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ABSTRACT. We characterise interpolating and sampling sequences for the spaces of entire func-
tions f such that fe−φ ∈ Lp(C), p ≥ 1 where φ is a subharmonic weight whose Laplacian is
a doubling measure. The results are expressed in terms of some densities adapted to the metric
induced by ∆φ. They generalise previous results by Seip for the case φ(z) = |z|2, Berndtsson
& Ortega-Cerdà and Ortega-Cerdà & Seip for the case when ∆φ is bounded above and below,
and Lyubarskiı̆ & Seip for 1-homogeneous weights of the form φ(z) = |z|h(arg z), where h is a
trigonometrically strictly convex function.
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1. INTRODUCTION

In this paper we provide Beurling-type density conditions for sampling and interpolation in
certain generalised Fock spaces. We consider a rather general situation, with only mild regular-
ity conditions on the possible growth. Let φ be a (nonharmonic) subharmonic function whose
Laplacian ∆φ is a doubling measure (see definition and properties in Section 2.1). The spaces
we deal with are as follows:

Fpφ =
{
f ∈ H(C) : ‖f‖pFpφ =

∫
C
|f |pe−pφρ−2 <∞

}
1 ≤ p <∞,

F∞φ =
{
f ∈ H(C) : ‖f‖F∞φ = sup

z∈C
|f(z)|e−φ(z) <∞

}
.

The function ρ−2 is a regularised version of ∆φ, as described in [Chr91]. More precisely, if
µ = ∆φ and z ∈ C, then ρφ(z) (or simply ρ(z) if no confusion can arise) denotes the positive
radius such that µ(D(z, ρ(z)) = 1. Such a radius exists because doubling measures have no mass
on circles.

Canonical examples of the weights considered are φ(z) = |z|β , with β > 0.

There are other spaces of functions that although at first sight do not seem to be covered by our
results, can be conveniently adjusted so that the theorems apply. This the case of the weighted
spaces of holomorphic functions{

f ∈ H(C) :

∫
C
|f |pe−pφρα <∞

}
,

with φ a subharmonic function with doubling Laplacian and α ∈ R. For any such space there
exists a subharmonic function ψ with doubling Laplacian such that

C−1e−pφρα ≤ e−pψ ≤ Ce−pφρα, and C−1ρψ ≤ ρφ ≤ Cρψ
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for some C > 1, see subsection 2.3. Therefore the weighted space coincides with Fpψ.

Among these two particular families of spaces seem of special interest. The first one are the
usual weighted Lp-spaces of entire functions, obtained with α = 0. The second case arises when
α = −2; the standard Fpφ spaces, they coincide with

{f ∈ H(C) :

∫
C
|f |pe−pφ∆φ <∞}.

Another source of examples comes from the problem studied in [LS94]. Given a bounded
smooth convex setG in C, consider the Smirnov (Hardy) spaceE2(G), the closure of the analytic
polynomials with the topology induced by the norm

‖f‖E2(G) =

∫
∂G

|f(z)|2|dz|.

When the curvature of ∂G is bounded from above and below, there exists a Paley-Wiener type
theorem, due to Lyubarskiı̆ [Lyu88], that gives an isomorphism between E2(G) and the space
FG of entire functions f such that

‖f‖2 =

∫
C
|f(z)|2e−2k(arg(z))|z||z|−1/2 dm(z) <∞.

Here k is the so-called support function of G. By the isometry, the description of frames or Riesz
families of exponentials in the Smirnov space is equivalent to the description of sampling or
interpolating sequences in FG, which was was achieved in [LS94]. The spaces FG are of the sort
that we are considering, since φ(z) = |z|k(arg(z)) has doubling Laplacian and ρ(z) '

√
|z|. It

seems plausible that our spaces also cover some cases where the curvature vanishes polinomially
at some point, via the general Paley-Wiener theorem due to Lutsenko and Yulmukhametov (see
[LY91]). In this theorem there is a description of the Fourier Laplace transform of the Smirnov
space. The space they describe is not directly one of our F2

φ, but it seems likely that it can
be norm-equivalent to one of them (similiarly to subsection 2.3), at least in the case where the
curvature vanishes polinomially at some point.

Since functions f in the spaces Fpφ are determined by the growth of |f |, their restriction to a
sequence should be described as well in terms of growth.

Let Λ ⊂ C be a sequence and let v = {vλ}λ∈Λ be an associated sequence of values.

Definition 1. A sequence Λ is an interpolating sequence for Fpφ , 1 ≤ p < ∞ (denoted Λ ∈
IntFpφ), if for every sequence of values v such that

‖v‖p
`pφ(Λ)

=
∑
λ∈Λ

|vλ|pe−pφ(λ) <∞

there exists f ∈ Fpφ such that f |Λ = v.

Also, Λ ∈ IntF∞φ if for every sequence of values v such that

‖v‖`∞φ (Λ) = sup
λ∈Λ
|vλ|e−φ(λ) <∞
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there exists f ∈ F∞φ such that f |Λ = v.

An application of the closed graph theorem shows that when Λ ∈ IntFpφ there is M > 0 such
that for any v ∈ `pφ(Λ), there exists f ∈ Fpφ with f |Λ = v and

(1) ||f ||Fpφ ≤M ||v||`pφ(Λ).

The least possible M in (1) is called the interpolating constant of Λ and is denoted by Mp
φ(Λ),

or M(Λ) if no confusion is possible.

Definition 2. A sequence Λ is a sampling sequence for Fpφ , 1 ≤ p <∞ (denoted Λ ∈ SampFpφ),
if there exists C > 0 such that for every f ∈ Fpφ

(2) C−1‖f |Λ‖`pφ(Λ) ≤ ‖f‖Fpφ ≤ C‖f |Λ‖`pφ(Λ).

Also, Λ ∈ SampF∞φ if there exists C > 0 such that for every f ∈ F∞φ
(3) ‖f‖F∞φ ≤ C‖f |Λ‖`∞φ (Λ).

The least constant C verifying these inequalities is called the sampling constant of Λ and is
denoted Lpφ(Λ), or simply L(Λ).

The definitions of interpolating and sampling sequences in the spaces defined by L∞ norms
reflect the maximal growth for functions in the space, and are natural. The definition for p <∞
can be motivated in the following way. Consider for instance the case p = 2. The estimates of the
normalised Bergman kernel kφ(λ, z) in F2

φ (see Lemma 21) show that 〈kφ(λ, ·), f〉 ' f(λ)e−φ(λ)

for all f ∈ F2
φ. Thus Λ ∈ SampF2

φ if and only if

‖f‖F2
φ
'
∑
λ∈Λ

|〈kφ(λ, ·), f〉|2 for all f ∈ F2
φ,

that is, if and only if {kφ(λ, ·)}λ∈Λ is a frame in F2
φ. Similarly, Λ ∈ IntF2

φ if and only if
{kφ(λ, ·)}λ∈Λ is a Riesz basis in its closed linear span in F2

φ. These are the standard problems of
interpolation and sampling in Hilbert spaces of functions with reproducing kernels [SS61]. For
p 6= 2 the previous definitions give the appropriate notions of interpolation and sampling as well,
in view of the pointwise growth of functions in the spaces (see Lemma 19 and Remark 6).

Our description of interpolating and sampling sequences is expressed in terms of certain
Beurling-type densities adapted to the metric induced by ∆φ, or more precisely, by its regu-
larisation ρ−2(z)dz ⊗ dz̄. Before introducing the densities we need the notion of ρ-separation.

Definition 3. A sequence Λ is ρ-separated if there exists δ > 0 such that

|λ− λ′| ≥ δmax(ρ(λ), ρ(λ′)) λ 6= λ′.

This is equivalent to saying that the points in Λ are separated by a fixed distance in the metric
above (Lemma 4).
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Definition 4. Assume that Λ is a ρ-separated sequence and denote µ = ∆φ.

The upper uniform density of Λ with respect to ∆φ is

D+
∆φ(Λ) = lim sup

r→∞
sup
z∈C

#
(
Λ ∩D(z, rρ(z))

)
µ(D(z, rρ(z)))

.

The lower uniform density of Λ with respect to ∆φ is

D−∆φ(Λ) = lim inf
r→∞

inf
z∈C

#
(
Λ ∩D(z, rρ(z))

)
µ(D(z, rρ(z)))

.

The main theorems are the following.

Theorem A. A sequence Λ is sampling for Fpφ , p ∈ [1,∞), if and only if Λ is a finite union of
ρ-separated sequences containing a ρ-separated subsequence Λ′ such that D−∆φ(Λ′) > 1/2π. A
sequence Λ is sampling for F∞φ if and only if Λ contains a ρ-separated subsequence Λ′ such that
D−∆φ(Λ′) > 1/2π.

Theorem B. A sequence Λ is interpolating for Fpφ , p ∈ [1,∞], if and only if Λ is ρ-separated
and D+

∆φ(Λ) < 1/2π.

In particular, there are no sequences which are simultaneously sampling and interpolating (it
should be mentioned that this is not obtained as a corollary of the theorems; it is actually an
important ingredient of the proofs).

These results generalise previous work, beginning with the papers by Seip and Seip-Wallstén
[Sei92], [SW92]. They described the interpolating and sampling sequences for the classical
Fock space in terms of the so-called Nyquist densities. In the notation above this corresponds
to φ(z) = |z|2. This was extended in [BOC95] and [OCS98] to the case of entire functions
f such that fe−φ ∈ Lp(C), where φ is subharmonic with bounded Laplacian ε < ∆φ < M .
The description was given again in terms of some Nyquist type densities. In these cases the
function ρ is bounded above and below, hence the metric ρ−2(z)dz ⊗ dz̄ is equivalent to the
Euclidean metric. In particular, ρ(z) can be replaced by the constant 1 in the definition of the
uniform densities. In [LS94] the authors provided a description, in terms of directional densities,
of sampling and interpolating sequences for the spaces with 1-homogeneous weights of the form
φ(z) = |z|h(arg z), where h is a trigonometrically strictly convex function.

There are also some partial results in several complex variables. The classical Fock space
has been studied in [MT00] and the weighted scenario in [Lin01]. In this context there exist
necessary or sufficient density conditions, which do not completely characterise the sampling or
interpolating sequences.

Interpolation problems for other spaces of functions related to these weights have been con-
sidered by Squires and Berenstein and Li (see for instance [Squ83], [BL95] and the references
therein).
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The results mentioned above relied on the remarkable work by Beurling [Beu89] and on
Hörmander’s weighted L2-estimates for the ∂̄ equation [Hör94]. In our proofs we first extend
Beurling’s tools to the context of certain spaces which are non-invariant under translations. This
is in the spirit of [LS94] where they already considered some limiting spaces of the original space
deformed by translations. We need as well a Hörmander type theorem giving precise estimates
for the ∂̄ equation in Banach norms other than L2.

The plan of the paper is the following: In Section 2 we study the properties of doubling
measures. Recall that the only assumption on our subharmonic weight φ is that the measure ∆φ
is doubling. We will need a regularisation of φ and the construction of a multiplier associated to
φ (that is, an entire function f such that |f | approximates eφ), very much in the spirit of [LM01]
and [OC99].

In Section 3 we state and prove some basic properties of functions in Fpφ . The main result in
this section is the following Hörmander type theorem.

Theorem C. Let φ be a subharmonic function such that ∆φ is a doubling measure. There is a
solution u to the equation ∂̄u = f such that ‖ue−φ‖Lp(C) . ‖fe−φρ‖Lp(C) for any 1 ≤ p ≤ ∞.

We also include the estimates of the Bergman kernel that justify the notion of interpolating and
sampling sequences we have considered. Finally , we study the invariance of our spaces under
some appropriate scaled translations. This leads to the notion of weak limit and the correspond-
ing analysis analogous to Beurling’s.

Section 4 is devoted to some preliminary (but important) properties of interpolating and sam-
pling sequences, including their behaviour under weak limits. The main results in this section
are some inclusion relations between various spaces of interpolating and sampling sequences,
and the fact that there are no sequences which are simultaneously interpolating and sampling for
the same space of functions Fpφ .

In Section 5 we prove the sufficiency part of Theorem A. We use again an approach similar to
that of Beurling.

Section 6 includes the proof of the necessity part of Theorem A. For this we need once more
Beurling’s analysis, plus the non-existence of sampling and interpolating sequences. We use
some theorems that relate the densities of sampling and interpolating sequences, following the
ideas by Ramanathan and Steger [RS95].

Section 8 is devoted to the proof of the necessity part of Theorem B. We use Ramanathan
and Steger’s theorem plus an original argument that shows that the density inequality is actually
strict.

Finally, in Section 7 we deal with the sufficiency part of Theorem B. In the course of the proof,
whose main tool is the multiplier, we need to express the density in terms of rectangles instead
of disks. The usual argument of Landau [Lan67] does not work, in view of the inhomogeneity of
our measures. Theorem 43 takes care of this.
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A final word on notation: C denotes a finite constant that may change in value from one
occurrence to the next.The expression f . g means that there is a constant C independent of the
relevant variables such that f ≤ Cg, and f ' g means that f . g and g . f .

Acknowledgement: We want to express our sincere gratitude to the referee for pointing out
some improvements and simplifications that have enhanced the overall readability of the text.

2. SUBHARMONIC FUNCTIONS WITH DOUBLING LAPLACIAN

In this chapter we recap some results on doubling measures and subharmonic functions φ
whose Laplacian ∆φ is doubling. We start with regularity and integrability conditions on dou-
bling measures. Next we show that φ can be regularised, in the sense that there exists ψ sub-
harmonic and regular for which the interpolation and sampling problems for Fpφ and Fpψ,α are
equivalent. The final part is dedicated to the construction of the multiplier. A useful application
of this is the existence of holomorphic “peak functions” with controlled growth.

Definition 5. A nonnegative Borel measure µ in C is called doubling if there exists C > 0 such
that

µ(D(z, 2r)) ≤ Cµ(D(z, r))

for all z ∈ C and r > 0. We denote byCµ the infimum of the constantsC for which the inequality
holds.

Recall that when φ is subharmonic ∆φ is a nonnegative Borel measure, finite on compact sets.

For convenience we write Dr(z) = D(z, rρ(z)) and D(z) = D1(z). We will write Dr
φ(z)

when we need to stress that the radius depends on φ.

Henceforth dm denotes the Lebesgue measure in C. We also use the measure dσ = dm/ρ2,
which should be thought of as a doubling regularisation of ∆φ (see Theorem 14).

2.1. Doubling measures. Throughout this section we assume that µ is a positive doubling mea-
sure non-identically zero. We begin with a result of Christ [Chr91, Lemma 2.1].

Lemma 1. Let µ be a doubling measure in C. There exists γ > 0 such that for any disks D,D′

of respective radius r(D) > r(D′) with D ∩D′ 6= ∅:(
µ(D)

µ(D′)

)γ
.
r(D)

r(D′)
.

(
µ(D)

µ(D′)

)1/γ

.

In particular, the support of µ has positive Hausdorff dimension.

Remark 1. This implies that for all z ∈ C and r > 1

(4) rγ . µ(Dr(z)) . r1/γ.

Also, applying Lemma 1 and (4) to D(0, |z|) and D(z) we have, for ρ(z) ≤ |z|
1

|z|1/γ2
.
( 1

µ(D(0, |z|))
)1/γ
.
ρ(z)

|z|
.
( 1

µ(D(0, |z|))
)γ
.

1

|z|γ2
.
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On the other hand, if |z| < ρ(z), then 0 ∈ D(z). Thus Lemma 1 implies ρ(z) ' ρ(0), hence
|z| < C. Therefore, there exist η, C0 > 0 and β ∈ (0, 1) such that

(5) C−1
0 |z|−η ≤ ρ(z) ≤ C0|z|β |z| > 1.

Let us study in more detail the relationship between ρ(z) and ρ(ζ) for various z, ζ ∈ C. A first
observation is that ρ(z) is a Lipschitz function. More precisely

(6) |ρ(z)− ρ(ζ)| ≤ |z − ζ| z, ζ ∈ C.

To see this there is no loss of generality in assuming that z, ζ ∈ R, ζ < z and ρ(ζ) < ρ(z).
Then ζ − ρ(ζ) < z − ρ(z), since otherwise D(ζ) ⊂ D(z), contradicting the fact that µ(D(z)) =
µ(D(ζ)) = 1.

Lemma 2. [Chr91, p.205]. If ζ /∈ D(z) then

ρ(z)

ρ(ζ)
.

(
|z − ζ|
ρ(ζ)

)1−δ

for some δ ∈ (0, 1) depending only on the doubling constant Cµ.

