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Abstract

We consider entire transcendental maps with bounded set of singular values such that
periodic rays exist and land. For such maps, we prove a refined version of the Fatou-
Shishikura inequality which takes into account rationally invisible periodic orbits, that is,
repelling cycles which are not landing points of any periodic ray. More precisely, if there
are q < ∞ singular orbits, then the sum of the number of attracting, parabolic, Siegel,
Cremer or rationally invisible orbits is bounded above by q. In particular, there are at
most q rationally invisible repelling periodic orbits. The techniques presented here also
apply to the more general setting in which the function is allowed to have infinitely many
singular values.

1 Introduction

Consider an entire transcendental function f and let S(f) be its set of singular values

S(f) := {asymptotic values, critical values}.

Then f : C \ f−1(S(f)) → C \ S(f) is an unbranched covering of infinite degree. The
closure of the orbits of all singular values is called the postsingular set and is denoted by

P(f) :=
⋃

s∈S(f),n>0

fn(s).

A singular value v is non-recurrent if it does not belong to its ω-limit set ω(v), defined as
the set of accumulation points for the orbit {fn(v)}n∈N.

Many of the intricate patterns that arise in the dynamics of holomorphic maps are due to
the presence of singular values and to the way in which their orbits interact with each other.
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For example, it is not difficult to show that if the unique singular value of a quadratic poly-
nomial is non-recurrent then the Julia set is locally connected [DH85, Exposé X]. Similarly,
the presence of non-repelling periodic orbits is entangled with the behavior of singular orbits.
For example, every immediate attracting or parabolic basin needs to contain a singular orbit,
and each Cremer point or point in the boundary of a Siegel disk needs to be accumulated by
points in the postsingular set [Fat20, Mil06].

As a consequence of this deep relationship, it is possible to give an upper bound for the
number of non-repelling cycles in terms of the number of singular values. This is known as
the Fatou-Shishikura inequality [Shi87, EL92], and it states that if an entire map (polynomial
or transcendental) has q singular values, then

Nnon-repelling ≤ q,

where Nnon-repelling stands for the number of attracting, parabolic, Cremer and Siegel cycles.
The proof of this celebrated result relies on perturbations in parameter space. However, with
additional dynamical assumptions on the map (for example, bounded postsingular set), a
more combinatorial approach in the dynamical plane also associates each non-repelling cycle
to a singular orbit in a precise mathematical way, and in such a way that the latter cannot
be associated to any other non-repelling cycle [Kiw00, BF17b].

To be somewhat more precise on this extra assumption, we must talk about rays [DH85,
Mil06, RRRS11]. For polynomials, and for many transcendental maps the escaping set,
defined as

I(f) := {z ∈ C; fn(z)→∞},

consists of injective, mutually disjoint curves G : (0,∞)→ I(f) tending to infinity as t→∞.
These are called external rays for polynomials and dynamic rays (or hairs) for transcendental
maps (see Section 2 for a precise definition), although in this paper we will often call them
just rays. A ray G is periodic if fn(G) ⊂ G for some n ∈ N, and we say that it lands at a
point z0 ∈ C if G(t) → z0 as t → 0. Periodic rays can only land at parabolic or repelling
periodic points by the Snail Lemma [Fat20, Mil06].

Polynomial rays foliate the attracting basin of infinity and hence lie in the Fatou set.
Their landing is tightly related to the topology of the Julia set. Indeed, the Julia set is
locally connected if and only if all rays land, in which case the Julia set can be parametrized
by the unit circle. For transcendental maps, the situation is more complex. To start with,
it is not always true that the escaping set is formed by rays, although this is the case for a
wide class of entire transcendental functions [RRRS11, BRG17]. This class includes the class
Brays of functions which are finite compositions of functions of finite order with bounded set
of singular values, and for such functions the escaping set lies entirely in the Julia set.

In the case of polynomials or maps in Brays, if the postsingular set is bounded all periodic
rays land (at repelling or parabolic) periodic points [DH85, Hub93, Mil06, Rem08, Den14].
Conversely, one may ask whether every repelling or parabolic point is the landing point of a
ray or, in other words, whether repelling and parabolic points are always accessible from the
escaping set. The answer to this question is not always positive and motivates the following
definition.

Definition 1.1 (Rationally invisible periodic orbit). A repelling periodic orbit of an entire
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map (polynomial or transcendental) is called rationally invisible if one of the points in the
orbit (and hence all of them) is not the landing point of any periodic ray.

The non-existence of rationally invisible periodic orbits, whenever it can be proven, has
consequences for the study of parameter spaces. In polynomial dynamics, for example, it
represents the starting point for Yoccoz puzzle and for much of the machinery which lead
to most of the actual rigidity results. In transcendental dynamics, it is related to the non-
existence of ghost limbs attached to hyperbolic components. It is therefore of interest to
understand the situations under which these special orbits may exist.

As it turns out, rationally invisible orbits, despite being repelling, are also tightly related
to the orbits of the singular values and more precisely, to unbounded singular orbits. Indeed,
if an entire map (polynomial or transcendental in Brays) has a bounded postsingular set,
then every repelling or parabolic periodic point is the landing point of at least one and
at most finitely many periodic rays, and hence there are no rationally invisible orbits (see
[DH85, Hub93, Mil06] for polynomials, [BF15, BL14, BRG17] for transcendental).

In the absence of this boundness restriction, one would like to give an upper bound for
the number of rationally invisible periodic orbits in terms of the number of singular values,
so as to produce a refinment of the Fatou-Shishikura inequality. This is indeed the case for
polynomials [LP96, Corollary 1], [BCL+16], and also for transcendental maps, as we show in
the main result of this paper (see also Theorem 5.1 for a stronger statement).

As usual we say that a singular value escapes along periodic rays if its orbit converges to
infinity and eventually belongs to a cycle of periodic rays.

Main Theorem. Let f ∈ Brays such that periodic rays land and assume that there are no
singular values escaping along periodic rays. Suppose that f has at most q < ∞ singular
orbits which do not belong to attracting or parabolic basins.

Let Nindifferent denote the number of Cremer cycles and cycles of Siegel disks, and Ninvisible

denote the number of rationally invisible orbits. Then we have

Nindifferent +Ninvisible ≤ q.

In particular, there are at most q rationally invisible repelling periodic orbits.

One may wonder about how strong is the assumption that periodic rays land in the
transcendental setting. For polynomials, this assumption is equivalent to the assumptions
that no critical points escape along periodic external rays and is implied by the standard
assumption of the Julia set being connected. It is expected that also in the transcendental case
a periodic ray lands unless its forward orbit contains a singular value. This has been proven
for functions in the exponential family using parameter space based arguments [Rem06],
which seem to be out of reach even for functions with finitely many singular values. The
assumption that there are no singular values escaping along periodic rays is evidently weaker
that the hypothesis that periodic rays do not intersect the postsingular set. In fact, the latter
hypothesis implies landing of periodic rays [Rem08].

The Main Theorem has the following immediate corollary.

Corollary 1.2. Let f ∈ Brays such that periodic rays land and assume that there are no
singular values escaping along periodic rays. Suppose that f has at most q singular orbits
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which do not belong to attracting or parabolic cycles. Then there are at most q repelling
periodic orbits which are rationally invisible.

The only previous known result in the direction of putting a bound on the number of
rationally invisible periodic orbits of transcendental maps is due to Rempe-Gillen [Rem06],
and states that for any fc(z) = ez + c there is at most one rationally invisible periodic orbit.
The proof uses arguments in the parameter space of the exponential family and relies crucially
on the existence and structure of wakes in the parameter plane.

Instead, the proof that we present in this paper uses the structure of the dynamical plane
carved by periodic rays [BF15], and is of a local nature. As a bonus, it also gives more
information about the accumulation behavior of the singular orbits (see Theorem 5.1).

