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Abstract. We study two problems concerning harmonic measure
on certain “champagne subdomains” of the unit disk D. The do-
mains that we consider are obtained by removing from D little
disks around sequences of points with a uniform distribution with
respect to the pseudohyperbolic metric of D. We find (I) a neces-
sary and sufficient condition on the decay of the radii of the little
disks for the exterior boundary to have positive harmonic mea-
sure, and (II) describe sampling and interpolating sequences for
Bergman spaces in terms of the harmonic measure on such “cham-
pagne subdomains”.

1. Introduction

This paper presents two theorems concerning harmonic measure on
certain “champagne subdomains” of the unit disk. Our first result
solves a problem posed in a recent paper by Akeroyd [Ake02], while
our second result gives a Bergman space counterpart of a result of
Garnett, Gehring, and Jones [GGJ83] for interpolation by bounded
analytic functions.

The setting is as follows. Let Λ be a sequence of distinct points in
the open unit disk D = {z ∈ C : |z| < 1}, and define

ρ(z, ζ) =
∣∣∣ z − ζ
1− ζz̄

∣∣∣,
which is the pseudohyperbolic distance between z, ζ ∈ D. For z ∈ D
and 0 < r < 1 we set

D(z, r) = {ζ ∈ D : ρ(z, ζ) ≤ r}.

We say that Λ is a uniformly dense sequence if

(i) Λ is separated, i.e., infλ 6=λ′ ρ(λ, λ′) > 0, λ, λ′ ∈ Λ.
(ii) There exists an r < 1 such that D =

⋃
λ∈ΛD(λ, r).
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Uniformly dense sequences appear naturally in the study of Bergman
spaces, as sampling or interpolating sequences (see below).

We are interested in studying harmonic measure on “champagne sub-
domains” with “bubbles” around the points λ ∈ Λ, i.e., we consider
infinitely connected domains of the form

(1) Ω = D \
⋃
λ∈Λ

D(λ, rλ),

where the rλ (0 < rλ < 1) are such that the closed disks D(λ, rλ) are
pairwise disjoint. The notation ω(z, A,Ω) stands for the value at z of
the harmonic measure on Ω of a set A ∈ ∂Ω. (See below for a formal
definition.) We will be concerned with the following two problems:

(I) Find a necessary and sufficient condition on the decay of rλ for
the exterior boundary ∂D to have positive harmonic measure,
i.e., for ω(z, ∂D,Ω) > 0 to hold when z ∈ Ω.

(II) Characterize sampling and interpolating sequences in terms of
harmonic measure on such “champagne subdomains”.

We were led to Problem (I) by a question in [Ake02]. The issue was
whether for any uniformly dense sequence Λ one may pick the rλ such
that the exterior boundary ∂D has zero harmonic measure and

(2)
∑
λ∈Λ

length(∂D(λ, rλ)) <∞.

Our solution shows that there is ample room for such constructions.
When dealing with Problem (I), we assume that rλ = ϕ(|λ|) with

ϕ a nonincreasing function bounded by some constant less than 1. In
Theorem 1 below, we arrive at the following necessary and sufficient
condition for ∂D to have positive harmonic measure:

(3)

∫ 1

0

dt

(1− t) log(1/ϕ(t))
<∞.

Thus, for example, ϕ(t) = c(1− t)γ for arbitrary γ > 0 yields zero har-
monic measure of ∂D as well as (2). Note that the result is independent
of the particular choice of Λ.

Both problems (I) and (II) can be seen as originating from a paper
by Garnett, Gehring, and Jones [GGJ83], dealing with similar consid-
erations when Λ satisfies the Blaschke condition

(4)
∑
λ∈Λ

(1− |λ|) <∞.

On the one hand, our work contrasts the following elementary fact:
Suppose Λ is merely separated and rλ = r < 1 for all λ ∈ Λ. In this
case, if Λ satisfies (4), then the exterior boundary of Ω has positive
harmonic measure. This can be seen as a statement about the spar-
sity of Blaschke sequences, while our condition (3) reflects the density
of uniformly dense sequences. On the other hand, our work parallels
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[GGJ83] in that we give a description of interpolating sequences for
Bergman spaces in terms of the harmonic measure (see Theorem 2 be-
low), in a similar way as is obtained for classical interpolating sequences
in [GGJ83].

