INTERPOLATING AND SAMPLING SEQUENCES FOR ENTIRE FUNCTIONS

NICOLAS MARCO, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERDA

ABSTRACT. We characterise interpolating and sampling sequences for the spaces of entire func-
tions f such that fe=? € LP(C), p > 1 where ¢ is a subharmonic weight whose Laplacian is
a doubling measure. The results are expressed in terms of some densities adapted to the metric
induced by A¢. They generalise previous results by Seip for the case ¢(z) = |z|?, Berndtsson
& Ortega-Cerda and Ortega-Cerda & Seip for the case when A¢ is bounded above and below,
and Lyubarskii & Seip for 1-homogeneous weights of the form ¢(z) = |z|h(arg z), where h is a
trigonometrically strictly convex function.
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1. INTRODUCTION

In this paper we provide Beurling-type density conditions for sampling and interpolation in
certain generalised Fock spaces. We consider a rather general situation, with only mild regular-
ity conditions on the possible growth. Let ¢ be a (nonharmonic) subharmonic function whose
Laplacian A¢ is a doubling measure (see definition and properties in Section 2.1)). The spaces
we deal with are as follows:

F = {FeHE): Iy = [Ifremr? <o} 1<p<w,
Fr = AT HO) Wz =suplf ()l < oo},

The function p~2 is a regularised version of A¢, as described in . More precisely, if
pu = Ag¢ and z € C, then py(z) (or simply p(z) if no confusion can arise) denotes the positive
radius such that (D(z, p(z)) = 1. Such a radius exists because doubling measures have no mass
on circles.

8, with 3 > 0.

There are other spaces of functions that although at first sight do not seem to be covered by our
results, can be conveniently adjusted so that the theorems apply. This the case of the weighted
spaces of holomorphic functions

(reHE@): [ 1per < o).

with ¢ a subharmonic function with doubling Laplacian and o« € R. For any such space there
exists a subharmonic function v with doubling Laplacian such that

CleP?p? < e P < Ce P p®, and C_1p¢ < py < Cpy

Canonical examples of the weights considered are ¢(z) = |z
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for some C' > 1, see subsection Therefore the weighted space coincides with .FZZ

Among these two particular families of spaces seem of special interest. The first one are the
usual weighted L”-spaces of entire functions, obtained with o = 0. The second case arises when
a = —2; the standard F g spaces, they coincide with

(feHC): /C fPe A < oo},

Another source of examples comes from the problem studied in [LS94]]. Given a bounded
smooth convex set ¢ in C, consider the Smirnov (Hardy) space EQ(G), the closure of the analytic
polynomials with the topology induced by the norm

1l = / 1)zl

When the curvature of 0G is bounded from above and below, there exists a Paley-Wiener type
theorem, due to Lyubarskii [Lyu88], that gives an isomorphism between E?(G) and the space
F of entire functions f such that

112 = / | (2) P2 2712 () < oo,

Here £ is the so-called support function of G. By the isometry, the description of frames or Riesz
families of exponentials in the Smirnov space is equivalent to the description of sampling or
interpolating sequences in F¢, which was was achieved in [LS94]. The spaces F are of the sort
that we are considering, since ¢(z) = |z|k(arg(z)) has doubling Laplacian and p(z) ~ /|z|. It
seems plausible that our spaces also cover some cases where the curvature vanishes polinomially
at some point, via the general Paley-Wiener theorem due to Lutsenko and Yulmukhametov (see
[LYO1])). In this theorem there is a description of the Fourier Laplace transform of the Smirnov
space. The space they describe is not directly one of our ]—"f), but it seems likely that it can
be norm-equivalent to one of them (similiarly to subsection @), at least in the case where the
curvature vanishes polinomially at some point.

Since functions f in the spaces ]-"£ are determined by the growth of |f|, their restriction to a
sequence should be described as well in terms of growth.

Let A C C be a sequence and let v = {v) },ca be an associated sequence of values.

Definition 1. A sequence A is an interpolating sequence for F., 1 < p < oo (denoted A €
Int ]-'g), if for every sequence of values v such that

ol = 2 loalre T < oo
AEA
there exists f € F such that f[A = v.
Also, A € Int F5° if for every sequence of values v such that

A)

[vllse(a) = sup [oale ™ < o0
AEA
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there exists f € F2° such that f|A = v.

An application of the closed graph theorem shows that when A € Int ]—"g there is M > 0 such
that for any v € ¢7(A), there exists f € F, with f|[A = v and

(D ||f||fg < MHUHZZ(A)'

The least possible M in (I) is called the interpolating constant of A and is denoted by MF(A),
or M (A) if no confusion is possible.

Definition 2. A sequence A is a sampling sequence for F*,1 < p < oo (denoted A € Samp F (’;),
if there exists C' > 0 such that for every f € ]:g

() Cil||f|AH£g(A) < Hf”fg < CHf|AHeg(A)~
Also, A € Samp F° if there exists C' > 0 such that for every f € F7°
3) [fllFee < ClIFIA ez a)-

The least constant C' verifying these inequalities is called the sampling constant of A and is
denoted L7 (A), or simply L(A).

The definitions of interpolating and sampling sequences in the spaces defined by L°° norms
reflect the maximal growth for functions in the space, and are natural. The definition for p < oo
can be motivated in the following way. Consider for instance the case p = 2. The estimates of the
normalised Bergman kernel k4 (), 2) in F (see Lemma show that (ky(X, ), f) = f(\)e ®™
forall f € F7. Thus A € Samp F7 if and only if

1l = 3 I{ko(N, ), /)P forall f € F2,

A€A

that is, if and only if {k4(X,-)}rca is a frame in F7. Similarly, A € Int F7 if and only if
{ks(\, ) }rea is a Riesz basis in its closed linear span in 7. These are the standard problems of
interpolation and sampling in Hilbert spaces of functions with reproducing kernels [SS61]. For
p # 2 the previous definitions give the appropriate notions of interpolation and sampling as well,
in view of the pointwise growth of functions in the spaces (see Lemma [[9 and Remark [6)).

Our description of interpolating and sampling sequences is expressed in terms of certain
Beurling-type densities adapted to the metric induced by A¢, or more precisely, by its regu-
larisation p~2(2)dz ® dz. Before introducing the densities we need the notion of p-separation.

Definition 3. A sequence A is p-separated if there exists 6 > 0 such that

(A= N] = dmax(p(A), p(X))  A# N

This is equivalent to saying that the points in A are separated by a fixed distance in the metric
above (Lemma [).
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Definition 4. Assume that A is a p-separated sequence and denote ;1 = Adg.

The upper uniform density of A with respect to A¢ is

i #(A N D(z,rp(2))
Das) = h?f;gp ?el(lc) (H(D(z,(rp(zp)()))))

The lower uniform density of A with respect to A¢ is

B . H(AND(z,rp(2)))
Do) =liminfinf =272

The main theorems are the following.

Theorem A. A sequence A is sampling for .7:;’, p € [1,00), if and only if A is a finite union of
p-separated sequences containing a p-separated subsequence A’ such that Dy ,(A') > 1/2m. A
sequence A is sampling for F° if and only if A contains a p-separated subsequence A such that
D&b(A’) > 1/2m7.

Theorem B. A sequence A is interpolating for .7-—5, p € [1,00], if and only if A\ is p-separated
and DA ,(A) < 1/2m.

In particular, there are no sequences which are simultaneously sampling and interpolating (it
should be mentioned that this is not obtained as a corollary of the theorems; it is actually an
important ingredient of the proofs).

These results generalise previous work, beginning with the papers by Seip and Seip-Wallstén
[Sei92], [SWO2]. They described the interpolating and sampling sequences for the classical
Fock space in terms of the so-called Nyquist densities. In the notation above this corresponds
to ¢(2) = |z|?. This was extended in [BOC93|] and [OCS98] to the case of entire functions
f such that fe=® € LP(C), where ¢ is subharmonic with bounded Laplacian ¢ < A¢ < M.
The description was given again in terms of some Nyquist type densities. In these cases the
function p is bounded above and below, hence the metric p~2(2)dz ® dz is equivalent to the
Euclidean metric. In particular, p(z) can be replaced by the constant 1 in the definition of the
uniform densities. In [LS94] the authors provided a description, in terms of directional densities,
of sampling and interpolating sequences for the spaces with 1-homogeneous weights of the form
¢(2) = |z|h(arg z), where h is a trigonometrically strictly convex function.

There are also some partial results in several complex variables. The classical Fock space
has been studied in [MTOO] and the weighted scenario in [LinO1]]. In this context there exist
necessary or sufficient density conditions, which do not completely characterise the sampling or
interpolating sequences.

Interpolation problems for other spaces of functions related to these weights have been con-
sidered by Squires and Berenstein and Li (see for instance [Squ83], [BL9S] and the references
therein).
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The results mentioned above relied on the remarkable work by Beurling [Beu89] and on
Hormander’s weighted L2-estimates for the O equation [H6r94]. In our proofs we first extend
Beurling’s tools to the context of certain spaces which are non-invariant under translations. This
is in the spirit of [LS94] where they already considered some limiting spaces of the original space
deformed by translations. We need as well a Hormander type theorem giving precise estimates
for the O equation in Banach norms other than 2.

The plan of the paper is the following: In Section [2] we study the properties of doubling
measures. Recall that the only assumption on our subharmonic weight ¢ is that the measure A¢
is doubling. We will need a regularisation of ¢ and the construction of a multiplier associated to
¢ (that is, an entire function f such that | f| approximates e?), very much in the spirit of [LMO1]
and [OC99].

In Section [3| we state and prove some basic properties of functions in f;‘j . The main result in
this section is the following Hormander type theorem.

Theorem C. Let ¢ be a subharmonic function such that A¢ is a doubling measure. There is a
solution u to the equation du = f such that ||ue™°||oc) < || fe™pll o) for any 1 < p < oo.

We also include the estimates of the Bergman kernel that justify the notion of interpolating and
sampling sequences we have considered. Finally , we study the invariance of our spaces under
some appropriate scaled translations. This leads to the notion of weak limit and the correspond-
ing analysis analogous to Beurling’s.

Section []is devoted to some preliminary (but important) properties of interpolating and sam-
pling sequences, including their behaviour under weak limits. The main results in this section
are some inclusion relations between various spaces of interpolating and sampling sequences,
and the fact that there are no sequences which are simultaneously interpolating and sampling for
the same space of functions ]-"g .

In Section [5| we prove the sufficiency part of Theorem A. We use again an approach similar to
that of Beurling.

Section [6] includes the proof of the necessity part of Theorem A. For this we need once more
Beurling’s analysis, plus the non-existence of sampling and interpolating sequences. We use
some theorems that relate the densities of sampling and interpolating sequences, following the
ideas by Ramanathan and Steger [RS93]].

Section [§] is devoted to the proof of the necessity part of Theorem B. We use Ramanathan
and Steger’s theorem plus an original argument that shows that the density inequality is actually
strict.

Finally, in Section[7|we deal with the sufficiency part of Theorem B. In the course of the proof,
whose main tool is the multiplier, we need to express the density in terms of rectangles instead
of disks. The usual argument of Landau [Lan67] does not work, in view of the inhomogeneity of
our measures. Theorem 43| takes care of this.
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A final word on notation: C' denotes a finite constant that may change in value from one
occurrence to the next.The expression f < g means that there is a constant C' independent of the
relevant variables such that f < C'g, and f ~ g means that f < gand g < f.

Acknowledgement: We want to express our sincere gratitude to the referee for pointing out
some improvements and simplifications that have enhanced the overall readability of the text.