As a concluding remark, let us note that in exponential dynamics, for parameters for
which the postsingular set is bounded there are no rationally invisible repelling periodic
orbits, and this fact implies that such parameters cannot belong to ghost limbs attached to
hyperbolic components (See Theorem 4, the final conjecture in [Rem06], and the last section
in [BL14]). This has also been used for some of the rigidity results in [Ben15]. This type of
results increase our current knowledge of parameter spaces. For families of transcendental
functions with more than one singular value this knowledge is currently very limited, but
there is no doubt that it will undergo an important development in the next decades. We
hope that the results and the techniques developed in this paper will be a little brick in the
implementation of this large project.

The paper is structured as follows. Section 2 contains the background about functions
in class Brays and their combinatorics and presents the Separation Theorem [BF15], a key
tool for the proof of the main result. It describes also fundamental tails, objects introduced
in [BRG17] which can be seen as intermediate steps in the construction of rays, and which
despite their intricate combinatorics, have proven to be useful in the proof of several recent
results. In Section 3 we give a characterization of landing of periodic rays in terms of some
combinatorics of tails.

Meanwhile, Section 5 contains the statement and the proof Theorem 5.1, from which the
Main Theorem follows, a relation which is made explicit in Section 5. Section 5 contains
also a corollary (see Corollary 5.7) stating that, under our assumptions, the union of the
dynamical fibers (as in the definition of [RS08]) of a rationally invisible repelling periodic
orbit contains either a singular orbit, or infinitely many singular values whose orbits belong
to the fiber for more and more iterations.

Notation

Let C denote the complex plane, D the unit disk. The Euclidean disk of center z and radius
r is denoted by Dr(z). By a (univalent) preimage under fn of an open connected set V we
mean a connected component U of the set f−n(V ) (such that fn : U → V is univalent).
Given a set A and k ∈ N we denote by {A}k the set A× . . .×A where the product is taken
k times.
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2 Background

Tracts, fundamental domains, and dynamic rays

Let f be an entire transcendental function with bounded set of singular values and let D be
a Euclidean disk containing S(f) and f(0). The connected components of f−1(C \ D) are
called tracts [EL92] and are unbounded and simply connected. By definition for any tract T
we have that f : T → C \D is an unbranched covering of infinite degree. Let T be the union
of all tracts. It is not difficult to find an analytic curve δ ⊂ C \ (D ∪ T ) connecting ∂D to ∞
([Rot05]; see also [BF15, Lemma 2.1]). Let Ω := C \ (D ∪ δ). The connected components of
f−1(Ω) are called fundamental domains. It is easy to see that only finitely many fundamental
domains intersect D and that for any fundamental domain F we have that f : F → Ω is a
biholomorphism. We denote by F the collection of all fundamental domains, as well as their
union.

The structure of the dynamical plane given by tracts and fundamental domains has been
useful to construct dynamic rays. The initial idea of finding curves in the escaping set of
transcendental entire functions goes back to [Fat26], was later developed in [DT86], [DGH86],
[DK84], [BK07], [Bar07], [RRRS11] among others.

Definition 2.1 (Dynamic ray). A (dynamic) ray for f is an injective curve G : (0,∞)→
I(f) such that:

(a) lim
t→∞
|fn(G(t))| =∞ ∀n ≥ 0;

(b) lim
n→∞

|fn(G(t))| =∞ uniformly in [t0,∞) for all t0 > 0;

(c) fn(G(t)) is not a critical point for any t > 0 and n ≥ 0;

and such that G(0,∞) is maximal with respect to these properties. If G(0,∞) is maximal
with respect to (a) and (b) but not with respect to (c), then we call the ray broken.

Broken rays could therefore be continued if we allowed critical points and their iterated
preimages to be part of the ray, as it is the case in the definition in [RRRS11], where branching
might occur and several rays might share one same arc. This situation cannot happen in our
setting, i.e. rays are pairwise disjoint.

A dynamic ray G is periodic if fp(G) = G for some p ≥ 1, and fixed if p = 1. We say
that a dynamic ray lands at a point z0 ∈ C if it is not broken and limG(t) = z0 as t → 0.
Observe that dynamic rays are allowed to land at singular values, but that broken rays are
not considered to land.

Recall that Brays denotes the class of transcendental entire functions which are finite
compositions of functions of finite order with bounded set of singular values. In [RRRS11,
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Theorem 1.2] it is shown that for any f ∈ Brays and for any escaping point z then fn(z)
belongs to a dynamic ray for any n large enough. For this paper we need to take into account
a combinatorial description of dynamic rays, which is implicitly contained in [RRRS11] and
in several of the aforementioned papers but for which we use the explicit setup that has been
presented in [BF15].

We say that a dynamic ray G is asymptotically contained in a fundamental domain F if
G(t) ∈ F for all t sufficiently large. It is easy to see that this is always the case, as stated in
the following lemma.

Lemma 2.2 (See e.g. Lemma 2.3 in [BF15]). Let f ∈ Brays. Then every dynamic ray is
asymptotically contained in a fundamental domain.

Let us consider the symbolic space formed by all infinite sequences of fundamental domains

FN = {s = F0F1F2 . . .}

endowed with the dynamics of the shift map σ : FN → FN, σF0F1F2 . . . = F1F2F3 . . ..
For s = F0F1 . . . ∈ FN, the set σ−1s of its preimages is given by all sequences of the form
Fs := FF0F1 . . . where F ∈ F .

Definition 2.3. We say that a dynamic ray G has address s = F0F1 . . . ∈ FN and we denote
it by Gs if and only if f j(Gs) is asymptotically contained in Fj for all j.

It follows directly from the construction in [RRRS11] that given an address s the ray Gs,
if it exists, is unique, and that for rays which are not broken we have that

f(Gs) = Gσs

and that

{f−1Gs} = {GFs : F ∈ F}.

This implies that a dynamic ray Gs is periodic if and only if s is periodic. We say that Gs has
bounded address if s is bounded, i.e. its entries take values over finitely many fundamental
domains.

The next proposition is [BF15, Proposition 2.11], where it is proven using results and ideas
from [DT86] and [RRRS11]. It previously appeared in different formulations in [Rem08],
[BK07].

Proposition 2.4. If f ∈ Brays and s ∈ FN is bounded then there exists a unique dynamic
ray Gs with address s for f .

Remark 2.5. A generalization of rays for functions with not as beautiful a geometry as
functions in class Brays can be found in [BRG17]. The unbounded, connected sets which take
the place of rays are called dreadlocks. Despite not being curves, dreadlocks have the same
combinatorial structure as rays. The results that are presented for rays in this section also
hold for dreadlocks.
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The Separation Theorem

Goldberg and Milnor [GM93] proved that for polynomials with connected Julia set, the set
of fixed rays together with their landing point separate the set of fixed points which are not
landing points of fixed rays; such points include all attracting, Siegel and Cremer parameters.

Goldberg-Milnor’s theorem has been generalized to entire transcendental maps in class
Brays, under the assumption that periodic rays land [BF15]. In order to state the theorem
we need to introduce the notion of basic regions and interior fixed points, following [GM93]
and [BF15]. Fix p and assume that periodic dynamic rays land. Let Γ denote the closed
graph formed by the rays fixed by fp together with their landing points. The connected
components of C \ Γ are called the basic regions for fp. An interior fixed point for fp is a
periodic point for f which is fixed by fp and which is not the landing point of any periodic
ray which is fixed by fp. Note that attracting, Siegel and Cremer points as well as rationally
invisible repelling periodic points are interior periodic points for fp for all p, while parabolic
and repelling periodic points may be interior or not depending on p. For example a fixed
point which is the landing point of a cycle of periodic rays of period 3 is interior for f but
not for f3.

Theorem 2.6 (Separation Theorem Entire [BF15]). Let f ∈ Brays, p ∈ N and assume that
all periodic rays for f which are fixed by fp land. Then there are finitely many basic regions
for fp, and each basic region contains exactly one interior fixed point for fp, or exactly one
attracting parabolic basin which is invariant under fp.

Theorem 2.6 has many corollaries, including that parabolic points are always landing
points of periodic dynamic rays (whose period equals the period of the attracting basins),
and that hidden components of a Siegel disk are preperiodic to the Siegel disk itself (see
[CR16], [BF17a] for an application of this fact to the existence of critical points on the
boundary of Siegel Disks). It has recently been used in [BF17b] to associate non-repelling
cycles to singular orbits under the hypothesis that periodic rays land.