It is interesting to note that the integral condition (3) has appeared
before, in a different context. In [LS97], a sequence Z of distinct points
in D is said to be a separated non-Blaschke sequence if Z is separated
and ∑

z∈Z

(1− |z|) =∞.

Also, ϕ (again a nonincreasing function bounded by some constant less
than 1) is an essential minorant for H∞ if the inequality

|f(z)| ≤ ϕ(|z|) for all z ∈ Z,
f a bounded analytic function and Z some separated non-Blaschke se-
quence, implies that f ≡ 0. The theorem proved in [LS97] says that
ϕ is an essential minorant for H∞ if and only if (3) holds. We are
not able to give a direct proof of the link between essential minorants
and our “champagne subdomains” whose exterior boundaries have pos-
itive harmonic measure, but we will offer a heuristic argument for the
connection.

The following notation will be used repeatedly below: We write A .
B to signify that A ≤ CB for some constant C > 0, independent of
whatever arguments are involved. If both A . B and B . A, then we
write A ' B.

2. Positive harmonic measure of the exterior boundary

We begin by noting that the domains Ω defined by (1) are Dirichlet
domains because they satisfy the exterior cone condition. Thus every
continuous function on ∂Ω can be extended continuously to a harmonic
function in the interior of Ω. The maximum principle shows that the
evaluation at any point z ∈ Ω of this extension is a bounded linear
functional on C(∂Ω) with norm less than 1. By the Riesz representation
theorem, there is a probability measure ωz supported on ∂Ω such that
the action of this functional on f can be represented as an integral
against ωz. The measure ωz is called the harmonic measure of Ω at z,
and the harmonic measure of a set A ⊂ ∂Ω is denoted ω(z, A,Ω).

Note that the function z 7→ ω(z, A,Ω) is a nonnegative harmonic
function on Ω. The maximum principle implies that this function is
either identically 0 or strictly positive on Ω.

There exist several equivalent definitions of harmonic measure. One
such definition is given in probabilistic terms: The harmonic measure
ω(z, A,Ω) coincides with the probability that a Brownian motion start-
ing at the point z exits the open set Ω for the first time at one of the
points in A. We refer to [Bas95] for a proof of this fact and for some
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examples of estimates of the harmonic measure using this probabilistic
interpretation.

Fix a uniformly dense sequence Λ, and assume that ϕ is a nonincreas-
ing function on (0, 1) such that the closed disks D(λ, ϕ(|λ|)), λ ∈ Λ,
are pairwise disjoint. Set

Ω(Λ, ϕ) = D \
⋃
λ∈Λ

D(λ, ϕ(|λ|)),

and assume for convenience that 0 ∈ Ω(Λ, ϕ).

Theorem 1. The exterior boundary of Ω(Λ, ϕ) has positive harmonic
measure, i.e.

ω(0, ∂D,Ω(Λ, ϕ)) > 0,

if and only if

(5)

∫ 1

0

dt

(1− t) log(1/ϕ(t))
<∞.

Note that the condition may be written equivalently as

(6)
∞∑
j=1

1

log(1/ϕ(1−K−j))
<∞

for some K > 1.
Theorem 1 reflects the following dichotomy: Either the little disks

are so small that the contribution to the harmonic measure from each
of them can be viewed as independent of the contributions from the
others, or the disks are so large that their contributions to the harmonic
measure interact in a profound way. The first case corresponds to
positive harmonic measure of the exterior boundary, the second case
to zero harmonic measure of the exterior boundary.

The proof of the sufficiency of (5) illuminates this point: We begin
by observing that we may safely disregard a finite number of points;
thus we may consider instead (r < 1)

Λr = Λ ∩ {z : |z| > r}.

It is immediate that

(7) ω(0, ∂D(ζ, s),D \D(ζ, s)) =
log |ζ|
log s

.