2. SUBHARMONIC FUNCTIONS WITH DOUBLING LAPLACIAN

In this chapter we recap some results on doubling measures and subharmonic functions ¢
whose Laplacian A¢ is doubling. We start with regularity and integrability conditions on dou-
bling measures. Next we show that ¢ can be regularised, in the sense that there exists ¢ sub-
harmonic and regular for which the interpolation and sampling problems for }"g and ]—’fZ’a are
equivalent. The final part is dedicated to the construction of the multiplier. A useful application
of this is the existence of holomorphic “peak functions” with controlled growth.

Definition 5. A nonnegative Borel measure p in C is called doubling if there exists C' > 0 such
that

p(D(z,2r)) < Cu(D(z,r))
forall z € Candr > 0. We denote by C), the infimum of the constants C' for which the inequality
holds.

Recall that when ¢ is subharmonic A¢ is a nonnegative Borel measure, finite on compact sets.

For convenience we write D"(z) = D(z,7p(z)) and D(z) = D'(z). We will write D}(z)
when we need to stress that the radius depends on ¢.

Henceforth dm denotes the Lebesgue measure in C. We also use the measure do = dm/p?,
which should be thought of as a doubling regularisation of A¢ (see Theorem [I4).

2.1. Doubling measures. Throughout this section we assume that y is a positive doubling mea-
sure non-identically zero. We begin with a result of Christ [[Chr91, Lemma 2.1].

Lemma 1. Let i be a doubling measure in C. There exists vy > 0 such that for any disks D, D’
of respective radius r(D) > r(D") with D N D" # {):

(//j((ll))’)))7 S :((5,)) < (5((11))%)1/7.

In particular, the support of 1 has positive Hausdorff dimension.

Remark 1. This implies that forall z € Cand r > 1

4) r S u(D"(2) St
Also, applying LemmaI]and () to D(0, |z|) and D(z) we have, for p(z) < ||
1 < 1 )1/y<p(z)<( 1 )7 < 1.
Ry 1€ 2 (U 1)) K ol R 1€ 2J (U 1)) O El
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On the other hand, if |z| < p(z), then 0 € D(z). Thus Lemma [I] implies p(z) =~ p(0), hence
|z| < C. Therefore, there exist n, Cy > 0 and § € (0, 1) such that

®) Co ' 217" < p(2) < Colz) |2 > 1.

Let us study in more detail the relationship between p(z) and p(¢) for various z, ¢ € C. A first
observation is that p(z) is a Lipschitz function. More precisely

(6) p(z) =p(Q) <[z=¢l  2(eC

To see this there is no loss of generality in assuming that z,( € R, ¢ < z and p(¢) < p(2).
Then ¢ — p(¢) < z — p(z), since otherwise D(¢) C D(z), contradicting the fact that p(D(z)) =

u(D()) = 1.
Lemma 2. [Chr91l, p.205]. If { ¢ D(z) then

s (i)

for some § € (0, 1) depending only on the doubling constant C,,.

As a consequence of Lemma(l]and (5)) we have
Corollary 3. For every r > 1 there exists v > 0 such that if ( € D"(z) then
L r(2) o

™~ p(¢) ™

It will be convenient to express some of the results in terms of the distance dy4 induced by the
metric p~2(2)dz ® dz.

Lemma 4. There exists § € (0, 1) such that for every r > 0 there exists C, > 0 such that

1|z = ¢ 2 =4 .
Ci—— <dylz C, <r
_1|Z—d) (V—d)z .
C de(z C, | —= if |z— rp(z).

This shows, in particular, that a sequence A is p-separated if and only if there exists 6 > 0
such that infy 2y dg (X, N) > 0.

Proof. By definition

() = inf / (0o (v ()t

where the infimum is taken over all piecewise C' curves v : [0,1] — C with v(0) = z and
(1) = ¢

The lower inequalities are contained in [Chr91, Lemma 3.1] and its proof.
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The upper estimate in case (a) is immediate from Corollary 3| In case (b) take ()

t(¢ — z) and use Lemma 2} then
(e — =)' o o (1=
5= Garras (5

From now on, given z € C and r > 0, we denote

B(z,r) ={C € C:dy(z,¢) <r}.

dy(2,¢) < |C—

Doubling measures satisfy certain integrability conditions.

9

:Z+

Lemma 5. Let p be a doubling measure. There exist C > 0 and m € N depending on C), such

that for any r > 0
(a) / log |)d,u(C) < C u(D(z,1)) zeC
(b) sup / du(C)

zeC JC I+ dg(zaéﬂ)

Proof. (a)is [Chr91, Lemma 2.3].

(b) According to Lemma 4] it is enough to consider the integral on |z — ¢| > 7p(z). Applying

Fubini’s theorem we see that

p(2) mo _ . p(2)/1z=C] .
/@DT(Z)(V_ )" (0 /w / £ dtdp(C)

1/r 1/r
—m /0 gm-1 / du(C)dt < m /0 (=1 (D)) dt.

1<p(2)/|z—¢|<1/r

Then by @) p(DY*(2)) < 1/t* for some k > 0. Hence the integral is bounded if m > k.

This and Lemma [d(b) show that the result holds for m big enough.

Remark 2. 1t is clear from the proof that

() lim sup/ dM(C)
(¢ B(z,r)

T—00 »eC (Z C) N

There is a discrete version of the previous Lemma.

Lemma 6. Let A be a p-separated sequence. There exists m € N such that

1
su — < Q.
Ze}é; T+d7(z )
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Proof. By the separation and Lemma 4] it is enough to see that for m big enough

sup Z

zeC A¢B(=

Take § > 0 such that the balls { B(\, )} ca are pa1rw1se disjoint. By Corollary I

> (M)s X /m |z—<\ a5 (,j’@)mdmo.

q
AEB(z,r) /\géB( A¢B(z,r)

Lemma [5[b) implies that the integral is bounded. ]

For later use, we state a refinement that follows similarly from Remark @

Corollary 7. Let A be a p-separated sequence. There exists m € N such that

1
lim sup — = 0.
r—=00 L0 A&;;,T) dgl(z, )\)
We will need to partition the plane in rectangles of constant mass. We do that by adapting a
general result of [Yul85]] to our setting (see also [DraOll, Theorem 2.1]).

Theorem 8. Let 11 be a positive doubling measure non-identically zero. There exists a “parti-
tion” of C in rectangles Ry, with sides parallel to the coordinate axis such that:

(@) p =3 b where . := g, satisfy ju,(C) = 1.

(b) Ry, are quasi-squares: there exists a ratio e > 1 depending only on C,, such that the ratio
of sides of each Ry, lies in the interval [1/e, e].

(c) There exists C' < 0 such that C~p(ay,) < diam(Ry) < Cp(ax), where ay, denotes the
centre of Rj,.

d U, Ry, = C and the interiors of Ry are pairwise disjoint.

Remark 3. Dividing the original measure by s € R* we obtain a partition of C into quasi-squares
of mass s.

Proof. 1t is enough to partition the plane in quasi-squares of constant entire mass, because by an
stopping-time argument of [[OC99] these can then be split into quasi-squares of mass 1.

We construct our partition recursively. We start with a rectangle centred at 0 of entire mass,
and with sidelengths [ < L so that ! > L/2 and =8 > 12+/2C,, where B and Cj are given in
() (rectangle ABC'D in the picture). Consider next a square (J; centred at 0 of sidelength 3L
(A1 B1C1 D in the picture) and define R as the quasi-square with vertices ABB’A’, where A’
and B’ are points on the same side of (); taken so that 0 ¢ R. We want to make R a little bigger,
to make sure that its mass is entire, and we want to do that keeping control on the ratio of sides.
Consider the rectangle ABBA, where A, B are taken with |AA| = |BB| = 2|AA’|. Denote by
R’ the rectangle A’ B’ BA added to R. For \ € R,

PN 6v/2p(N) - 6v/2C, - 6v/2C) Py
D D L A T )
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Since the sides of R’ have length bigger or equal than [ we deduce that R’ contains a disk of
centre A and radius p(\), hence its mass is at least 1. This shows that there exists a rectangle R,
(AA” B" B in the picture) of entire mass between the original R and the “doubled” R'.

We finish the first step of the process by constructing the analogous quasi-square Ry of entire
mass at the opposite side of R (CC” D" D in the picture).

A B
_______ a
: |
|
: |
|
As Az A”'L | B Bs Bs
: | I .
: | :
A1 ! | By
A': B
| |
|
|
|
|
|
| I
|
|
A B
D ¢
| |
| |
| |
| |
| |
| |
| |
: | :
: ! | :
: X :
D3 [)2 D// C// Cg Cg

Consider next the rectangle () limited by the segments (A" B”), (C"D"), (B,Ch), (D1A;)
(the rectangle A; BoC5Ds in the picture). We iterate the process above to each of the rectangles
B"ByCyC" and D" Dy Ay A”, thus obtaining two new quasi-squares Rz = B”B3C3C"” and Ry =
D" D3 A3z A" of entire mass.

All in all, we obtain a new quasi-square Q)3 := A3 B3C3 D3 with ratio of sides lying in [1/2, 2]
which is a disjoint union of 5 quasi-squares of entire mass. From here we repeat the process,

taking (3 in place of the original R, and continue recursively to obtain the “partition” of C. By
construction we have (a), (b) and (d).

To prove (c) assume that 1 is a quasi-square of mass 1, centre a and sidelengths [, L. Here R C
D(a, Lv/2), hence p(a) > L 2 diam(R). Also, D(a,l) C R and diam(R) <1 < p(a). |

Lemmas |I|and [2| give control on how big a disc D"({) can be when ( € D?(z). We will need
another result along the same lines.
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Given a doubling measure p and given z € C and 0 < r < s, consider the associated regions
Fi(z,5)={¢:D"(()C D*(2)} and  G,(z,5)= |J D'(Q).
CEDS(2)
By definition F,(z,s) C D*(z) C G,(z,s). Let  be the constant given by Lemmal[l]

Lemma 9. Let r > 0 be fixed. There exists ¢ > 0 such that if e(s) = ¢ r/s7°, for all z € C and
s > r we have

(a) G,(z,5) C D*TC)(2),
(b) D*=<G)(2) C Fo(z, s).

Proof. Applying Lemma l[to D"(¢) and D*(z), and using (@), we have
72 /92
s < sp(2) < s
r Trp(Q) o

(a) If ¢ € D*(z) we have sp(z) + 7p(¢) < sp(2)(1 + cr/s7") for some ¢ > 0.
(b) D"(¢) € D*(z) when |¢ — z| 4+ 7p(¢) < sp(2). For ¢ € D*=<(*)(z)

€ =2+ 70(Q) < (5 = e())p(z) + ersp() 55 ).
Thus if (s — €(s))p(2) + csp(2)(r/s7") < sp(z) we have D5¢)(2) C F.(z, s). [
Corollary 10. Let { Ry}, be a partition of C, as in Theorem|8| Define
F(z,s)= |J R and G(zs)= |J BRs.

k:RipCD*(z) k:RxND*(2)#£0

There exists a positive function €(s) with lim,_, €(s)/s = 0 and such that for all z € C and
s>0

(a) G(z,5) C D*+<)(2).
(b) D<) (2) C F(z,s).

Proof. As the previous Lemma, using Theorem [§|(c). |

We finish with a result showing that the measure of a disk cannot be too concentrated near its
border.

Lemma 11. Let €(r) be a positive function such that lim €(r)/r = 0. Then

r—00

g MOOE) w0
roco pu(Dr(2)) e pu(D7(z))

uniformly in z € C.