As a consequence of Lemma 1 and (5) we have

Corollary 3. For every r > 1 there exists γ > 0 such that if ζ ∈ Dr(z) then

1

rγ
.
ρ(z)

ρ(ζ)
. rγ.

It will be convenient to express some of the results in terms of the distance dφ induced by the
metric ρ−2(z)dz ⊗ dz̄.

Lemma 4. There exists δ ∈ (0, 1) such that for every r > 0 there exists Cr > 0 such that

(a) C−1
r

|z − ζ|
ρ(z)

≤ dφ(z, ζ) ≤ Cr
|z − ζ|
ρ(z)

if |z − ζ| ≤ rρ(z).

(b) C−1
r

(
|z − ζ|
ρ(z)

)δ
≤ dφ(z, ζ) ≤ Cr

(
|z − ζ|
ρ(z)

)2−δ

if |z − ζ| > rρ(z).

This shows, in particular, that a sequence Λ is ρ-separated if and only if there exists δ > 0
such that infλ 6=λ′ dφ(λ, λ′) > δ.

Proof. By definition

dφ(z, ζ) = inf

∫ 1

0

|γ′(t)|ρ−1(γ(t))dt,

where the infimum is taken over all piecewise C1 curves γ : [0, 1] → C with γ(0) = z and
γ(1) = ζ .

The lower inequalities are contained in [Chr91, Lemma 3.1] and its proof.
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The upper estimate in case (a) is immediate from Corollary 3. In case (b) take γ(t) = z +
t(ζ − z) and use Lemma 2; then

dφ(z, ζ) ≤ |ζ − z|
∫ 1

0

dt

ρ(γ(t))
.
∫ 1

0

(t|ζ − z|)1−δ

(ρ(z))2−δ dt .

(
|z − ζ|
ρ(z)

)2−δ

.

�

From now on, given z ∈ C and r > 0, we denote

B(z, r) = {ζ ∈ C : dφ(z, ζ) < r}.

Doubling measures satisfy certain integrability conditions.

Lemma 5. Let µ be a doubling measure. There exist C > 0 and m ∈ N depending on Cµ such
that for any r > 0

(a)
∫
D(z,r)

log
( 2r

|z − ζ|
)
dµ(ζ) ≤ C µ(D(z, r)) z ∈ C.

(b) sup
z∈C

∫
C

dµ(ζ)

1 + dmφ (z, ζ)
<∞ .

Proof. (a) is [Chr91, Lemma 2.3].

(b) According to Lemma 4 it is enough to consider the integral on |z − ζ| ≥ rρ(z). Applying
Fubini’s theorem we see that∫

ζ /∈Dr(z)

( ρ(z)

|z − ζ|
)m
dµ(ζ) =

∫
ζ /∈Dr(z)

m

∫ ρ(z)/|z−ζ|

0

tm−1dtdµ(ζ)

= m

∫ 1/r

0

tm−1

∫
t<ρ(z)/|z−ζ|<1/r

dµ(ζ)dt ≤ m

∫ 1/r

0

tm−1µ(D1/t(z)) dt.

Then by (4) µ(D1/t(z)) . 1/tk for some k > 0. Hence the integral is bounded if m > k.

This and Lemma 4(b) show that the result holds for m big enough. �

Remark 2. It is clear from the proof that

(b’) lim
r→∞

sup
z∈C

∫
ζ /∈B(z,r)

dµ(ζ)

dmφ (z, ζ)
= 0.

There is a discrete version of the previous Lemma.

Lemma 6. Let Λ be a ρ-separated sequence. There exists m ∈ N such that

sup
z∈C

∑
λ∈Λ

1

1 + dmφ (z, λ)
<∞.
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Proof. By the separation and Lemma 4, it is enough to see that for m big enough

sup
z∈C

∑
λ/∈B(z,r)

( ρ(λ)

|z − λ|
)m

<∞.

Take δ > 0 such that the balls {B(λ, δ)}λ∈Λ are pairwise disjoint. By Corollary 3∑
λ/∈B(z,r)

( ρ(λ)

|z − λ|
)m
.

∑
λ/∈B(z,r)

∫
B(λ,δ)

( ρ(ζ)

|z − ζ|
)m
dµ(ζ) .

∫
λ/∈B(z,r)

( ρ(ζ)

|z − ζ|
)m

dµ(ζ).

Lemma 5(b) implies that the integral is bounded. �

For later use, we state a refinement that follows similarly from Remark 2.

Corollary 7. Let Λ be a ρ-separated sequence. There exists m ∈ N such that

lim
r→∞

sup
z∈C

∑
λ/∈B(z,r)

1

dmφ (z, λ)
= 0.

We will need to partition the plane in rectangles of constant mass. We do that by adapting a
general result of [Yul85] to our setting (see also [Dra01, Theorem 2.1]).

Theorem 8. Let µ be a positive doubling measure non-identically zero. There exists a “parti-
tion” of C in rectangles Rk with sides parallel to the coordinate axis such that:

(a) µ =
∑

k µk, where µk := µ|Rk satisfy µk(C) = 1.
(b) Rk are quasi-squares: there exists a ratio e > 1 depending only on Cµ such that the ratio

of sides of each Rk lies in the interval [1/e, e].
(c) There exists C < 0 such that C−1ρ(ak) ≤ diam(Rk) ≤ Cρ(ak), where ak denotes the

centre of Rk.
(d)
⋃
k Rk = C and the interiors of Rk are pairwise disjoint.

Remark 3. Dividing the original measure by s ∈ R+ we obtain a partition of C into quasi-squares
of mass s.

Proof. It is enough to partition the plane in quasi-squares of constant entire mass, because by an
stopping-time argument of [OC99] these can then be split into quasi-squares of mass 1.

We construct our partition recursively. We start with a rectangle centred at 0 of entire mass,
and with sidelengths l ≤ L so that l ≥ L/2 and l1−β ≥ 12

√
2C0, where β and C0 are given in

(5) (rectangle ABCD in the picture). Consider next a square Q1 centred at 0 of sidelength 3L
(A1B1C1D1 in the picture) and define R as the quasi-square with vertices ABB′A′, where A′

and B′ are points on the same side of Q1 taken so that 0 /∈ R. We want to make R a little bigger,
to make sure that its mass is entire, and we want to do that keeping control on the ratio of sides.
Consider the rectangle ABB̃Ã, where Ã, B̃ are taken with |AÃ| = |BB̃| = 2|AA′|. Denote by
R′ the rectangle A′B′B̃Ã added to R. For λ ∈ R′,

ρ(λ)

l
≤ 6
√

2ρ(λ)

|λ|
≤ 6
√

2C0

|λ|1−β
≤ 6
√

2C0

l1−β
≤ 1

2
.
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Since the sides of R′ have length bigger or equal than l we deduce that R′ contains a disk of
centre λ and radius ρ(λ), hence its mass is at least 1. This shows that there exists a rectangle R1

(AA′′B′′B in the picture) of entire mass between the original R and the “doubled” R′.

We finish the first step of the process by constructing the analogous quasi-square R2 of entire
mass at the opposite side of R (CC ′′D′′D in the picture).
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D′′ C′′

Consider next the rectangle Q2 limited by the segments (A′′B′′), (C ′′D′′), (B1C1), (D1A1)
(the rectangle A2B2C2D2 in the picture). We iterate the process above to each of the rectangles
B′′B2C2C

′′ and D′′D2A2A
′′, thus obtaining two new quasi-squares R3 = B′′B3C3C

′′ and R4 =
D′′D3A3A

′′ of entire mass.

All in all, we obtain a new quasi-square Q3 := A3B3C3D3 with ratio of sides lying in [1/2, 2]
which is a disjoint union of 5 quasi-squares of entire mass. From here we repeat the process,
taking Q3 in place of the original R, and continue recursively to obtain the “partition” of C. By
construction we have (a), (b) and (d).

To prove (c) assume thatR is a quasi-square of mass 1, centre a and sidelengths l, L. HereR ⊂
D(a, L

√
2), hence ρ(a) & L & diam(R). Also, D(a, l) ⊂ R and diam(R) . l . ρ(a). �

Lemmas 1 and 2 give control on how big a disc Dr(ζ) can be when ζ ∈ Ds(z). We will need
another result along the same lines.
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Given a doubling measure µ and given z ∈ C and 0 < r < s, consider the associated regions

Fr(z, s) = {ζ : Dr(ζ) ⊂ Ds(z)} and Gr(z, s) =
⋃

ζ∈Ds(z)

Dr(ζ) .

By definition Fr(z, s) ⊂ Ds(z) ⊂ Gr(z, s). Let γ be the constant given by Lemma 1.

Lemma 9. Let r > 0 be fixed. There exists c > 0 such that if ε(s) = c r/sγ
2
, for all z ∈ C and

s > r we have

(a) Gr(z, s) ⊂ Ds+ε(s)(z).
(b) Ds−ε(s)(z) ⊂ Fr(z, s).

Proof. Applying Lemma 1 to Dr(ζ) and Ds(z), and using (4), we have

sγ
2

r
.
sρ(z)

rρ(ζ)
.
s1/γ2

r
.

(a) If ζ ∈ Ds(z) we have sρ(z) + rρ(ζ) ≤ sρ(z)(1 + cr/sγ
2) for some c > 0.

(b) Dr(ζ) ⊂ Ds(z) when |ζ − z|+ rρ(ζ) ≤ sρ(z). For ζ ∈ Ds−ε(s)(z)

|ζ − z|+ rρ(ζ) ≤ (s− ε(s))ρ(z) + c1sρ(z)
( r

sγ2

)
.

Thus if (s− ε(s))ρ(z) + csρ(z)(r/sγ
2
) ≤ sρ(z) we have Ds−ε(s)(z) ⊂ Fr(z, s). �

Corollary 10. Let {Rk}k be a partition of C, as in Theorem 8. Define

F (z, s) =
⋃

k:Rk⊂Ds(z)

Rk and G(z, s) =
⋃

k:Rk∩Ds(z) 6=∅

Rk .

There exists a positive function ε(s) with lims→∞ ε(s)/s = 0 and such that for all z ∈ C and
s > 0

(a) G(z, s) ⊂ Ds+ε(s)(z).
(b) Ds−ε(s)(z) ⊂ F (z, s).

Proof. As the previous Lemma, using Theorem 8(c). �

We finish with a result showing that the measure of a disk cannot be too concentrated near its
border.

Lemma 11. Let ε(r) be a positive function such that lim
r→∞

ε(r)/r = 0. Then

lim
r→∞

µ(Dr+ε(r)(z))

µ(Dr(z))
= lim

r→∞

µ(Dr−ε(r)(z))

µ(Dr(z))
= 1

uniformly in z ∈ C.

The proof is based in the following projection of the measure µ.
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Lemma 12. For every z ∈ C define the measure νz on R+ by

νz(A) = µ({ζ = z + reiθ : r ∈ A}) A ⊂ R+.

Then νz is doubling and there exists K independent of z such that Cνz ≤ KCµ.

Proof. Given x ∈ R+ and r > 0 let Ir(x) = (x− r, x+ r) ∩ R+. We want to see that

νz(I
2r(x)) ≤ KCµ νz(I

r(x))

for all z ∈ C, x ∈ R+ and r > 0.

Let Arz(x) = {ζ = z + seiθ : s ≥ 0 , |s − x| < r}. By definition νz(I2r(x)) = µ(A2r
z (x)).

Split A2r
z (x) into k := [2π

4r
] sectors

Sj =
{
ζ = z + seiθ : s ≥ 0 , |s− x| < 2r , (j − 1)

2π

k
≤ θ < j

2π

k

}
j = 1, . . . , k.

Being µ doubling there exists K > 0 such that µ(Sj) ≤ KCµ µ(S̃j), where S̃j is half the sector
Sj , i.e.

S̃j =
{
ζ = z + seiθ : s ≥ 0 , |s− x| < r , (j − 1)

2π

k
+

2π

4k
< θ < j

2π

k
− 2π

4k

}
.

Since the S̃j’s are disjoint and ∪jS̃j ⊂ Arz(x), we get

νz(I
2r)(x) = µ(A2r

z (x)) =
k∑
j=1

µ(Sj) ≤ KCµ

k∑
j=1

µ(S̃j) ≤ KCµ µ(Arz(x))

= KCµ νz(I
r(x)).

�

Proof of Lemma 11. It is enough to see that

lim
r→∞

µ(Dr+ε(r)(z) \Dr(z))

µ(Dr(z))
= 0

uniformly in z. By definition of νz we have

µ(Dr+ε(r)(z) \Dr(z))

µ(Dr(z))
=
νz
(
(rρ(z), (r + ε(r))ρ(z)

)
νz((0, r))

,

and by the corresponding version of Lemma 1 for doubling measures in R+, and by Lemma 12,
there exists K > 0 independent of z such that

νz
(
(rρ(z), (r + ε(r))ρ(z)

)
νz((0, r))

≤ K

(
ε(r)

r

)γ
.

�
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Remark 4. An analogous result is true if in the definition of νz we use, instead of a radial pro-
jection with respect to z, a projection associated to quasi-squares of a fixed ratio α ∈ [e−1, e] (e
is the constant of Theorem 8(b)). Let Qr

α(z) denote the rectangle with vertices z + r(1 + iα),
z + r(1− iα), z − r(1 + iα) and z − r(1− iα). Given z ∈ C consider the measure νz in R such
that

νz(I
r(x)) = µ(Qx+r

α (z) \Qx−r
α (z))

on any interval Ir(x). As before, there exists K > 0 independent of z ∈ C and α ∈ [e−1, e] such
that νz is doubling with Cν ≤ KCµ. Therefore, if Rr

α(z) := Q
rρ(z)
α (z),

lim
r→∞

µ(R
r+ε(r)
α (z))

µ(Rr
α(z))

= lim
r→∞

µ(R
r+ε(r)
α (z))

µ(Rr
α(z))

= 1

uniformly in z.

2.2. Local behaviour and regularisation of φ. Let us start with a result comparing the values
of φ in a disk with the value on its centre.

Lemma 13. For every K > 0 there exists A = A(K) > 0 such that for all z ∈ C

sup
w∈DK(z)

|φ(w)− φ(z)− hz(w)| ≤ A,

where hz is a harmonic function in DK(z) with hz(z) = 0.

Proof. The proof is as in [OCS98, Lemma 1]. On each DK(z) decompose

(7) φ(w) = φ(z) + hz(w) +

∫
DK(z)

(G(w, η)−G(z, η)) ∆φ(η),

where G is the Green function of the disc DK(z) and hz is a harmonic function in DK(z) such
that hz(z) = 0. By Lemma 5(a)

sup
z∈C

∫
DK(z)

log
Kρ(z)

|z − η|
∆φ(η) <∞

and the result holds. �

We have seen in the previous section that ρφ(z) is Lipschitz (see (6)). Also, because of
Lemma 1, φ is Hölder continuous of some positive order on every bounded subset of C (see
[Chr91, Lemma 2.8]). More regularity can be attained by taking a suitable weight ψ equivalent
to φ.

Theorem 14. Let φ be subharmonic with ∆φ doubling. There exist ψ ∈ C∞(C) subharmonic
andC > 0 such that |ψ−φ| ≤ C, ∆ψ is a doubling measure and ∆ψ ' 1/ρ2

ψ ' 1/ρ2
φ. Moreover

|∇(∆ψ)| . 1/ρ3
φ.

Remark 5. It follows from the construction below and Lemma 9 that D+
∆φ(Λ) = D+

∆ψ(Λ) and
D−∆φ(Λ) = D−∆ψ(Λ) for any given sequence Λ in C.



INTERPOLATING AND SAMPLING SEQUENCES FOR ENTIRE FUNCTIONS 15

Since the spaces of functions and sequences considered do not change if φ is replaced by ψ,
from now on we will assume that φ ∈ C∞(C), ∆φ ' 1/ρ2 and |∇(∆φ)| . 1/ρ3.

In the proof of this result we will need to partition C and discretize the measure.

Lemma 15. Let µ be a positive doubling measure in C. Fix m ∈ N. There exist k ∈ N and
C > 0 such that for any partition {Rp}p as in Theorem 8 with µ(Rp) = mk there are points
λ

(p)
1 , . . . , λ

(p)
mk ∈ CRp such that

(a) µp = µ|Rp and νp =
mk∑
j=1

δ
λ
(p)
j

have the same first m moments.

(b) Λ = {λ(p)
j }p,j is a ρ-separated sequence.

