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Starting from 4-substituted cyclohexanones, a pract
decahydroquinolines has been developed, the key ste

tricyclic oxazoloquinolone lactams.

ical synthetic route to enantiopure 6-substituted
ps being a stereoselective cyclocondensation of an
unsaturated &-keto ester derivative with ( R)-phenylglycinol and the stereoselective hydrogenat

H
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ion of the resulting

Bicyclic phenylglycinol-derived oxazolopiperidone
lactams provide a general solution for the synthesi
enantiopure polysubstituted piperidines bearingusity
any type of substitution pattern, including indaines,
quinolizidines, hydroisoquinolines, other fused and
bridged piperidine derivatives, and more complex
piperidine-containing natural products and bioaetiv
compounds.

Using related tricyclic oxazoloquinolone lactams as
enantiomeric scaffolds, we have recently developed
procedure that allows easy access to enantiopure 5-
substituted decahydroquinolinés.Apart from their
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interest as bioactive compountisiecahydroquinolines
bearing substituents at the carbocyclic ring arey ve
attractive synthetic targets as there are few nusttogies
for their enantioselective synthe8isyith no precedents
for the preparation of 6-substituted derivatives.

In this letter, we disclose a practical synthetate to
enantiopure 6-substituteds-decahydroquinolines using
4-substituted cyclohexanonek as the starting materials.
The key steps of the synthesis are a stereosedectiv
cyclocondensation of R)-phenylglycinol with an

3 (a) Daly, J. WIn The Alkaloids Cordell, G. A. Ed.; Academic
Press: New York, 1998; Vol. 50, pp 141-169. (b)ypdl W.; Garraffo,
H. M.; Spande, T. F. InAlkaloids: Chemical and Biological
PerspectivesPelletier, S. W., Ed.; Pergamon, New York, 1999).
13, pp 1- 161. (c) Spande, T. F.; Jain, P.; Gaxraf. M.; Pannell, L.
K.; Yeh, H. J. C.; Daly, J. W. Fukumoto, S.; InamuK.; Tokuyama,
T.; Torres, J. A.; Snelling, R. R.; Jones, T.HNat. Prod 1999, 62,
5- 21. (d) Daly, J. W.; Spande, T. F.; Garraffo,N.J. Nat. Prod
2005, 68, 1556-1575. (e) For a review on the synthesis of
decahydroquinolines, see: Kibayashi, C.; Aoyagi, Ii8.Studies in
Natural Products Chemistry Atta-ur-Rahman, Ed.; Elsevier,
Amsterdam, 1997; Vol. 19, pp 3-88.

4 (@) Heitbaum, M.; Frohlich, R.; Glorius, Rdv. Synth. Catal.
2010, 352 357-362. (b) Pham, V. C.; Jossang, A.; Grellier,
Sévenet, T.; Nguyen, V. H.; Bodo, B. Org. Chem2008, 73, 7565—
7573.



unsaturated o-keto ester derivative 3 and the
stereoselective carbon-carbon double bond hydrdigena
of the resulting tricyclic lactam, taking advantage of the
conformational rigidity of the tricyclic system.

The required cyclohexenone est@swvere prepared
from cyclohexanoned as outlined in Scheme 1, either
via bromination-elimination od-keto ester® (seriesa,b;
55-60% overall yield) or by alkylation of a keto
sulfoxide intermediate with methyl acrylate, followed by
thermal elimination (seriase; ~75% overall yield).

Scheme 1. Preparation of the Starting Unsaturated Keto Ester
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Treatment of unsaturated keto est8se with (R)-
phenylglycinol in a Dean-Stark apparatus, in reafigx
toluene containing isobutyric acid, stereoselediled to
tricyclic cis-hydroquinoline lactams4, in which the
migration of the carbon-carbon double bond has wedu
(Scheme 2). Minor amounts of tbis-diastereoisomers
(7aR,11aR) were also formed (approximate 4:1 ratio; 75-
80% overall yield).
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The formation of these lactams can be accountelyfor
considering that the initially formed conjugatedrigs A

5 Monteiro, H. J.; De Souza, J. Fetrahedron Lett1975, 921-924.

are in equilibrium, via dienamind®, with two epimeric
B,y-unsaturated iminesC and four diasterecisomeric
oxazolidinedD, as outlined in Scheme 3.