Then

1− ω(0, ∂D,Ω(Λr, ϕ)) ≤
∑
|λ|≥r

log 1
|λ|

log 1
ϕ(|λ|)

.
∫ 1

r

dt

(1− t) log(1/ϕ(t))
,

where the latter inequality follows from the fact that Λ is a separated
sequence. We are done because the integral can be made smaller than
1 by choosing r sufficiently close to 1.
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Before proving the necessity of (5), we comment on the relation to
essential minorants. As explained in [LS97], the result describing essen-
tial minorants is really a statement about the size of the exceptional set
on which a positive superharmonic function u(z) exceeds log(1/ϕ(|z|)).
It was proved in [LS97] that with m denoting Lebesgue area measure
on D, we have

(8)

∫
u(z)>log(1/ϕ(|z|))

dm(z)

1− |z|
<∞

for each positive superharmonic function u if and only if (5) holds. By
Harnack’s inequality, we may recast the integral in (8) as a sum:

(9)
∑

u(λ)>log(1/ϕ(|λ|))

(1− |λ|) <∞.

Now if the little disks can be seen as acting independently of each other,
then again by Harnack’s inequality as well as the Riesz representation
formula and (7),

u(0) &
∑

u(λ)>log(1/ϕ(|λ|))

(1− |λ|),

and it follows that ϕ is an essential minorant.
We now turn to the necessity of (5). We will estimate the probability

that a Brownian motion starting at 0 and moving in Ω(Λ, ϕ) will reach
∂D. (We assume the motion is stopped once the particle exits Ω(Λ, ϕ).)
Define

Cj = {z : |z| = 1−K−j},
j = 0, 1, . . . and K is some large constant chosen such that for every
z ∈ Cj−1 there is a nearby point λz ∈ Λ in the annulus bounded by
Cj−1 and Cj such that

sup
j

sup
z∈Cj

ρ(z, λz) < 1.

Let Pj denote the probability that our Brownian motion hits Cj. If
Qj denotes the supremum of the probabilities that a Brownian motion
starting from some point at Cj−1 hits Cj, then we get

Pj ≤ QjPj−1,

and so by induction

Pn ≤
n∏
j=1

Qj.

Thus it is necessary that
∏∞

j=1Qj > 0. Equivalently, we have

(10)
∞∑
j=1

(1−Qj) <∞.
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Note that 1−Qj is the infimum of the probabilities that a Brownian
motion starting from some point on Cj−1 hits a disk D(λ, ϕ(|λ|)) before
reaching Cj. For any point on Cj−1 we may discard all disks except
Dλz = D(λz, ϕ(|λz|)) lying in the annulus bounded by Cj−1 and Cj,
because we are thus diminishing the probability of hitting the disks.
Therefore, if we denote by Dj the disk bounded by Cj, then

1−Qj ≥ inf
z∈Cj−1

ω(z, ∂Dλz , Dj \Dλz).

This harmonic measure can be estimated because sup ρ(z, λz) < 1:

ω(z, ∂Dλz , Dj \Dλz) &
1

log(1/ϕ(1−K−j))
∀z ∈ Cj−1.

Combining this estimate with (10), we arrive at (6).

3. Lower and upper uniform densities

In the previous section, the particular choice of uniformly dense se-
quence Λ was inessential. However, such sequences may have different
densities, and a natural question is whether these densities can be cap-
tured in terms of harmonic measure. We will now show how this can
be done.

Let Λ be a separated sequence. Following [Sei93], we define the lower
uniform density of Λ as

D−(Λ) = lim inf
r→1

inf
z∈D

∑
ρ(λ,z)<r(1− ρ(λ, z))

log 1
1−r

and the upper uniform density of Λ as

D+(Λ) = lim sup
r→1

sup
z∈D

∑
ρ(λ,z)<r(1− ρ(λ, z))

log 1
1−r

.

Note that we always have D−(Λ) ≤ D+(Λ) <∞, and that D−(Λ) > 0
if and only if Λ is a uniformly dense sequence.

To see the significance of these densities, we cite the main results of
[Sei93]. Let A−α (α > 0) be the space of analytic functions f on D
satisfying

‖f‖α = sup
z∈D

(1− |z|2)α|f(z)| <∞.

We say that Λ is a sampling sequence for A−α if there is a positive
constant C such that

‖f‖α ≤ C sup
λ∈Λ

(1− |λ|2)α|f(λ)|

for every function f ∈ A−α. On the other hand, we say that Λ is an
interpolating sequence for A−α if the interpolation problem

f(λ) = aλ
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has a solution f ∈ A−α whenever {(1−|λ|2)αaλ} is a bounded sequence.
In [Sei93], it was proved that a separated sequence Λ is a sampling
sequence for A−α if and only if

D−(Λ) > α,

and that Λ is an interpolating sequence for A−α if and only if

D+(Λ) < α.

