters for which this
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occurs are called capture parameters and, as it was the case with semi-hyperbolic
parameters, they are naturally classified into two disjoint sets depending whether
it is the critical or the asymptotic orbit the one which eventually falls in ∆a. More
precisely, for each p ≥ 0 we define

C =
⋃

p≥0

Cvp ∪
⋃

p≥0

Ccp,

where

Cvp = {a ∈ C|fpa (va) ∈ ∆a, p ≥ 0 minimal},

Ccp = {a ∈ C|fpa (−1) ∈ ∆a, p ≥ 0 minimal},

Observe that the asymptotic value may belong itself to ∆a since it has a finite
pre-image, but the critical point cannot. Hence Cc0 is empty.

We now show that being a capture parameter is an open condition. The argument
is standard, but we first need to estimate the minimum size of the Siegel disc in
terms of the parameter a. We do so in the following lemma.

Lemma 5.1 . For all a0 6= 0 exists a neighbourhood V of a0 such that fa(z) is
univalent in D(0, R).

Proof . The existence of a Siegel disc around z = 0 implies that there is a radius
R′ such that fa0

(z) is univalent in D(0, R′). By continuity of the family fa(z) with
respect to the parameter a, there are R > 0, ε > 0 such that fa(z) is univalent in
D(0, R) for all a in the set {a| |a − a0| < ε}.

�

Corollary 5.2 . For all a0 6= 0 exists a neighbourhood a0 ∈ V such that ∆a

contains a disc of radius

C

4R

where C is a constant that only depends on θ and R only depends on a0.

Proof . For any value of a the maps fa(z) and f̃a(z) = 1
Rλa(e

Rz/a(Rz+1−a)−1+a)

are affine conjugate through h(z) = R · z. For |a − a0| < ε, f̃a(z) is univalent on
D, thus we can apply Theorem 2.16 to deduce that the conformal capacity κ̃a of
the Siegel disc ∆̃a is bounded from below by a constant C = C(θ). Undoing the
change of variables we obtain

Rκ = κ̃a ≥ C(θ)

and therefore, by Koebe’s 1/4 Theorem, ∆a contains a disc of radius C(θ)
4R . �

Theorem 5.3 (Theorem C, Part a). Let a ∈ Cvp (resp. a ∈ Ccp) for some p ≥ 0
(resp. p ≥ 1) which is minimal. Then there exists δ > 0 such that D(a, δ) ⊂ Cvp
(resp. Ccp)

Proof . Let b = fpa (va) ∈ ∆a (resp. b = fpa (−1) ∈ ∆a). Assume b 6= 0, (the case
b = 0 is easier and will be done afterwards). Define the annulus A as the region

comprised between O(b) and ∂∆a as shown in Figure 11.
Define ψ̃ as the restriction of the linearising coordinates conjugating fa(z) to the

rotation Rθ in ∆a, taking A to the straight annulus A(1, ε), where ε is determined
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∂∆a

O(b)

A

Figure 11. The annulus A.

by the modulus of A. Also define a quasi-conformal mapping φ̃ : A(1, ε) → A(1, ε2)
conjugating the rotation Rθ to itself. Let φ be the composition φ̃ ◦ ψ̃.

Let µ be the fa invariant Beltrami form defined as the pull-back µ = φ̃∗µ0 in
A and spread this structure to ∪nf

−n
a (A) by the dynamics of fa(z). Finally define

µ = µ0 in C\∪n f
−n(A). Observe that µ = µ0 in a neighbourhood of 0. Also φ has

bounded dilatation, say k < 1, which is also the dilatation of µ.
Now let µt = t · µ be a family of Beltrami forms with t ∈ D(0, 1/k). These

new Beltrami forms are integrable, since ‖µt‖∞ = t‖µ‖ < 1
kk = 1. Thus by the

Measurable Riemann Mapping Theorem we get an integrating map φt fixing 0,-1
and ∞, such that φ∗tµ0 = µt. Let f t = φt ◦ fa ◦ φ

−1
t ,

(C, µt)

φt

��

fa

// (C, µt)

φt

��

(C, µ0)
f t

//___ (C, µ0)

Since µt is fa-invariant, it follows that f t(z) preserves the standard complex
structure and hence it is holomorphic by Weyl’s lemma.