The proof is based in the following projection of the measure .
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Lemma 12. For every z € C define the measure v, on Rt by
v(A) = p({¢ =z+1re” :r € A}) A CR*.
Then v, is doubling and there exists K independent of z such that C,,, < KC),.

Proof. Givenx € Rt andr > 0let I"(z) = (x — r,z + ) N RT. We want to see that
v:(I*(z)) < KCp vo(I"())
forall z € C,z € Rt and r > 0.

Let A%(z) = {¢ = 2+ se? : s > 0,|s — x| < r}. By definition v,(I?"(z)) = u(A?"(x)).
Split A2 () into k := [2X] sectors
2m 2m

Sj:{§:z+se 15 >0,]s—x| < 2r, (‘7_1)?<0<3k} j=1,... k.

Being 1 doubling there exists K > 0 such that ;u(S;) < KC,, 1u(S;), where S; is half the sector
Sj, i.e.

5 ; 2 2 2 2
S;i={(=2z+s":5>0,]s—2|<r, (j—l)%—i—i <f< j%—i
Since the S,’s are disjoint and U;S; C A”(z), we get
k
v(IP) (@) = (A (2 Zu Cu > 1(S)) < KCy p(AL(x))
j=1

— KC (@),

Proof of Lemma It is enough to see that
r+e(r) r
(DT () Dr(2))
rooo n(D(z))
uniformly in z. By definition of v, we have
W(D+0 () \ D7(2)) _ v.((rp(z), (r + €(r)p(2))
u(Dr(2)) v:((0,7)) ’

and by the corresponding version of Lemma 1| for doubling measures in R*, and by Lemma
there exists /' > 0 independent of z such that

v (7p(2), () _ (o))
v.((0.7) =K ( " ) |

=0
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Remark 4. An analogous result is true if in the definition of v, we use, instead of a radial pro-
jection with respect to z, a projection associated to quasi-squares of a fixed ratio o € [e™!, €] (e
is the constant of Theorem [§(b)). Let Q’,(z) denote the rectangle with vertices z + r(1 + i),
z+r(l—ia), z—r(l+ia)and z — r(1 —ia). Given z € C consider the measure v, in R such
that
V(I (@) = p(QEF(2)\ Q5 (2))

on any interval I"(z). As before, there exists K > 0 independent of z € C and « € [e™, €] such
that v is doubling with C,, < KC,,. Therefore, if R',(z) := Qi (2),

LB R) B ()

rooe (R (2))  roee p(RE(2))
uniformly in z.

2.2. Local behaviour and regularisation of ¢. Let us start with a result comparing the values
of ¢ in a disk with the value on its centre.

Lemma 13. For every K > 0 there exists A = A(K) > 0 such that for all z € C
up [¢(w) = ¢(2) = ha(w)] < A,

weDK (2

where h, is a harmonic function in D¥ (z) with h,(z) = 0.
Proof. The proof is as in [OCS98| Lemma 1]. On each D* (z) decompose

) ¢wa=w@+hmw+/‘ (Glw,n) — Glz.m)) Ad(n),

DK (2)

where G is the Green function of the disc D¥(z) and h, is a harmonic function in D () such
that h.(z) = 0. By Lemma([5{a)

K
sup/ log pl2) Ap(n) < oo
zeC J DK (z) |z — 1

and the result holds. |

We have seen in the previous section that p,(z) is Lipschitz (see @). Also, because of
Lemma [I} ¢ is Holder continuous of some positive order on every bounded subset of C (see
[Chr91, Lemma 2.8]). More regularity can be attained by taking a suitable weight 1) equivalent

to ¢.

Theorem 14. Let ¢ be subharmonic with A¢ doubling. There exist i) € C*°(C) subharmonic
and C' > 0 such that | — ¢| < C, Ay is a doubling measure and Avp ~ 1/p3, ~ 1/p%. Moreover

V(AY) < 1/05

Remark 5. It follows from the construction below and Lemma g that DX, (A) = DL, (A) and
Dy s(A) = Dy, (A) for any given sequence A in C.
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Since the spaces of functions and sequences considered do not change if ¢ is replaced by ),
from now on we will assume that ¢ € C*°(C), A¢ ~ 1/p? and |V (A¢)| < 1/p°.

In the proof of this result we will need to partition C and discretize the measure.

Lemma 15. Let i1 be a positive doubling measure in C. Fix m € N. There exist k € N and
C' > 0 such that for any partition { Ry}, as in Theorem [§ with p(R,) = mk there are points

AP AP e OR, such that
mk

(@) pp = pyr, and v, = Z 0 AP have the same first m moments.
j=

(b) A = {)\g-p ) }p.j is a p-separated sequence.

Proof. By Lemma 5 of [OC99], there exists & € N such that for all measure j,, supported
in a rectangle R, with total mass mk, there are points o(p ) ...alip ) € R, such that j,, and

m Z i1 (50;,)) have the same first 7 moments.
p .
In order to get a separated sequence replace each o; by m points

'Yg('? ( ) 4 plo (p)) (p)ei%l/m7 [=0,....m—1

Y

lying on a circle around a§p ). Since for all polynomials p of degree less than m — 1

p ZP ”Y]l

the measures /1, and Z 0 N have still the same ﬁrst m moments. We will be done as soon as we

see that the TJ( ?) can be chosen uniformly bounded and so that A = {’y z)} is p-separated. For this

we use a Besicovitch’s lemma: the family { R, }, can be split in ¢ families {R)}pers - AR} per,

such that two rectangles of the same family are far apart, in the sense that M R]lg nMm Ré/ = 0,

(p)

p # p/, for some large constant M. For the first family {R;}pe I» it is easy to choose 7,7 such

that the resulting sequence I'y = {”yN pel;j=1,...,kl=0,...m— 1} is p-separated.

(p)

Next we choose T p € I5, so that I'y N I'y is p-separated, where ['y = {fy](ﬁ) cp € Iy g =

1,...,k;l=0,...,m—1}. Choosing Tj(p) recursively in this way we obtain A =T, U ... UT,
p-separated. |

Proof of Theorem[I4} For any M (to be chosen later) consider £ € N as in Lemma [I5] and a
partition {R,}, as in Theorem [8| Take then the sequence A = {/\5?) ) i, s given by Lemma

Recall that Ag-p ) e CR,, u(R,) = Mk and that the measures (1, and v, = Z 6 ) have the same

first M/ moments.
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By Theorem c) there exists > 0 such that CR, C D’”()\gp )) forany p € Nand 7 < k.
Furthermore, by construction of { R, }, there exists ¢ € N such that any z € C lies in at most ¢

disks D"(\P).
We now regularise v, by setting

A(P)‘

|z—
Z ( /\(p) )
A@)\ ’
=t [ X (rp(w)))

where X' is a smooth non-negative cut-off function of one real variable such that X (¢) = 1 if
[t| < 1, X(t) = 0if |[¢t| > 2 and |X’| is bounded.
Notice that 7, and 1, have the first A/ moments. Indeed, by the mean value property

ME

/zldﬁp =Y 0Py =0, M1
C

i=1

9(:) = 0() + 5= [ loglz = clo = A6)C)

We claim that 7 is a doubling measure. The proof of this fact is a bit technical and will be
deferred to the end.

By definition A = 7. Also, 7(z) is a sum of at most ¢ terms of order 1/ ,02()\5-’) )), with
z € D’”()\gp)). Therefore Ay ~ 1/p7 and |V (Av)| < 1/p3. In particular

dm(¢)
A ~ ~ 1,
/1)¢,(z) Vo /D¢(Z) P5(C)
hence py >~ py.

Let us show next that 1) — ¢| < C for some C' > 0.

Let a, denote the centre of R,. Assume z € R, and let [,, = {p € N : dy(a,,a,,) < 10r}.
Remark that for p ¢ 1, ¢ € supp(?,) and z € supp(D,,) we have dy(z,() =~ dg(a,, ay,).
Indeed, this follows from

¢ — ap| < 37”P(ap) < |ap - aP0|7

10

the analogous estimate for |z — a,, | and Lemma This yields

®) / 05 (2, 0)7() < / M OmplQ) 2 €Dy p ¢ I
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We split
2(y(2) -y /1ogrz—<| £y /bg!z—cr 1))
pEIpO p¢Ipo
and estimate each sum separately.

Let pys denote the M -th Taylor polynomial of log(|z —(|/p(2)). Since 7, — 1, have vanishing
moments of order less or equal to M, we can estimate

A |2/1og|z—<| — 1))

Péfpo
_ _ 5 pl2) o
- |p§/lg PO up)(é)lﬁp%()/c(|z_<|) (7 + 1) (©)

Taking M big enough and using () and Lemmas [d{(a) and [5(b),

I < plz) \M o du(Q)  _
b /C\Dr (‘Z - C|) SO /C\B(z,cr) diM(z,O =

For the remaining term we use again the moment condition together with the fact that for
€ I, there exists 7 such that U{supp(%,), p € I,,} C Dj(z). Thus

12;:\2/1og|z_q ) 1—\2/ 2”’ ) (7 — 1) (€)|

pElp, pElp,

29p(2)y (-
s [ eEE e me

By Lemma [5a) this is finite.

We prove now that v is doubling. We first show that it is doubling for big balls, i.e. there exist
sp > 0 and a constant C' depending only on the doubling constant Ca4 of A¢ such that for all
s > so we have 7(D*(a)) < C5(D*?(a)).

As in Corollary [I0] define

F(a,s) = U R, and G(a,s) = U R,.
p:R,CD*(a) p:RpND* (a)#£0
Since 7(R,) ~ pr do/p* ~ u(R,), we see that v(F(a,s)) ~ u(F(a,s)) and 0(G(a,s)) ~
11(G(a, s)). By Corollary[10] also D*~®)(a) C F(a, s) and D**(*)(a) > G(a, s). This and the
fact that p is doubling yield

(D*(a)) < 7(G(a,5)) = p(Gla, 5)) < p(D* ) (a)) < Cag (D24 (a)),

and
D(D*?(a)) > D(F(a,s/2)) ~ u(F(a,s/2)) > p(D**/? a)).
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Therefore

M(D1/2(8+E(8)) (CL))

WD (@)

Lemma [IT| shows that the quotient converges to 1 as s goes to infinity uniformly in a, so there
exists so such that 7(D*(a)) < 2Cag 7(D*/?(a)) for all s > 5.

Corollary [3|implies that 7 ~ 1/p*(a) on D*(a) when s < sy, so we deduce that 7(D*(a))
p(D*?(a)).

v(D*(a)) < Cag #(D*?(a))

S
n

2.3. Generalized weighted spaces. Let @ € R and ¢ be a subharmonic function whose Lapla-
cian is a doubling measure. Let us consider the following space:

P = A1 € HEQ) Mg = [ 11Perpm 2 < o0},

Lemma 16. Let ¢ be a subharmonic function with a doubling Laplacian. For any € > 0, there
exists a function p' such that

ps~p and |Alogp'| <

@?wl m

From this it follows that 7 P . can be written as ﬂ for a suitable subharmonic 1) with doubhng
Laplacian. If we have a ¢ already regularised by the above process, then ) = ¢ — alog p’ will
satisfy

(1 —ae)Ap < Ay < (1 + ae)Ag.
Therefore At is a doubling measure. Furthermore,

eV =ep =™ and py = py,

hence F7, and F7 , are the same space.