Proof. By Lemma 5 of [OC99], there exists k ∈ N such that for all measure µp supported
in a rectangle Rp with total mass mk, there are points σ(p)

1 , . . . σ
(p)
k ∈ Rp such that µp and

m
∑k

j=1 δσ(p)
j

have the same first m moments.

In order to get a separated sequence replace each σpj by m points

γ
(p)
j,l = σ

(p)
j + ρ(σ

(p)
j )τ

(p)
j ei2πl/m, l = 0, . . . ,m− 1,

lying on a circle around σ(p)
j . Since for all polynomials p of degree less than m− 1

m p(σ
(p)
j ) =

m−1∑
l=0

p(γ
(p)
j,l ),

the measures µp and
∑

j,l δγ(p)j,l
have still the same firstmmoments. We will be done as soon as we

see that the τ (p)
j can be chosen uniformly bounded and so that Λ = {γ(p)

j,l } is ρ-separated. For this
we use a Besicovitch’s lemma: the family {Rp}p can be split in q families {R1

p}p∈I1 , . . . {Rq
p}p∈Iq

such that two rectangles of the same family are far apart, in the sense that MRl
p ∩MRl

p′ = ∅,
p 6= p′, for some large constant M . For the first family {R1

p}p∈I1 , it is easy to choose τ (p)
j such

that the resulting sequence Γ1 = {γ(p)
j,l : p ∈ I1; j = 1, . . . , k; l = 0, . . .m − 1} is ρ-separated.

Next we choose τ (p)
j , p ∈ I2, so that Γ2 ∩ Γ1 is ρ-separated, where Γ2 = {γ(p)

j,l : p ∈ I2; j =

1, . . . , k; l = 0, . . . ,m− 1}. Choosing τ (p)
j recursively in this way we obtain Λ = Γ1 ∪ . . . ∪ Γq

ρ-separated. �

Proof of Theorem 14. For any M (to be chosen later) consider k ∈ N as in Lemma 15 and a
partition {Rp}p as in Theorem 8. Take then the sequence Λ = {λ(p)

j }j,p given by Lemma 15.

Recall that λ(p)
j ∈ CRp, µ(Rp) = Mk and that the measures µp and νp =

Mk∑
j=1

δ
λ
(p)
j

have the same

first M moments.
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By Theorem 8(c) there exists r > 0 such that CRp ⊂ Dr(λ
(p)
j ) for any p ∈ N and i ≤ k.

Furthermore, by construction of {Rp}p there exists q ∈ N such that any z ∈ C lies in at most q
disks Dr(λ

(p)
j ).

We now regularise νp by setting

ν̃p =
Mk∑
j=1

X
( |z−λ(p)j |
rρ(λ

(p)
j )

)
∫
X
( |z−λ(p)j |
rρ(λ

(p)
j )

) ,
where X is a smooth non-negative cut-off function of one real variable such that X (t) = 1 if
|t| < 1, X (t) = 0 if |t| > 2 and |X ′| is bounded.

Notice that ν̃p and µp have the first M moments. Indeed, by the mean value property∫
C
zldν̃p =

Mk∑
i=1

(λ
(p)
j )l l = 0, . . . ,M − 1.

Define ν̃ =
∞∑
p=1

ν̃p and

ψ(z) = φ(z) +
1

2π

∫
C

log |z − ζ|(ν̃ −∆φ)(ζ).

We claim that ν̃ is a doubling measure. The proof of this fact is a bit technical and will be
deferred to the end.

By definition ∆ψ = ν̃. Also, ν̃(z) is a sum of at most q terms of order 1/ρ2(λ
(p)
j ), with

z ∈ Dr(λ
(p)
j ). Therefore ∆ψ ' 1/ρ2

φ and |∇(∆ψ)| . 1/ρ3
φ. In particular∫

Dφ(z)

∆ψ(ζ) '
∫
Dφ(z)

dm(ζ)

ρ2
φ(ζ)

' 1,

hence ρφ ' ρψ.

Let us show next that |ψ − φ| ≤ C for some C > 0.

Let ap denote the centre of Rp. Assume z ∈ Rp0 and let Ip0 = {p ∈ N : dφ(ap, ap0) ≤ 10r}.
Remark that for p /∈ Ip0 , ζ ∈ supp(ν̃p) and z ∈ supp(ν̃p0) we have dφ(z, ζ) ' dφ(ap, ap0).
Indeed, this follows from

|ζ − ap| ≤ 3rρ(ap) ≤
3

10
|ap − ap0|,

the analogous estimate for |z − ap0 | and Lemma 4. This yields

(8)
∫
C
d−Mφ (z, ζ)ν̃p(ζ) .

∫
C
d−Mφ (z, ζ)µp(ζ) z ∈ Ip0 , p /∈ Ip0 .
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We split

2π(ψ(z)− φ(z)) =
∑
p∈Ip0

∫
C

log |z − ζ|(ν̃p − µp)(ζ) +
∑
p/∈Ip0

∫
C

log |z − ζ|(ν̃p − µp)(ζ)

and estimate each sum separately.

Let pM denote the M -th Taylor polynomial of log(|z− ζ|/ρ(z)). Since ν̃p−µp have vanishing
moments of order less or equal to M , we can estimate

I1 : =
∣∣∑
p/∈Ip0

∫
C

log |z − ζ|(ν̃p − µp)(ζ)
∣∣

=
∣∣∑
p/∈Ip0

∫
C
(log
|z − ζ|
ρ(z)

− pM(ζ))(ν̃p − µp)(ζ)
∣∣ ≤ ∑

p/∈Ip0

∫
C

( ρ(z)

|z − ζ|
)M

(ν̃p + µp)(ζ).

Taking M big enough and using (8) and Lemmas 4(a) and 5(b),

I1 .
∫
C\Dr(z)

( ρ(z)

|z − ζ|
)M
µ(ζ) .

∫
C\B(z,Cr)

dµ(ζ)

dδMφ (z, ζ)
≤ C.

For the remaining term we use again the moment condition together with the fact that for
p ∈ Ip0 there exists γ such that ∪{supp(ν̃p), p ∈ Ip0} ⊂ Dγ

φ(z). Thus

I2 : =
∣∣∑
p∈Ip0

∫
C

log |z − ζ|(ν̃p − µp)(ζ)
∣∣ =

∣∣∑
p∈Ip0

∫
C

log
(2γρ(z)

|z − ζ|
)
(ν̃p − µp)(ζ)

∣∣
.

∫
Dγ(z)

log
(2γρ(z)

|z − ζ|
)
(ν̃ + µ)(ζ).

By Lemma 5(a) this is finite.

We prove now that ν̃ is doubling. We first show that it is doubling for big balls, i.e. there exist
s0 > 0 and a constant C depending only on the doubling constant C∆φ of ∆φ such that for all
s > s0 we have ν̃(Ds(a)) ≤ Cν̃(Ds/2(a)).

As in Corollary 10, define

F (a, s) =
⋃

p:Rp⊂Ds(a)

Rp and G(a, s) =
⋃

p:Rp∩Ds(a)6=∅

Rp.

Since ν̃(Rp) '
∫
Rp
dσ/ρ2 ' µ(Rp), we see that ν̃(F (a, s)) ' µ(F (a, s)) and ν̃(G(a, s)) '

µ(G(a, s)). By Corollary 10, also Ds−ε(s)(a) ⊂ F (a, s) and Ds+ε(s)(a) ⊃ G(a, s). This and the
fact that µ is doubling yield

ν̃(Ds(a)) ≤ ν̃(G(a, s)) ' µ(G(a, s)) ≤ µ(Ds+ε(s)(a)) ≤ C∆φ µ(D1/2(s+ε(s))(a)),

and
ν̃(Ds/2(a)) ≥ ν̃(F (a, s/2)) ' µ(F (a, s/2)) ≥ µ(Ds/2−ε(s/2)(a)).
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Therefore

ν̃(Ds(a)) ≤ C∆φ ν̃(Ds/2(a))
µ(D1/2(s+ε(s))(a))

µ(Ds/2−ε(s/2)(a))
.

Lemma 11 shows that the quotient converges to 1 as s goes to infinity uniformly in a, so there
exists s0 such that ν̃(Ds(a)) ≤ 2C∆φ ν̃(Ds/2(a)) for all s ≥ s0.

Corollary 3 implies that ν̃ ' 1/ρ2(a) on Ds(a) when s ≤ s0, so we deduce that ν̃(Ds(a)) .
ν̃(Ds/2(a)). �

2.3. Generalized weighted spaces. Let α ∈ R and φ be a subharmonic function whose Lapla-
cian is a doubling measure. Let us consider the following space:

Fpφ,α =
{
f ∈ H(C) : ||f ||pp,α =

∫
C
|f |pe−pφραp−2 <∞

}
.

Lemma 16. Let φ be a subharmonic function with a doubling Laplacian. For any ε > 0, there
exists a function ρ′ such that

ρφ ' ρ′ and |∆ log ρ′| ≤ ε

ρ2
φ

From this it follows that Fpφ,α can be written as Fpψ for a suitable subharmonic ψ with doubling
Laplacian. If we have a φ already regularised by the above process, then ψ = φ − α log ρ′ will
satisfy

(1− αε)∆φ ≤ ∆ψ ≤ (1 + αε)∆φ.

Therefore ∆ψ is a doubling measure. Furthermore,

e−ψ = e−φρ′
α ' e−φρα and ρψ ' ρφ,

hence Fpψ and Fpφ,α are the same space.

Proof. For r positive real, set ρr := ρφ/r, it follows immediately from (4) that there exists 0 <
ε < m such that

(9) rερφ . ρr . rmρφ.

Take a sequence Λ such that {D(λ, ρr(λ)/2)}λ∈Λ covers C and the disks {D(λ, ρr(λ)/10)}λ∈Λ

are pairwise disjoint, which exists by a standard covering Lemma, see [Mat95, Theorem 2.1].
Let χ be a smooth real function with compact support in D(0, 1) such that χ = 1 on D(0, 1/2)
and such that |∇χ| ≤ 2, |∇2χ| ≤ 4. We then define

χλ(z) = χ
( |z − λ|
ρr(λ)

)
and ρ′r :=

∑
λ∈Λ ρr(λ)χλ.
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Let us prove that for r big enough this function has the desired properties. It is clear that
ρr ' ρφ. Moreover, there is a C depending on the doubling constant of φ (but not on r) such that

C−1ρr ≤ ρ′r ≤ Cρr,

|∇ρ′r(z)| ≤
∑

λ∈Λ: z∈D(λ)

ρr(λ)|∇χλ(z)| ≤ C,

|∇2ρ′r(z)| ≤
∑

λ∈Λ: z∈D(λ)

ρr(λ)|∇2χλ(z)| ≤
∑

λ∈Λ: z∈D(λ)

4

ρr(λ)
≤ C

ρr(z)
.

We deduce from these estimates that

|∆ log ρ′r| ≤
|∇ρr|2

ρr2
+
|∇2ρr|
ρ
≤ C

ρr2
,

where C does not depend on r. By (9), picking r big enough we have the Lemma. �

2.4. The multiplier. A basic tool in our approach is the use of the so-called multiplier: an entire
function g such that |g| ' eφ outside a neighbourhood of the zeros of g.

Theorem 17. Let φ be a subharmonic function such that ∆φ is a doubling measure. There exists
an entire function g such that

(a) The zero-sequence Z(g) of g is ρφ-separated and sup
z∈C

dφ(z,Z(g)) <∞.

(b) |g(z)| ' eφ(z)dφ(z,Z(g)) for all z ∈ C.

The function g can be chosen so that, moreover, it vanishes on a prescribed z0 ∈ C. We say that
g is a multiplier associated to φ.

Proof. Take a partition {Rp} of C with µ(Rp) = 2πmN and consider the sequence Λ given by
Lemma 15. For the sake of clarity we write Rp instead of CRp (C is the constant of Lemma 15).
Note that now {Rp}p is not a partition, although there exists a uniform constant q such that all
points of C lie in at most q quasi-squares Rp. As in Lemma 15, denote µp = (1/2π)µ|Rp and
let νp be the sum of the λ ∈ Λ associated to Rp. Recall that µp and νp have the same first m
moments.

Let g be a holomorphic function satisfying

log |g| = φ− 1

2π

∫
C

log |z − ζ|(∆φ− 2π
∑
λ∈Λ

δλ),

which exists because the Laplacian of the term at the right hand side is a sum of Dirac masses.
By definition Z(g) = Λ, and the previous construction ensures that (a) holds.

Let us prove (b). Assume that z ∈ Rp0 and let Ip0 denote the set of indices p such that
(2Rp) ∩Rp0 6= ∅. As in the previous proof, split

log |g(z)| − φ(z) = −
∫
C

log |z − ζ|(∆φ

2π
−
∑
λ∈Λ

δλ) = S1(z) + S2(z),
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where

S1(z) :=
∑
p/∈Ip0

∫
C

log |z − ζ|(νp − µp)

and

S2(z) :=
∑
p∈Ip0

∫
C

log |z − ζ|(νp − µp).

Again as in the proof of Theorem 14, using the Taylor expansion of log |z − ζ| together with the
moment condition one sees that |S1(z)| is bounded.

For the second sum notice that there exits γ > 0 such that∪p∈Ip0Rp ⊂ Dγ(z). Hence, denoting
|z − Λ| = inf

λ∈Λ
|z − λ|, we get

S2(z) =
∑
p∈Ip0

∫
C

log
2γρ(z)

|z − ζ|
(µp − νp) ≤

∫
Dγ(z)

log
2γρ(z)

|z − ζ|
dµ(ζ)− log

2γρ(z)

|z − Λ|

≤ C2 + log
|z − Λ|
ρ(z)

.

On the other hand, using the ρ-separation of Λ

−S2(z) ≤
∑
p∈Ip0

∑
λ∈Rp

log
2γρ(z)

|z − λ|
≤ log

ρ(z)

|z − Λ|
+ C(δ) ·#

(
Λ ∩ ∪p∈Ip0Rp

)
.

Since #Ip0 is uniformly bounded, this and the estimate of S1 give:

log
|z − Λ|
ρ(z)

− C ≤ log |g(z)| − φ(z) ≤ log
|z − Λ|
ρ(z)

+ C ′.

The result is then immediate from Lemma 4(a). �

Next we state a useful application of the multiplier, a result about existence of peak functions.
These functions attain value 1 at a given point and decay very fast away from the point. They
are very useful in the estimates of the Bergman kernel and in the construction of solutions to the
∂̄ equation. Another proof of the following Lemma, using estimates for the ∂̄-equation, can be
found in an Appendix. This second proof is along the lines of [FS89, Theorem 2.1], where a
related result is proved.

Theorem 18. Take ε > 0 and m ∈ N. There exists C > 0 such that for all η ∈ C there is an
entire function Pη with Pη(η) = 1 and

|Pη(z)| ≤ Ceε(φ(z)−φ(η)) 1

1 + dmφ (z, η)
.

Proof. Let h be a multiplier for εφ (constructed as in Theorem 17) with zero sequence Σ = {σk}k
and such that {η} ∪ Σ is ρ-separated. In particular |h(z)| ' eεφ(z)dφ(z,Σ). It follows from the
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construction of the multiplier that for eachM ∈ N there exists r > 0 such that #(Σ∩B(λ, r)) &
M for all λ ∈ C. Given σ1, . . . , σM ∈ Σ ∩B(η, r) define

Pη(z) = cη
h(z)

(z − σ1) · · · (z − σM)

ρM(η)

eεφ(η)
,

where cη is chosen so that Pη(η) = 1.

Let us observe first that there exists c > 0 independent of η with c−1 ≤ cη ≤ c. Since
|η − σi| ' ρ(η), then

1

cη
=

h(η)

(η − σ1) · · · (η − σM)

ρM(η)

eεφ(η)
' eεφ(η)dφ(η,Σ)

ρM(η)

ρM(η)

eεφ(η)
= dφ(η,Σ) ' 1.