Notice also that by Theorem 2.3 in Section 2 f t(z) has finite order. Furthermore
by the properties of the integrating map and topological considerations, it has an
essential singularity at ∞, a fixed point 0 with multiplier λ and a simple critical
point in -1. Finally, it has one asymptotic value φt(a) with one finite pre-image,
φt(a − 1). Hence by Theorem 3.1 f t(z) = fa(t)(z) for some a(t). Now we want
to prove that a(t) is analytic. First observe that for any fixed z ∈ C, the almost
complex structure µt is analytic with respect to t. Hence, by the MRMT, it follows
that t 7→ φt(z) is analytic with respect to t. Now, a − 1 is the finite pre-image of
va, so φt(a−1) = a(t)−1, and this implies a(t) = 1+φt(a−1), which implies that
a(t) is also analytic.

It follows that a(t) is either open or constant. But fa(0) = fa and f1 are different
mappings since the annuli φ0(A) = A and φ1(A) have different moduli. Then a(t)
is open and therefore {a(t), t ∈ D(0, 1/k)} is an open neighbourhood of a which
belongs to Cvp (resp. Ccp).

If fpa0
(va0

) = 0 (resp. fpa0
(−1) = 0), by Lemma 5.1 and Corollary 5.2 there exists

an ε > 0 such that for all a close to a0, ∆a0
⊃ D(0, ε). Hence a small perturbation

of fa0
will still capture the orbit of va0

(resp. -1) as we wanted.
�

The theorem above shows that capture parameters form an open set. We call the
connected components of this set, capture components, which may be asymptotic
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or critical depending on whether it is the asymptotic or the critical orbit which
falls into ∆a.

As in the case of semi-hyperbolic components, capture components are simply
connected. Before showing that, we also need to prove that no critical capture
component may surround a = 0. We just state this fact, since the proof is a
reproduction of the proof of Proposition 4.1 above.

Proposition 5.4 . Let γ be a closed curve in W ⊂ Cv. Then ind(γ, 0) = 0.

Proposition 5.5 . (Theorem C, Part b) All connected components W of Cv or
Cc are simply connected.

Proof . Let W be a connected component of Cv or Cc and γ ⊂W a simple closed
curve. Let D be the bounded component of C\γ. Let U be a neighbourhood of γ
such that U ⊂ W . Then, for all a ∈ U , fna (va) (resp. fna (−1)) belongs to ∆a for
n ≥ n0, and even more it remains on an invariant curve. It follows that Gvn(a) =
fna (va) (resp. Gcn(a) = fna (−1)) is bounded in U for all n ≥ n0.

Since Gvn(a) is holomorphic in all of C (resp. in C∗), we have that Gvn(a) (resp.
Gcn(a)) is holomorphic and bounded on D, and hence it is a normal family in D.
By analytic continuation the partial limit functions must coincide, so there are no
bifurcation parameters in D. Hence D ⊂W .

�

As it was the case with semi-hyperbolic components, it follows from Theorem
3.2 that all critical capture components must be bounded, since for |a| large, the
critical orbit must accumulate on ∂∆a. This proves Part c) if Theorem C. Among
all asymptotic capture components, there is one that stands out in all computer
drawings, precisely the main component in Cv0 . That is, the set of parameters for
which va itself belongs to the Siegel disc.

We first observe that this component must also be bounded. Indeed, if va ∈ ∆a

then its finite pre-image a − 1 must also be contained in the Siegel disc. But for
|a| large enough, the disc is contained in D(0, R), with R independent of a (see
Theorem 3.2). Clearly Cv0 has a unique component, since va = 0 only for a = 0 or
a = 1. This proves Part d) of Theorem C.

The “centre” of Cv0 is a = 1, or the map fa(z) = λzez , for which the asymptotic
value v1 = 0 is the centre of the Siegel disc. This map is quite well-known, as it is,
in many aspects, the transcendental analogue of the quadratic family. It is known,
for example that if θ is of constant type then ∂∆a is a quasi-circle and contains
the critical point. This type of properties can be extended to the whole component
Cv0 as shown by the following proposition.