A couple of useful lemmas

The following two general lemmas will be used several times in the sequel. The first of them
is Lemma 2.1 in [BRG17]

Lemma 2.7. Let f : C → C holomorphic, U ⊂ C be a connected set with locally connected
boundary. Then for any compact set K ∈ C, only finitely many connected components of
f−1(U) intersect K.

Lemma 2.8 (Forward invariant boundary). Let f be holomorphic, B be a region whose
boundary is forward invariant, V be an open subset of C which does not intersect the boundary
of B. Then for any connected component U of f−1(V ) we have that U is either contained in
B or in C \B.

Proof. Otherwise, U ∩ ∂B 6= ∅. Since f(∂B) ⊂ ∂B it follows that V ∩ ∂B 6= ∅ contradicting
the hypothesis.
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3 Fundamental tails for a repelling periodic orbit

Fundamental tails are relatively new objects introduced in [BRG17] for functions with bounded
postsingular set. They already found application in [EFJS18]. Fundamental tails are preim-
ages of fundamental domains under finitely many iterates, and hence are nice open sets.
Loosely speaking they can be thought of as approximation of rays, which despite being topo-
logically curves, do not necessarily have nice geometric properties. In what follows we give a
precise definition of tails under weaker assumptions than in the original setting.

Let f ∈ Brays whose periodic rays land. Let z0 be a repelling periodic point of minimal
period m and let X = {z0, z1 . . . zm−1} be its orbit labeled so that f(zi) = zi+1 with indices
taken modulo m. Let p be a multiple of m. Suppose that z0 is an interior fixed point for fp,
and consider the basic regions B0, . . . Bm−1 for fp which contain the elements of X , namely,
zi ⊂ Bi for i = 0, . . . ,m− 1. indices of the basic regions {Bi} will also be taken modulo m.

Let B denote the union of the Bi. Since there are only finitely many basic regions for
fp (see Theorem 2.6), the boundary of B contains finitely many pairs of rays which are
fixed under fp, together with their landing points. Let D, δ as in Section 2. Let FB be the
collection of fundamental domains intersecting B for D, δ.

Fix r > 0 such that r > |zi| for all i ∈ X and let Dr ⊃ D be the Euclidean disk of
radius r centered at 0 . Let δr ⊂ δ be the unbounded connected component of δ \Dr. For

any fundamental domain F ∈ FB let
B,r

F be the unique unbounded connected component of

F ∩ B ∩ f−1(C \ (Dr ∪ δr)). This is the same as saying that we are considering
B,r

F to be
the unique unbounded connected component of the fundamental domains obtained by using
Dr, δr instead of D, δ, intersected with B.

DDr

F1

F2F3

δ

Figure 1: Definition of
B,r

F when B is a single basic region. The region B is shown together with the
disk D used to define fundamental domains. For simplicity only 3 fundamental domains F1, F2, F3

are shown. The circle of radius r and its preimages inside F1, F2, F3 are in red. Shaded in light blue
are the tails of level 1 for the disk DR corresponding to F1, F2, F3. The curve δr is in purple.

For any F ∈ FB we have that
B,r

F does not intersect ∂B, so by Lemma 2.8 for any n we
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have that any connected component of f−n(
B,r

F ) is contained in either B or C \B.

Definition 3.1 (Fundamental tails for z0). Let z0,m, The set of tails of level 1, that we

denote by T1 = T1(r), is the set of
B,r

F where F ∈ FB and
B,r

F ⊂ B0. Since Dr ⊃ D, we have
that f |τ : τ → C\(Dr∪δr) is univalent for any τ ∈ T1. We define tails of level n by induction.
Suppose that we have defined the set Tn of tails of level n and let us define the set Tn+1 of
tails of level n+ 1.

We say that η is a tail of level n+ 1 (for z0, r) if it satisfies the following.

• η is a connected component of f−m(τ) for some τ ∈ Tn;

• η ⊂ B0 and fm : η → τ is univalent;

• f i(η) ⊂ Bi for i = 0, . . . ,m− 1.

It follows that if η ∈ Tn, fm(n−1) : η → τ is univalent, where τ is some element of T1.

The definition above depends on the choice of z0, p and r. The point z0, its period m, and
the period p of the basic regions are fixed throughout the section, while r may vary. With
this definition all tails of all levels are contained in the basic region B0 which contains z0,
and have the following properties.

Lemma 3.2. Let τ be a fundamental tail of level n for z0, r. Then:

• τ is asymptotically contained in a unique fundamental domain F0 ∈ FB which intersects
B0, that is, there is a unique fundamental domain F0 ∈ FB which intersect B0 and such
that τ ∩ F0 is unbounded.

• For j = 1, . . . ,m(n−1), f j(τ) is asymptotically contained in a fundamental domain Fj
which intersects Bj, that is, there is a unique fundamental domain Fj which intersects
Bj and such that τ ∩ Fj is unbounded.

Proof. The proof follows from the definition of fundamental tails.

Lemma 3.2 gives a way to dynamically associate a finite sequence of fundamental domains
(called an address) to each tail τ ∈ Tn, similarly to the way in which we associate addresses
to dynamic rays. Compare with Definition 3.7 and 3.8 in [BRG17].

Definition 3.3 (Addresses of fundamental tails). Let τ be a fundamental tail of level n and
let s = F0F1 . . . Fm(n−1) be the sequence of fundamental domains given by Lemma 3.2. We
say that s is the (finite) address of τ . Observe that s has length `n = m(n − 1) + 1. When
it exists, we define τn(s) to be the unique tail of level n and address s. Uniqueness is given
by the fact that for each fundamental domain F we have that f : F → C \ (D ∪ δ) is a
homeomorphism.

At first glance one may expect that all sequences whose elements are fundamental domains
intersecting B should be realized. However, some of these fundamental domains are only
partially contained in B, and this prevents the existence of some tails. One can characterize
precisely the set of addresses which are realized but this is not needed for our purposes.
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The set of addresses of tails of level n is contained in {FB}`n = FB ×Fm(n−1)
B . Consider

infinite sequences in {FB}N. There is a natural projection

πn : {FB}N → {FB}`n

which maps an infinite sequence s to the finite address consisting of its first `n entries. In this
sense, whenever it exists, we can define the tail of level n and address s ∈ {FB}N as the tail
of level n and address πn(s). We refer to elements in {FB}N as (infinite) addresses, despite
the fact that not all of them are realized as fundamental tails of arbitrarily high levels.

The set of admissible addresses is denoted by

AB = AB(z0, p, r) := {s ∈ {FB}N : the tail τn(s) is well defined for all n}. (3.1)

τn+1(s)

τns

τn(σms)

F0

Fm

Fm(n−1)

fm(n−1)

fm

Figure 2: Let s = F0F1 . . . Fn . . . ∈ AB be an infinite address. The fundamental tail τn+1(s) is
contained in τn(s) for points with large modulus. The fundamental tail τn+1(s) is mapped to τn(σms)
under fm.

Definition 3.4 (Pullback along an address). Let r > 0 and consider the fundamental tails
T1 of level 1 for r. Let s = F0F1 . . . F`n−1 ∈ {FB}`n such that the tail τn(s) exists for some
n. Let ζ ∈ B0. When it exists, we define ζn(s) to be the unique point in f−nm(ζ) ∩ τn(s).

Let τn(s) be a tail of level n. The map fm(n−1) : τn(s)→ τ1(σm(n−1)s) is univalent, hence
fmn is a univalent map from τn(s) to C \ (Dr ∪ δr) (not necessarily surjective). So, if ζ does
have a preimage in τn(s), such a preimage is unique.

Lemma 3.5. A point z ∈ τn(s) for some n ≥ 1 and some s ∈ {FB}`n if and only if
f jm(z) ∈ τn−j(σmj(s)) ⊂ B0 for all j = 1 . . . n− 1.

Proof. This follows from the definition of fundamental tails.

We now show that up to taking r large enough, all possible fundamental tails of all levels
exist unless B =

⋃
iBi contains singular orbits which follow the itinerary of z0 with respect

to the partition into basic regions for fp.
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Recall that indices of the orbit of z0 as well as indices of the basic regions containing them
are taken modulo m, and that f j(z0) ∈ Bj for all j ≥ 0.