Proof. For r positive real, set p, := py/,, it follows immediately from (4) that there exists 0 <
€ < m such that

©) 06 S pr ST g

Take a sequence A such that {D(\, p,.(N\)/2)}aea covers C and the disks {D(A, p,(A)/10) }rea
are pairwise disjoint, which exists by a standard covering Lemma, see [Mat93, Theorem 2.1].
Let x be a smooth real function with compact support in D(0, 1) such that y = 1 on D(0,1/2)
and such that |Vy| < 2, [V2x| < 4. We then define

= ()

and p;. := 3"\ cp pr(A)Xa
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Let us prove that for r big enough this function has the desired properties. It is clear that
pr =~ pg. Moreover, there is a C' depending on the doubling constant of ¢ (but not on 1) such that
C™'p. < p) < Cpy,

Vol Yo pWIVaG) <0

XEA: zED(N)

N O SN N S v

A€A: zeD(X) XeA: zeD(N)

We deduce from these estimates that
2 2
Vol Vil C

pr? P

where C' does not depend on 7. By (9)), picking r big enough we have the Lemma. |

|Alog py| <

2.4. The multiplier. A basic tool in our approach is the use of the so-called multiplier: an entire
function g such that |g| ~ e? outside a neighbourhood of the zeros of g.

Theorem 17. Let ¢ be a subharmonic function such that A¢ is a doubling measure. There exists
an entire function g such that

(a) The zero-sequence Z(g) of g is py-separated and sup dy(z, Z(g)) < oo.
zeC
(b) |9(2)| ~ e?Pdy(2, Z(g)) forall z € C.

The function g can be chosen so that, moreover, it vanishes on a prescribed zy € C. We say that
g is a multiplier associated to .

Proof. Take a partition { R, } of C with x(R,)) = 2rmN and consider the sequence A given by
Lemma|L5] For the sake of clarity we write R, instead of C'R,, (C' is the constant of Lemma [L5]).
Note that now {R,}, is not a partition, although there exists a uniform constant ¢ such that all
points of C lie in at most ¢ quasi-squares I?,. As in Lemma (15 denote y, = (1/27)u g, and
let v, be the sum of the A € A associated to 12,. Recall that 11, and v, have the same first m
moments.

Let g be a holomorphic function satisfying

1
logg| = ¢ — g/log\z—cr Ad—223 6,
AEA
which exists because the Laplacian of the term at the right hand side is a sum of Dirac masses.
By definition Z(g) = A, and the previous construction ensures that (a) holds.

Let us prove (b). Assume that z € R,, and let [,, denote the set of indices p such that
(2R,) N Ry, # (0. As in the previous proof, split

lgla(2) = 6(:) = = [ Togle = CI(52 = 3 6) = $i(2) + Su(o),

AEA
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where
51:) = Y | togle = ¢l — )
p¢lpo ¢
and
-3 / log |2 — ¢|(v — ).
pe[po

Again as in the proof of Theorem 14} using the Taylor expansion of log |z — (| together with the
moment condition one sees that |.S;(z)]| is bounded.

For the second sum notice that there exits v > 0 such that Uc, R, C D7(2). Hence, denoting
|z — A = inf |z — A|, we get
XEA

_ 2vp(z 2vp(z) 29p(2)
Sa(z) = Z / |Z _ C‘ — 1) < /Dv(z) log Iz — <|dﬂ(<) — log iz — A

pElp,
—A
S 02 + IOg |Z ’ .
p(z)
On the other hand, using the p—separation of A
2w p(z)
~Sy(z) < > Zl A| 08 1 + CO) - #(AN Upes, Ry).
pElpy AERp

Since #1,, is uniformly bounded, this and the estimate of .S; give:

|2 = Al 2= Al
log — C <loglg(z)| — ¢(2) < log ——— + C".
p(z) p(z)
The result is then immediate from Lemma [4](a). |

Next we state a useful application of the multiplier, a result about existence of peak functions.
These functions attain value 1 at a given point and decay very fast away from the point. They
are very useful in the estimates of the Bergman kernel and in the construction of solutions to the
0 equation. Another proof of the following Lemma, using estimates for the J-equation, can be
found in an Appendix. This second proof is along the lines of [FS89, Theorem 2.1], where a
related result is proved.

Theorem 18. Take ¢ > 0 and m € N. There exists C' > 0 such that for all n € C there is an
entire function P, with P,(n) = 1 and

|P,(2)] < Cec((z)—e(n))

Proof. Let h be a multiplier for £¢ (constructed as in Theorem[17) with zero sequence X = {0y}«
and such that {n} U X is p-separated. In particular |h(2)| =~ e=*(*)d,(z, ¥). It follows from the
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construction of the multiplier that for each M € N there exists » > 0 such that #(XNB(\, 7)) 2
M for all A € C. Given 01, ...,0y € XN B(n,r) define

P(s) = e h(z) pM ()

(Z — 0'1) [N (Z — O'M) €5¢(77) ’

where ¢, is chosen so that P, () = 1.

Let us observe first that there exists ¢ > 0 independent of 7 with ¢! < ¢, < ¢. Since
| — il = p(n), then

1 h(n) pn) | 00, 2) M) ey

Cy (77 — 0-1) R (n — O-M) eco(n) pM(n) ec?(n)

We split the estimate of |P,(z)| into several regions. Let ¢ > 0 be such that that the balls
B(o;,¢) and B(n, €) are pairwise disjoint. Consider K > 0 with UM, B(0;,¢) C B(n, K).

i) 2 € UY, Blos,e). For z € B(oy,¢) we have p(2) ~ p(n) =~ p(o;), dg(2,%) ~ |z —
oil/p(o;) and dy(2,0;) 2 1, j # i. Thus

h(z)

zZ — 0;

1Py(2)] S

~J

Jem<t) o (F(O()—00m).

p(n

i) z € B(n, K)\ UY, B(0:,¢). Here p(z) ~ p(n) and |z — o3| = p(n), so

z M
Py(2)| < e@dy(z, %) pM(n) < £ (@(2)—6(n)
T pM () esotn '

iii) z ¢ B(n, K). Here dy(z, 0;) =~ dy(z,7m), so

z M
|P (Z) < €€¢( )dqﬁ(z, E) Y (77) < ee(¢(z)_¢(n))( p(n) )M
! |z =M ol ~ Z— 1]

This and Lemma [d[b) give the result. |

3. BASIC PROPERTIES OF FUNCTIONS IN .Fg

Here we study the behaviour of functions in ’7::1; and related topics. We prove the estimates
with norms || - || ¢ on the solutions to the 9 equation (Theorem C) and provide estimates of
the Bergman Kernel of }"f) on the diagonal. We also introduce a scaled translation in the plane

that gives rise to a translated weight and to an isometry between the spaces of functions for the
original and the translated weight. This will be used when studying the properties of weak limits

(Section[3.5)).
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3.1. Pointwise estimates. Let us first see what is the natural growth of functions in ]-'(7; . Recall
that do = dm/p*.

Lemma 19. Let 1 < p < oo. For any r > 0 there exists C' = C(r) > 0 such that for any
fe HC)and z € C:

() |f(z)|pe_p¢(z) < 0/ |f|P€—P¢>dO-_

Dr(z)
®) [V(fle )@ ([ irperan)”
Dr(z)
© If s > 1 then | e <, flPerdo,
Ds(2)\D7(z)

Proof. Let H, be a holomorphic function with Re H, = h,, where h, is the harmonic function
in D"(z) given in Lemma|13]
(a) 1s proved as in [OCS98, Lemma 1]:

|f(z>|pefp¢(2) — ‘f(z)esz(Z)’pefW(z)

20 / |f(<)|pep(hz(c)+¢(2))2/ | f|Pe P do.
p?(z) Dr(z) Dr(z)

(b) First let us see that |9¢/9¢ — dh./0¢| < 1on D" (z). By (7)), if ( € D"(2)

o¢ .  0Oh, B 3 2rp(2)
500~ G =I5 [ c@masm] < [ Ao

Take s (depending on ) such that D"(z) C D*(¢). From A¢ ~ 1/p* we deduce

27"P(Z)A < L dm(n) _ 1
/DT'(z) I — | P 2 p(¢) /Ds(g) C—nl

Since |V(|fle™?)| = |f — 2f0¢/0z|e~?, we have

<

(10) V(e )@ = 172) — 2L = V(I fle ).
On the other hand,
i fQe ™0 o
V(fe < |~ <Qd|.
VeS| Tl [ 150

From (a), for |z — ¢| = p(2)
FQIe O 5 ([ Ispe i)
Dr(2)

By Lemma 13| we have then

1
p(z)
which together with concludes the proof.

V(fe ") (2)] S (/D . |f|pe‘p¢dg)1/pe¢(2)7
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(c) As (a), using the subharmonicity of | f e H= P |

Lemma 20. Let 1 < p < oc. For any entire function g with g(\) = 0 we have

!9’(A)!e*¢<k><—1 ( / ’9’p€p¢da)1/p.
~ P(A) D())

Proof. Lemma[19(c) with r = 1/2 and s = 1 applied to the function g(z)/(z — \) yields

P
‘g/()\)‘pe—pﬁb()\) < l9(2)| e P92 1o < 1 ]g(z)]pe_p¢(z)d0.
P D
D(W\D/2()) |z = Al pP(A) D(N)

~

3.2. Hormander type estimates. This section is devoted to the proof of the J-estimates of
Theorem C in the introduction.

Theorem C. Let ¢ be a subharmonic function such that A¢ is a doubling measure. There is a
solution u to the equation Ou = f such that ||ue™?||1oc) < || fe pll o) for any 1 < p < oo.

Proof. Take ¢ = 1 and consider the peak-functions given by Theorem [I§] By Lemma [I9(b),
there exists 7 > 0 such that |P,(2)| 2 e*®~¢® on D"(n), for all n € C. Take a sequence A
such that {D"(\)}xea covers C and the disks {D"/?(\)}\en are pairwise disjoint, which exist by
a standard covering Lemma, see [Mat95, Theorem 2.1]. Let {x,} C C¢° be a partition of unity
associated to { D" ()} .

Decompose the datum f = Y fi, with f(z) = f(2)xa(z). By Theorem[I8] for any \ there
exists an entire function m,(z) = Py(2)e~*™ such that

1
< Bz -
ma(2)] S e BTN + 1

The radius  has been chosen so that |m,(¢)| > e?©) if ¢ € D"()\). Define

i) =my(e)s [ PG g
"(N)

7 (—z

Clearly Juy = fy, thus u = Y, _, uy is as a solution to Ju = f. We must prove the size
estimates. As we have used a linear operator to construct u from the datum f, we only need to
check that ||ue™®||z~ < ||fe ?p|l~ and ||ue™?|| ;1 < || fe ?p]|L1. The estimates for 1 < p < co
follow then by Marcinkiewicz interpolation theorem.

Assume that 2 € D"()\) and take K > 0 such that D"(z) C D®()). Then

S FQOeO00) FQIE*p()
meels [ s [ Lt o,
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On the other hand, if z ¢ D" ()

@) £ a2 [ O g
dy " (2, ) e p(¢) dm
S a0y o HOR 00 dmic)

Therefore, applying Lemma [6]

d
el S e plimsup([ SO Gt 5 ae)

Dr(z) P

S I fe?pllre.

In the L! norm we get

lue™ | /

AEA ZEDT

/Zm p(V)? /M)'J“(O\ p(C) dm(¢) dm(=)).

Reversing the order of integration we immediately get |[ue=?||z1 < || fe %pl| 1. [ |

Ol 9pQ)
/CGDK()\) p(N)[¢ — 2| dm{(¢) dm{z)+

3.3. Bergman kernel estimates. Let K4(z,() denote the Bergman kernel for 7, i.e, for any
fer;

F(2) = (Fp(z), f) = / Ky(z. O F (Q)e O do ().
By definition

Ky(z,2) = / 1K o2, )P Odor(0).