Proposition 5.6 . (Proposition E, Part a) If θ is of constant type then for every
a ∈ Cv0 the boundary of the Siegel disc is a quasi-circle that contains the critical
point.

Proof . For a = 1, f1(z) = λzez and we know that ∂∆a is a quasi-circle that
contains the critical point (see [10]). Define cn = fn1 (−1), denote by Oa(−1) the
orbit of -1 by fa(z) and

H : {cn}n≥0 × Cv0
// C

(cn , a) // fna (−1)

Then this mapping is a holomorphic motion, as it verifies

• H(cn, 1) = cn,
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• it is injective for every a, as if va ∈ Cv0 , then Oa(−1) must accumulate on ∂∆a.
Hence fna (−1) 6= fma (−1) for all n 6= m.

• It is holomorphic with respect to a for all cn, an obvious assertion as long as
0 /∈ Cv0 which is always true.

Now by the second λ-lemma (Lemma 2.8 in Section 2), it extends quasi-conformally
to the closure of {cn}n∈N, which contains ∂∆a. It follows that for all a ∈ Cv0 , the
boundary of ∆a satisfies ∂∆a = Ha(∂∆a) with Ha quasi-conformal, and hence ∂∆a

is a quasi-circle. Since −1 ∈ ∂∆1, we have that −1 ∈ ∂∆a.
�

We shall see in the next section that this same argument can be generalised to
other regions of parameter space.

6. Julia stability

The maps in our family are of finite type, hence fa0
(z) is J -stable if both sequences

{fna (−1)}n∈Z and {fna (va)}n∈Z are normal for a in a neighbourhood of a0 (see [16]
or [7]).

We define the critical and asymptotic stable components as

Sc = {a ∈ C|Gcn(a) = fna (−1) is normal in a neighbourhood of a},

Sv = {a ∈ C|Gvn(a) = fna (va) is normal in a neighbourhood of a},

respectively. Accordingly we define critical and asymptotic unstable components
Uc, Uv as their complements, respectively. These stable components are by defini-
tion open, its complements closed. With this notation the set of J -stable parame-
ters is then S = Sc ∩ Sv.

Capture parameters and semi-hyperbolic parameters clearly belong to Sc or Sv.
Next, we show that, because of the persistent Siegel disc, they actually belong to
both sets.

Proposition 6.1 . Hc,v, Cc,v ⊂ S

Proof . Suppose, say, that a0 ∈ Hv. The orbit of va0
tends to an attracting cycle,

and hence a0 ∈ Sv. In fact, since Hv is open, we have that a ∈ Sv for all a in
a neighbourhood U of a0. For all these values of a, the critical orbit is forced to
accumulate on ∂∆a, hence {fna (−1)}n∈N avoids, for example, all points in ∆a. It
follows that {fna (−1)}n∈N is also normal on U and therefore a0 ∈ Sc. The three
remaining cases are analogous.

�

Any other component of S not in H or C will be called a queer component, in
analogy to the terminology used for the Mandelbrot set. We denote by Q the set
of queer components, so that S = H ∪ C ∪Q.

At this point we want to return to the proof of Proposition 5.6, where we showed
that, for parameters inside Cv0 , the boundary of the Siegel disc was moving holo-
morphically with the parameter. In fact, this is a general fact for parameters in
any non-queer component of the J -stable set.

Proposition 6.2 . Let W be a non-queer component of S = Sc∩Sv, and a0 ∈W .
Then there exists a function H : W ×∂∆a0

→ ∂∆a which is a holomorphic motion
of ∂∆a0

.

Proof . Since W is not queer, we have that W ⊂ H ∪C. Let sa denote the singular
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value whose orbits accumulates on ∂∆a for a ∈ W , so that sa ∈ {−1, va}. Let
sna = fna (sa), and denote the orbit of sa by Oa(sa). Then the function

H : Oa0
(sa0

) ×W // C

(sna0
, a) // sna

is a holomorphic motion, since Oa(sa) must be infinite for all n, and fna (sa) is
holomorphic on a, because 0 /∈ W . By the second λ-lemma, H extends to the
closure of Oa0

(sa0
) which contains ∂∆0.