These density conditions also describe similar sequences of sampling
and interpolation for weighted Bergman Lp spaces.

Before stating our second theorem, we mention the result on which
it is modelled. A sequence Λ of distinct points in D is an interpolating
sequence for H∞ if the interpolation problem

f(λ) = aλ

has a solution f ∈ H∞ whenever {aλ}λ∈Λ is a bounded sequence. We
let Λλ be the sequence obtained from Λ by removing the one element
λ. In [GGJ83], the following re-interpretation of Carleson’s theorem
[Car58] was given:

Theorem B. A separated sequence Λ is an interpolating sequence for
H∞ if and only if

inf
λ∈Λ

ω(λ, ∂D,Ω(Λλ, c)) > 0

for some 0 < c < 1.

To obtain a counterpart of this result, we define the following densi-
ties. Set

Ω(z, r) = Ω(Λ; z, r) = D \
⋃

1/2<ρ(λ,z)<r

D(λ, 1− r),

which is a finitely connected domain. We see that the uniform pseudo-
hyperbolic radius of the little disks tends to 0 as r → 1. This decay is
tuned with the growth of r in such a way that the numbers

D−h (Λ) = lim inf
r→1−

inf
z∈D

log
1

ω(z, ∂D,Ω(z, r))

and

D+
h (Λ) = lim sup

r→1−
sup
λ∈Λ

log
1

ω(λ, ∂D,Ω(λ, r))

are positive when Λ is uniformly dense. In fact, we have the following
precise characterization.

Theorem 2. For a separated sequence Λ in D we have

D−(Λ) = D−h (Λ) and D+(Λ) = D+
h (Λ).

The proof of Theorem 2 combines probabilistic arguments with cer-
tain precise function theoretic constructions, to be given in the next
section.



8 JOAQUIM ORTEGA-CERDÀ AND KRISTIAN SEIP

4. Growth of analytic functions vanishing on Λ

We will now see how D−(Λ) and D+(Λ) are related to the growth of
analytic functions vanishing on Λ. The growth estimates to be estab-
lished rely on a basic approximation result for subharmonic functions.

We require some notation. If f is analytic in D, we denote by Z(f)
its sequence of zeros. If f has a zero of order n at z, then this is
recorded by letting z appear n times in Z(f). On the other hand, we
also think of Z(f) as a subset of the disk. In particular, when we say
that Z(f) is separated, we mean that Z(f) consists of distinct points
and that

inf
z 6=z′

ρ(z, z′) > 0, z, z′ ∈ Z(f).

We will rely on the following approximation result from [Sei95].

Theorem A. Let Ψ be subharmonic in D so that its Laplacian ∆Ψ
satisfies

(11) ∆Ψ(z) ' 1

(1− |z|2)2

for all z ∈ D. Then there exists a function g analytic in D, with Z(g)
a uniformly dense sequence, and

|g(z)| ' ρ(z, Z(g))eΨ(z)

for all z ∈ D.

We deduce two lemmas from Theorem A.

Lemma 1. Let Λ be a uniformly dense sequence satisfying D−(Λ) >
α > 0, and let f be an analytic function on D with Z(f) = Λ. Then
there exists a uniformly dense sequence Σ and an analytic function g
on D with Z(g) = Σ such that

|f(z)|
|g(z)|

' ρ(z,Λ)

ρ(z,Σ)
(1− |z|2)−α

for all z ∈ D.

Proof. Set u = log |f |. Its Laplacian is

∆u(z) = 2π
∑
λ∈Λ

δλ.

To be able to apply Theorem A, we need to smooth this Laplacian. We
do this using a slight variation of an idea from [BOC95]. We intend to
replace ∆u(z) by

∆ur(z) =
2π

cr

∑
ρ(z,λ)<r

1− ρ2(z, λ)

(1− |z|2)2
,
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where

cr =

∫
|z|<r

dm(z)

1− |z|2
= π log

1

1− r2
.

We claim that for each 0 < r < 1, we can find an appropriate ur that
behaves like u outside the singular points λ. Before proving this claim,
let us note that we may then set

Ψ(z) = ur(z)− α log
1

1− |z|2

so that

∆Ψ(z) =
4

(1− |z|2)2

( ∑
ρ(λ,z)<r

1− ρ2(λ, z)

2 log 1
1−r2

− α
)
.