Let SB(f) be the set of singular values which are contained in B, that is

SB(f) = S(f) ∩B.

For every s ∈ SB(f) let i(s) ∈ {0, . . . ,m − 1} be such that s ∈ Bi(s), and let n(s) maximal
be such that for all 0 ≤ j ≤ n(s) we have that f j(s) ∈ Bi(s)+j . Let

PB(f) :=
⋃

s∈SB(f)

( ⋃
n≤n(s)

fn(s)
)
. (3.2)

Observe that PB(f) is smaller than P(f) ∩ B, and that it is forward invariant in the sense
that

f(PB(f) ∩Bi) ∩Bi+1 ⊂ PB(f). (3.3)

Proposition 3.6 (Existence of fundamental tails). Let f ∈ Brays such that periodic rays
land. Let X = {z0, . . . , zm−1} be a repelling periodic orbit of period m and let p be any
multiple of m. Suppose that f(zi) = zi+1 mod m. Let {Bi}i=0...m−1 be the basic regions for
fp containing the elements of X . Then at least one of the following is true.

(1) There exists a singular value s for f such that s ∈
⋃m−1
i=0 Bi, say s ∈ Bi(s), and such

that for all n ≥ 0 we have that fn(s) ∈ Bi(s)+n.

(2) There are infinitely many singular values sj for f in at least one of the basic regions
Bi, say B0, and a sequence nj → ∞ as j → ∞ such that for all n ≤ nj we have that
fn(sj) ∈ Bn.

(3) The set P(f) is bounded, and there exists r > 0 such that all tails of all levels are well
defined for z0, p, r. More precisely, this means the following. Let τ ∈ T1(r), n ≥ 0,
and τ̃ a connected component of f−nm(τ) for which f j(τ̃) ⊂ Bj for j ≤ nm. Then
fmn : τ̃ → τ is univalent.

Proof. We first claim that if neither case (1) nor case (2) occur, the set PB(f) is bounded.
Indeed we have that

N := sup
s∈SB(f)

n(s) <∞,

hence

PB(f) ⊂
⋃
j≤N

f j(SB(f))

and each of the sets f j(SB(f)) is bounded because SB(f) is bounded, and hence a finite
union thereof is also bounded.

If PB(f) is bounded, let r > 0 be such that the tails of level 1 for Dr do not intersect
PB(f). This can be done by taking Dr ⊃ (D ∪ PB(f) ∪ f(PB(f)) (notice that f(PB(f)) is
not contained in B).
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We claim that all tails of all levels are defined for such r. Indeed, suppose that this is not
the case. Then there exists a minimal k > 0, a tail τk(s) ∈ Tk(r), and a connected component
V ∈ f−m(τk(s)) ∩ B0 such that fm : V → τk(s) is not univalent and such that f j(V ) ∈ Bj
(by definition of tails for z0). Since τk(s) is simply connected, this occurs if and only if there
exists j ≤ m such that f j(V ) ⊂ Bj contains a singular value s.

By definition of tails, there exists some τ ∈ T1 such that fm(k−1)−j(f j(V )) ⊂ τ ⊂ B0,
hence fm(k−1)−j(s) ∈ τ . Since the orbit of s follows the orbit of f j(V ) (that is, f `(s) ∈
f `(f j(V )) ⊂ B(`+j)) we have that fm(k−1)−j(s) ∈ PB. This contradicts the fact that by
choice of r, T1 ∩ PB(f) = ∅.

Let us point out that P(f) ∩B may well be unbounded even if PB is not.

Given Propostion 3.6, the strategy for proving the Main Theorem will be to show that in
case (3), that is, in the absence of trapped singular values, every repelling periodic point is
the landing point of a periodic ray.

4 Definition of landing and shrinking lemma

In the current section we give an abstract definition of landing and we prove a lemma that
will be used in Section 5 (compare with the abstract characterization of landing in [BRG17]).

Let z0 be a repelling periodic point of period m, p be a multiple of m, B and Bi be
basic regions for fp as in Section 3. In this section we assume that we are in case (3) of
Proposition 3.6, that is, there exists r > 0 such that all tails of all levels are well defined for
z0, p, r. In particular, for any τ ∈ T1, for every n ≥ 0, and for every connected component τ̃
of f−mn(τ) for which f j(τ̃) ⊂ Bj for j ≤ n, we have that fmn : τ̃ → τ is univalent.

Let AB as in (3.1) be the set of addresses for which tails of all levels are well defined for
z0, p, r.

The following lemma establishes one of the fundamental relations between rays and tails
of the same address.

Lemma 4.1 (Rays versus tails). Let s = F0F1F2 . . . ∈ AB. Then for every z ∈ Gs(t) there
exists nz such that the arc connecting z to infinity in Gs is fully contained in τn(s) for all
n ≥ nz.

Proof. Let Dr be the Euclidean disk of radius r defined in the proof of Proposition 3.6, and
consider the curve δr ⊂ δ which starts from the last intersection of δ with Dr. Only for the
proof of this lemma, let {Fi} be the fundamental domains obtained by taking preimages of
C\ (Dr ∪ δr) and F be the union of all fundamental domains for f with respect to this choice
of Dr. By Lemma 2.2, the dynamic rays f i(Gs) are asymptotically contained in Fi for all i.
Let Gs(t) : (0,∞) → I(f) be a continuous parametrization of Gs such that |Gs(t)| → ∞ as
t→∞. Recall that points in Gs([T,∞]) escape uniformly to infinity for every T > 0. So for
each z = Gs(T ) there exists nz such that for all points Gs(t) with t > T we have

fn(Gs(t)) ∈ F for every n ≥ nz.
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(otherwise, fn+1(Gs(t)) would belong to the bounded set Dr, or to the curve δr which is
mapped to Dr at the next iterate, contradicting the uniform escape to infinity).

Hence we have that fn(Gs(T,∞)) ⊂ Fn for n ≥ nz and, by definition of tails, Gs(T,∞) ⊂
τn(s) for all n ≥ nz.

The following Lemma is a Euclidean version of a classical Lemma which holds for the
spherical metric (see for example [Lyu83], Proposition 3. Similar lemmas have been used in
[BL14],[BRG17] and in many other papers). For this lemma we do not need the assumption
that all tails are well defined as long as we restrict to univalent preimages.

Lemma 4.2 (Shrinking Lemma). Let f be holomorphic. Let V ′ ⊂ C be a simply connected
open set intersecting the Julia set. Fix a compact set K ⊂ C. For each n consider all
connected components V ′n,λ of f−n(V ′) which intersect K and which are univalent preimages

of V ′ under fn, where λ indicates the chosen branch of f−n.

Let V b V ′, and for each n, λ let Vn,λ = f−n(V ) ∩ V ′n,λ. Then for any ε > 0 there exists
Nε such that

diameucl Vn,λ < ε for any n > Nε and for any λ such that V ′n,λ ∩K 6= ∅.

The proof is the same as in [Lyu83] for the spherical metric, and the statement for the
Euclidean metric follows from the fact that we are only considering preimages intersecting a
given compact set K.

Lemma 4.3 (Characterization of landing). Let f ∈ Brays such that periodic rays land, and
let z0,m,Bi, B,AB as above. Let Gs ⊂ B0 be a periodic ray of period mq with s ∈ AB and
q ≥ 1. Let ζ ∈ B0\(Dr∪δr) for which ζnq(s) is well defined for all n ∈ N as in Definition 3.4.
Then Gs lands at z0 ∈ C if and only if ζnq(s)→ z0 as n→∞.

Recall that a dynamic ray Gs lands at a point z ∈ C if Gs(t)→ z as t→ 0. We observe
the following. Let z0,m, r,AB be as in the beginning of this section. Let Gs be a dynamic
ray of period mq for some s ∈ AB, I be an arc in Gs connecting a point z ∈ Gs with its image
fmq(z). For n ∈ N let In be the unique preimage of I under fmqn which is contained in Gs.
Then Gs lands at z0 if and only if dist(In, z0) → 0 as n → ∞. Indeed consider a sequence
Gs(tn)→ z0. We have that fkn(Gs(tn)) ∈ I for some kn →∞ hence Gs(tn) ∈ Ikn .