We split the estimate of |Pη(z)| into several regions. Let ε > 0 be such that that the balls
B(σi, ε) and B(η, ε) are pairwise disjoint. Consider K > 0 with ∪Mi=1B(σi, ε) ⊂ B(η,K).

i) z ∈
⋃M
i=1 B(σi, ε). For z ∈ B(σi, ε) we have ρ(z) ' ρ(η) ' ρ(σi), dφ(z,Σ) ' |z −

σi|/ρ(σi) and dφ(z, σj) & 1, j 6= i. Thus

|Pη(z)| .
∣∣∣∣ h(z)

z − σi

∣∣∣∣ ρ(η)e−εφ(η) ' eε(φ(z)−φ(η)).

ii) z ∈ B(η,K) \
⋃M
i=1B(σi, ε). Here ρ(z) ' ρ(η) and |z − σi| & ρ(η), so

|Pη(z)| . eεφ(z)dφ(z,Σ)

ρM(η)

ρM(η)

eεφ(η)
. eε(φ(z)−φ(η)).

iii) z /∈ B(η,K). Here dφ(z, σi) ' dφ(z, η), so

|Pη(z)| . eεφ(z)dφ(z,Σ)

|z − η|M
ρM(η)

eεφ(η)
. eε(φ(z)−φ(η))

( ρ(η)

|z − η|
)M
.

This and Lemma 4(b) give the result. �

3. BASIC PROPERTIES OF FUNCTIONS IN Fpφ

Here we study the behaviour of functions in Fpφ and related topics. We prove the estimates
with norms ‖ · ‖Fpφ on the solutions to the ∂̄ equation (Theorem C) and provide estimates of
the Bergman Kernel of F2

φ on the diagonal. We also introduce a scaled translation in the plane
that gives rise to a translated weight and to an isometry between the spaces of functions for the
original and the translated weight. This will be used when studying the properties of weak limits
(Section 3.5).
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3.1. Pointwise estimates. Let us first see what is the natural growth of functions in Fpφ . Recall
that dσ = dm/ρ2.

Lemma 19. Let 1 ≤ p < ∞. For any r > 0 there exists C = C(r) > 0 such that for any
f ∈ H(C) and z ∈ C:

(a) |f(z)|pe−pφ(z) ≤ C

∫
Dr(z)

|f |pe−pφdσ.

(b) |∇(|f |e−φ)(z)| ≤ C
(∫

Dr(z)

|f |pe−pφdσ
)1/p.

(c) If s > r then |f(z)|pe−pφ(z) ≤ Cs

∫
Ds(z)\Dr(z)

|f |pe−pφdσ.

Proof. Let Hz be a holomorphic function with ReHz = hz, where hz is the harmonic function
in Dr(z) given in Lemma 13.
(a) is proved as in [OCS98, Lemma 1]:

|f(z)|pe−pφ(z) = |f(z)e−Hz(z)|pe−pφ(z)

≤ C

ρ2(z)

∫
Dr(z)

|f(ζ)|pe−p(hz(ζ)+φ(z)) '
∫
Dr(z)

|f |pe−pφdσ.

(b) First let us see that |∂φ/∂ζ − ∂hz/∂ζ| . 1 on Dr(z). By (7), if ζ ∈ Dr(z)

|∂φ
∂ζ

(ζ)− ∂hz
∂ζ

(ζ)| =
∣∣ ∂
∂ζ

∫
Dr(z)

G(ζ, η)∆φ(η)
∣∣ ≤ ∫

Dr(z)

2rρ(z)

|ζ − η|
∆φ(η).

Take s (depending on r) such that Dr(z) ⊂ Ds(ζ). From ∆φ ' 1/ρ2 we deduce∫
Dr(z)

2rρ(z)

|ζ − η|
∆φ(η) .

1

ρ(ζ)

∫
Ds(ζ)

dm(η)

|ζ − η|
' 1.

Since |∇(|f |e−φ)| = |f ′ − 2f∂φ/∂z|e−φ, we have

(10) |∇(fe−Hz)(z)| = |f ′(z)− 2f(z)h′z(z)| ' |∇(|f |e−φ)(z)|eφ(z).

On the other hand,

|∇(fe−Hz)(z)| .
∣∣∫
|z−ζ|=ρ(z)

f(ζ)e−Hz(ζ)

(z − ζ)2
dζ
∣∣' 1

ρ2(z)

∫
|z−ζ|=ρ(z)

|f(ζ)|e−hz(ζ)|dζ|.

From (a), for |z − ζ| = ρ(z)

|f(ζ)|e−φ(ζ) .
(∫

Dr(z)

|f |pe−pφdσ
)1/p

.

By Lemma 13 we have then

|∇(fe−Hz)(z)| . 1

ρ(z)

(∫
Dr(z)

|f |pe−pφdσ
)1/p

eφ(z),

which together with (10) concludes the proof.
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(c) As (a), using the subharmonicity of |fe−Hz |p. �

Lemma 20. Let 1 ≤ p <∞. For any entire function g with g(λ) = 0 we have

|g′(λ)|e−φ(λ) .
1

ρ(λ)

(∫
D(λ)

|g|pe−pφdσ
)1/p

.

Proof. Lemma 19(c) with r = 1/2 and s = 1 applied to the function g(z)/(z − λ) yields

|g′(λ)|pe−pφ(λ) .
∫
D(λ)\D1/2(λ)

|g(z)|p

|z − λ|p
e−pφ(z)dσ .

1

ρp(λ)

∫
D(λ)

|g(z)|pe−pφ(z)dσ.

�

3.2. Hörmander type estimates. This section is devoted to the proof of the ∂̄-estimates of
Theorem C in the introduction.

Theorem C. Let φ be a subharmonic function such that ∆φ is a doubling measure. There is a
solution u to the equation ∂̄u = f such that ‖ue−φ‖Lp(C) . ‖fe−φρ‖Lp(C) for any 1 ≤ p ≤ ∞.

Proof. Take ε = 1 and consider the peak-functions given by Theorem 18. By Lemma 19(b),
there exists r > 0 such that |Pη(z)| & eφ(z)−φ(η) on Dr(η), for all η ∈ C. Take a sequence Λ
such that {Dr(λ)}λ∈Λ covers C and the disks {Dr/5(λ)}λ∈Λ are pairwise disjoint, which exist by
a standard covering Lemma, see [Mat95, Theorem 2.1]. Let {χλ} ⊂ C∞0 be a partition of unity
associated to {Dr(λ)}λ.

Decompose the datum f =
∑
fλ, with fλ(z) = f(z)χλ(z). By Theorem 18, for any λ there

exists an entire function mλ(z) = Pλ(z)e−φ(λ) such that

|mλ(z)| . eφ(z) 1

dMφ (z, λ) + 1
.

The radius r has been chosen so that |mλ(ζ)| & eφ(ζ) if ζ ∈ Dr(λ). Define

uλ(z) = mλ(z)
1

π

∫
Dr(λ)

fλ(ζ)/mλ(ζ)

ζ − z
dm(ζ).

Clearly ∂̄uλ = fλ, thus u =
∑

λ∈Λ uλ is as a solution to ∂̄u = f . We must prove the size
estimates. As we have used a linear operator to construct u from the datum f , we only need to
check that ‖ue−φ‖L∞ . ‖fe−φρ‖L∞ and ‖ue−φ‖L1 . ‖fe−φρ‖L1 . The estimates for 1 < p <∞
follow then by Marcinkiewicz interpolation theorem.

Assume that z ∈ Dr(λ) and take K > 0 such that Dr(z) ⊂ DK(λ). Then

|uλ(z)e−φ(z)| .
∫
Dr(z)

|f(ζ)|e−φ(ζ)ρ(ζ)

ρ(z)|ζ − z|
dm(ζ) .

∫
DK(λ)

|f(ζ)|e−φ(ζ)ρ(ζ)

ρ(λ)|ζ − z|
dm(ζ).
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On the other hand, if z /∈ Dr(λ)

|uλ(z)e−φ(z)| . d−Mφ (z, λ)

∫
Dr(λ)

|f(ζ)|e−φ(ζ)

|ζ − z|
dm(ζ)

.
d−Mφ (z, λ)

ρ2(λ)

∫
Dr(λ)

|f(ζ)|e−φ(ζ)ρ(ζ) dm(ζ).

Therefore, applying Lemma 6

‖ue−φ‖L∞ . ‖fe−φρ‖L∞ sup
z∈C

(∫
Dr(z)

dm(ζ)

ρ(z)|z − ζ|
+

∑
λ:z /∈Dr(λ)

d−Mφ (z, λ)
)

. ‖fe−φρ‖L∞ .

In the L1 norm we get

‖ue−φ‖L1 .
∑
λ∈Λ

(∫
z∈Dr(λ)

∫
ζ∈DK(λ)

|f(ζ)|e−φ(ζ)ρ(ζ)

ρ(λ)|ζ − z|
dm(ζ) dm(z)+

∫
z /∈Dr(λ)

d−Mφ (z, λ)

ρ(λ)2

∫
Dr(λ)

|f(ζ)|e−φ(ζ)ρ(ζ) dm(ζ) dm(z)
)
.

Reversing the order of integration we immediately get ‖ue−φ‖L1 . ‖fe−φρ‖L1 . �

3.3. Bergman kernel estimates. Let Kφ(z, ζ) denote the Bergman kernel for F2
φ, i.e, for any

f ∈ F2
φ

f(z) = 〈Kφ(z, ·), f〉 =

∫
C
Kφ(z, ζ)f(ζ)e−2φ(ζ)dσ(ζ).

By definition

Kφ(z, z) =

∫
C
|Kφ(z, ζ)|2e−2φ(ζ)dσ(ζ).

Lemma 21. There exists C > 0 such that

C−1e2φ(z) ≤ Kφ(z, z) ≤ Ce2φ(z) z ∈ C.

Proof. We use the identity√
Kφ(z, z) = sup{|f(z)| : f ∈ F2

φ , ‖f‖F2
φ
≤ 1}.

The estimate
√
Kφ(z, z) . eφ(z) is immediate from Lemma 19(a). In order to prove the reverse

estimate we construct f ∈ F2
φ with ‖f‖F2

φ
≤ 1 and |f(z)| ≥ Ceφ(z), for some constant C

independent of z.

By Theorem 18, for every m ∈ N there exists Pz entire such that

|Pz(ζ)| ≤ Ceφ(ζ)−φ(z) 1

1 + dmφ (z, ζ)
,
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with C independent of z. Define fz(ζ) = c0 e
φ(z)Pz(ζ), where c0 is a positive constant to be

chosen later. Now fz(z) = c0e
φ(z) and

|fz(ζ)|2e−2φ(ζ)ρ−2(ζ) ≤ c0 C

1 + d2m
φ (z, ζ)

∆φ(ζ),

hence by Lemma 5(b) there exist c0 and C independent of z so that ‖fz‖F2
φ
≤ 1. �

Remark 6. This argument and Lemma 19(a) show that for any p ∈ [1,∞],

sup{|f(z)| : f ∈ Fpφ , ‖f‖Fpφ ≤ 1} ' eφ(z).

3.4. Scaled translations and invariance. In this section we introduce the scaled translation and
its main properties.

Given φ consider the class Wφ of subharmonic functions ψ such that

(i) ∆ψ doubling with C∆ψ ≤ C∆φ.
(ii)

∫
Dφ(0)

∆ψ ' 1.
(iii) ψ(0) = 0.

An important property of Wφ is that there exists η such that ∆ψ(z) . |z|2η for all ψ ∈ Wφ of
class C2. This is a consequence of (5) and the fact that ∆ψ ' 1/ρ2

ψ.

Fix q > 2η + 1 and consider the kernel

κ(z, ζ) :=
1

2π

[
log |1− z

ζ
| −Re(Pq(

z

ζ
))χC\D(0,1)(ζ)

]
,

where Pq is the Taylor polynomial of degree q of log(1 + x) around x = 0, and its associated
integral operator

K[f ](z) =

∫
C
κ(z, ζ)f(ζ) dm(ζ).

This operator solves the Poisson equation, that is ∆K[f ] = f .

For every x ∈ C, consider the scaled translation

τx(z) = x+ zρφ(x),

the associated subharmonic function

φx(z) = K[∆(φ ◦ τx)](z)−K[∆(φ ◦ τx)](0).

Define also hx := φ ◦ τx − φx. It is clear that hx is harmonic. Take then Hx holomorphic having
hx as real part and consider the scaled translation operator

T φx f(z) = f(τx(z))e−Hx(z).

Lemma 22. For every x ∈ C,

(a) The subharmonic function φx belongs to Wφ and ρφx(0) = 1.
(b) T φx is an isometry from Fpφ to Fpφx , for 1 ≤ p ≤ ∞.
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Proof. Note first that from the identity

1 =

∫
Dφx (z)

∆φx =

∫
Dφx (z)

ρ2
φ(x)∆φ(τx(ζ)) =

∫
D(τx(z),ρφx (z)ρφ(x))

∆φ

it follows that

(11) ρφ(τx(z)) = ρφx(z)ρφ(x).

This implies that the mapping τx is actually an isometry between C endowed with the distance
dφx and C with dφ, that is

(12) dφx(z, ζ) = dφ(τx(z), τx(ζ)) ∀z, ζ ∈ C.

(a) By definition φx(0) = 0, and by (11), ρφx(0) = 1. This gives properties (ii) and (iii) of Wφ.

It is also clear that ∆φx is doubling and C∆φx = C∆φ, since for any a ∈ C and r > 0:∫
D(a,2r)

∆φx =

∫
D(τx(a),2rρφ(x))

∆φ ≤ C∆φ

∫
D(τx(a),rρφ(x))

∆φ ≤ C∆φ

∫
D(a,r)

∆φx.

(b) For p <∞ we use the change of variable ζ = τx(z) and (11):∫
C
|T φx (f)(z)|pe−pφx(z)ρ−2

φx
(z)dm(z) =

∫
C
|f(τx(z))|pe−pφ(τx(z))

(ρφ(τx(z))

ρφ(x)

)−2
dm(z)

=

∫
C
|f(ζ)|pe−pφ(ζ)ρ−2

φ (ζ)dm(ζ).

The case p =∞ is straightforward from (11). �

Given a sequence Λ and x ∈ C let

Λx := (τx)
−1(Λ).

Given a sequence Λ and z ∈ C, denote nΛ(z, r) = #(Λ ∩D(z, r)), for any r > 0.

Lemma 23. Let Λ be a sequence in C.

(a) Λ is ρ-separated if and only if Λx is ρφx-separated.
(b) Λ ∈ IntFpφ if and only if Λx ∈ IntFpφx . Similarly, Λ ∈ SampFpφ if and only if Λx ∈

SampFpφx . Furthermore, the interpolation and sampling constants remain the same.
(c) The densities are stable: D+

∆φ(Λ) = D+
∆φx

(Λx), and D−∆φ(Λ) = D−∆φx(Λx).

Proof. (a) is an immediate consequence of (11).

(b) is a consequence of Lemma 22 and the identity ‖f |Λ‖`pφ(Λ) = ‖T φx f |Λx‖`pφx (Λx).

(c) Define

(13) D∆φ(z, r,Λ) =
nΛ(z, rρ(z))∫

Drφ(z)
∆φ

.
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By a change of variables, it is clear that

D∆φ(z, r,Λ) = D∆φx((τx)
−1(z), r,Λx).

Taking the supremum over z ∈ C and passing to the limsup we get the result for the upper
density. The lower density is dealt with similarly. �

3.5. Weak limits. In this section we study weak limits of sequences Λ and their properties.

Definition 6. A sequence of closed sets Qj converges strongly to Q, denoted Qj → Q if
[Q,Qj] → 0; here [Q,R] denotes the Fréchet distance between Q and R. We say that Qj con-
verges compactwise toQ, denotedQj ⇀ Q, if for every compact setK we have (Qj∩K)∪∂K →
(Q ∩K) ∪ ∂K.

Definition 7. A set Λ∗ is a weak limit of Λ if there exists a sequence {xn}n∈N in C such that
Λxn ⇀ Λ∗.

Given a ρ-separated sequence Λ, and a sequence {xn}n∈N it is always possible to extract a
subsequence of Λxnj

such that Λxnj
⇀ Λ∗ for some Λ∗. We need also a normal family argument

for the translated weights that define the space.

Lemma 24. Let {xn}n∈N be a sequence in C. There exist a subharmonic function φ∗ and a
subsequence {xnk}k such that {φxnk}k and {∆φxnk}k converge uniformly on compact sets to φ∗

and ∆φ∗ respectively. Furthermore, ∆φ∗ is a doubling measure and C∆φ∗ ≤ C∆φ.

Proof. Take η and q > 2η + 1 as in the definition of the kernel κ (see previous section). Denote
µn = ∆φxn .

Since |∇µn| . ρ−3
φxn

(Theorem 14) and ρφxn (0) = 1, for any compact setK there exitsCK > 0

such that |∇µn(z)| ≤ CK . By the Arzelà-Ascoli theorem, we can extract a subsequence {µnk}k
converging uniformly on compact sets of C to a function µ∗. It follows immediately that the
measure with density µ∗ is doubling and Cµ∗ ≤ Cµn = C∆φ. Furthermore, this implies that
ρφxn → ρ∗ uniformly on compacts.