It follows that

D−(Λ)− o(1)− α ≤ 1

4
(1− |z|2)2∆Ψ(z) ≤ C

as r ↗ 1, where C is a constant depending only on Λ. Here the
first inequality follows from the definition of D−(Λ), while the second
follows from the separation of Λ. We see that Theorem A applies if r
is sufficiently close to 1.

To see that a suitable ur approximates u, we argue as follows. By
the change of variables

t =
λ− ζ
1− λ̄ζ

,

we get

1

cr

∫
ρ(λ,ζ)<r

log
∣∣∣ z − ζ
1− z̄ζ

∣∣∣1− ρ2(λ, ζ)

(1− |ζ|2)2
dm(ζ) = log

∣∣∣ z − λ
1− z̄λ

∣∣∣
+

1

cr

∫
|t|<r

log
ρ
(
λ−t
1−λ̄t , z

)
ρ(λ, z)

dm(t)

1− |t|2
.

If we set

w =
λ− z
1− λ̄z

,

then we may write

ρ
( λ− t

1− λ̄t
, z
)

= ρ(t, w) = ρ(0, w)
∣∣∣1− t/w

1− tw̄

∣∣∣ = ρ(λ, z)
∣∣∣1− t/w

1− tw̄

∣∣∣,
so that

1

cr

∫
|t|<r

log
ρ
(
λ−t
1−λ̄t , z

)
ρ(λ, z)

dm(t)

1− |t|2
=

1

cr

∫
|t|<r

log |1− t/w| dm(t)

1− |t|2
.

In particular, this integral vanishes when |w| > r. Since Λ is a sepa-
rated sequence, we therefore obtain

sup
ρ(z,Λ)≥ε

∑
λ∈Λ

1

cr

∫
|t|<r

log
ρ
(
λ−t
1−λ̄t , z

)
ρ(λ, z)

dm(t)

1− |t|2
<∞



10 JOAQUIM ORTEGA-CERDÀ AND KRISTIAN SEIP

for every ε > 0. We conclude that we may set

ur(z) = u(z) +
∑
λ∈Λ

( 1

cr

∫
ρ(ζ,λ)<r

log
∣∣∣ z − ζ
1− z̄ζ

∣∣∣1− ρ2(ζ, λ)

(1− |ζ|2)2
dm(ζ)−

log
∣∣∣ z − λ
1− z̄λ

∣∣∣).
�

Acting similarly as above, but considering instead

Ψ(z) = α log
1

1− |z|2
− ur(z),

we arrive at the following lemma.

Lemma 2. Let Λ be a separated sequence satisfying D+(Λ) < α, and
let f be an analytic function on D with Z(f) = Λ. Then there exists
a uniformly dense sequence Σ and an analytic function g on D with
Z(g) = Σ such that

|f(z)g(z)| ' ρ(z,Λ)ρ(z,Σ)(1− |z|2)−α

for all z ∈ D.

We note that the construction in [Sei95] can be adjusted so that
Λ ∪ Σ becomes a separated sequence in both cases. However, we will
not need this separation in what follows.

5. Proof of Theorem 2

We will need the following elementary fact.

Lemma 3. Suppose Λ is a separated sequence and let B be the finite
Blaschke product with zeros λ ∈ Λ such that |λ| < r. Given 0 < ε < 1,
there exists a constant C depending only on Λ and ε, but not on r, such
that

|B(z)| ≥ C

whenever |z| > r and ρ(z,Λ) > ε.

Proof. We want to prove that under the hypothesis we have

log |B(z)| =
∑
λ∈Λ

log ρ(z, λ) ≥ logC.

For each of the terms we have ρ(z, λ) > ε, and therefore − log ρ(z, λ) .
1− ρ2(z, λ). Thus we want to estimate∑

λ∈Λ

(
1− ρ2(z, λ)

)
=
∑
λ∈Λ

(1− |λ|2)(1− |z|2)

|1− z̄λ|2
.



HARMONIC MEASURE AND UNIFORM DENSITIES 11

Since Λ is a separated sequence and |z| ≥ |λ|, the latter sum is bounded
by a constant times the integral∫

|w|≤|z|

(1− |w|2)(1− |z|2)

|1− z̄w|2
dm(w)

(1− |w|2)2
.