Lemma 21. There exists C > 0 such that
C~ 120 < Ky(z,2) < Ce0) z € C.

Proof. We use the identity

Ko(2,2) = sup{| f(2)] < f € P2 ||l < 1},

The estimate /Ky(z, 2) < e#*) is immediate from Lemma a). In order to prove the reverse
estimate we construct f € F7 with || f]| 2 < 1land |f(2)] > Ce?®), for some constant C
independent of z.

By Theorem[18] for every m € N there exists P, entire such that
1

P, <C ¢(C)—<f>(z)—’
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with C independent of z. Define f.(() = ¢y e?*)P.({), where ¢ is a positive constant to be
chosen later. Now f,(z) = coe?*) and

~26(0) - ¢ C
QP90 < i

hence by Lemma b) there exist ¢y and C' independent of z so that || £, || <L |

AP(C),

Remark 6. This argument and Lemma[I9(a) show that for any p € [1, oo],
sup{|f(2)| : f € F§, [fllzp < 1} = ®@.

3.4. Scaled translations and invariance. In this section we introduce the scaled translation and
its main properties.

Given ¢ consider the class W, of subharmonic functions 1) such that
(i) Ay doubling with CAl/) < CA¢.
(1) fD¢(O) A ~ 1.
(iii) ¥(0) = 0.
An important property of Wy is that there exists 7 such that Ay(z) < |2]*7 for all ¢ € W, of
class C*. This is a consequence of (5)) and the fact that A« ~ 1/p7,.
Fix ¢ > 21 + 1 and consider the kernel

0l2:0) = 5 [loglL = 21 = Re(PDxervian )]

where P, is the Taylor polynomial of degree ¢ of log(1 + x) around = = 0, and its associated
integral operator

K[f)(=) = / k(2. O)F(C) dm(©).

C
This operator solves the Poisson equation, that is AK[f] = f.

For every x € C, consider the scaled translation
T.(2) = x + zpy(x),
the associated subharmonic function
¢(2) = K[A(¢ 0 75)(2) — K[A(¢ 0 7)](0).

Define also h, := ¢ o 7, — ¢,.. Itis clear that h, is harmonic. Take then H, holomorphic having
h,. as real part and consider the scaled translation operator

T f(2) = f(r(2))e 0,
Lemma 22. For every x € C,

(a) The subharmonic function ¢, belongs to Wy and py,(0) = 1.
(b) T is an isometry from F} to F), , for 1 < p < oc.
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Proof. Note first that from the identity

- / Aj, — / 2 (0)Ad(r(C)) = / A
Dy, (2) Dy, (2) D(72(2),p¢, (2)pg ()

it follows that
(11) ps(T2(2)) = pg, (2)pe ().

This implies that the mapping 7, is actually an isometry between C endowed with the distance
dy, and C with d,, that is

(12) ds,(2,€) = dy(ra(2), 7)) Vz,¢ € C.

(a) By definition ¢,,(0) = 0, and by (L)), ps, (0) = 1. This gives properties (ii) and (iii) of W,.
It is also clear that A¢, is doubling and Cny, = Cag, since for any a € C and r > 0:

[ s = 8o < Caof 8o < Casf Ao
D(a,2r) D(7z(a),2rpg(x)) D(1z(a),rpy(x)) D(a,r)

(b) For p < oo we use the change of variable { = 7,.(z) and (L)

TO(f P ) )[PeP? (12(2)) Po(72(2)) 24
LT @pe (e = [ 15 epre oo (S ()
= [1HOPE O3 dm(0).
The case p = oo is straightforward from (IT). |

Given a sequence A and z € C let
Ay = (1)1 (D).
Given a sequence A and z € C, denote ny(z,7) = #(A N D(z,r)), for any r > 0.
Lemma 23. Let A be a sequence in C.

(a) A is p-separated if and only if A, is py, -separated.

(b) A € Int F} if and only if A, € Int F} . Similarly, A € Samp F7 if and only if A, €
Samp ]—"gz. Furthermore, the interpolation and sampling constants remain the same.

(c) The densities are stable: DX ,(A) = Dy, (M.), and Dy, (A) = Dy, (As).

Proof. (a) is an immediate consequence of (TT).
(b) is a consequence of Lemma and the identity || f|A|| o) = |72 f|A. | @ (A
(c) Define

(13) Daglz,r, A) = na(z,rp(2))

fD;(z) A(b
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By a change of variables, it is clear that
Dag(z,7, M) = Dag, ((72) ' (2), 7, Aa).

Taking the supremum over z € C and passing to the limsup we get the result for the upper
density. The lower density is dealt with similarly. ]

3.5. Weak limits. In this section we study weak limits of sequences A and their properties.

Definition 6. A sequence of closed sets (); converges strongly to (), denoted ); — @ if
[Q,Q;] — 0; here [, R] denotes the Fréchet distance between () and R. We say that (), con-
verges compactwise to (), denoted (); — @), if for every compact set K we have (Q;NK)UOK —
(QNK)UOK.

Definition 7. A set A* is a weak limit of A if there exists a sequence {x, },en in C such that
A, — A"

Given a p-separated sequence A, and a sequence {x, },cn it is always possible to extract a
subsequence of A, such that A, — A* for some A*. We need also a normal family argument
for the translated weights that define the space.

Lemma 24. Let {x,},en be a sequence in C. There exist a subharmonic function ¢* and a
subsequence {xy, }). such that {¢,, }r and {A¢,,, }x converge uniformly on compact sets to ¢*
and A¢* respectively. Furthermore, A¢* is a doubling measure and Cag+ < Cagp.

Proof. Take n and ¢ > 21 + 1 as in the definition of the kernel x (see previous section). Denote
Hn = A¢xn

Since |V, | < pd_)fn (Theorem and py, (0) = 1, for any compact set K there exits Cx > 0
such that |V, (z)] < Ck. By the Arzela-Ascoli theorem, we can extract a subsequence { (i, }«
converging uniformly on compact sets of C to a function p*. It follows immediately that the
measure with density p* is doubling and C,- < C),, = Cay. Furthermore, this implies that
Pg., — p* uniformly on compacts.

Letnow ¢* = K[u*] — K[p*](0), and denote ¢y, := ¢y, , ftg = fin,. We will show that {¢y },
converges uniformly on compact sets to ¢*.

By definition ¢,(z) = K[p,](z) — K[u,](0), thus we only have to prove that K [p,] converges
uniformly on compacts set to K [;1*]. Take z € D(0, R) and ¢ > R. Then

Kl) = K< [ [ 80000~ (0)m(0)

+] / 12, ) (1) — () dm Q)|
D(0,¢)

Let /; be the first integral. By construction of < we have

015 ()"
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Also, (| up( )|+ |,u (€)|)dm(¢) is a doubling measure with doubling constant less than C'a 4. By
B) 11(C)] + |1 ()] 5 [P, and therefore

II 5 /C|>t<|?|) ‘C|2ndm( )

This is smaller than € for ¢ big enough.

Let /5 be the second integral in the estimate above. We have

z—C . z *
ns o[l 0~ ©lam() + / o Q€)= )

For all z € D(0,R) and ¢ € D(0,t) \ D(0,1) we have |P,(z/()| < C(R,t), hence the uni-
form convergence of 1, implies that for p big enough the second integral here is smaller than
e. It remains to prove the convergence of the first term. Take C(¢) such that || D(0,1) |log |z —
¢/¢|ldm(¢) < C(t) and choose p big enough so that |1,(¢) — p*(¢)| < ¢/C(t) uniformly on
D(0,t). Then the estimate follows.

We know that the sequence of distance functions dy, has a subsequence converging to dg-
uniformly on compact sets of C x C, because the p,, converge uniformly. By construction
Pz, (0) = 1. On the other hand, the Lipschitz property (6) implies that the Pz,, are equibounded
on any compact. Moreover, by Lemma 4] they are equicontinous on compact sets. We can thus
extract again a convergent subsequence. |

Corollary 25. Given a subharmonic function ¢ with doubling Laplacian, A a p-separated sub-
sequence and {z, }nen a sequence of complex numbers, there exist a subharmonic function ¢*,
a py+-separated sequence N* and a subsequence {x,}nen of {2n }nen such that A, — N*, and
Op, — OF and A¢,, — AP* uniformly on compact sets.

We will write (A, , ¢.,) — (A*,¢*). The set of all such weak limits will be denoted by
W(A, ).

Let us prove now the stability of the upper and lower densities with respect to weak limits.

Lemma 26. Let A be a p-separated sequence, {x,}, C C, and assume that (A,,,¢.,) —
(A*, ¢*). Then

(a) DX, (A) < 1/2m implies DX,.(A*) < 1/2m.

(b) Dry(A) > 1/2m implies Dy 4. (A*) > 1/27.

Proof. Denote A,, = A, , ¢, = ¢, and p,, = p,, . By hypothesis {A¢,, },, — A¢* uniformly on
compact sets, and therefore {p,, }, — p* also uniformly on compact sets. Thus, for any ¢(r) > 0,

nas (2, (r = e(r))pg-(2)) _ . na,(2,7pn(2) _
oy 9" = fnif Jor o Dbn T

¢7L
< lim sup n/}n(z, T/)Anibz)) < nA*(z,f(r + €(A>;f¢(z>>
n—oo Dgn (z) n D;* (z)
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(a) Since DX, (A) < 1/2m, there exist €, Ry > 0 such that, if w = 7, " (2)

na, (W, rpn(w)) _ na(z,7p(2))
ngn(w) Agb” fD;(z) A¢

Taking limits as n — oo and picking €(r) so that €(r)/r — 0 we see, using Lemma |11} that
Drye(A*) < 1/27.

(b) is proved similarly. |

<1/2m—¢ Vr > Ry, Vne N, Yw e C.

4. PRELIMINARY PROPERTIES OF SAMPLING AND INTERPOLATING SEQUENCES

This section is devoted to prove auxiliary results on interpolating and sampling sequences. A
main result is that there do not exist sequences which are simultaneously sampling and interpo-
lating. We also prove some results on inclusions between spaces of sampling and interpolating
sequences for various weights.

An easy consequence of Lemma|19|is that we only need to deal with p-separated sequences.
Lemma 27. Let A C C.

(@) If A € Int FZL, then A is p-separated.

(b) If A € Samp f;’f there exists a p-separated subsequence N' C A such that ' €
Samp F7.

() If p < oo and A € Samp ]'—Z; then A is a finite union of p-separated sequences.

(d) Let A € Samp F}, be p-separated. There exists v > 0 such that C = Uyepa D" (N).

Proof. (a) Assume that X, 1 € A with [A — u| < p()) and take f € F7 such that f(X) = e?™),
) = D and £l 5 1. Then

L= N)]e™™ = [f(w)]e® | S V(| fle )OIl = Al
The result follows then from Lemma [I9)(b).
(b) As in the proof of [Beu89, Theorem 2, p. 344], using here Lemma @Kb) instead of Bern-
stein’s theorem, we get
1

1 ,
m | = A

p
L¢>

(c) It is enough to show that there exists » > 0 and M such that #(D"(z) N A) < M for all
z € C. To this end, consider the function f,(¢) = e?(2) P,((), where P, is given by Theorem|18]
(with e = 1). We have ||f.||z < C, and for 7 small enough |f.(¢)| = e?(¢) in D"(2). So the
left sampling inequality (see (2))) yields

#(D"(2) N A) < [ fl Al a) < CLG(A).