�

Combined with the fact that fa(z) is a polynomial-like map of degree 2 for |a| > R
(see Theorem 3.2) we have the following immediate corollary.

Corollary 6.3 . (Proposition E, Part b) Let W ⊂ Hv ∪ Cv be a component
intersecting {|z| > R} where R is given by Theorem 3.2 (in particular this is
satisfied by any component of Hv). Then,

a) if θ is of constant type, for all a ∈ W , the boundary ∂∆a is a quasi-circle
containing the critical point.

b) Depending on θ ∈ R\Q, other possibilities may occur: ∂∆a might be a quasi-
circle not containing the critical point, or a C n, n ∈ N Jordan curve not
being a quasi-circle containing the critical point, or a C n, n ∈ N Jordan
curve not containing the critical point and not being a quasi-circle. In gen-
eral, any possibility realised by a quadratic polynomial for some rotation num-
ber and which persists under quasi-conformal conjugacy, is realised for some
fa = e2πθia(ez/a(z + 1 − a) + a− 1).

Remark 1. In general, for any W ⊂ Hv ∪Cv we only need one parameter a0 ∈W
for which one of such properties is satisfied, to have it for all a ∈W .

Appendix A. Proof of Theorem 4.6 and numerical bounds

We may suppose λ 6= ±i since θ 6= ±1/2. Let λ = λ1 + iλ2, σ = Sign (λ1) and
ρ = Sign (λ2). We define:

y
C2

va

C1

s

C3−y

f(R)

R

Figure A1. Sketch of the construction in Thm. 4.6 for the case λ1, λ2 > 0.
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C1 : = {σs + ti||t| ≤ y}

C2 : = {σt + iρy|t ≥ s}

C3 : = {σt − iρy|t ≥ s}

with y > 0, s > 0, see Figure A1 for a sketch of this curves. Let R be the region
bounded by C1, C2, C3. Recall that va = λ(a2 − a) is the asymptotic value. Note
that we will consider a real, furthermore following Figure A1, we will set a := −σb
with b > 0, as hinted by numerical experiments. Defined this way, the curves that
are closer to va are C1 and C2. We choose y and s in such a way that d(va, C1) =
d(va, C2), as in Figure A1. More precisely,

d(va, C1,2) = |λ1|
(
b2 + σb

)
− s = |λ2|(b

2 + σb) − y

and hence

y = (|λ1| + |λ2|)
(
b2 + σb

)
− s.

To ease notation, define L = (|λ1| + |λ2|). We would like some conditions over s
assuring that if b > b∗, d(va, f(∂R)) ≤ d(va, ∂R), as this would imply f(R) ⊂ R
and thus the existence of an attracting fixed point. We write fa(z) = va + ga(z)
where ga(z) = a · λez/a · (z + 1 − a). Then

d(va, f(∂R)) = d(0, ga(∂R)) = |ga(∂R)|.

Therefore we need to find values such that the following three inequalities hold

|ga(C1)| < |λ1|
(
b2 + σb

)
− s, (A1)

|ga(C2)| < |λ1|
(
b2 + σb

)
− s, (A2)

|ga(C3)| < |λ1|
(
b2 + σb

)
− s. (A3)

For (A1) to hold the following inequality needs to be satisfied

b · e−s/b
√

((σs+ σb+ 1) + t2)
?
≤ |λ1|

(
b2 + σb

)
− s.

Observe that

b · e−s/b
√

(σs + σb+ 1)2 + t2 ≤ b · e−s/b (|σ(s + b) + 1| + y) =

= b · e−s/b (s+ b+ σ + y) =

= b · e−s/b
(
b+ σ + L(b2 + σb)

)
,

so we define the following function

h(s) = b · e−s/b
(
b+ σ + L(b2 + σb)

)
− |λ1|

(
b2 + σb

)
+ s,

and we will find an argument which makes it negative. We need to find s such
that h(s) < 0 and 0 < s < |λ1|(b

2 + σb)|. It is easy to check that h(s) has a local
minimum at s∗ := b log

(
b+ σ + L(b2 + σb)

)
and furthermore

h(s∗) = b+ b log
(
b+ σ + L(b2 + σb)

)
− |λ1|

(
b2 + σb

)
,
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which is negative for some b∗ big enough (in Appendix A we will give some estimates
on how big this b∗ must be as a function of λ). This s∗ is again in our target interval,
for a big enough b (note that if h(s∗) < 0 then s∗ < |λ1|(b

2 + σb)|).
From now on, let s = s∗, and check if (A2) holds, where we will put s = s∗ at

the end of the calculations.

b · e−σt/σb
√

((σt + σb+ 1) + y2)
?
≤ |λ1|

(
b2 + σb

)
− s.