Computing this integral by means of polar coordinates, we find that it
equals π ln(1 + |z|2). Hence it is bounded independently of z. �

We turn to the proof of Theorem 2. Set α = D−(Λ). We begin by
showing that α ≤ D−h (Λ). We prefer to give a general argument and
define

Ωδ(z, r) = D \
⋃

1/2<ρ(λ,z)<r

D(λ, δ(r)),

where we only assume δ(r) → 0. Pick some small ε > 0. Let h = f/g
be the function with zeros Λ and poles Σ given by Lemma 1 such that

|h(z)| ' (1− |z|)−α+ε

far from Λ and Σ; the constants involved here will depend on ε.
By conformal invariance, we may assume z = 0. We will give a prob-

abilistic argument, estimating the probability that a Brownian motion
starting at 0 and moving in Ωδ(0, r) will reach ∂D(0, r). To this end,
choose some function η(r)→ 0, such that

log
1

η(r)
= o
(

log
1

δ(r)

)
, log

1

η(r)
= o
(

log
1

1− r

)
.

We also require that η(r) is such that

log
1

1− r
= n log

1

η(r)

for some positive integer n = n(r). We define

Cj(r) = {z : |z| = 1− ηj(r)},
j = 0, 1, . . . , n(r). Note that these circles split the disk {z ∈ C; |z| ≤ r}
into concentric annuli. We may assume the sequence Σ∪Λ is bounded
away from the circles Cj(r) by slightly perturbing a finite number of
points λ. (Alternatively, we may replace the circles Cj(r) by circles
with small detours around the points from Σ and Λ.) Let Pj denote
the probability that our Brownian motion hits Cj(r). If Qj denotes the
supremum of the probabilities that a Brownian motion starting from
some point at Cj−1(r) hits Cj(r), then we get

Pj ≤ QjPj−1

and so by induction

Pn ≤
n∏
j=1

Qj.

To estimate Qj, we disregard the points from Λ on the inside of
Cj−1(r). We may also disregard the points from Λ close to Cj(r)
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(correspondingly, we divide out these zeros from h, but still call the
function h). This will increase the probability of hitting Cj(r). On
D \ ∪λ∈ΛD(λ, δ(r)), we define the subharmonic function

Uj(z) =
log 1

|h(z)| + j(α− ε) log 1
η(r)
− C

log 1
δ(r)

+ (α− ε) log 1
η(r)

,

where the constant C (independent of r) is such that Uj is bounded
above by 0 on Cj(r) and by 1 on ∂D(λ, δ(r)) for λ ∈ Λ between Cj−1(r)
and Cj(r). Also, on Cj−1(r) we have

Uj(z) ≥
(α− ε) log 1

η(r)
− 2C

log 1
δ(r)

+ (α− ε) log 1
η(r)

.

It follows that

Qj ≤
log 1

δ(r)
+ 2C

log 1
δ(r)

+ (α− ε) log 1
η(r)

.

Thus

log
1

ω(λ, ∂D,Ω(λ, r))
≥ n log

log 1
δ(r)

+ (α− ε) log 1
η(r)

log 1
δ(r)

+ 2C

= n
(α− ε) log 1

η(r)
− 2C

log 1
δ(r)

+ 2C
(1 + o(1)) = (α− ε)

log 1
1−r

log 1
δ(r)

(1 + o(1)).

We now prove that α ≥ D−h (Λ). This time we cannot allow δ(r) to
decrease too slowly. Let Bζ denote the finite Blaschke product with
zeros λ ∈ Λ such that 1/2 < ρ(ζ, λ) < r. Define

c(r) = sup
z

log |Bz(z)|

and pick ζ such that

(12) log |Bζ(ζ)| > c(r)− 1.

By conformal invariance, we may assume ζ = 0. We set

c(r)− 1 = −(α− ε) log
1

1− r
and note that by our definition of α, ε = ε(r)→ 0 when r → 1.

We introduce a function η(r) as above and a similar partition: Let
Bj be the Blaschke product with zeros λ ∈ Λ such that

1− ηj−1(r) ≤ |λ| < 1− ηj(r).