(d) It is enough to see that for s big enough A N D*(z) # () for all z € C.
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Take f, as in (c). Let ¢ > 0 be the p-separation of A. Since

L(QPeP©Op2(¢) < — 2N

L+d3(z,0)
Lemma[I9(a) and Lemma[9]lead to

Pp—PP(A Agb—(C)
Do P g / 1+d 11d7(z0) S/C@S((s)(z) 1+ dp(z,¢)

AED*(2) AED* (2

According to Remark 2] this tends to O uniformly in z as s goes to co. Thus, for s big enough
the sampling inequality gives

1<Cc ) |fZ<A>|pe*p¢<”-
AEAme

In particular A N D*(z) # (), as desired. [ |

4.1. Weak limits and interpolating and sampling sequences. In this section 7¢ will denote
the scaled translation associated to the weight ¢, as described in Section The main result is
as follows.

Proposition 28. Let ¢ a subharmonic function with doubling Laplacian and A be a p-separated
sequence. Assume (N*, ¢*) € W (A, ¢).

(2) If A € Samp F then A* € Samp F..
(b) If A € Int F} then A* € Int F..

Proof. (a) We argue by contradiction. Otherwise there exist €, > 0 decreasing to zero and
functions f,, € F}. such that ||fn||;£* =1and ||fn|A*||g§>* () < En.

By Corollary 25| there exists a sequence {z;};en in C such that (A;, ¢;) — (A*, ¢*), where
we denote A; := A, and ¢; := ¢, ;.

For every n consider s,, big enough so that if D,, := D3:(0) then [| f,,| Dy|| o2 1 - Set
D, := D}:(0).
We claim that there exists a smooth cut-off function X, such that X,,({) = 1in D,,, X,,({) =0

inC\ D, and |§X,| < &,/ps-. To see this start with a smooth X,, depending linearly on |¢| on
sn < |¢] < s2. Then
1

po(0)(s% = sn)’
By Lemmalpw (€)/ps+(0) < 5207 for some § € (0,1). Thus, if s,, is big enough

10X, (C)] <

1-6
_ sn( ) En

]82@(0\ < p¢*(()(5n _ Sn) < p(z)*(C).
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Take now j, big enough so that ps, /ps< < 2on D,, and

[ £alDallz =l ful Dull 22,
n
11285, 0 Dl —an|/\*ﬂDnHng S en

< é&p,

Define g, = f,X,. Then g, is supported on C,, := {s, < |¢| < s2} and |0g,(¢)] <
enl fn(Q)]/ps+(C), so by Theoremlthere exists u, solutlon to Ju,, = Jg,, with

lunllze S N0gnps,, ll7e S enllfalDallrr S n
In In In
The function G,, = g,, — u,, is holomorphic and satisfies

IGullzr = IfalDallsz —llullzy =1~ Cep 1.
In In n

We will check now that G, |A;, is small. Split A, into an = A, Nn{D, U (C\ D,))} and
Ajn Aj\ A]n On the one hand

HGn’AJ’nHeg]_n @&, S [ fal Dn 0 AjnHzgm &) T Hun’AjnHeg)jn (Rjn)

From ||un|anH£g R, < Hun||;£ < g, (by Lemmafor the case p < oo, since u is
gt I _ in ~
holomorphic in D,, U (C\ D,, )) we deduce that ||G,,|A;, || e (R < &,. On the other hand
i T

G !Agnllep R50) S Gl (Do \ Dy Mz S fal + [uall(Da \ Da)llzz 5 en.

This together with the above and the fact that the sampling constants of A and A; coincide
(Lemma [23(b)) leads to contradiction.

(b) Assume that A* = {\} },, and let v € £} (A*) with HUH@(A*) < 1. Letalso A; = {\]}; be

such that A; — A* uniformly on compact sets. For ¢,, decreasing to zero and s,, big enough (to
be chosen later) there exists j,, such that ||v|| & (Ag,ND3E(0) < 2and

—¢* —2/p

€7 Py s

(14) f/ <2 on  D0).
[ ¢]np p

Since the interpolation constant M (A;) does not depend on j there exist f,, € fgj with

Ifallz < 2M(A) and

0  otherwise.

i M Jn Sn
£ = {vk if A" € D3:(0)

We will now use the same technique as in (a) to modify f,, so that it falls in }'Z; Take the cut-off
function X, constructed above, define ¢, = f,X,, and consider a solution u,, to ou,, = fné(/'\’n)
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such that:

an ( )qu*
1£20(X,) p-

According to Theorem C and (14) such a solution always exists.
The entire function G,, = f,0(X,) —u,, is FL. and |G, || . < C' M. By Montel’s theorem we

may assume that G, converges to a function G € F.. Notice that G,,(\") = vy, — u,,(\)") for

2
[tn| 22, 7. S el fal DOz, S enllfullzy S en,

AR A

ln 722 rz Senllfullz, S en-

VA= D3:(0), and by the L> estimates, |, (A)")| tends to zero as n goes to infinity. Therefore
G interpolates v. u

The next lemma and its corollary are our counterparts to equivalent results of Beurling in the
context of the Bernstein space, see [Beu89, p. 345].

Lemma 29. Suppose that for every weak limit (A*, ¢*) € W(A, ¢) the sequence \* is a unique-

ness set for . Then there exists ¢ > 0 such that \ is sampling for F° (Lre)

Proof. If this is not the case there exist ¢, > 0 decreasing to 0, f,, € F Y (lren and z, € C such
(14en)d(zn) —

that | £, (za) e~ 960 = 1 || full e, < 2and [fulAlles, ) <

Denote v, = (1 +¢,)¢. Let A, = (7¥7)"*(A) and g,, = T" f,,. Then, denoting ¢, ., = (1 +
€n)®.,, we have |g,,(0)| = 1 and ||g,| A, ”goo (A = ”fn’AHgoo ) < en. Taking a subsequence

if necessary, we can assume that A, converges weakly to A%, @Dn,zn — ¢* uniformly on compact
sets and g, — g* € Fj¢ (by Montel’s Theorem). So g* vanishes on A* and |g*(0)] = 1,
contradicting the fact that A* is a uniqueness sequence. |

Corollary 30. Let ¢ a subharmonic function with doubling Laplacian and let A be a p-separated
sequence. The sequence A is in Samp F3° ifand only if for all weak limit (A*, ¢*) € W (A, ¢),
the sequence \* is a uniqueness set for Fg:.

4.2. Non-existence of simultaneously sampling and interpolating sequences. An important
result in the proof of Theorems A and B is the following theorem. It is an analogous result to
[Sei92, Lemma 6.2].

Theorem 31. There is no sequence A both sampling and interpolating for F%, p € [1, oc].

Proof. Assume that such sequence A exists. We claim that

A)p(N*
(15) sup Z %<oo

Let p € [1,00). Given any \* € A take a function g such that g(A\*) = 1, g(A) = 0 for A\ # \*
and ||g|| r < e7P?(A\")_ Such g exists because A is interpolating. Consider the function

F(e) = NLAE=A)
(2) AGAZW””@—A)(A*—A)
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The sampling inequality shows that I € FJ. Moreover, since [F(A)| = [g'(A)[p()) for all
A€ A\ X and F(\*) =0, we have

1% < D AP (Ve
AEA\N
We use now Lemma [20]and the fact that A is p-separated (since it is interpolating):
1E1Z < Z/ gl ™?do S gl S 7.
AN

We want to estimate | F”(\*)]. Using again Lemma 20|
FOPeT ) S [ (FPe s £ e O(),
D(X)
Therefore |F'(A*)|p(A*) < 1. On the other hand
A
F'(\") = )
AEA\N

This yields (15]). The obvious modifications give (15)) in the case p = oc.

According to Lemma[27(d) there exists r > 0 with C = Uyep D"(A). Also, there exists ro > 0
depending on r such that,

dm(z) PN
<C(r) VA & D™(\).
We may now finish by taking a big disk D(0, M) and \;, € D(0, M) in such a way that p(\},) >
p(A) forall A € AN D(0, M). In this case

dm(z) / p
TR TR TRTIN — S e
/D(o,M)\Dro(Ayw) L+ [z — A2 Z roy 1+ |z — )\ e Z _ )\MP

AEA\NL,
AgDTo (A)

This is a contradiction, since limps_,o p(X3;)/M = 0 and the left hand side of the previous
inequality tends to oo as M goes to co. |

Corollary 32. Any sequence obtained by deleting a finite number of points of A € Samp ]:?; is
still in Samp F.

Proof. Suppose that we remove a point A from a sampling sequence A and the resulting sequence
A" = A\ Xis no longer sampling. Then there is a sequence f, € F such that | f, || 7o = land

If |A’Heg < 1/n. Since A is sampling |f,(A\)| is bounded from bellow and above. Therefore we
can take a subsequence converging to f € F7 such that f|» = 0 and f(\) # 0. Now for any
p € A we consider the functions g,(z) = f(2)(z — A)/(z — n)* where k is the multiplicity of
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f at . This functions belong to ]-"g and g, (\) = 0if A # p, thus for any values v € éz we can
construct the function

h(z) = Z uAgA(2)/ A (A).

Since A is sampling h € ]-'f; and it interpolates the values v. Therefore A € Int .7-';‘2, a contradic-
tion with Theorem [ |

We want to prove next an analogue for interpolating sequences: adding a finite number of
points to an interpolating sequence gives again an interpolating sequence.

Given A and a point z define, following [Beu89, pp. 352-354]
07 (2, A) = sup{|f ()™, ||l 72 < 1, fIA = 0}.

Notice first that if A is interpolating and z ¢ A this is strictly positive. Indeed, A is not a
uniqueness sequence, otherwise A would be also sampling, contradicting Theorem Thus
there exists f € FJ, f # 0 with f|A = 0 and, eventually dividing f by a power of (¢ — z),
f(2) # 0. Hence o7(z, A) > 0.

Lemma 33. Let A € Int F}. Then AU {2} € Int F}, for all = ¢ A. Furthermore, for all e > 0
there exists C' > 0 such that dy(A, z) > ¢ implies MJ(A U {z}) < CME(A).

Proof. As in the proof of [Beu89, Lemma 4, p. 353], we have
L+ 2MJ(A)

MU ) £ 5

Thus we will be done if we prove that there exists A > 0 such that ds(z, A) > ¢ implies
oy(2,A) > A

If this is not true, there exists a sequence {z,} € C with dy(z,, A) > ¢ and 05(z,, A) < 1/n.

Transferring z, to the origin by 7, ! (see Section , we get a sequence A,, := A, such that
Al > eforall A € A, and oy (0,A,) < 1/n, where ¢, = ¢.,,.

Taking a subsequence if necessary, assume that (A,,, ¢,,) converges to (A*, ¢*). By Proposition
A* U {0} € Int FJ., so there exists f € FJ. with f|[A* = 0 and |f(0)| = 1. Arguing as in
the proof of Proposition 28| we see that there exist f,, € ]—";;’n and ¢,, decreasing to zero such that

lalfalle 0 ene 1@ Zc  and  [fulle <C.
Since A,, is interpolating, there exist also g,, € fgn with
gn|An = fn|An and ||gn||]-'f;n < Mgn (An)||fn|An||€§)n(An) < 5nM<A)'

Then h, := f, — g, € F, vanishes on A, and th||f£ < 2C, therefore |h,(0)] < 1/n.