Let now φ∗ = K[µ∗]−K[µ∗](0), and denote φk := φxnk , µk := µnk . We will show that {φk}k
converges uniformly on compact sets to φ∗.

By definition φp(z) = K[µp](z)−K[µp](0), thus we only have to prove that K[µp] converges
uniformly on compacts set to K[µ∗]. Take z ∈ D(0, R) and t > R. Then

|K[µp](z)−K[µ∗](z)| ≤
∣∣∣∫

C\D(0,t)

κ(z, ζ)(µp(ζ)− µ∗(ζ))dm(ζ)
∣∣∣

+
∣∣∣∫
D(0,t)

κ(z, ζ)(µp(ζ)− µ∗(ζ))dm(ζ)
∣∣∣.

Let I1 be the first integral. By construction of κ we have

|κ(z, ζ)| .
( R
|ζ|

)q
.
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Also, (|µp(ζ)|+ |µ∗(ζ)|)dm(ζ) is a doubling measure with doubling constant less than C∆φ. By
(5) |µp(ζ)|+ |µ∗(ζ)| . |ζ|2η, and therefore

I1 .
∫
|ζ|>t

( R
|ζ|

)q
|ζ|2ηdm(ζ).

This is smaller than ε for t big enough.

Let I2 be the second integral in the estimate above. We have

I2 .
∫
D(0,1)

∣∣∣log
∣∣z − ζ

ζ

∣∣∣∣∣|µp(ζ)− µ∗(ζ)|dm(ζ) +

∫
D(0,t)\D(0,1)

|Pq(
z

ζ
)‖µp(ζ)− µ∗(ζ)|dm(ζ)

For all z ∈ D(0, R) and ζ ∈ D(0, t) \ D(0, 1) we have |Pq(z/ζ)| ≤ C(R, t), hence the uni-
form convergence of µp implies that for p big enough the second integral here is smaller than
ε. It remains to prove the convergence of the first term. Take C(t) such that

∫
D(0,t)

| log |z −
ζ/ζ‖dm(ζ) ≤ C(t) and choose p big enough so that |µp(ζ) − µ∗(ζ)| ≤ ε/C(t) uniformly on
D(0, t). Then the estimate follows.

We know that the sequence of distance functions dφxn has a subsequence converging to dφ∗
uniformly on compact sets of C × C, because the ρxnk converge uniformly. By construction
ρxn(0) = 1. On the other hand, the Lipschitz property (6) implies that the ρxnk are equibounded
on any compact. Moreover, by Lemma 4, they are equicontinous on compact sets. We can thus
extract again a convergent subsequence. �

Corollary 25. Given a subharmonic function φ with doubling Laplacian, Λ a ρ-separated sub-
sequence and {zn}n∈N a sequence of complex numbers, there exist a subharmonic function φ∗,
a ρφ∗-separated sequence Λ∗ and a subsequence {xn}n∈N of {zn}n∈N such that Λxn ⇀ Λ∗, and
φxn → φ∗ and ∆φxn → ∆φ∗ uniformly on compact sets.

We will write (Λxn , φxn) → (Λ∗, φ∗). The set of all such weak limits will be denoted by
W (Λ, φ).

Let us prove now the stability of the upper and lower densities with respect to weak limits.

Lemma 26. Let Λ be a ρ-separated sequence, {xn}n ⊂ C, and assume that (Λxn , φxn) →
(Λ∗, φ∗). Then

(a) D+
∆φ(Λ) < 1/2π implies D+

∆φ∗(Λ
∗) < 1/2π.

(b) D−∆φ(Λ) > 1/2π implies D−∆φ∗(Λ∗) > 1/2π.

Proof. Denote Λn = Λxn , φn = φxn and ρn = ρxn . By hypothesis {∆φn}n → ∆φ∗ uniformly on
compact sets, and therefore {ρn}n → ρ∗ also uniformly on compact sets. Thus, for any ε(r) > 0,

nΛ∗(z, (r − ε(r))ρφ∗(z))∫
Dr
φ∗ (z)

∆φ∗
≤ lim inf

n→∞

nΛn(z, rρn(z))∫
Drφn (z)

∆φn
≤

≤ lim sup
n→∞

nΛn(z, rρn(z))∫
Drφn (z)

∆φn
≤ nΛ∗(z, (r + ε(r))ρφ∗(z))∫

Dr
φ∗ (z)

∆φ∗
.
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(a) Since D+
∆φ(Λ) < 1/2π, there exist ε, R0 > 0 such that, if w = τ−1

xn (z)

nΛn(w, rρn(w))∫
Drφn (w)

∆φn
=
nΛ(z, rρ(z))∫

Drφ(z)
∆φ

≤ 1/2π − ε ∀r > R0 , ∀n ∈ N , ∀w ∈ C.

Taking limits as n → ∞ and picking ε(r) so that ε(r)/r → 0 we see, using Lemma 11, that
D+

∆φ∗(Λ
∗) < 1/2π.

(b) is proved similarly. �

4. PRELIMINARY PROPERTIES OF SAMPLING AND INTERPOLATING SEQUENCES

This section is devoted to prove auxiliary results on interpolating and sampling sequences. A
main result is that there do not exist sequences which are simultaneously sampling and interpo-
lating. We also prove some results on inclusions between spaces of sampling and interpolating
sequences for various weights.

An easy consequence of Lemma 19 is that we only need to deal with ρ-separated sequences.

Lemma 27. Let Λ ⊂ C.

(a) If Λ ∈ IntFpφ , then Λ is ρ-separated.
(b) If Λ ∈ SampFpφ , there exists a ρ-separated subsequence Λ′ ⊂ Λ such that Λ′ ∈

SampFpφ .
(c) If p <∞ and Λ ∈ SampFpφ , then Λ is a finite union of ρ-separated sequences.
(d) Let Λ ∈ SampFpφ be ρ-separated. There exists r > 0 such that C = ∪λ∈ΛD

r(λ).

Proof. (a) Assume that λ, µ ∈ Λ with |λ − µ| ≤ ρ(λ) and take f ∈ Fpφ such that f(λ) = eφ(λ),
f(µ) = 0 and ‖f‖Fpφ . 1. Then

1 =
∣∣|f(λ)|e−φ(λ) − |f(µ)|e−φ(µ)

∣∣ . |∇(|f |e−φ)(ζ)||µ− λ|.
The result follows then from Lemma 19(b).

(b) As in the proof of [Beu89, Theorem 2, p. 344], using here Lemma 19(b) instead of Bern-
stein’s theorem, we get ∣∣∣∣∣ 1

Lpφ(Λ)
− 1

Lpφ(Λ′)

∣∣∣∣∣ ≤ C[Λ,Λ′].

(c) It is enough to show that there exists r > 0 and M such that #(Dη(z) ∩ Λ) ≤ M for all
z ∈ C. To this end, consider the function fz(ζ) = eφ(z)Pz(ζ), where Pz is given by Theorem 18
(with ε = 1). We have ‖fz‖Fpφ ≤ C, and for r small enough |fz(ζ)| & eφ(ζ) in Dr(z). So the
left sampling inequality (see (2)) yields

#(Dr(z) ∩ Λ) ≤ ‖fz|Λ‖`pφ(Λ) ≤ CLpφ(Λ).

(d) It is enough to see that for s big enough Λ ∩Ds(z) 6= ∅ for all z ∈ C.
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Take fz as in (c). Let ε > 0 be the ρ-separation of Λ. Since

|fz(ζ)|pe−pφ(ζ)ρ−2(ζ) .
∆φ(ζ)

1 + dmφ (z, ζ)
,

Lemma 19(a) and Lemma 9 lead to∑
λ/∈Ds(z)

|fz(λ)|pe−pφ(λ) .
∑

λ/∈Ds(z)

∫
Dε(λ)

∆φ(ζ)

1 + dmφ (z, ζ)
.
∫
ζ /∈Ds−ε(s)(z)

∆φ(ζ)

1 + dmφ (z, ζ)
.

According to Remark 2 this tends to 0 uniformly in z as s goes to∞. Thus, for s big enough
the sampling inequality gives

1 ≤ C
∑

λ∈Λ∩Ds(z)

|fz(λ)|pe−pφ(λ).

In particular Λ ∩Ds(z) 6= ∅, as desired. �

4.1. Weak limits and interpolating and sampling sequences. In this section τφx will denote
the scaled translation associated to the weight φ, as described in Section 3.4. The main result is
as follows.

Proposition 28. Let φ a subharmonic function with doubling Laplacian and Λ be a ρ-separated
sequence. Assume (Λ∗, φ∗) ∈ W (Λ, φ).

(a) If Λ ∈ SampFpφ then Λ∗ ∈ SampFpφ∗ .
(b) If Λ ∈ IntFpφ then Λ∗ ∈ IntFpφ∗ .

Proof. (a) We argue by contradiction. Otherwise there exist εn > 0 decreasing to zero and
functions fn ∈ Fpφ∗ such that ‖fn‖Fp

φ∗
= 1 and ‖fn|Λ∗‖`p

φ∗ (Λ∗) ≤ εn.

By Corollary 25 there exists a sequence {xj}j∈N in C such that (Λj, φj) → (Λ∗, φ∗), where
we denote Λj := Λxj and φj := φxj .

For every n consider sn big enough so that if Dn := Dsn
φ∗(0) then ‖fn|Dn‖Fp

φ∗
≥ 1 − εn. Set

D̃n := D
s2n
φ∗(0).

We claim that there exists a smooth cut-off function Xn such that Xn(ζ) = 1 in Dn, Xn(ζ) = 0

in C \ D̃n and |∂̄Xn| ≤ εn/ρφ∗ . To see this start with a smooth Xn depending linearly on |ζ| on
sn ≤ |ζ| ≤ s2

n. Then

|∂̄Xn(ζ)| ≤ 1

ρφ∗(0)(s2
n − sn)

.

By Lemma 2 ρφ∗(ζ)/ρφ∗(0) ≤ s
2(1−δ)
n for some δ ∈ (0, 1). Thus, if sn is big enough

|∂̄Xn(ζ)| ≤ s
2(1−δ)
n

ρφ∗(ζ)(s2
n − sn)

≤ εn
ρφ∗(ζ)

.
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Take now jn big enough so that ρφjn/ρφ∗ ≤ 2 on D̃n and∣∣‖fn|D̃n‖Fpφjn − ‖fn|D̃n‖Fp
φ∗

∣∣ ≤ εn,∣∣‖fn|Λjn ∩ D̃n‖`pφjn − ‖fn|Λ
∗ ∩ D̃n‖`p

φ∗

∣∣ ≤ εn.

Define gn = fnXn. Then ∂̄gn is supported on Cn := {sn ≤ |ζ| ≤ s2
n} and |∂̄gn(ζ)| ≤

εn|fn(ζ)|/ρφ∗(ζ), so by Theorem 1 there exists un solution to ∂̄un = ∂̄gn with

‖un‖Fpφjn . ‖∂̄gnρφjn‖F
p
φjn

. εn‖fn|D̃n‖Fpφjn . εn.

The function Gn = gn − un is holomorphic and satisfies

‖Gn‖Fpφjn ≥ ‖fn|Dn‖Fpφjn − ‖un‖F
p
φjn

≥ 1− Cεn ' 1.

We will check now that Gn|Λjn is small. Split Λjn into Λ̃jn = Λjn ∩ {Dn ∪ (C \ D̃n))} and
Λ̂jn = Λjn \ Λ̃jn . On the one hand

‖Gn|Λ̃jn‖`pφjn (Λ̃jn ) ≤ ‖fn|D̃n ∩ Λ̃jn‖`pφjn (Λ̃jn ) + ‖un|Λ̃jn‖`pφjn (Λ̃jn ).

From ‖un|Λ̃jn‖`pφjn (Λ̃jn ) ≤ ‖un‖Fpφjn ≤ εn (by Lemma 19 for the case p < ∞, since u is

holomorphic in Dn ∪ (C \ D̃n )) we deduce that ‖Gn|Λ̃jn‖`pφjn (Λ̃jn ) . εn. On the other hand

‖Gn|Λ̂jn‖`pφjn (Λ̂jn ) . ‖Gn|(D̃n \Dn)‖Fpφjn . ‖|fn|+ |un||(D̃n \Dn)‖Fpφjn . εn.

This together with the above and the fact that the sampling constants of Λ and Λjn coincide
(Lemma 23(b)) leads to contradiction.

(b) Assume that Λ∗ = {λ∗k}k, and let v ∈ `pφ(Λ∗) with ‖v‖`pφ(Λ∗) ≤ 1. Let also Λj = {λjk}k be
such that Λj → Λ∗ uniformly on compact sets. For εn decreasing to zero and sn big enough (to
be chosen later) there exists jn such that ‖v‖`pφjn (Λjn∩D

sn
φ∗ (0)) ≤ 2 and

(14)
e−φ

∗
ρ
−2/p
φ∗

e−φjnρ
−2/p
φjn

≤ 2 on D
s2n
φ∗(0).

Since the interpolation constant M(Λj) does not depend on j there exist fn ∈ Fpφjn with
‖fn‖Fpφjn ≤ 2M(Λ) and

fn(λjnk ) =

{
vk if λjnk ∈ D

sn
φ∗(0)

0 otherwise.

We will now use the same technique as in (a) to modify fn so that it falls in Fpφ∗ . Take the cut-off
function Xn constructed above, define gn = fnXn and consider a solution un to ∂̄un = fn∂̄(Xn)
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such that:

‖un‖Fp
φ∗
. ‖fn∂̄(Xn)ρφ∗‖Fp

φ∗
. εn‖fn|Ds2n

φ∗(0)‖Fp
φ∗
. εn‖fn‖Fpφjn . εn,

‖un‖F∞
φ∗
. ‖fn∂̄(Xn)ρφ∗‖F∞

φ∗
. εn‖fn‖Fp

φ∗
. εn.

According to Theorem C and (14) such a solution always exists.

The entire functionGn = fn∂̄(Xn)−un isFpφ∗ and ‖Gn‖Fp
φ∗
≤ CM . By Montel’s theorem we

may assume that Gn converges to a function G ∈ Fpφ∗ . Notice that Gn(λjnk ) = vk − un(λjnk ) for
λjnk ∈ D

sn
φ∗(0), and by the L∞ estimates, |un(λjnk )| tends to zero as n goes to infinity. Therefore

G interpolates v. �

The next lemma and its corollary are our counterparts to equivalent results of Beurling in the
context of the Bernstein space, see [Beu89, p. 345].

Lemma 29. Suppose that for every weak limit (Λ∗, φ∗) ∈ W (Λ, φ) the sequence Λ∗ is a unique-
ness set for F∞φ∗ . Then there exists ε > 0 such that Λ is sampling for F∞(1+ε)φ.

Proof. If this is not the case there exist εn > 0 decreasing to 0, fn ∈ F∞(1+εn)φ and zn ∈ C such
that |fn(zn)|e−(1+εn)φ(zn) = 1, ‖fn‖F∞

(1+εn)φ
≤ 2 and ‖fn|Λ‖`∞

(1+εn)φ
(Λ) ≤ εn.

Denote ψn = (1 + εn)φ. Let Λn = (τψnzn )−1(Λ) and gn = Tψnzn fn. Then, denoting ψn,zn = (1 +
εn)φzn , we have |gn(0)| = 1 and ‖gn|Λn‖`∞ψn,zn (Λn) = ‖fn|Λ‖`∞ψn (Λ) ≤ εn. Taking a subsequence
if necessary, we can assume that Λn converges weakly to Λ∗, ψn,zn → φ∗ uniformly on compact
sets and gn → g∗ ∈ F∞φ∗ (by Montel’s Theorem). So g∗ vanishes on Λ∗ and |g∗(0)| = 1,
contradicting the fact that Λ∗ is a uniqueness sequence. �

Corollary 30. Let φ a subharmonic function with doubling Laplacian and let Λ be a ρ-separated
sequence. The sequence Λ is in SampF∞φ if and only if for all weak limit (Λ∗, φ∗) ∈ W (Λ, φ),
the sequence Λ∗ is a uniqueness set for F∞φ∗ .

4.2. Non-existence of simultaneously sampling and interpolating sequences. An important
result in the proof of Theorems A and B is the following theorem. It is an analogous result to
[Sei92, Lemma 6.2].

Theorem 31. There is no sequence Λ both sampling and interpolating for Fpφ , p ∈ [1,∞].