Moreover if I is chosen such that f j(I) is contained in F for all j, then In ⊂ τnq(s) for
all n ≥ 0. The proof is the same as the proof of Lemma 4.1.

Proof of Lemma 4.3. If Gs lands at z0, by Lemma 4.1 for any point ζ = Gs(t) with t large
enough we have that ζnq(s) exists, and ζnq converges to z0 by definition of landing.

To prove the other direction let ζ ∈ B0 \ (Dr ∪ δr) such that ζnq(s) is well defined (such a
ζ exists because s ∈ AB) and converges to z0 ∈ C. Let ζ ′ = Gs(t) and let I be the arc in Gs
connecting ζ ′ to fmq(ζ ′). Up to taking t large enough we can assume that f j(I) ⊂ F for all
j. By Lemma 4.1 we have that I ⊂ τj(s) for all j large enough. By assumption, we also have
that ζnq(s) ∈ τnq(s) for n large enough. Hence (I ∪ ζnq) ⊂ τnq(s) for all n large enough. For
one such n let V ′ ⊂ τnq(s) be a simply connected set containing both ζnq(s) and I and let
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V b V ′ containing both ζnq(s) and I. Note that V intersects the Julia set because dynamic
rays are subsets of the Julia set.

Let K be a compact connected neighborhood of z0. For j ∈ N let V ′j (s) be the connected

component of the preimage of V ′ under fmqj which is contained in τq(j+n)(s); observe that
the inverse branch ψj : V ′ → V ′j (s) is univalent because r was chosen so that all tails are well
defined. Also, V ′j intersects K for j large enough because ζqn(s)→ z0. By Lemma 4.2,

diameucl Vj(s)→ 0 as j →∞.

Since we assumed that f j(I) ⊂ F for all j, In ⊂ τnq(s), hence since fnq|τnq(s) is a homeomor-
phism, In ⊂ Vj → z0 and Gs lands at z0.

5 Rationally invisible orbits and singular orbits

The goal of this section is to prove that if tails are well defined for a given repelling periodic
orbit with respect to a set of basic regions containing it (case (c) in Proposition 3.6), then
the orbit is not rationally invisible. The Main Theorem will be derived in Section 6.

In the following Theorem, as usual, indices are taken modulo m.

Theorem 5.1 (Main theorem for fp). Let f ∈ Brays such that periodic rays land and assume
that there are no singular values escaping along periodic rays. Let X = {z0, . . . , zm−1} be a
repelling periodic orbit of period m and let p be any multiple of m. Suppose that f(zi) = zi+1.
Let {Bi}i=0...m−1 be the basic regions for fp containing the elements of X , and B = ∪Bi.
Then at least one of the following is true.

(1) There exists a singular value s for f such that s ∈
⋃q−1
i=0 Bi, say s ∈ Bi(s), and such

that for all n ≥ 0 we have that fn(s) ∈ Bn+i(s).

(2) There are infinitely many singular values sj for f in at least one of the basic regions
Bi, say s ∈ Bi(s), and a sequence nj → ∞ as j → ∞ such that for all n ≤ nj we have
that fn(s) ∈ Bn+i(s).

(3) Each point in X is the landing point of at least one and at most finitely many periodic
dynamic rays, all of which have the same period.

By Lemma 8.2 in [BRG17] (compare to [Mil06], Lemma 18.12 for polynomials), if a
repelling periodic point is the landing point of a periodic ray then it is the landing point
of finitely many periodic rays, all of which have the same period. So it is enough to show
that at least one point in X is the landing point of at least one periodic dynamic ray. This
implies that the same is true for all elements in X . Indeed, f is a homeomorphism from a
neighborhood of zi to a neighborhood of zi+1, so a dynamic ray Gs lands at zi if and only if
f(Gs) = Gσs lands at zi+1.

Let z0 ∈ X . Recall the definition of fundamental tails for z0 from Section 3. By Proposi-
tion 3.6, if neither case (1) nor case (2) occur, then there is r such that all fundamental tails
of all level are well defined. Our aim will be to show that under this assumption z0 is the
landing point of at least one periodic ray.

Recall that `n = m(n− 1) + 1 denotes the length of the address of a tail of level n.
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Definition 5.2 (Fundamental pieces). Let n ≥ 1. Let s be an infinite address or an address
of length at least `n+1 and assume that the tail τn+1(s) is well defined for some r > 0. Then
we define the fundamental piece of level n and address s, which we denote by Pn(s), as

Pn(s) := τn+1(s) \ τn(s).

Fundamental pieces are not necessarily connected, nor exist for all levels and addresses.
For example, if s is a disjoint-type address (i.e., contains only fundamental domains which
do not intersect the disk D) then there are no fundamental pieces of address s for any level.

The idea of using fundamental pieces was originally suggested by L. Rempe-Gillen as a
possible way to prove the main theorems in [BRG17].

Recall the definition of PB from Section 3.

Lemma 5.3 (Properties of fundamental pieces). Let f ∈ Brays, such that periodic rays land.
Let z0,m,B,Bi as usual, and let n ∈ N. Let s be an infinite address or an address of length
at least `n and assume that the fundamental tail τn(s) is well defined. Then

fm(Pj(s)) = Pj−1(σms) for all j ≤ n− 1 (5.1)

and

τn(s) ⊂ τN (s) ∪
n−1⋃
j=N

Pj(s) for all N ≤ n− 1. (5.2)

fmn(Pn(s)) = τ1(σmn(s)) ∩D for all n ∈ N. (5.3)

Proof. The first two properties follow from the definition of fundamental pieces and tails
(recall that fm : τj(s) → τj−1(σms) is a homeomorphism). We now prove (5.3). Let ζ ∈
Pn(s). We have that fm(n−1)(ζ) ∈ τ2(σm(n−1)s) \ τ1(σm(n−1)s), and τ1(σm(n−1)s) is the
preimage of C \Dr. Hence fm(fm(n−1)(ζ)) = fmn(ζ) ∈ D. Since fm(n−1)(ζ) ∈ τ2(σm(n−1)s),
fmn(ζ) ∈ τ1(σmns) proving the claim.

Recall that SB is the set of singular values which are contained in B. Recall also that
for s ∈ SB the integer i(s) ∈ {0, . . . ,m− 1} is such that s ∈ Bi(s), and n(s) is maximal such
that for all j ≤ n(s) we have that f j(s) ∈ Bi(s)+j . In other words the orbit of s follows the
orbit of X for exactly n(s) iterates with respect to the partition of the plane induced by the
regions Bi.

Lemma 5.4 (Good neighborhoods of rays). Let f ∈ Brays such that periodic rays land and
assume that there are no singular values escaping along periodic rays. Let X = {z0, . . . , zm−1}
be a repelling periodic orbit and let p be any multiple of m. Suppose that f(zi) = zi+1. Let
{Bi}i=0...m−1 be the basic regions for fp containing the elements of X , and let B = ∪Bi.

Suppose that cases (1) and (2) in Proposition 3.6 do not hold.

Let G be a ray in ∂B0, which is hence fixed under fp. Let {G0 = G,Gj = f j(G)}j=0,...p−1

be the orbit of G under f (here, indices are taken modulo p), and let ψj : Gj → Gj−1 be the
unique the inverse branch of f such that ψ := ψ0 ◦ . . . ◦ψp−1 fixes G. Since Gj are curves we
can write them as Gj(t) : R+ → C, with |Gj(t)| → ∞ as t→∞. Fix ε, Tj > 0.
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Then there exist neighborhoods Uj of Gj((ε, Tj)) which contain Gj((0, Tj)), which do not
contain singular values for f , and such that:

a. ψj is defined and univalent on Uj;

b. ψj(Uj) ⊂ Uj−1;

c.
⋃
j Uj ∩

⋃
s∈SB

fn(s)+1(s) =
⋃
j Uj ∩ (f(PB) \ PB) = ∅.