We define

Uj(z) = log
1

|Bj(z)|
.
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We now build a harmonic function which exceeds the harmonic measure
of the inner boundary of Ωδ(0, r). This function will be of the form

U =
n∑
j=1

wjUj,

with appropriate positive weights wj such that U(z) ≥ 1 on ∂D(λ, δ(r))
for |λ| < r. To determine the wj, we begin by noting that

Uj(z) ≥ log
1

δ(r)
=: a

on the boundary of the “bubbles” corresponding to the zeros of Bj.
Moreover, Uj is a superharmonic function with the following lower
bound for |z| ≤ 1− ηj−1(r):

Uj(z) ≥ (α− ξ) log
1

η(r)
,

with ξ = ξ(r) → 0 as η(r) → 0. This estimate is first proved for
|z| = 1−ηj−1(r) by |z| using the definition of D−(Λ) and Lemma 3. The
estimate for |z| ≤ 1 − ηj−1(r) then follows by the minimum principle
for superharmonic functions.

We now set

wn =
1

a
.

Next observe that on the boundary of the “bubbles” corresponding to
the zeros of Bn−1(z), we get

wn−1Un−1(z) + wnUn(z) ≥ wn−1a+ wn(α− ξ) log
1

η(r)
.

We set

b := (α− ξ) log
1

η(r)

and then

wn−1 =
a− b
a2

.

Inductively, we get

wn−j =
1

a

(a− b
a

)j
.

To estimate U(0), we argue as follows. The worst case is that Un(0)
is maximal because wn is the largest weight. Combining our upper
estimate (12), i.e.,

n∑
j=1

Uj(0) ≤ log
1

|B0(0)|
≤ (α− ε) log

1

1− r

with the lower estimates Uj(0) ≥ (α− ξ) log(1/η(r)), we get

Un(0) ≤ (α− ξ) log
1

η(r)
+ n(ξ − ε) log

1

η(r)
.
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If Un(0) attains this upper bound, then Uj(0) = (α−ξ) log(1/η(r)) = b
for 1 ≤ j < n, and we arrive at the estimate

U(0) ≤ n(ξ − ε)
log 1

η(r)

log 1
δ(r)

+ 1−
(a− b

a

)n
+ o(1),

and so

ω(0, ∂D,Ωδ(0, r)) ≥
(a− b

a

)n
− (ξ − ε)

log 1
1−r

log 1
δ(r)

;

We now require the second term to be small “oh” of the first term.
This is certainly the case if δ(r) = 1− r (the first term is bounded and
the second tends to 0). Thus

log
1

ω(0, ∂D,Ωδ(0, r))
≤ n

b

a
(1 + o(1)) = α

log 1
1−r

log 1
δ(r)

(1 + o(1)),

and we are done.
We next set α = D+(Λ). The scheme is very similar. We first show

that α ≥ D+
h (Λ). Again

Ωδ(z, r) = D \
⋃

1/2<ρ(λ,z)<r
λ∈Λ

D(λ, δ(r)),

where we only assume δ(r) → 0. Pick some small ε > 0. Let h = fg
be the function given by Lemma 2 with zeros Λ and Σ such that

|h(z)| ' (1− |z|)−α−ε

far from Λ and Σ; the constants involved here will depend on ε.
For arbitrary λ ∈ Λ we wish to prove that

log
1

ω(λ, ∂D,Ω(λ, r))
≤ (α + ε)

log 1
1−r

log 1
δ(r)

(1 + o(1)).

By conformal invariance, we may assume λ = 0. We estimate again the
probability that a Brownian motion starting at 0 and moving in Ωδ(0, r)
will reach ∂D(0, r). To this end, choose some function η(r)→ 0, such
that

log
1

η(r)
= o
(

log
1

δ(r)

)
,

and

log
1

1− r
= n log

1

η(r)

and define
Cj(r) = {z : |z| = 1− ηj(r)}

j = 0, 1, . . . , n. We may assume the sequence Λ ∪ Σ is bounded away
from the circles Cj(r). (Alternatively, we may make small detours
around the points.) Let Pj denote the probability that our Brownian
motion hits Cj(r). If Rj denotes the infimum of the probabilities that a
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Brownian motion starting from some point at Cj−1(r) hits Cj(r), then
we get

Pj ≥ RjPj−1

and so by induction

Pn ≥
n∏
j=1

Rj.