Proof. Assume that such sequence Λ exists. We claim that

(15) sup
λ∗∈Λ

∑
λ∈Λ\λ∗

ρ(λ)ρ(λ∗)

|λ− λ∗|2
<∞.

Let p ∈ [1,∞). Given any λ∗ ∈ Λ take a function g such that g(λ∗) = 1, g(λ) = 0 for λ 6= λ∗

and ‖g‖Fpφ . e−pφ(λ∗). Such g exists because Λ is interpolating. Consider the function

F (z) =
∑

λ∈Λ\λ∗
ρ(λ)

g(z)(z − λ∗)
(z − λ)(λ∗ − λ)

.
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The sampling inequality shows that F ∈ Fpφ . Moreover, since |F (λ)| = |g′(λ)|ρ(λ) for all
λ ∈ Λ \ λ∗ and F (λ∗) = 0, we have

‖F‖pFpφ .
∑

λ∈Λ\λ∗
|g′(λ)|pρp(λ)e−pφ(λ).

We use now Lemma 20 and the fact that Λ is ρ-separated (since it is interpolating):

‖F‖pFpφ .
∑
Λ\λ∗

∫
D(λ)

|g|pe−pφdσ . ‖g‖pFpφ . e−pφ(λ∗).

We want to estimate |F ′(λ∗)|. Using again Lemma 20

|F ′(λ∗)|pe−pφ(λ∗)ρp(λ∗) .
∫
D(λ)

|F |pe−pφdσ . e−pφ(λ∗)(λ∗).

Therefore |F ′(λ∗)|ρ(λ∗) . 1. On the other hand

F ′(λ∗) =
∑

λ∈Λ\λ∗

ρ(λ)

|λ− λ∗|2
.

This yields (15). The obvious modifications give (15) in the case p =∞.

According to Lemma 27(d) there exists r > 0 with C = ∪λ∈ΛD
r(λ). Also, there exists r0 > 0

depending on r such that,∫
Dr(λ)\Dr0 (λ∗)

dm(z)

1 + |z − λ∗|2
≤ C(r)

ρ2(λ)

|λ− λ∗|2
∀λ /∈ Dr0(λ∗).

We may now finish by taking a big diskD(0,M) and λ∗M ∈ D(0,M) in such a way that ρ(λ∗M) ≥
ρ(λ) for all λ ∈ Λ ∩D(0,M). In this case∫

D(0,M)\Dr0 (λ∗M )

dm(z)

1 + |z − λ∗M |2
.

∑
λ∈Λ

λ/∈Dr0 (λ∗)

∫
Dr(λ)

dm(z)

1 + |z − λ∗M |2
.

∑
λ∈Λ\λ∗M

ρ(λ)ρ(λ∗M)

|λ− λ∗M |2
< C.

This is a contradiction, since limM→∞ ρ(λ∗M)/M = 0 and the left hand side of the previous
inequality tends to∞ as M goes to∞. �

Corollary 32. Any sequence obtained by deleting a finite number of points of Λ ∈ SampFpφ is
still in SampFpφ .

Proof. Suppose that we remove a point λ from a sampling sequence Λ and the resulting sequence
Λ′ = Λ \ λ is no longer sampling. Then there is a sequence fn ∈ Fpφ such that ‖fn‖Fpφ = 1 and
‖f |Λ′‖`pφ ≤ 1/n. Since Λ is sampling |fn(λ)| is bounded from bellow and above. Therefore we
can take a subsequence converging to f ∈ Fpφ such that f |Λ′ = 0 and f(λ) 6= 0. Now for any
µ ∈ Λ we consider the functions gµ(z) = f(z)(z − λ)/(z − µ)k where k is the multiplicity of
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f at µ. This functions belong to Fpφ and gµ(λ) = 0 if λ 6= µ, thus for any values v ∈ `pφ we can
construct the function

h(z) =
∑

Λ

vλgλ(z)/gλ(λ).

Since Λ is sampling h ∈ Fpφ and it interpolates the values v. Therefore Λ ∈ IntFpφ , a contradic-
tion with Theorem 31. �

We want to prove next an analogue for interpolating sequences: adding a finite number of
points to an interpolating sequence gives again an interpolating sequence.

Given Λ and a point z define, following [Beu89, pp. 352–354]

σpφ(z,Λ) := sup
{
|f(z)|e−φ(z), ‖f‖Fpφ ≤ 1, f |Λ ≡ 0

}
.

Notice first that if Λ is interpolating and z /∈ Λ this is strictly positive. Indeed, Λ is not a
uniqueness sequence, otherwise Λ would be also sampling, contradicting Theorem 31. Thus
there exists f ∈ Fpφ , f 6= 0 with f |Λ ≡ 0 and, eventually dividing f by a power of (ζ − z),
f(z) 6= 0. Hence σpφ(z,Λ) > 0.

Lemma 33. Let Λ ∈ IntFpφ . Then Λ ∪ {z} ∈ IntFpφ for all z /∈ Λ. Furthermore, for all ε > 0

there exists C > 0 such that dφ(Λ, z) ≥ ε implies Mp
φ(Λ ∪ {z}) ≤ CMp

φ(Λ).

Proof. As in the proof of [Beu89, Lemma 4, p. 353], we have

Mp
φ(Λ ∪ {z}) ≤

1 + 2Mp
φ(Λ)

σpφ(z,Λ)
.

Thus we will be done if we prove that there exists A > 0 such that dφ(z,Λ) ≥ ε implies
σpφ(z,Λ) ≥ A.

If this is not true, there exists a sequence {zn} ∈ C with dφ(zn,Λ) ≥ ε and σpφ(zn,Λ) ≤ 1/n.
Transferring zn to the origin by τ−1

zn (see Section 22), we get a sequence Λn := Λzn such that
|λ| ≥ ε for all λ ∈ Λn and σpφn(0,Λn) ≤ 1/n, where φn = φzn .

Taking a subsequence if necessary, assume that (Λn, φn) converges to (Λ∗, φ∗). By Proposition
28, Λ∗ ∪ {0} ∈ IntFpφ∗ , so there exists f ∈ Fpφ∗ with f |Λ∗ = 0 and |f(0)| = 1. Arguing as in
the proof of Proposition 28 we see that there exist fn ∈ Fpφn and εn decreasing to zero such that

‖fn|Λn‖`pφn (Λn) ≤ εn, |fn(0)| ≥ c and ‖fn‖Fpφn ≤ C.

Since Λn is interpolating, there exist also gn ∈ Fpφn with

gn|Λn = fn|Λn and ‖gn‖Fpφn ≤Mp
φn

(Λn)‖fn|Λn‖`pφn (Λn) ≤ εnM(Λ).

Then hn := fn − gn ∈ Fpφn vanishes on Λn and ‖hn‖Fpφn ≤ 2C, therefore |hn(0)| . 1/n.
On the other hand |gn(0)| . εn and therefore |hn(0)| ≥ c/2, thus contradicting the previous
estimate. �
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4.3. Inclusions between various spaces of interpolating sequences. We want to study next
the relationship between the spaces of interpolating sequences for various weights. We will use
the techniques already exploited in [MT00].

We start with the construction of a sort of peak-functions associated to an interpolating se-
quence. Let δλ′λ denote the Kroenecker indicator, i.e. δλ′λ = 1 if λ = λ′ and δλ′λ = 0 otherwise.

Lemma 34. Let Λ ∈ IntFpφ , 1 ≤ p ≤ ∞. Given ε > 0 and m ∈ N, there exist C > 0 and
functions gλ ∈ Fp(1+ε)φ such that

(a) gλ(λ′) = δλ
′

λ for all λ, λ′ ∈ Λ.
(b) ‖gλ‖Fp

(1+ε)φ
' e−(1+ε)φ(λ).

(c) |gλ(z)| . e(1+ε)(φ(z)−φ(λ)) 1

1 + dmφ (z, λ)
.

(d) For all v ∈ `p(1+ε)φ(Λ), ‖v‖`p
(1+ε)φ

(Λ) .
∥∥∑

λ∈Λ vλgλ
∥∥
Fp

(1+ε)φ,

. ‖v‖`p
(1+ε)φ

(Λ) .

(e) lim
r→∞

sup
λ∈Λ

ep(1+ε)φ(λ)

∫
C\Dr(λ)

|gλ(z)|pe−p(1+ε)φ(z)dσ(z) = 0.

Proof. By hypothesis, there exist functions fλ ∈ Fpφ such that fλ(µ) = δµλ for all λ, µ ∈ Λ and
‖fλ‖Fpφ ≤ M(Λ)e−φ(λ). Consider the peak functions Pλ given by Theorem 18 for ε > 0, and
define gλ = fλPλ. By construction we have (a) and (c).

(b) When p = ∞ we have e−(1+ε)φ(λ) = e−(1+ε)φ(λ)|gλ(λ)| ≤ ‖gλ‖F∞
(1+ε)φ

. The remaining
inequality is immediate from (c).

Let p <∞. On the one hand, Lemma 19(a) gives

e−(1+ε)φ(λ) = e−(1+ε)φ(λ)|gλ(λ)| .
(∫

D(λ)

|gλ|pe−p(1+ε)φdσ
)1/p
. ‖gλ‖Fp

(1+ε)φ
.

On the other hand, (c) and Lemma 5(b) show that for m big enough∫
C
|gλ|pe−p(1+ε)φdσ . e−p(1+ε)φ(λ)

[∫
D(λ)

dσ(z) +

∫
C\D(λ)

∆φ(z)

dpmφ (z, λ)

]
. e−p(1+ε)φ(λ)

(d) Denote f =
∑

λ vλgλ. The left inequalities are proved similarly to (b), for

e−(1+ε)φ(λ)|vλ| = e−(1+ε)φ(λ)|f(λ)|.

For p =∞ and v ∈ `∞,(1+ε)φ(Λ) Lemma 6 and (c) yield

e−(1+ε)φ(z)
(∑
λ∈Λ

|vλ||gλ(z)|
)
. ‖v‖`∞

(1+ε)φ
(Λ)

∑
λ∈Λ

1

1 + dmφ (λ, z)
. ‖v‖`∞

(1+ε)φ
(Λ).
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Let now p < ∞. Using the estimate (c) and Jensen’s inequality for convex functions (which
is legitimate thanks to Lemma 6) we have

|f(z)|pe−p(1+ε)φ(z)ρ−2(z) .
1

ρ2(z)

[∑
λ∈Λ

|vλ|e−(1+ε)φ(λ) 1

1 + dmφ (z, λ)

]p
.

1

ρ2(z)

∑
λ∈Λ

|vλ|pe−p(1+ε)φ(λ) 1

1 + dmφ (z, λ)
.

Now we apply Lemma 5(b) and obtain∫
C
|f |pe−p(1+ε)φdσ .

∑
λ∈Λ

|vλ|pe−p(1+ε)φ(λ)

∫
C

∆φ(z)

1 + dmφ (z, λ)
. ‖v‖p

`p
(1+ε)φ

(Λ)
.

(e) This follows from (c) and Remark 2, since

ep(1+ε)φ(λ)

∫
C\Dr(λ)

|gλ(z)|pe−p(1+ε)φ(z)dσ(z) .
∫
C\Dr(λ)

∆φ(z)

dmφ (z, λ)
.

�

Theorem 35. For all ε > 0 and 1 ≤ p, p′ ≤ ∞, the following inclusions hold

IntFpφ ⊂ IntFp
′

(1+ε)φ.

Proof. It will be enough to prove that for all ε > 0 and 1 ≤ p ≤ ∞,

(a) IntFpφ ⊂ IntF∞(1+ε)φ (b) IntF∞φ ⊂ F
p
(1+ε)φ.

(a) Take the functions gλ given by Lemma 34. For v ∈ `∞(1+ε)φ(Λ) we consider the interpolating
function

f(z) =
∑
λ∈Λ

vλgλ(z)

A direct estimate using Lemma 34(c) yields

|f(z)|e−(1+ε)φ(z) .
∑
λ∈Λ

1

1 + dmφ (z, λ)
,

which is bounded, by Lemma 6.

(b) Given v ∈ `p(1+ε)φ(Λ), take f =
∑

λ vλgλ as before and estimate as in the proof of
Lemma 34(d). �

4.4. Inclusions between various spaces of sampling sequences. In this section we want to
prove some inclusions between various spaces of sampling sequences. Unlike in the correspond-
ing result for interpolating sequences, for the spaces of sampling sequences there is a gain, in
the sense that any sampling sequence is actually sampling for a slightly bigger space. This will
allow us to pass from the non-strict to the strict inequality of Theorem A.

A remark is in order. Given a sampling sequence, it is easy to “decrease” the space so that
the sequence remains sampling. This can be proved as we did for interpolating sequences (and
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“increasing” spaces) in Theorem 35 (it is actually done in step (c) of our next theorem). It is
more difficult, however, to slightly increase the space while keeping the sampling property of the
sequence.

Theorem 36. Let Λ ∈ SampFpφ be ρ-separated. There exists ε > 0 such that for all p′ ∈ [1,∞]

the sequence Λ ∈ SampFp
′

(1+ε)φ.

Proof. The proof is divided in three steps.

(a) If Λ ∈ SampFpφ , then Λ ∈ SampF∞φ . We know from Proposition 28 that for all weak
limit (Λ∗, φ∗) the sequence Λ∗ is in SampFpφ∗ , and by Lemma 30 it will be enough to see that all
weak limit Λ∗ is a uniqueness set for F∞φ∗ .

If this is not the case, there exists f ∈ F∞φ∗ with f |Λ∗ ≡ 0, f 6= 0.

We claim that for m large enough

g(z) :=
f(z)

(z − λ∗1) . . . (z − λ∗m)
∈ Fpφ∗ .

It is clear that Lemma 20 gives the p-integrability on ∪mj=1D(λ∗j). On the other hand, by
Lemma 19∫

z /∈∪jD(λ∗j )

|f |pe−pφ∗ρ−2
φ∗

|z − λ∗1|p . . . |z − λ∗m|p
≤ C

∫
z /∈∪jD(λ∗j )

‖f‖pF∞
φ∗

∆φ∗

|z − λ∗1|p . . . |z − λ∗m|p
.

Since ∆φ∗ is doubling there exists m such that this integral converges (Lemma 5(b)).

By Corollary 32, Λ∗ \ {λ∗1 . . . λ∗m} ∈ SampFpφ∗ . As f vanishes on this sequence we deduce
that f ≡ 0, which is a contradiction.

(b) If Λ ∈ SampF∞φ there exists ε > 0 such that Λ ∈ SampF∞(1+ε)φ. If this is not the case
for any sequence {εn} ↘ 0 there exist functions fn ∈ F∞(1+εn)φ and δn > 0 decreasing to 0 with
‖fn|Λ‖`∞

(1+εn)φ
(Λ) ≤ δn and |fn(zn)| = 1.

Let Λn = τ−1
zn (Λ), φn = (1 + εn)φzn and f̃n = T φznfn. Then |f̃n(0)| = 1, ‖f̃n|Λn‖`∞φn ≤ δn,

and there exist a sequence Λ∗ and functions φ∗, f ∗ such that

(Λn, φn)→ (Λ∗, φ∗) ∈ W (Λ, φ)

and {fn}n → f ∗ ∈ F∞φ∗ uniformly on compact sets. So we have |f ∗(0)| = 1 and f ∗|Λ∗ = 0, i.e.
Λ∗ is not a uniqueness sequence for F∞φ∗ , a contradiction with Lemma 30.

(c) If Λ ∈ SampF∞(1+ε)φ for some ε > 0, then Λ ∈ SampFp
′

φ , for all 1 ≤ p′ ≤ ∞. Consider
the spaces

F∞,0(1+ε)φ = {f ∈ F∞(1+ε)φ : lim
|z|→∞

|f(z)|e−(1+ε)φ(z) = 0},

`∞,0(1+ε)φ(Λ) = {v ∈ `∞(1+ε)φ : lim
|λ|→∞

|vλ|e−(1+ε)φ(λ) = 0}.
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There is a sequence of functions {g(z, λ)}λ∈Λ such that for all f ∈ F∞,0(1+ε)φ

e−(1+ε)φ(z)f(z) =
∑
λ∈Λ

e−(1+ε)φ(λ)f(λ) g(z, λ),

and
∑

λ |g(z, λ)| ≤ K uniformly in z. This is so by a duality argument, because

{f(λ)}λ∈Λ 7→ e−(1+ε)φ(z)f(z) with f ∈ F∞,0(1+ε)φ

is a bounded linear functional from a closed subspace of `∞,0(1+ε)φ(Λ) whose norm is bounded
independently of z. This is an argument from [Beu89, pp. 348–358] (see also [Sei93, p.36]).