Proof. Notice first that we can take neighborhoods of Gj((ε, Tj)) which do not intersect
S(f). If not there would be a sequence of singular values in S(f) converging to a point z ∈
Gj([ε, Tj ]), which would need to be a singular value because S(f) is closed. This contradicts
the assumption that Gj does not contain singular values. This shows that we can take
a neighborhood of Gj([ε, Tj ]) for every ε. By taking the union over them, we obtain a
neighborhood of Gj((0, Tj ]).

Each ψj is defined on compact subsets of Gj containing the landing point, hence in
particular, it is defined on G([0, Tj ]). Since Gj contains no singular values for f by assump-
tion, lands, and ψj(Gj) ⊂ Gj−1, for each j there is a simply connected neighborhood Uj of
Gj([ε, Tj ]) which contains Gj((0, Tj)), does not intersect the set S(f) (recall that the latter
is closed and that periodic rays contain no singular values), and such that ψj is well defined
on Uj and ψj(Uj) ⊂ Uj−1, with T0 > T .

Let N = maxs∈SB
n(s). Since cases (1) and (2) in Proposition 3.6 do not hold, N <∞.

Since G contains no points in singular orbits, SB does not intersect any preimage of G,
and in particular it does not intersect the first N preimages of G, that is the infinitely many
rays preperiodic to G of preperiod at most N . Since G lands and contains no points in
singular orbits, they all land and only finitely many of them intersect any given compact set.

Let D c S(f) be a closed disk and let K be the compact set given by the first N preimages
of rays in the boundary of B intersected with D (compare with the proof of Proposition 3.6).

Since SB does not intersect K and both are compact sets, we can find a neighborhood W
of K which does not intersect SB, and restrict the sets Ui such that their preimages up to
level N do not intersect W .

The condition that periodic rays do not contain points in singular orbits can be relaxed by
assuming that they do not contain forwards iterates of singular values in SB which moreover
follow the correct itinerary between the basic regions in B.

Lemma 5.5 (Shrinking of fundamental pieces). Let f ∈ Brays such that periodic rays land
and assume that there are no singular values escaping along periodic rays. Let z0,m,B,Bi
as in Theorem 5.1. Suppose that case (1) and (2) in Proposition 3.6 do not hold.

Let K be a compact set and consider all fundamental pieces Pn(s) for n ∈ N. Then for
any ε > 0 there exists Nε such that

diameucl Pn(s) < ε for all n ≥ Nε and all s such that Pn(s) ∩K 6= ∅.

Compare with the proof of Lemma 6.3 in [BRG17].
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Proof. Since case (1) and (2) in Proposition 3.6 do not hold, PB is bounded, and so is its
image f(PB) (which is no longer necessarily contained in B). Let Dr c (PB ∪

⋃
k≤m f

k(PB))
be a disk of radius r centered at 0. Consider the set of tails T1 of level 1 for r, z0. Notice that
PB is forward invariant in the sense of (3.3). It follows that τn(s) ∩ PB = ∅ for all n ∈ N.

For each of the finitely many τ ∈ T1 which intersect Dr let γτ be a crosscut of τ such that
τ \ γτ is made of two connected components, one of which is bounded and contains all of the
connected components of τ ∩Dr. Call this component ητ . Let

V =
⋃
τ∈T1

ητ .

Since finitely many τ ∈ T1 intersect Dr (see Lemma 2.7) we have that V has finitely many
connected components. Notice that if two adjacent tails τ, τ̃ both intersect Dr, their bounded
components ητ , ητ̃ belong to the same connected component of V.

We first claim that any Pn(s) is contained in a connected components of f−nλ (Vi) for some
i and some branch λ. This is implied by showing that fmn(Pn(s)) ⊂ ητ for some τ ∈ T1. Let
ζ ∈ Pn(s) = τn+1(s) \ τn(s). By (5.3) fmn(ζ) ∈ τ ∩ Dr for some τ ∈ T1. The fact that τ
does not depend on the choice of ζ (we have to check this because Pn(s) is not necessarily a
connected set) follows from the fact that for any U connected component of the preimage of
ητ under f−mn which is contained in a tail of level n+ 1 (which is the case for fundamental
pieces) we have that fm : U → ητ is a homeomorphism.

So it is enough to show that, for V which is any of the finitely many connected components
of V, the diameters of inverse images of V tend to zero uniformly in the family of inverse
branches used to define fundamental pieces. Let V be such a component. To fix notation for
the inverse branches let us denote by L the set of inverse branches ϕnλ of fmn which map a
component ητ ⊂ V inside another tail τn−1(s), and which are a priori defined only on V .

We claim that there is a simply connected neighborhood V ′ of V such that for any ϕnλ ∈ L
we have that ϕnλ can be extended (univalently) to V ′.

The claim is obvious for all V b B0, since by choice of r we can find a simply connected
neighborhood V ′ which is contained in B0 \ PB and hence all inverse branches ϕnλ used to
define fundamental pieces can be extended.

So let us consider V such that ∂V ∩ ∂B0 6= ∅. Let G on ∂B0 which intersects ∂V , and T
such that ∂V ∩G b G(0, T ). In the following we will assume for simplicity that G is unique,
but if not, there are finitely many rays and the reasoning has to be done for each of them.

Let {G0 = G,Gj = f j(G)}j=0,...p be the orbit of G under f and let ψj : Uj → Uj−1 as in
Lemma 5.4.

Let V ′ ⊂ (U0 ∪ B0) be a simply connected neighborhood of V which does not intersect
PB, and let ϕnλ ∈ L. Choose V ′ so that in addition V ′ ∩ B and V ′ ∩ (C \ B) are simply
connected.

The inverse branch ϕnλ decomposes (uniquely) as

ϕnλ = hnm ◦ . . . ◦ h1

where each hi for i = 1 . . . nm is a branch of f−1 that we want to show to be defined on
hi−1 ◦ . . .◦h1(V ′). Notice that ϕnλ extends to V ′∩B because the latter does not intersect PB.
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We claim that the inverse branch h1 is well defined and univalent on all of V ′. Let us
denote by X the connected component of f−1(V ) which contains h1(V ). Either X b B or
X ∩ ∂B 6= ∅.

If X b B then the branch h1 is well defined and univalent because by Lemma 5.4 the
neighborhoods Uj do not intersect f(SB) ⊂ f(PB). Since they also do not intersect f(PB),
the set X does not intersect PB. Since the latter is forward invariant in the sense of (3.3),
the branches hi are well defined also for all i = 2 . . .mn, proving the claim.

Let us consider the case X ∩ ∂B 6= ∅. Since h1(V ) ⊂ B, by Lemma 2.8 we have that

f(X ∩B) = V ′ ∩B
f(X ∩ (C \B)) = V ′ ∩ (C \B)

f(X ∩ ∂B) = V ′ ∩ ∂B

It follows that X ∩ ∂B is contained in Gp−1 which is the only preimage of G0 in ∂B.

By univalency of f on Gp−1, h1 extends continuously to G0∩V ′ and coincides with ψ0 on
this set. Since h1 extends holomorphically to a neighborhood of V ∩ G0 (since U0 contains
no singular values by choice), by the identity principle h1 equals ψ0 and hence h1 extends as
a univalent map on all of V ′.

By property b. in Lemma 5.4, h1(V ′ \B) ⊂ Up−1. This last property allows us to repeat
the reasoning for h2 and show that it is defined on h1(V ′). Proceeding by induction this gives
the claim.

By Lemma 4.2, diameucl(ϕ
n
λ(V )) uniformly in λ as n → ∞, provided ϕnλ(V ) ∩K 6= ∅ for

some compact set K. For all addresses s such that Pn(s) ∩K 6= ∅, the claim of the Lemma
follows because Pn(s) ⊂ ϕnλ(V ) for some λ, n, i.

fm(n−1) fm

τn(s) τn+1(s)
τ1(σm(n−1)s)

τ2(σm(n−1)s)

τ1(σmn(s))

Dr

Pn(s) P1(σm(n−1)s)

Figure 3: Mapping properties of fundamental pieces (shown in blue).