On the other hand |g,,(0)| < €, and therefore |h,,(0)| > ¢/2, thus contradicting the previous
estimate. |
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4.3. Inclusions between various spaces of interpolating sequences. We want to study next
the relationship between the spaces of interpolating sequences for various weights. We will use
the techniques already exploited in [MTQO].

We start with the construction of a sort of peak-functions associated to an interpolating se-
quence. Let 5§' denote the Kroenecker indicator, i.e. 62 = 1if A = X and 6 = 0 otherwise.

Lemma 34. Let A € Int .7-'(7;, 1 <p< oo Givene >0and m € N, there exist C > 0 and
functions gy € F7 (1+¢) ¢ Such that

(@) ga(N) =& forall \, N € A.
(b) ||gA||Fp ~ o—(1+e)p(N)

(1+e)¢

1
< p(4e)(@¢(x)—0(N) =
(d) Forallv el 1+5)¢(A) o) ¢(A) HZ,\GA UAQAH;p o S v ||£fl+€)¢(/\)
(e) lim sup eP(1+e)¢N / lga(2)[PePIHE9E) 4o (2) = 0.
=00 \eA
C\D" (%)

Proof. By hypothesis there exist functions f) € F such that f\(x) = 0§ forall A\, u € A and

| fall 7 < M(A)e=*™). Consider the peak functlons P, given by Theorem |18/ for € > 0, and
deﬁne gx = frPh. By construction we have (a) and (c).
(b) When p = oo we have e~ (179N = =140V gy (N)| < |[|ga 7o The remaining

(+e)s”
inequality is immediate from (c).

Let p < co. On the one hand, Lemma[I9(a) gives

- B 1/
e~ (142600 — (=426 g, (\)] < </D<A> laPe ™ %da) S Naallsy, -

On the other hand, (c) and Lemma|[5|(b) show that for m big enough

A
/ (g [P P10 gy < e—p(1+I60) / do(z) + / % < 149000
C D()) C\D(\) %y (2,A)

(d) Denote f =), vxgx. The left inequalities are proved similarly to (b), for

e~ (1N | = e~ (1H9N | £\

Forp =ooand v € €77, (A) Lemma@and (c) yield

1+z—:

1

RO foallga2)) £ e IIe(Hg)d)(A)ZmﬁHUH@EM(M-
PYIN AEA o\
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Let now p < oo. Using the estimate (c) and Jensen’s inequality for convex functions (which
is legitimate thanks to Lemma [6)) we have

1 1 p
|f(2)|PeP1499() =2 () < [ IO e S M -
02(2) )\ez; 1+d¢> (27)‘)
1

S

1
oy [Pe PPN — —
p?(2) /\EZA 1+ d}(z,A)

Now we apply Lemma [5(b) and obtain

/ e 192dg < S uy Per 190 / _ 20 e,

= cl+dp(z,A) "~ rere)’

(e) This follows from (c) and Remark [2] since

P46 / 0a (2)Pe I+ dir () < / Be(z)
C\D"(\) caory 44z, )

Theorem 35. Foralle > 0and 1 < p,p’ < oo, the following inclusions hold

Int .7:p C Int .7:p1+€

Proof. Tt will be enough to prove that forall e > 0 and 1 < p < o0,
(@) IntF) CInt FTi., (b) IntFj° C Fj

(1+e)o

(a) Take the functions g, given by Lemma Forv € (77, ,(A) we consider the interpolating

function
F(2) = vga(2)

AEA
A direct estimate using Lemma [34|(c) yields

[f(2)]eHPE <N m
A1+d z,A)

which is bounded, by Lemma|6]

(b) Given v € £}, 4(A), take f = 37, vigx as before and estimate as in the proof of

Lemma [34(d). [

4.4. Inclusions between various spaces of sampling sequences. In this section we want to
prove some inclusions between various spaces of sampling sequences. Unlike in the correspond-
ing result for interpolating sequences, for the spaces of sampling sequences there is a gain, in
the sense that any sampling sequence is actually sampling for a slightly bigger space. This will
allow us to pass from the non-strict to the strict inequality of Theorem A.

A remark is in order. Given a sampling sequence, it is easy to “decrease” the space so that
the sequence remains sampling. This can be proved as we did for interpolating sequences (and



INTERPOLATING AND SAMPLING SEQUENCES FOR ENTIRE FUNCTIONS 37

“increasing” spaces) in Theorem (it is actually done in step (c) of our next theorem). It is
more difficult, however, to slightly increase the space while keeping the sampling property of the
sequence.

Theorem 36. Let A € Samp ]:g be p-separated. There exists ¢ > 0 such that for all p’ € [1, 00|
the sequence A € Samp J-'g te)d

Proof. The proof is divided in three steps.

(@) If A € Samp F, then A € Samp F;°. We know from Proposition [28| that for all weak
limit (A*, ¢*) the sequence A* is in Samp FZ., and by Lemmait will be enough to see that all
weak limit A* is a uniqueness set for F32.

If this is not the case, there exists f € F3¢ with f[A* =0, f # 0.

We claim that for m large enough

_ f(z)
9@ = T o) ST

It 1s clear that Lemma gives the p-integrability on U;"ZlD()\;f). On the other hand, by
Lemmal[l9

]f]pe_p¢*pdj3 [ 1|%=c Ag*
2¢U;D(XY) 12— APz = AP 2¢U; DY) 12— APz = AP

Since A¢* is doubling there exists m such that this integral converges (Lemma [5(b)).

By Corollary 32} A* \ {A}... A5} € Samp FL.. As f vanishes on this sequence we deduce
that f = 0, which 1s a contradiction.

(b) If A € Samp F° there exists € > 0 such that A € Samp “7:(Olo+a)¢' If this is not the case

for any sequence {¢,,} “\, O there exist functions f,, € F(len)s and 0n > 0 decreasing to 0 with
[l Mlee, . 1) < 0nand | fu(zn)] = 1.

(14+en)o
Let A, = 7,1 (A), ¢ = (14 €4)¢:, and f, = T2 fo. Then [/, (0)] = 1, [ fulAnlle < 60,
and there exist a sequence A* and functions ¢*, f* such that
(An, &n) = (A", 97) € W(A, ¢)
and {f,}, — f* € F3¢ uniformly on compact sets. So we have [f*(0)| = 1 and f*|A* = 0, i.e.

A* is not a uniqueness sequence for F32, a contradiction with Lemma

(c) If A € Samp F(Lie)p Jor some € > 0, then A € Samp .Fpl,for all 1 < p’ < co. Consider
the spaces

Firme = (f€FFias: Jim [£(2)}e"+94) = 0},

OO’O 0 . 7 —
f(1+a)¢(A> = {U S €(1+6)¢ : \)\1|1Lnoo |U>\|e (14+e)p(N) _ 0}'
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There is a sequence of functions {g(z, A) }xea such that for all f € F;}

(149190 £ () = Z e~ (120 £(\) g(z, \),

AEA

1+s

and ), |g(z,\)| < K uniformly in 2. This is so by a duality argument, because
{F(Mhea = e 09D f(2)  with f e FTL

is a bounded linear functional from a closed subspace of 5(1 o) ¢>(A) whose norm is bounded
independently of z. This is an argument from [Beu89, pp. 348—358] (see also [Se193) p.36]).
Consider now f € Fy CF; Y. Given z € C take the function P, of Theoremfor e > 0.

Then fP, € .7-" and by the representation above

TS (z) = eI PNz, A).

AEA

1+e)¢>’

Hence

F(2)|e?® <Y I FN)e PV P (M) @E gz, )

AEA
- l9(z, M|
% 1+ dj(z,A)

The case p = oo is clear, so assume that p < oo. Since ), |g(z,A)| < K, we may apply
Jensen’s inequality and obtain

o o9z, )]
()|f( )|6 oz )\EZAV | ¢/\1+dgzp(z7)\)'

Now integrate, use that |g(z, \)| < K and apply Lemma b) to finally obtain the sampling

inequality
/ |f(2)[Pe” P Z)da )< Z Fie |p€fp¢>

AEA
|

4.5. Nets. We finish this section by giving useful examples of interpolating and sampling se-
quences.

Lemma 37. Let | be the multiplier associated to ¢, as constructed in the proof of Theorem
and let A = Z(f). Then DX¢(A) = Dr4(A) = 1/27. We say that A is a net associated to ¢.
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Proof. The construction of f is made with quasi-squares R, of ;1(R,) = 2rmN and mN asso-
ciated points in a dilated C'R,, that made up A. Thus, for = € C and ¢ > 0:

1
n(ztp(z)) = mN#{p: CR, C D'(2)} = U R
p:CR,CDY(2)

1
neto(z) < mN#{p:CR,OD'E A0 = ou( | Ry
p:CRpND*(z)#0

By Corollary

DMz c |J R,cDi(z)c  |J R, cDTU(2)
p:CR,CD(2) p:CRpNDt(2)#0
whence

1

1D (=) < (e tp(2) < o-p(DHO(2))

The result is then an application of Lemma|[IT] [

Lemma 38. Let A be a net associated to ¢. Then A € Int ‘/—-?)1—&-5)(1) and A € Samp fﬁ_a)(bfor all
e>0and1 < p < oo

Proof. Let f be a multiplier associated to ¢ such that A = Z(f).

Let us start by proving that A is interpolating. By Theorem [35] it is enough to prove that

A € Int ]:E’f+a)¢ forall e > 0.

For each A € A define )
_flz) 1
EO S VIS
Clearly g()\') = 63". The growth condition of the multiplier gives |f'(\)| =~ e*™ /p()\). This
and Lemma [4] show that for some v > 0,

—é(x _ande(z, A
or(2)e 0 < o BB D) )

When 2 € D()) it is clear that this is bounded by e~*™), by Lemma[d(a). The same bound holds
for z ¢ D()), using Lemmad{b) together with the fact that dy(z, A) < 1.

As seen in the proof of Theorem [35] the existence of such g, is enough to construct, for any

€ > 0, an interpolation operator for .7-'?1 o)

Let us see next that A € Samp .7-'?175) - By Theorem ﬁ it is enough to consider the case

p = oo, and by Corollary [30] it will be enough to see that every weak limit (A*, (1 — €)¢*) €

W(A, (1 —€)¢) is a uniqueness sequence for F__ ..

Let (A.,,¢.,) — (A", ¢*) and let f, be the corresponding multipliers, with Z(f, ) = A,,
and |f,, (2)] = e**)dy. (z,A,,). By Montel’s theorem let { f,, }, — f* with Z(f*) = A* and
|f5(2)] = e® @ d g (2, A¥), i.e, f* is a multiplier for ¢*.
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Consider also a multiplier g associated to £¢*. In particular |g(2)| ~ e**"®)dy (2, Z(g)). In
order to see that A* is a uniqueness sequence assume that h € .7-"(1 4 and h|A* = 0. Then

hg € Fj2, by construction. On the other hand, the function /' := hg / f* is entire, because h

vanishes on A*. It is also bounded when z is far from A*, since |hg| < e®” and |f*| = e?". By the
maximum principle F' is bounded globally, and by Liouville’s theorem there exists ¢ € C such
that hg = cf*. Since g vanishes in some points outside A* we have ¢ = 0, hence h = 0. |

5. SUFFICIENT CONDITIONS FOR SAMPLING

We prove here the sufficiency part of Theorem A. We will use the same technique as in [Beu89,
pp- 341-350]. Assume that Dy ,(A) > 1/27. By Lemmawe can assume that A is p-separated,
and according to Theorem 1t will be enough to prove that A € Samp F;°. By Corollary [30) .
this will be done as soon as we show that every weak limit A* is a umqueness sequence for F 2.