Scheme 3. Mechanistic Pathway for the Cyclocondensation
Reaction
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Due to steric constraints, the subsequent irrellersi
lactamization occurs only from the diastereoisonozrd
and ox-2 that lead to thecis fused hydroquinolones

Scheme 4. The Lactamization Step
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(major) and5 (minor), via a chair-like transition state in
which the unsaturated carbon moiety of the cyclehex
ring adopts an equatorial disposition with resgecthe
incipient six-membered lactam ring (Scheme 4). The
cyclization occurs faster fronex-1, and consequently
tricyclic lactam 4 is the major product of the
cyclocondensation reaction, as this oxazolidineva! a
less hindered approach of the ester group to tinegen
atom, avoiding the repulsive interaction with theepyl
substituenf. No lactams with @rans hydroquinoline ring
fusion were observed.

Catalytic hydrogenation of lactamth,d,e in MeOH
using PtQ as the catalyst took place in excellent yield
with high facial selectivity, with uptake of hydreg from
by the most accessibla-face to give the respective
decahydroquinolineg (Scheme 5). Minor amounts of the
corresponding C-9 epimers were also formed.

An X-ray crystallographic analysis of lacta®b
unambiguously confirmed the absolute configuratidn
the new stereogenic center generated in the
hydrogenation step and of the hydroquinoline ring
junction carbons formed in the cyclocondensation

reaction.
Scheme 5. Synthesis  of Enantiopure  6-Substituted
Cis-Decahydroquinolines
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Alane reduction of crude tricyclic lactantsbrought
about the stereoselectivereductive opening of the
oxazolidine ring and the reduction of the lactard aster
(in series b) carbonyl groups to give cis
decahydroquinolines 7.2 A subsequent catalytic
debenzylation in the presence of BoOcled to 6-
substituted decahydroquinolin® Taking into account
the availabilty of the starting 4-substituted

5 For the stereochemical outcome of related cycldeosation
reactions fromd-keto esters, see: (a) Amat, M.; Cantd, M.; Llor; N
Escolano, C.; Molins, E.; Espinosa, E.; Bosch].JOrg. Chem2002,
67, 5343-5351. (b) Amat, M.; Bassas, O.; Llor, N.n@a M.; Pérez,
M.; Molins, E.; Bosch, IChem. Eur. J2006, 12, 7872—7881.
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Tetrahedron Asymmettge95 6, 2651-2654. See also ref 6a.
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from the minor epimers generated in the hydrogenattep, were
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cyclohexanones, the sequence reported here prowides
general route to enantiopure 6-substitutecis
decahydroquinolines.

Similar cyclocondensation reactions of unsaturated
keto esters3a-c and the saturated keto esBfrwith (S)-
tryptophanol  (Scheme 6) were also highly
stereoselective, leading to the correspondisdactams9
(357aR,11&R) as the major products [the ratio
9:(357a8511eH)-isomers  was 4:1; 65%-75% overall
yield]. This significantly expands the potentialto€yclic
oxazoloquinolone lactams as chiral building bloskwe
(9-tryptophanol not only acts as a chiral inductorthie
cyclocondensation reaction, which was the role R)f (
phenylglycinol, but can also be used to assembleemo
complex hydroquinoline-fused  derivatives.  Thus,
Bischler-Napieralski cyclization of tricyclic lactes
9a,c,f'° followed by LiAlH, reduction of the resulting all-
cis hexacyclic derivativeslO stereoselectively led in
excellent yield (85-90% overall yield) to pentagycl
amino alcohols1l, which embody the pentacyclic
skeleton of tangutoring.

Scheme 6. Cyclocondensation Reactions wit{Tryptophanol
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The configuration of the two stereogenic centers
generated in the cyclocondensation reaction was
unambiguously established by X-ray diffraction gséd
of the thiolactam derived fro®a, which was prepared in
77% yield by treatment dda with Lawesson’s reagent.
On the other hand, the configuration of the C-6d @n
14b stereocenters dafl was deduced from the NMR data
(COSY, HETCOR and NOESY experiments), by
considering a preferreds-cisoid-cisconformation? and
by comparison of th&’C NMR chemical shifts with the
values reported for tangutorife (see Supporting
Information).

The stereoselectivity of the Bischer-Napieralski
cyclization can be rationalized by considering tkat
attack of the hydride on the electrophilic carbenter of
the conformationally rigid iminium intermediafeoccurs
from the less hindereal face, as depicted in Scheme 6. In
contrast with related hydride reductiofighe alternative
attack from theB-face, under stereoelectronic contrbis
hindered due to the presence of the cyclohexeige rin

In summary, starting from 4-substituted cyclo-
hexanones, we have developed a practical route to
enantiopure 6-substitutedis-decahydroquinolines, the
key steps being a cyclocondensation reaction R)f (
phenylglycinol with a 3-substituted 6-oxocyclohegen
propionate and the subsequent stereoselective rearbo
carbon double bond hydrogenation of the resulting
tricyclic lactam. Similar cyclocondensation reanso
using G)tryptophanol provide access to more complex
pentacyclic derivatives related with natural praguc
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