The last result that we need in order to prove the Main Theorem is Iversen’s Theorem
[Ive14]. We state it as it is presented in [BE08]. It is a consequence of Gross Star Theorem
[Gro18].

Theorem 5.6 (Iversens Theorem). Let f be holomorphic. Let ψ be a holomorphic branch of
the inverse of f which is defined in a neighborhood of some point z0 and let γ : [0, 1]→ C be
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a curve with γ(0) = z0. Then for every ε > 0 there exists a curve γ̃ : [0, 1] → C satisfying
γ(0) = z0 and |γ(t)− γ̃(t)| < ε such that ψ has an analytic continuation along γ̃.

Proof of Theorem 5.1

Let z0, zi, m, p,B,Bi be as in the statement. Recall that indices of zi and Bi are taken
modulo m. If z0 is not an interior fixed point for fp, there is nothing to show because it is
the landing point of a periodic ray of period at most p. Otherwise, in view of Proposition 3.6
we need to show that, if there exists r > 0 such that for any n ≥ 1 all fundamental tails for
z0 are well defined, then z0 is the landing point of a periodic ray. Without loss of generality
up to taking a larger r we can assume that

⋃
i zi ⊂ Dr and that tails are also defined for a

slightly smaller r. Let Tn denote the collection of tails of level n for these choices.

Let ψ be the inverse branch of f−m fixing z0. Let U0 ⊂ B0 be a simply connected
neighborhood of z0 such that ψ is well defined on U0, ψ(U0) b U0, and there exists η > 1
such that |(fm)′(z)| ≥ η for all z ∈ U0. Note that f i(ψ(U0)) ⊂ Bi for i ≤ m, and that more
generally for ` ∈ N we have f i(ψ`(U0)) ⊂ Bi for i ≤ m`.

Let
Un := ψn(U0), ε = dist(∂U0, ∂U1).

By choice of U0, f
mn : Un → U0 is a homeomorphism.

Claim 1. Tn ∩ U0 6= ∅ for all n large enough.

Proof: Let F be a fundamental domain for f which intersects B0 and choose ζ ∈ F ∩B0 not
an exceptional value. Then by Montel’s theorem there exists n large enough so that fnm(U0) 3
ζ. Since f is open, there exists ε′ such that the Euclidean disk Dε′(ζ) ⊂ fnm(U0) ∩ B0 ∩ F
and contains no exceptional values.

Let γ : [0, 1]→ B0 be a curve with γ(0) = z0, γ(1) = ζ. Let ψn be the inverse branch of
fnm fixing z0. By Iversen’s theorem there exists a curve γ̃ : [0, 1]→ B0 such that γ̃(0) = z0,
γ̃(1) ∈ Dε′(ζ) and such that ψn has an analytic continuation along γ̃. Hence γ̃(1) ∈ fnm(U0).

Since ψn has an analytic continuation along γ̃ we can ensure that the same is true for ψj

for j ≤ n. Since γ̃ ∩ ∂B = ∅ we have that ψj(γ̃) ∩ ∂B = ∅ for j ≤ n (see Lemma 2.8). Recall
that we have f i(ψ`(U0)) ⊂ Bi for all ` ∈ N and all i ≤ m. Hence for any n ∈ N we have
that f jψn(γ̃) ⊂ Bj for j ≤ m. This implies that the point w = ψn(γ̃(1)) belongs to some tail
τn+1(s) for some s. Since γ̃(1) ∈ fnm(U0), and ψn is a homeomorphism, we also have that
w ∈ U0, proving the fact that Tn ∩ U0 6= ∅ for n large enough.

Observe that if TN ∩ U0 6= ∅ for some N , then Tn ∩ U0 6= ∅ for all n ≥ N , because the
preimage under ψ of a point ζ which belongs to a tail in Tn intersecting Uk is a point ψz in
a tail in Tn+1 intersecting Uk+1 (see also Lemma 3.5). 4

Let N be such that for all n ≥ N we have that Tn ∩ U0 6= ∅ and that diamPn(s) < ε for
all Pn(s) intersecting U0. Such N exists by Lemma 5.5.

For n ≥ N let Sn be the set of finite addresses of length `n (see Definition 3.3) for which
the tail τn(s) intersects Un−N . Observe that Sn is finite for every n by Lemma 2.7.
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Observe that dist(∂Un, z0) → 0 as n → ∞ because in U0 the map ψ is contracting by a
factor η−1 < 1. So by Lemma 4.3 it is enough to find a periodic address s∗ of period mq and
a point ζ ∈ U0 such that ζi(s∗) is well defined for all i and such that ζqn−N (s∗) ∈ Uqn−N in
order to ensure that Gs∗ lands at limn→∞ ζqn−N (s∗) = z0.

We now claim that, for some n0 large enough, ψ induces a well defined map Γ from the
finite set Sn0 into itself, implying that Γ has a periodic point of some period q. We do this
in several steps.

Let n ≥ N , s ∈ Sn and let τn(s) be a tail in Tn which intersects Un−N . For every point
ζ ∈ τn(s) ∩ Un−N the point ψζ ∈ Un−N+1 is well defined and belongs to some tail of level
n + 1 and address s̃(ζ) depending on ζ. Indeed, τn(s) ∩ Un−N may have several connected
components, and it is not clear a priori that ψ maps each of these connected components to
the same tail of level n + 1. What is clear however is that for each such s̃ = s̃(ζ) the tail
τn+1(s̃) intersects Un−N+1 and that σms̃ = s (see Lemma 3.5). Recall that for an address s̃
we denote by πns̃ its first `n entries.

Claim 2. πns̃ belongs to Sn regardless of the choice of ζ.

Proof: For an illustration of the proof of this claim see Figure 4. Let ψζ ∈ Un−N+1∩τn+1(s̃).
Recall that τn+1(s̃) ⊂ τn(s̃) ∪ Pn(s̃) and that it is a connected set. If ψζ ∈ τn(s̃) it follows
directly that the first `n entries of s̃ are in Sn. Otherwise ψζ ∈ Pn(s̃) ∩ Un+1−N hence
fm(n−N)ψζ ∈ PN (σm(n−N)s̃) ∩ U1 (see Lemma 5.3). By choice of N , diamPN (σm(n−N) < ε,
so PN (σm(n−N)s̃) b U0 and hence its m(n−N)-th pullback Pn(s̃) b Un−N . Since τn+1(s̃) is
connected, τn(s̃) intersects Un−N and hence the first `n entries of s̃ are in Sn. 4

U1

U0

Un−N

UN−n+1 τN+1(σm(n−N))

τn(s)

τn+1(s)

fmn

Figure 4:

Claim 3. There exists n0 > 0 such that for n ≥ n0, the map σm : Sn+1 → Sn is injective,
hence has a well defined inverse ψ∗n : Sn → Sn+1 on its image σm(Sn+1).
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Proof: Observe that z0 does not belong to any tail of level N , and hence there exists M > 0
such that TN ∩ UM = ∅. Indeed, otherwise we would have that fmN (z0) = z0 ∈ fmN (TN ) ⊂
C \ Dr, contradicting the choice of r. The main point now is to show that there exists n0

such that if n ≥ n0 and s̃ ∈ Sn+1 then Pn(s̃) ⊂ U1. Notice that a priori it is not even
clear whether Pn(s̃) ∩ U1 6= ∅, because the intersection τn+1(s̃) ∩ Un+1−N may be contained
in τn(s̃). Once this is proven, let s ∈ Sn and suppose by contradiction that there exist s̃1,
s̃2 such that ψ(τn(s) ∩ U0) intersects both τn+1(s̃1) and τn+1(s̃2). Then we would have that
Pn(s̃1) and Pn(s̃2) are contained in U1 and are mapped homeomorphically to Pn−1(s) by
fm (recall Lemma 5.3), contradicting the fact that fm : U1 → U0 is a homeomorphism and
proving Claim 3. So we now proceed to prove that Pn(s̃) ⊂ U1 if s̃ ∈ Sn+1 and n ≥ n0.