Consider now f ∈ Fpφ ⊂ F
∞,0
φ . Given z ∈ C take the function Pz of Theorem 18 for ε > 0.

Then fPz ∈ F∞,0(1+ε)φ, and by the representation above

e−(1+ε)φ(z)f(z) =
∑
λ∈Λ

e−(1+ε)φ(λ)f(λ) Pz(λ)g(z, λ).

Hence

|f(z)|e−φ(z) .
∑
λ∈Λ

|f(λ)|e−φ(λ)|Pz(λ)|eε(φ(z)−φ(λ))|g(z, λ)|

.
∑
λ∈Λ

|f(λ)|e−φ(λ) |g(z, λ)|
1 + dmφ (z, λ)

.

The case p = ∞ is clear, so assume that p < ∞. Since
∑

λ |g(z, λ)| ≤ K, we may apply
Jensen’s inequality and obtain

ρ−2(z)|f(z)|pe−pφ(z) . ρ−2(z)
∑
λ∈Λ

|f(λ)|pe−pφ(λ) |g(z, λ)|
1 + dmpφ (z, λ)

.

Now integrate, use that |g(z, λ)| ≤ K and apply Lemma 5(b) to finally obtain the sampling
inequality ∫

C
|f(z)|pe−pφ(z)dσ(z) .

∑
λ∈Λ

|f(λ)|pe−pφ(λ).

�

4.5. Nets. We finish this section by giving useful examples of interpolating and sampling se-
quences.

Lemma 37. Let f be the multiplier associated to φ, as constructed in the proof of Theorem 17,
and let Λ = Z(f). Then D+

∆φ(Λ) = D−∆φ(Λ) = 1/2π. We say that Λ is a net associated to φ.
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Proof. The construction of f is made with quasi-squares Rp of µ(Rp) = 2πmN and mN asso-
ciated points in a dilated CRp that made up Λ. Thus, for z ∈ C and t > 0:

n(z, tρ(z)) ≥ mN#{p : CRp ⊂ Dt(z)} =
1

2π
µ(

⋃
p:CRp⊂Dt(z)

Rp),

n(z, tρ(z)) ≤ mN#{p : CRp ∩Dt(z) 6= ∅} =
1

2π
µ(

⋃
p:CRp∩Dt(z)6=∅

Rp).

By Corollary 10,

Dt−ε(t)(z) ⊂
⋃

p:CRp⊂Dt(z)

Rp ⊂ Dt(z) ⊂
⋃

p:CRp∩Dt(z)6=∅

Rp ⊂ Dt+ε(t)(z),

whence
1

2π
µ(Dt−ε(t)(z)) ≤ n(z, tρ(z)) ≤ 1

2π
µ(Dt+ε(t)(z)).

The result is then an application of Lemma 11. �

Lemma 38. Let Λ be a net associated to φ. Then Λ ∈ IntFp(1+ε)φ and Λ ∈ SampFp(1−ε)φ for all
ε > 0 and 1 ≤ p ≤ ∞.

Proof. Let f be a multiplier associated to φ such that Λ = Z(f).

Let us start by proving that Λ is interpolating. By Theorem 35 it is enough to prove that
Λ ∈ IntF∞(1+ε)φ for all ε > 0.

For each λ ∈ Λ define

gλ(z) =
f(z)

z − λ
1

f ′(λ)
.

Clearly gλ(λ′) = δλ
′

λ . The growth condition of the multiplier gives |f ′(λ)| ' eφ(λ)/ρ(λ). This
and Lemma 4 show that for some γ > 0,

|gλ(z)|e−φ(z) . e−φ(λ)dφ(z,Λ)

|z − λ|
ρ(λ).

When z ∈ D(λ) it is clear that this is bounded by e−φ(λ), by Lemma 4(a). The same bound holds
for z /∈ D(λ), using Lemma 4(b) together with the fact that dφ(z,Λ) . 1.

As seen in the proof of Theorem 35 the existence of such gλ is enough to construct, for any
ε > 0, an interpolation operator for Fp(1+ε)φ.

Let us see next that Λ ∈ SampFp(1−ε)φ. By Theorem 36 it is enough to consider the case
p = ∞, and by Corollary 30 it will be enough to see that every weak limit (Λ∗, (1 − ε)φ∗) ∈
W (Λ, (1− ε)φ) is a uniqueness sequence for F∞(1−ε)φ∗ .

Let (Λzn , φzn) → (Λ∗, φ∗) and let fzn be the corresponding multipliers, with Z(fzn) = Λzn

and |fzn(z)| ' eφzn (z)dφzn (z,Λzn). By Montel’s theorem let {fzn}n → f ∗ with Z(f ∗) = Λ∗ and
|f ∗(z)| ' eφ

∗(z)dφ∗(z,Λ
∗), i.e, f ∗ is a multiplier for φ∗.
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Consider also a multiplier g associated to εφ∗. In particular |g(z)| ' eεφ
∗(z)dφ∗(z,Z(g)). In

order to see that Λ∗ is a uniqueness sequence assume that h ∈ F∞(1−ε)φ∗ and h|Λ∗ = 0. Then
hg ∈ F∞φ∗ , by construction. On the other hand, the function F := hg/f ∗ is entire, because h
vanishes on Λ∗. It is also bounded when z is far from Λ∗, since |hg| . eφ

∗ and |f ∗| & eφ
∗ . By the

maximum principle F is bounded globally, and by Liouville’s theorem there exists c ∈ C such
that hg = cf ∗. Since g vanishes in some points outside Λ∗ we have c = 0, hence h ≡ 0. �

5. SUFFICIENT CONDITIONS FOR SAMPLING

We prove here the sufficiency part of Theorem A. We will use the same technique as in [Beu89,
pp. 341–350]. Assume thatD−∆φ(Λ) > 1/2π. By Lemma 27 we can assume that Λ is ρ-separated,
and according to Theorem 36 it will be enough to prove that Λ ∈ SampF∞φ . By Corollary 30
this will be done as soon as we show that every weak limit Λ∗ is a uniqueness sequence for F∞φ∗ .

Recall the notation nΛ(z, r) = #[Λ ∩D(z, r)].

Assume thus that we have f ∈ F∞φ∗ with f |Λ∗ ≡ 0 and ‖f‖F∞
φ∗

= 1. There is no loss of
generality in assuming that f(0) 6= 0. Applying Jensen’s formula to f on Dφ∗(0)∫ rρφ∗ (0)

0

nΛ∗(0, t)

t
dt =

1

2π

∫ 2π

0

log |f(rρφ∗(0)eiθ)|dθ − log |f(0)|

≤ 1

2π

∫ 2π

0

φ∗(rρφ∗(0)eiθ)dθ − log |f(0)|

=
[ 1

2π

∫ 2π

0

φ∗(rρφ∗(0)eiθ)dθ − φ∗(0)
]

+ φ∗(0)− log |f(0)|.

By Lemma 4, Then, Green’s identity yields∫ rρφ∗ (0)

0

nΛ∗(0, t)

t
dt ≤ 1

2π

∫
D(0,rρφ∗ (0))

log
rρφ∗(0)

|ζ|
∆φ∗(ζ) + O(1)

=
1

2π

∫ rρφ∗ (0)

0

∆φ∗(D(0, t))
dt

t
+ O(1),

for all r big enough. This contradicts the hypothesis, which implies in particular that for some
ε > 0 and all t big enough nΛ∗(0, t) ≥ (1/2π + ε)∆φ∗(D(0, t)).

6. NECESSARY CONDITIONS FOR SAMPLING

This section contains the proof of the necessity part of Theorem A. By Lemma 27(b) and
Theorem 36 it will be enough to prove the following result.

Theorem 39. Let Λ be ρ-separated. If Λ ∈ SampF2
φ then D−∆φ(Λ) ≥ 1/2π.

We use a result comparing the densities between interpolating and sampling sequences, as in
[RS95]. We do that by adapting Lemma 4 in [OCS98] to our setting.
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Lemma 40. Let ε > 0. Assume I ∈ IntF2
(1−ε)φ and S ∈ SampF2

φ is ρ-separated. There exists
a positive function ε(t) such that lim

t→∞
ε(t)/t = 0 and for every ε > 0 there is t0 > 0 with

(1− ε) nI(z, tρ(z)) ≤ nS(z, (t+ ε(t))ρ(z)), z ∈ C, ∀t ≥ t0.

Proof. The proof is as in [OCS98, Lemma 4] with minor modifications, so we keep it short.

According to our definition, if S is sampling then {k(z, s) = Kφ(z, s)e−φ(s)}s∈S is a frame in
F2
φ (Kφ denotes the Bergman kernel, as in Section 3.3). That is, for f ∈ F2

φ

‖f‖2
F2
φ
'
∑
s∈S

| 〈k(z, s), f(z)〉 |2.

A consequence is that

f(z) =
∑
s∈S

〈k(ξ, s), f(ξ)〉k̃(z, s) =
∑
s∈S

f(s)e−φ(s)k̃(z, s),

where k̃(z, s) is the dual frame of k(z, s).

Consider also the functions gi given by Lemma 34 for the weight (1 − ε)φ. Lemma 34(d)
implies that the normalised functions κ(i, z) := gi(z)eφ(i) form a Riesz basis in the closed linear
span H of {κ(i, z)}i∈I in F2

φ.

Given z ∈ C and t, r > 0 (t much bigger that r) consider the following two finite dimensional
subspaces of F2

φ:

WS = < k̃(ξ, s) : s ∈ S ∩Dt+r(z) >

WI = < κ(ξ, i) : i ∈ I ∩Dt(z) > .

Let PS and PI denote the orthogonal projections of F2
φ on WS and WI respectively. We

estimate the trace of the operator T = PIPS in two different ways. To begin with

tr(T ) ≤ rank WS ≤ #{S ∩Dt+r(z)}.
On the other hand

tr(T ) =
∑

i∈I∩Dt(z)

〈T (κ(ξ, i)), PIκ
∗(ξ, i)〉,

where {κ∗(ξ, i)} is the dual basis of κ(ξ, i) in H . Using that PI and PS are projections one
deduces that

tr(T ) ≥ #{i ∈ I ∩Dt(z)}
(
1− sup

i
|〈PS(κ(ξ, i))− κ(ξ, i), κ∗(ξ, i)〉|

)
.

Since ‖κ(ξ, i)‖F2
φ
' 1, also ‖κ∗(ξ, i)‖F2

φ
' 1. Thus we will be done as soon as we show that

‖PS(κ(ξ, i))− κ(ξ, i)‖F2
φ
≤ ε for a suitable r ' ε(t).

We have

‖PS(κ(ξ, i))− κ(ξ, i)‖2
F2
φ
.

∑
s/∈Dt+r(z)

|〈k(ξ, s), κ(ξ, i)〉|2 =
∑

s/∈Dt+r(z)

∣∣κ(s, i)e−φ(s)
∣∣2.
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Since S is ρ-separated, there exists η > 0 such that the disks Dη(s) are pairwise disjoint.
Using Lemma 19(a) we get, for some c > 0 depending on φ and η

‖PS(κ(ξ, i))− κ(ξ, i)‖2
F2
φ
.

∫
⋃

s/∈Dt+r(z)
Dη(s)

|κ(ζ, i)|2e−2φ(ζ)dσ(ζ).

Applying Lemma 9 with rk = tτ and τ so that 0 < (ε − τ)γ < 1, we see that there exist
δ ∈ (0, 1), c > 0 and a function ε(t) = ct1−δ such that⋃

s/∈Dt+cε(t)(z)

Dη(s) ⊂ C \Dεε(t)(i).

Finally, for t big enough Lemma 34(e) yields

‖PS(κ(ξ, i))− κ(ξ, i)‖2
F2
φ
.
∫
C\Dεε(t)(i)

|κ(ξ, i)|2e−2φ(ξ)dσ(ξ) . ε.

�

Proof of Theorem 39. Given ε > 0 consider a net I associated to (1 − 2ε)φ. By Lemma 37
I ∈ IntF2

(1−ε)φ, and by Lemma 38 D+
∆φ(I) = D+

∆φ(I) = (1 − 2ε)/2π. Apply now Lemma 40:
there exist t0 and ε(t) such that for t > t0

nΛ(z, tρ(z)) ≥ (1− ε) nI(z, (t− ε(t))ρ(z)) ≥ (1− ε)3

2π
µ(Dt−δ(t)(z)),

where δ(t) = t− ε(t)− ε(t− ε(t)). This estimate together with Lemma 11 finish the proof. �

7. SUFFICIENT CONDITIONS FOR INTERPOLATION

Taking into account Lemma 38, in order to prove the sufficiency part of Theorem B it is enough
to prove the following.

Theorem 41. If Λ is ρ-separated and D+
∆φ(Λ) < 1/2π there exist ε > 0 and a sequence Σ such

that Λ ∪ Σ is a ρ-separated net associated to (1− ε)φ.

In the proof of this result we need to express the density condition in terms of the quasi-squares
appearing in Theorem 8. this will be done in Theorem 43; before we need some preliminaries.

Denote φr = e−rφ.

Lemma 42. Let

Ir(ζ) =

∫
|z−ζ|<ρφr (z)/r

r2 dm(z)

πρ2
φr

(z)
.

Then sup
ζ∈C
|Ir(ζ)− 1| < 1/r.
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Proof. We estimate Ir using the change of variable w = (z − ζ)/ρφr(z), whose Jacobian is

ρ−2
φr

(z)
∣∣∣1− 〈∇ρφr(z), z − ζ〉

ρφr(z)

∣∣∣.
From (6) it follows that |∇ρφr | ≤ 1, hence the Jacobian is bounded above by ρ−2

φr
(z)(1 + 1/r)

and below by ρ−2
φr

(z)(1− 1/r). Then

1− 1

r

∫
|w|≤1/r

r2

π
(1− 1

r
) dm(w) ≤ Ir(ζ) ≤

∫
|w|≤1/r

r2

π
(1 +

1

r
) dm(w) = 1 +

1

r
.

�

Using (9) with t = er we have

(16) lim
r→∞

ρφr(z)

rρφ(z)
=∞

uniformly in z ∈ C.

LetRs
α(z) denote the rectangle with vertices z+sρ(z)(1+iα), z+sρ(z)(1−iα), z−sρ(z)(1+

iα) and z − sρ(z)(1− iα), where α ∈ [e−1, e] and e is the constant of Theorem 8(b).

Theorem 43. Let µ = ∆φ and let ν be a positive measure such that

(17) ν(Dr
φ(z)) ≤ (1− ε)µ(Dr

φ(z)) ∀r ≥ r0, ∀z ∈ C.

There exists s0 > 0 such that for any α ∈ [e−1, e]

ν(Rs
α(z)) ≤ (1− ε

2
)µ(Rs

α(z)) ∀s ≥ s0, ∀z ∈ C.

Proof. Fix r big enough so that ρφr/r > r0ρφ and (1 + 1/r)(1− ε) < (1− 1/r)(1− 3ε/4). This
can be done because of (16). By hypothesis

ν(D
1/r
φr

(z)) ≤ (1− ε) µ(D
1/r
φr

(z)) ∀z ∈ C,
and if s is much bigger than r we get∫

z∈Rαs (w)

r2

πρ2
φr

(z)
ν(D

1/r
φr

(z)) dm(z) ≤ (1− ε)
∫
z∈Rαs (w)

r2

πρ2
φr

(z)
µ(D

1/r
φr

(z)) dm(z).

Denote

Ωr(ζ) = {z ∈ C, |z − ζ| < ρφr(z)/r},
Fr(w, s) = {ζ ∈ C, Ωr(ζ) ⊂ Rs

α(w)},
Gr(w, s) =

⋃
ζ∈Rsα(w)

Ωr(ζ).

Reversing the order of integration and using the previous lemma we deduce that

ν(Fr(w, s)) ≤ (1− 3

4
ε) µ(Gr(w, s)).
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It is clear that Fr(w, s) ⊂ Rs
α(w) ⊂ Gr(w, s). Similarly to the proof of Lemma 9, there exists

ε(s) such that Rs−ε(s)
α (w) ⊂ Fr(w, s) and Gr(w, s) ⊂ R

s+ε(s)
α (w).

By Remark 4

lim
s→∞

µ(R
s+ε(s)
α (w))

µ(R
s−ε(s)
α (w))

= 1

uniformly in z, and therefore there exists s0 such that for s > s0

ν(Rs−ε(s)
α (w)) ≤ (1− 3

4
ε) µ(Gr(w, s)) ≤ (1− 3

4
ε) µ(Rs+ε(s)

α (w))

≤ (1− ε

2
) µ(Rs−ε(s)

α (w)).