As we have done before, expand

b · e−σt/σb
√

((σt + σb+ 1) + y2) ≤ b · e−t/b · (|σt+ σb+ 1| + y) =

= b · e−t/b · (t+ b+ σ + y) =

= b · e−t/b ·
(
t+ b+ σ + L

(
b2 + σb

)
− s∗

)
.

It is easy to check that b · e−t/b · (b + σ + y) is a decreasing function in t, and
b ·e−t/bt has a local maximum at t = b and is a decreasing function for t > b. Then,
we can bound both terms by setting t = s∗, as s∗ ≥ b whenever b+ σ+L(b2 + σb)
is bigger than e, but this inequality holds if all other conditions are fulfilled. Now
we must only check if

|λ1|
(
b2 + σb

)
− s∗

?
≥ b · e−s

∗/b ·
(
s∗ + b+ σ| + L

(
b2 + σb

)
− s∗

)
=

= b ·
b+ σ + L

(
b2 + σb

)

b+ σ + L (b2 + σb)
= b,

which is the same inequality we have for h(s), thus it is also satisfied. Inequality
(A3) is equivalent to (A1), hence the result follows.

Now we give numerical bounds for how big b must be in Theorem 4.6. We will
consider only the general case λ1 6= 0, as the other is equivalent.

Consider the inequality

b log
(
b+ σ + L(b2 + σb

)
) ≤ −b+ |λ1|

(
b2 + σb

)

If this inequality holds and b+σ+L(b2+σb) > 0, we have the required estimates to
guarantee that all required inequalities in Theorem 4.6 hold. The second inequality
is clearly trivial, as it holds when b > 1. Now, we must find a suitable b for the
first.

Simplifying a b factor and taking exponentials in both sides, we must check which
b verify

b+ σ + L(b2 + σb) ≤ e−1+|λ1|σe|λ1|b. (A4)

We can get a lower bound of ex:

e|λ1|b ≥ 1 + |λ1|b+
|λ1|

2b2

2
+

|λ1|
3b3

6
.

And this way if

b+ σ + L(b2 + σb) ≤ e−1+|λ1|σ
(

1 + |λ1|b+
|λ1|

2b2

2
+

|λ1|
3b3

6

)
,
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then is also true (A4). Now we must check when a degree 3 polynomial with
negative dominant term has negative values. This will be true as long as b > 0 is
greater than the root with bigger modulus. It is well-known (see [13]) that a monic
polynomial zn +

∑n−1
i aiz

i has its roots in a disc of radius max(1,
∑n−1

i |ai|), so
every b > 1 and bigger than

6

eσ|λ1|−1|λ1|3
·

(
|L− eσ|λ1|−1 |λ1|

2

2
| + |1 − eσ|λ1|−1|λ1|b+ Lσb| + |b+ σ − 1|

)

satisfies our claims.
Finer estimates for b depending on λ can be obtained with a more careful splitting

of λ space, for instance

{λ|λ ∈ S1} = {λ ∈ [7π/4, π/4]} ∪ {λ ∈ [π/4, 3π/4]} ∪ {λ ∈ [3π/4, 5π/4]}

∪ {λ ∈ [5π/4, 7π/4]} = B1 ∪B2 ∪B3 ∪B4.

The proof can be adapted with very minor changes to this partition, although the
exposition and calculations are more cumbersome.
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[7] A. È. Erëmenko and M. Yu. Lyubich. Dynamical properties of some classes of entire functions.
Annales de l’Institut Fourier. Université de Grenoble, 42(4):989–1020, 1992.
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