Let n ≥M +N , with M as above such that TN ∩UM = ∅, and consider s ∈ Sn+1, that is,
τn+1(s) ∩ Un+1−N 6= ∅. We claim that there exists ñ = ñ(s) ∈ {n−M, . . . , n} maximal such
that Pñ(s) ∩ Un+1−N 6= ∅. This is to ensure that τn+1(s) ∩ Un+1−N intersects a fundamental
piece of address s and of sufficiently high level, namely whose level tends to infinity as fast
as n.

Since TN ∩ Un+1−N = ∅ (because n ≥M +N) and since

∅ 6= τn+1(s) ∩ Un+1−N ⊂ (τN (s) ∪
n⋃

j=N

Pj(s)) ∩ Un+1−N

(see Lemma 5.3), there is some ñ ∈ {N, . . . , n} maximal such that Pñ(s) ∩ Un+1−N 6= ∅.
If n = M + N this implies that ñ ≥ N = n − M as desired. Now let us proceed by
induction on n. Suppose that for all s ∈ Sn there exists ñ = ñ(s) ∈ {n − 1 −M, . . . , n − 1}
maximal such that Pñ(s) ∩ Un−N 6= ∅ and let us show that for all s ∈ Sn+1 there exists
ñ = ñ(s) ∈ {n −M − 1, . . . , n − 1} maximal such that Pñ+1(s) ∩ Un−N+1 6= ∅. Then this
would imply the claim for ñ+1. If s ∈ Sn+1 we have that σms ∈ Sn and hence by the induction
hypothesis we have that Pñ(σs) ∩ Un−N 6= ∅ for some ñ = ñ(σms) ∈ {n− 1−M, . . . , n− 1}.
Since fm : Pñ+1(s) → Pñ(σms) is univalent we have that Pñ+1(s) ∩ Un+1−N 6= ∅ and that

ñ(σs) + 1 ≥ n − N as required. Now let n1 such that diamPn(s) < dist(∂U2,∂U1)
M+1 for n ≥ n1

and s ∈ Sn (this is possible by Lemma 5.5).

Let n0 = max{n1 + M,N + 2}. Let n > n0 and let s ∈ Sn+1. Then by the previous
paragraph there is ñ ∈ {n−M, . . . , n} such that Pñ(s)∩Un−N+1 6= ∅. By definition Pñ(s) ⊂
τñ+1(s), and τn+1(s) ⊂ τñ+1(s) ∪

⋃n
ñ+1 Pj(s). Since τn+1(s) is connected and

⋃n
ñ+1 Pj(s)

consists of at most M pieces of diameter at most dist(∂U2,∂U1)
M+1 and τñ+1(s)∩U2 6= ∅ we deduce

that τn+1(s) \ τñ+1(s) ⊂ U1. 4

For n ≥ n0 this induces a map ψ∗n : Sn → Sn+1, where for s ∈ Sn we define ψ∗n(s) as
the unique element in Sn+1 such that σmψ∗n(s) = s. Recall that FB is the collection of
fundamental domains intersecting B and observe that

ψ∗n(s) =: α(si)si for some α(si) ∈ {FB}m,

since we add m symbols when we go backwards once.
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Let
Γ := πn0 ◦ ψ∗n0

: Sn0 → Sn0 .

Since Sn0 has finitely many elements, there exists q ∈ N and s0 ∈ Sn0 such that Γq(s0) = s0.
Let si = Γi(s) (hence sq = s0). By definition of Γ and of α(si) we have that si+1 = Γ(si) =
πn0(α(si)si). Let

s∗ := α(sq) . . . α(s1).

Notice that s∗ is a periodic address of period qm.

Claim 4. For any n ≥ n0 and for any s ∈ Sn,

ψ∗ns = α(πn0s)s.

Proof: For n = n0 this is true by definition, so suppose the claim is true for all s ∈ Sn
and let us show the claim for all s ∈ Sn+1. By definition of ψ∗n+1, for s ∈ Sn+1 we have
ψ∗n+1s = F0 . . . Fm−1s ∈ Sn+2 for some F0, . . . , Fm−1 ∈ FB. By Claim 2 we have that
πn+1(F0 . . . Fm−1s) ∈ Sn+1, hence πn+1(F0 . . . Fm−1s) = ψ∗ns̃ for some s̃ ∈ Sn. Hence we have
that s̃ = πn(s). By the induction hypothesis, F0 . . . Fm−1 = α(s̃) = α(πn0 s̃) = α(πn0s). 4

Let ζ ∈ τn0(s∗) ∩ Un0−N . By definition of ψ∗n and by Claim 4 we have that ψqn(ζ) ∈
τqn+n0(s̃) where

s̃ = ψ∗nq+n0
. . . ψ∗n0

s∗ = α(sq) . . . α(s1) . . . α(sq) . . . α(s1)︸ ︷︷ ︸
repeated n times

s∗ = s∗

by Claim 4, so that ψqn(ζ) ∈ τqn+n0(s∗) and hence ψqn(ζ) = ζqn(s∗). Then Gs∗ lands at z0

by Lemma 4.3 because ζqn(s∗) = ψqnζ ∈ Uqn−n0 → z0.

We note the following Corollary of Theorem 5.1.

Corollary 5.7. Let f ∈ Brays such that periodic rays land and assume that there are no
singular values escaping along periodic rays. Let z0 be a rationally invisible repelling periodic
point for f . Let {z0, . . . , zm−1} be the orbit of z0 and let X be the union of the dynamical fibers
of z0, . . . , zm−1 as defined in [RS08]. Then X contains either a singular orbit, or infinitely
many singular values whose orbits belong to the fiber for more and more iterations.

6 Bound on the number of rationally invisible orbits and gen-
eralized Fatou-Shishikura inequality

This last section is devoted to the proof of the Main Theorem.

Let us recall the Main Theorem from [BF17b]. As usual indices are taken modulo m.

Theorem 6.1 (Singular orbits trapped in basic regions). Let f be an entire transcendental
map in class Brays whose periodic rays land. Let X be a cycle of Siegel disks, attracting
basins, parabolic basins or Cremer points of period m and let p be any multiple of m. Let
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{Bi}i=0...m−1 be the basic regions for fp containing the elements of X . Then, up to relabeling
the indices, at least one of the following is true.

(1) There exists a singular value s for f such that s ∈
⋃m−1
i=0 Bi, say s ∈ B0, and such that

fn(s) ∈ Bn for all n ∈ N. The orbit of s accumulates either on the non-repelling cycle
or on the boundary of the cycle of Siegel disks.

(2) There are infinitely many singular values sj for f in at least one of the basic regions
Bi, say B0, and a sequence nj −→

j→∞
∞ such that fn(sj) ∈ Bn for all n ≤ nj. The

orbits {fn(sj)}j∈N,n≤nj accumulate either on the non-repelling interior cycle, or on the
boundary of the associated Siegel disk.

The first case always occurs if X is attracting or parabolic or if f has only finitely many
singular values.

Moreover, in case (1), the orbit of s does not accumulate on any other interior periodic
cycle or on any point on the boundary of a Siegel disk ∆ /∈ X (provided the point is not on a
periodic ray or a periodic point).

We are now ready to prove the Main Theorem. We remark that Theorems 5.1 and
Theorem 6.1 are stronger than the Main Theorem in that they do not require finiteness of
the number of singular orbits which do not belong to attracting or parabolic cycles.

Proof of Main Theorem. Suppose by contradiction that there are at least q + 1 cycles of
Siegel disks, Cremer points, or rationally invisible repelling periodic orbits (possibly infinitely
many). Let p be the product of their periods. Each element in each of the q + 1 cycles is
fixed by fp hence belongs to a different basic region for fp by Theorem 2.6. In particular,
there are q + 1 disjoint collections of basic regions whose interior periodic orbit is either a
cycle of Cremer point, a cycle of centers of Siegel disks, or a rationally invisible repelling
periodic orbit. By Theorem 5.1, and since finitely many singular orbits which do not belong
to attracting or parabolic basins, we have that each collection of basic regions which contains
a rationally invisible repelling periodic orbit contains a singular orbit. By Theorem 6.1, the
same is true for collections of basic regions which contain either Cremer points or centers of
Siegel Disks. This gives q + 1 singular orbits which do not belong to attracting or parabolic
basins, a contradiction.
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