�

Proof of Theorem 41. Take an entire function g vanishing exactly on Λ. We will construct a
sequence Σ and an entire function h such that for some ε > 0,

(i) Λ ∪ Σ is ρ-separated.
(ii) h vanishes exactly on Σ.

(iii) For any τ > 0, | log |h(z)| − (1− ε)φ(z) + log |g(z)|| ≤ Cτ if Dτ (z) ∩ (Λ ∪ Σ) = ∅.

Accepting this we reach the result by taking f = gh. This is so because the separateness of
Λ ∪ Σ and (iii) imply that f is a multiplier for (1− ε)φ. �

Construction of Σ and h. To avoid the repetition of the factors 2π and 1 − ε, denote here µ =
(1− ε)∆φ/2π. Let

µ̃ = µ−
∑
λ∈Λ

δλ =
1

2π
∆
(
(1− ε)φ− log |g|

)
.

Following Theorem 8 and the Remark thereafter, given n,M ∈ N we can take a system of quasi-
squares {Rk}k such that, denoting µk = µ|Rk , we have µ =

∑
k µk and µk(C) = Mn. Then

µ̃ =
∑

k µ̃k, being
µ̃k = µk −

∑
λ∈Λ∩Rk

δλ.

By hypothesis there exists ε > 0 such that D∆φ(Λ) < 1/2π − 4ε. Therefore, there exists r0 > 0
such that

µ̃(Dr(z)) ≥ 3εµ(Dr(z)) for all z ∈ C, r ≥ r0.

Also, Theorem 43 implies that for M ≥ m/(2ε) and n big enough:

Mn ≥ µ̃(Rk) ≥ 2εµ(Rk) = 2εMn ≥ mn.

Let µ̃(Rk) = mkn, with m ≤ mk ≤ M . Notice that mk ∈ N, since µ(Rk) ∈ N. Applying
Lemma 15 we obtain a sequence Σ made of points σk1 , . . . , σ

k
mkn
∈ CRk so that the first m

moments of the measures νk = µ̃k −
mkn∑
j=1

δσkj vanish. Furthermore, it is clear that we can choose

the τ kj in the proof of Lemma 15 so that Λ ∪ Σ is ρ-separated.
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Let
ν =

∑
k

νk =
1

2π
∆((1− ε)φ− log |g|)−

∑
σ∈Σ

δσ.

In order to prove (iii) consider v = (1− ε)φ− log |g| − w, where

w(z) =

∫
C

log |z − ζ| dν(ζ).

Since
∆v = 2π

∑
σ∈Σ

δσ,

there exists h entire (vanishing exactly on Σ) such that log |h| = v.

We need to estimate |w(z)| when |z − Λ ∪ Σ| ≥ τρ(z). Given z ∈ C, let k0 ∈ N be such
that z ∈ Rk0 . By Theorem 8(c), there exists r0 > 0 independent of z such that Rk0 ⊂ Dr0(z) ⊂
CRk0 . We have

w(z) =

∫
C

log |z − ζ|dν(ζ) =

∫
C

log |z − ζ|dνk0(ζ) +
∑
k:k 6=k0

∫
C

log |z − ζ|dνk(ζ),

and we estimate the two terms separately.

Let C > 0 be the constant of Lemma 15. Since the first m moments of νk0 vanish,∣∣∣∫
C

log |z − ζ|dνk0(ζ)
∣∣∣ =

∣∣∣∫
C

log
|z − ζ|
r0ρ(z)

dνk0(ζ)
∣∣∣ . ∣∣∣∫

CRk0

log
r0ρ(z)

|z − ζ|
dµ(ζ)

∣∣∣+K| log τ |

.
∫
Dcr0 (z)

log
cr0ρ(z)

|z − ζ|
dµ(ζ) +K| log τ | ≤ Cτ .

The other integral is estimated using the moment condition for each νk, as in the estimate of
I1 in Theorem 14. �

8. NECESSARY CONDITIONS FOR INTERPOLATION

Let us start by proving the non-strict density inequality. By Theorem 35, it is enough to
consider the case p = 2.

Theorem 44. If Λ ∈ IntF2
φ then D+

∆φ(Λ) ≤ 1/2π.

Proof. Given ε > 0, take a net S associated to (1 + 2ε)φ, as described in Lemma 37. Lemma 38
implies that S ∈ SampF2

(1+ε)φ, and by Lemma 40, there exists t0 > 0 such that

nΛ(z, tρ(z)) ≤ (1 + ε) nS(z, (t+ ε(t))ρ(z)) z ∈ C , t ≥ t0.

Since S is a net of density (1 + 2ε)/2π, the radius t0 can be taken so that for t ≥ t0

nS(z, (t+ ε(t))ρ(z)) ≤ 1 + 3ε

2π
µ(Dt+ε(t)(z)).

This and Corollary 10 give the result. �
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Let us see now that the inequality is strict.

Proof of the necessity part in Theorem B. Assume that Λ ∈ IntFpφ . We know that D+
∆φ(Λ) ≤

1/2π. In order to see that D+
∆φ(Λ) < 1/2π consider, given ε > 0, a net Σ associated to 2εφ such

that Z := Λ ∪ Σ is ρ-separated.

Lemma 45. Denote Z = {zk}k. For every m ∈ N and ε > 0 there exist C > 0 and functions
fk ∈ F∞φ such that

(a) fk(zk) = 1.
(b) fk(zj) = 0 for all zj ∈ D1/ε(zk).

(c) |fk(z)| ≤ CM(Λ)eφ(z)−φ(zk) 1

1 + dmφ (z, zk)
.

(d) ‖fk‖φ,∞ ≤ CM(Λ)e−φ(zk).

Proof. Assume first that zk = λk ∈ Λ. By hypothesis there exists gk ∈ Fpφ ⊂ F∞φ with
gk(λk) = 1, g(λj) = 0, and ‖gk‖F∞φ ≤ M(Λ)e−φ(λk). Since Λ plus a finite number of points is
still in IntFpφ (Lemma 33), we can take gk so that moreover gk(σj) = 0 if |λk − σj| ≤ 1/ερ(λk)

and gk(cj) = 0, j = 1, . . . ,M , where cj = λk + 2δρ(λk)e
j 2πi
M and δ > 0 is taken so that the balls

{B(λ, 10δ)}λ are pairwise disjoint.

By construction of the nets there exists C independent of z and ε such that #Σ∩D1/ε(z) ≤ C
for any Σ net of density ε/π.

Define then

fk(z) = (2δ)−M
gk(z)

(z − c1) · · · (z − cM)
ρM(zk).

It is clear that fk ∈ F∞φ satisfies (a) and (b).

For z /∈ ∪Mj=1D
δ(cj),

|fk(z)| ≤ C|gk(z)|
( ρ(zk)

|z − zk|
)M ≤ CM(Λ)eφ(z)−φ(zk)

( ρ(zk)

|z − zk|
)M
,

and the estimate follows from Lemma 4.

For z ∈ Dδ(cj) we have

|fk(z)| ≤ C
∣∣ gk(z)

z − cj
∣∣ρ(zk).

Estimating like in (iii) in the proof of Theorem 18 we get |fk(z)| ≤ CM(Λ)eφ(z)−φ(zn), as
desired.

In case zk = σk ∈ Σ, use again that Λ plus one point is F2
φ-interpolating and start with

gk ∈ F2
φ ⊂ F∞φ such that gk(σk) = 1, gk(λj) = 0 for all j. Then proceed as before. �

Lemma 46. Z ∈ IntF∞φ .
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Proof. Given v = {vk}k ∈ `∞φ (Z) consider the pseudo-extension

E(v)(z) =
∞∑
k=1

vkfk(z).

Let us see first that E(v) ∈ F∞φ . By (c) above and Lemma 6 we see that for any z ∈ C

e−φ(z)|E(v)(z)| .
∞∑
k=1

|vk|e−φ(zk) 1

1 + dMφ (z, zk)
. ‖v‖`∞φ (Z).

LetR denote the restriction operator fromF∞φ to `∞φ (Z). In order to see that Z is in IntF∞(1+ε)φ

it will be enough to prove that ‖RE − I‖op < 1, since then (RE)−1 = I +
∑∞

k=1(RE − I)k

converges and E(RE)−1 defines an inverse to R.

By Lemma 45(b) and (c)

‖RE(v)− v‖`∞φ (Z) =
∥∥∥{∑

k:k 6=j

vkfk(zj)
}
j∈N

∥∥∥
`∞φ (Z)

≤ sup
j∈N

e−φ(zj)
∑

k:zj /∈D1/ε(zk)

|vk||fk(zj)| ≤ CM(Λ)‖v‖`∞φ (Z)

∑
k:zj /∈D1/ε(zk)

1

dmφ (zj, zk)

By Lemma 4 and Corollary 7, if m is big and ε is small enough we have

‖RE(v)− v‖`∞φ (Z) ≤ 1/2 ‖v‖`∞φ (Z),

thus ‖RE − I‖op < 1/2, as desired. �

By this Lemma and the results above we have D+
∆φ(Z) ≤ 1/2π, i.e for all δ > 0 there exists

s0 such that for all z ∈ C and s > s0

nΛ(z, sρ(z)) + nΣ(z, sρ(z)) ≤ (1/2π + δ)µ(Ds(z)).

By Lemma 37, D−∆φ(Σ) = ε/π, thus for all δ > 0 there exists t0 such that for all t > t0

nΣ(z, tρ(z)) ≥ (ε/π − δ)µ(Dt(z)) z ∈ C .

This shows that for δ > 0 and s big enough

nΛ(z, sρ(z)) ≤ (
1− 2ε

2π
+ 2δ) µ(Ds(z)) z ∈ C,

hence D+
∆φ(Λ) < 1/2π. �

APPENDIX. ALTERNATIVE CONSTRUCTION OF PEAK FUNCTIONS. (THEOREM 18)

It will be enough to prove that for any φ there exist C, δ > 0 such that for all η ∈ C there is
Pη holomorphic with Pη(η) = 1 and

|Pη(z)| ≤ Ceφ(z)−φ(η) min
{

1,
( ρ(η)

|z − η|
)δ}

,
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since then we can apply this to εδ/m φ(z), take the m-th power and use Lemma 4 to conclude.

We claim that there exists fη holomorphic with fη(η) = 0, f ′η(η) = 1 and

|fη(z)| . eφ(z)−φ(η)ρ2(η)/ρ(z).

Once this is proved we take Pη(z) = fη(z)/(z − η) and use Lemma 2 to deduce that

|Pη(z)| . eφ(z)−φ(η) ρ(η)

|z − η|
( |z − η|
ρ(η)

)1−δ
= eφ(z)−φ(η)

( ρ(η)

|z − η|
)δ

z /∈ D(η).

In order to construct the function fη define first

F (z) = (z − η)X
( |z − η|2
ρ2(η)

)
eHη(z),

where Hη is a holomorphic function such that ReHη = hη (see Lemma 13) and X is a smooth
cut-off function with X ≡ 1 for |ζ| < 1, X ≡ 0 for |ζ| ≥ 2 and |X ′| bounded.

Notice that by construction and by Lemma 13, we have

ρ(z)|F (z)|e−φ(z) . ρ2(η)e−φ(η).

Lemma 47. There exists u solution to ∂̄u = ∂̄F such that u(η) = ∂u(η) = 0 and

‖ue−φρ‖L∞(C) ≤ Cρ2(η)e−φ(η)

Once this is proved we take fη = F − u and we are done.

Proof. First we show that there exists a solution u as in the statement but satisfying an analo-
gous L2 estimate instead of the L∞ one. We use Hörmander’s theorem [Hör94]: for every ψ
subharmonic in C there exists a solution u to ∂̄u = ∂̄F such that∫

C
|u|2e−2ψ ≤ C

∫
C
|∂̄F |2 e

−2ψ

∆ψ
.

Define ψ = φ+ 2v, where

v(z) = log |z − η| − 1

µ(Ds(η))

∫
Ds(η)

log |z − ζ|∆φ(ζ)dm(ζ).

Take s so that µ(Ds(η)) = 8π. By the doubling condition there exists c depending only on the
doubling constant C∆φ such that s ≤ c. Then

∆ψ ≥ ∆φ− 4π

µ(Ds(η))
∆φ =

1

2
∆φ ' ρ−2.

By construction v is bounded above. Notice also that there exists C > 0 (independent of η)
such that −v(z) ≤ C for all z ∈ supp(∂̄F ). Since |∂̄F | . ehη , we deduce from Hörmander’s
estimate and Lemma 13 that∫

C
|u|2e−2φ ≤

∫
C
|u|2e−2ψ ≤ C

∫
D2(η)\D(η)

e2hηe−2ψρ2 . ρ4(η)e−2φ(η).
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On the other hand
e−2ψ(z) ' |z − η|−4 for |z − η| ≤ ερ(η),

thus necessarily u(η) = ∂u(η) = 0.

Let us see now that u satisfies also the L∞ estimate. For any z ∈ supp(∂̄F ) define

U(ζ) =
Kρ(z)

ρ2(η)e−φ(η)
u(ζ),

where K > 0 will be chosen later on. Then∫
D(z)

|U(ζ)|2e−2φ(ζ) ≤ ρ2(z)

ρ4(η)e−2φ(η)
‖u‖2

L2(e−φ) . ρ2(z).

Also, since ρ(ζ) ' ρ(η) on supp(∂̄F ), we have

ρ(z) sup
ζ∈D(z)

|∂̄U(ζ)|e−φ(ζ) = sup
ζ∈D(z)

Kρ2(z)

ρ2(η)e−φ(η)
|∂̄F (ζ)|e−φ(ζ) . 1.

We choose K (independent of z) so that

(a)
1

ρ2(z)

∫
D(z)

|U(ζ)|2e−2φ(ζ) ≤ 1 ,

(b) ρ(z) sup
ζ∈D(z)

|∂̄U(ζ)|e−φ(ζ) ≤ 1.

We will be done as soon as we prove that

|U(z)|e−φ(z) ≤ C.

This is consequence of [Ber97, Lemma 3.1] applied to the function V (ζ) = u(ρ(z)ζ + z).
Defining φz(ζ) = φ(ρ(z)ζ + z) and changing to the variable w = ρ(z)ζ + z we see that∫

D
|V (ζ)|2e−2φz(ζ)dm(ζ) =

∫
D(z)

|U(w)|2e−2φ(w)dm(w)

ρ2(z)
≤ 1

and
sup
ζ∈D
|∂̄V (ζ)|2e−2φz(ζ) = sup

w∈D(η)

|∂̄U(w)|2e−2φ(w)ρ(z) ≤ 1.

Thus, by [Ber97, Lemma 3.1] |V (0)|2e−φz(0) ≤ Ce−aφz , where

aφz = sup{ψ(0) : ψ ≤ 0 ,∆ψ = ∆φη}.

Defining v so that ψ(z) = v(ρ(z)ζ + z) we see that

aφz = sup{v(z) : v ≤ 0 : ∆v = ∆φ}.

The function v(w) = φ(w)−hz(w)−φ(z)−A is negative inD(z) ifA is big enough (Lemma 13)
and v(z) = −A. Hence aφz ≥ −A and |U(z)|2e−2φ(z) = |V (0)|2e−2φz(0) ≤ CeA, as desired. �



50 NICOLAS MARCO, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERDÀ
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[BOC95] Bo Berndtsson and Joaquim Ortega-Cerdà, On interpolation and sampling in Hilbert spaces of analytic
functions, J. Reine Angew. Math. 464 (1995), 109–128. MR 96g:30070

[Chr91] Michael Christ, On the ∂ equation in weighted L2 norms in C1, J. Geom. Anal. 1 (1991), no. 3, 193–230.
MR 92j:32066

[Dra01] David Drasin, Approximation of subharmonic functions with applications, Approximation, complex anal-
ysis, and potential theory (Montreal, QC, 2000), Kluwer Acad. Publ., Dordrecht, 2001, pp. 163–189.
MR 1 873 588

[FS89] John Erik Fornæss and Nessim Sibony, Construction of P.S.H. functions on weakly pseudoconvex do-
mains, Duke Math. J. 58 (1989), no. 3, 633–655. MR 90m:32034
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DEPT. MATEMÀTICA APLICADA I ANÀLISI, UNIVERSITAT DE BARCELONA, GRAN VIA 585, 08071 BAR-
CELONA, SPAIN

Email address: xavier@mat.ub.es
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