We estimate Rj. For some constant C (independent of r) the super-
harmonic function

Uj(z) =
log 1

|h(z)| + j(α + ε) log 1
η(r)

+ C

log 1
δ(r)

+ (α + ε) log 1
η(r)

is bounded from below by 0 on Cj(r) and above by 1 on ∂D(λ, δ(r))
for λ ∈ Λ on the inside of Cj(r). Also, on Cj−1(r) we have

Uj(z) ≥
(α + ε) log 1

η(r)
+ 2C

log 1
δ(r)

+ (α + ε) log 1
η(r)

.

It follows that

Rj ≥
log 1

δ(r)
− 2C

log 1
δ(r)

+ (α + ε) log 1
η(r)

.

Thus

log
1

Pn
≤ n log

log 1
δ(r)

+ (α + ε) log 1
η(r)

log 1
δ(r)
− 2C

= n
(α + ε) log 1

η(r)
+ 2C

log 1
δ(r)
− 2C

(1 + o(1)) = (α + ε)
log 1

1−r

log 1
δ(r)

(1 + o(1)).

We finally have to estimate the infimum of the probabilities that a
particle starting from Cn(r) hits ∂D. Then take B to be the Blaschke
product with zeros λ ∈ Λ, |λ| < r, and set

U(z) =
log 1

|B(z)|

log 1
δ(r)

.

By Lemma 3,

U(z) ≤ C

log 1
δ(r)

on Cn(r), and so we get

log
1

ω(λ, ∂D,Ω(λ, r))
≤ (α + ε)

log 1
1−r

log 1
δ(r)

(1 + o(1)).

We now prove α ≤ D+
h (Λ). Let Bζ denote the finite Blaschke product

with zeros λ ∈ Λ such that 1/2 < ρ(ζ, λ) < r. Define

d(r) = inf
λ∈Λ

log |Bλ(λ)|
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and pick λ∗ such that

log |Bλ∗(λ
∗)| < d(r) + 1.

By conformal invariance, we may assume λ∗ = 0. We set

d(r) + 1 = −(α + ε) log
1

1− r
and note that by our definition of α, ε = ε(r)→ 0 when r → 1.

We introduce a function η(r) as above and let Bj and Uj be as before.
We now build a harmonic function

U =
n∑
j=1

wjUj

such that U(z) ≤ 1 on ∂D(λ, δ(r)). First note that

n∑
j=1

Uj(z) ≤ log
1

δ(z)
+ (α + ξ) log

1

η(r)

on the boundary of the “bubbles” corresponding to the zeros of Bn,
with ξ(r)→ 0 as η(r)→ 0. Thus we set

wn =
1

a+ b
,

where

a = log
1

δ(r)
, b = (α + ξ) log

1

η(r)
.

Next we observe that on the boundary of the “bubbles” corresponding
to the zeros of Bn−1(z), we get

wn−1

n−1∑
j=1

Uj(z) + wnUn(z) ≤ wn−1(a+ b) + wnb

and so we set

wn−1 =
a

(a+ b)2
.

Inductively, we get

wn−j =
1

(a+ b)

( a

a+ b

)j
.

Note that the desired estimate on the boundaries of the “bubbles” is
achieved because wj decreases when j decreases.

To estimate U(0), we argue in a similar way as above. The worst
case is that Un(0) is minimal because wn is the largest weight. By our
lower estimate

n∑
j=1

Uj(0) ≥ (α + ε) log
1

1− r
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and the upper estimates Uj(0) ≤ (α + ξ) log(1/η(r)), we get

Un(0) ≥ (α + ξ) log
1

η(r)
− n(ξ − ε) log

1

η(r)
.

This leads us to the estimate

U(0) ≥ 1−
( a

a+ b

)n
− n(ξ + ε)

log 1
η(r)

log 1
δ(r)

+ log 1
η(r)

,

and so

ω(0, ∂D,Ωδ(0, r)) ≥
( a

a+ b

)n
+ (ξ + ε)

log 1
1−r

log 1
δ(r)

+ log 1
η(r)

.

We now require the second term to be “small oh” of the first term.
This is certainly the case if δ(r) = 1− r. Thus

log
1

ω(0, ∂D,Ωδ(0, r))
≥ n

b

a
(1 + o(1)) = α

log 1
1−r

log 1
δ(r)

(1 + o(1)),

and we are done.
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