Recall the notation nx(z,7) = #[A N D(z,7)].

Assume thus that we have f € Fg with f[A" = 0 and [|f|re = 1. There is no loss of
generality in assuming that f(0) # 0. Applying Jensen’s formula to f on D (0)

o (0) o o
/ 9 npe (0, ma-(0,1) _/ log | f(rpg-(0)e®)|df — log | f(0)]
; t

1 2w

o J,
= [ / 5 (rpe- (0))d0 — 6°(0)] + ¢°(0) — log | F(O)]
0
By Lemma ] Then, Green’s identity yields

<

¢ (rpg-(0)e’)d — log | f(0)]

05+ (0) (0. ¢ 1 .
[0 < tog 22D g () + 0(1)
0 t 27 ) D(0,rp e (0)) q
1 [rre=(0) dt
T Jo t

for all » big enough. This contradicts the hypothesis, which implies in particular that for some
e > 0 and all ¢ big enough n,-(0,t) > (1/27 + ) A¢*(D(0,1)).

6. NECESSARY CONDITIONS FOR SAMPLING

This section contains the proof of the necessity part of Theorem A. By Lemma [27(b) and
Theorem [36|it will be enough to prove the following result.
Theorem 39. Let A be p-separated. If A € Samp F then D, (A) > 1/27.

We use a result comparing the densities between interpolating and sampling sequences, as in
[RS95]. We do that by adapting Lemma 4 in [OCS98] to our setting.
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Lemma 40. Let ¢ > 0. Assume I € Int }—(2175) s and S € Samp }"3) is p-separated. There exists
a positive function €(t) such that tlim €(t)/t = 0 and for every ¢ > 0 there is ty > 0 with
— 00

(1 —€) ni(z,tp(z)) < ng(z (t+e))p(z), =zeC,Vt>t1,.

Proof. The proof is as in [OCS98, Lemma 4] with minor modifications, so we keep it short.

According to our definition, if S is sampling then {k(z,s) = K,(z,s)e %} g is a frame in
]-"35 (K4 denotes the Bergman kernel, as in Section . That is, for f € ]:35

11 = ST k2, ), () 1
ses
A consequence is that
f(2) =) (k& 5), f)k(z,8) = Y f(s)e*Pk(z,5),
seS sesS
where k(z, s) is the dual frame of k(z, s).

Consider also the functions g; given by Lemma [34] for the weight (1 — £)¢. Lemma [34(d)
implies that the normalised functions x(4, z) := g;(2)e?® form a Riesz basis in the closed linear
span H of {(i, z) }ies in F.

Given z € C and ¢, > 0 (¢t much bigger that ) consider the following two finite dimensional
subspaces of F:

Ws = <k(§s):s€SND""(z) >
W, = <k(&i):ielInNDY(z)>.

Let Ps and P; denote the orthogonal projections of .7-"(% on Wgs and W; respectively. We
estimate the trace of the operator 7' = P; Ps in two different ways. To begin with

tr(T) < rank W < #{SND""(2)}.

On the other hand
w(T) = > (T(k(&9)), Prs* (&, 1)),

i€INDt(2)
where {£*(£,7)} is the dual basis of x(£,4) in H. Using that P; and Ps are projections one
deduces that

tr(T) > #{i € IND'(2)}(1 - sup [(Ps(K(8, 1)) — £ (€, 1), K (&, 1)1)-
Since ||/<o(§,i)||f§ ~ 1, also ||k*(&, i>‘|f§ ~ 1. Thus we will be done as soon as we show that
| Ps(k(&,1)) — R(E, z')Hf; < ¢ for a suitable r ~ €(t).
We have
1Ps((, 1) = (& Dl < D [k(Es),m(& = > [i(s, i)e )|,
)

s¢Dt+7 (2 sg D7 (2)
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Since S is p-separated, there exists 7 > 0 such that the disks D"(s) are pairwise disjoint.
Using Lemma [I9(a) we get, for some ¢ > 0 depending on ¢ and 7

IPsCule )~ wl€ D3 S [ RGP (),
Dn(s)
sgDt+7(2)

Applying Lemma [9] with * = #7 and 7 so that 0 < (¢ — 7)y < 1, we see that there exist

§ € (0,1), ¢ > 0 and a function €(t) = ct'~° such that

J D(s)cc\ D).
sgDt+ee(®) (z)
Finally, for ¢ big enough Lemma [34{(e) yields
1Ps(5(€,8)) = (&, )15 S / [6(&,7)[Pe 2O da(€) S e.

¢ C\D=®(4)

|

Proof of Theorem[39 Given ¢ > 0 consider a net [ associated to (1 — 2¢)¢. By Lemma
I € Int Ff_,, and by LemmaDqu([) = Da,(I) = (1 = 2¢)/2m. Apply now Lemma
there exist ¢y and €(¢) such that for ¢t > ¢

na(z,tp(z)) > (1 — &) ny(z, (t —e(t))p(z)) > (1 2—7T€)3

where 6(t) =t — €(t) — €(t — €(t)). This estimate together with Lemma 11| finish the proof. W

7. SUFFICIENT CONDITIONS FOR INTERPOLATION

Taking into account Lemma|38], in order to prove the sufficiency part of Theorem B it is enough
to prove the following.

Theorem 41. If A is p-separated and D} ¢(A) < 1/2m there exist ¢ > 0 and a sequence Y. such
that A U X is a p-separated net associated to (1 — €)¢.

In the proof of this result we need to express the density condition in terms of the quasi-squares
appearing in Theorem 8] this will be done in Theorem 43}, before we need some preliminaries.

Denote ¢, = e~ "¢.
Lemma 42. Let

r2dm(z
lo—Cl<pon ()7 TP, (2)

Then sup |I,.(¢) — 1| < 1/r.
¢eC
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Proof. We estimate [, using the change of variable w = (z — ()/py, (2), whose Jacobian is
<vp¢r(z)7 2 <> ‘
Py, (2)

From (0)) it follows that |V p,, | < 1, hence the Jacobian is bounded above by pdf(z)(l +1/r)
and below by p,*(2)(1 — 1/r). Then

1 r? 1 r? 1 1
1—- —(1 —=)dm(w I.(0) < —(1+=-)dm(w) =1+ -.
[ Za-Dmw) <00 [ e nydn() =1+

" Jwl<tyr T r <i/r T r

p2(=)[1 -

Using (9) with ¢ = ¢” we have

(16) lim P2 () _ o
r=00 1p(2)

uniformly in z € C.

Let R? (=) denote the rectangle with vertices z+sp(z)(1+ia), z+sp(z)(1—ia), z—sp(z)(1+
ia) and 2z — sp(z)(1 — i), where o € [e7!, €] and e is the constant of Theorem [8[b).

Theorem 43. Let 1 = A¢ and let v be a positive measure such that
a7 V(Dy()) < (L - )u(Dy(=)) ¥r >, ¥z € C.
There exists so > 0 such that for any o € [e™ !, €]

V(RL(2) < (1= D(R3(2)) Vs> so, ¥z €C.

Proof. Fix r big enough so that py, /7 > ropsand (1+1/7)(1 —¢) < (1 —1/r)(1 —3¢/4). This
can be done because of (16)). By hypothesis

v(Dy]'(2)) < (1 —¢€) n(Dy () Vz€C,

and if s is much bigger than r we get
2

- (DY (2)) dm(z) < (1 — r DY (V) dim(2).
[ (D )i < 1-9) [ WD (=) dm()

w2, (2) seRs (w) 705, ()

Denote

20.) = {2€C, |z = ([ <py(2)/r},
Fr(w,s) = {¢€C, Q.(C) C Ri(w)},
Go(w,s) = |J (0.
(eRg (w)
Reversing the order of integration and using the previous lemma we deduce that

U(Fy(w,5)) < (1= 52) (G, 5).
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It is clear that F,.(w,s) C R:(w) C G,(w,s). Similarly to the proof of Lemma [9] there exists
¢(s) such that RS ) (w) C F,(w,s) and G, (w, s) C Ra™ ) (w).
By Remark /4]
pR O (w)

1 s—e(s) o
7% p(Ra 7 (w)
uniformly in 2, and therefore there exists sy such that for s > s

VRO W) < (1= 22) (@) < (1~ 22) u(REO w)
< (1=3) alROw).

Proof of Theoremd1} Take an entire function g vanishing exactly on A. We will construct a
sequence X and an entire function A such that for some £ > 0,

(1) AU X is p-separated.
(ii) h vanishes exactly on ..
(iii) Forany 7 > 0, | log |h(2)] — (1 — &)¢(z) + log |g(2)|| < C- if D"(z) N (AU X) = 0.

Accepting this we reach the result by taking f = gh. This is so because the separateness of
A U X and (iii) imply that f is a multiplier for (1 — &)¢. |

Construction of 3. and h. To avoid the repetition of the factors 27 and 1 — £, denote here 1 =
(1 —e)A¢/2m. Let

. 1
fi=p—) 0= -A((1—¢e)¢—loglgl).
AEA
Following Theorem [§|and the Remark thereafter, given n, M/ € N we can take a system of quasi-
squares { Ry}, such that, denoting /1, = fyg,, we have o = >, ji, and j1,(C) = Mn. Then

[i = 3y fu, being
[ = p — Z Ox-
AEANRy
By hypothesis there exists € > 0 such that Da,(A) < 1/27 — 4e. Therefore, there exists 1o > 0
such that
a(D"(z)) > 3eu(D"(2)) forall ze€ C,r > .
Also, Theorem {43|implies that for M > m/(2¢) and n big enough:
Mn > ji(Rg) > 2epu(Ry) = 2e Mn > mn.

Let ji(Ry) = myn, with m < my < M. Notice that m;, € N, since u(Ry) € N. Applying

Lemma |15 we obtain a sequence ¥ made of points o¥, ... ,af”nkn € CRy, so that the first m
mgn

moments of the measures v, = fi, — »_ 0, vanish. Furthermore, it is clear that we can choose
=1 "’

the Tf in the proof of Lemma so that A U ¥ is p-separated.



INTERPOLATING AND SAMPLING SEQUENCES FOR ENTIRE FUNCTIONS 45

Let

v == 5 A1~ )6~ loglgl) - 36

>
In order to prove (iii) consider v = (1 — )¢ — log |g| — w, where

w(2) = [ Tog|z = (o).

Av = 2%250,

oeX
there exists h entire (vanishing exactly on X) such that log |h| = v.

We need to estimate |w(z)| when |z — A U X| > 7p(2). Given z € C, let ky € N be such
that z € Ry,. By Theorem [§c), there exists 7 > 0 independent of z such that Ry, C D™(z) C

C Ry,. We have
= [ log|z — Cldv(¢) = [ log|z — ¢|d log |2 — C|d
w(z) / og |z — Cldv(C) / og |z — Cldvig %j / og |z — Cldn(0),

Since

and we estimate the two terms separately.

Let C' > 0 be the constant of Lemma@ Since the first m moments of yko vanish,

[0l = cany(©] = | [1os"Sam0)] <] [ 1o 2 duc)| + Kltogr
C & ron(z CRy, - C |
S [ %dmo + Kllogr| < C..
Dero( |z — (]
The other integral is estimated using the moment condition for each v, as in the estimate of
I, in Theorem [14] [ |

8. NECESSARY CONDITIONS FOR INTERPOLATION

Let us start by proving the non-strict density inequality. By Theorem it is enough to
consider the case p = 2.
Theorem 44. If A € Int F} then DX, (A) < 1/2m.
Proof. Given ¢ > 0, take a net S associated to (1 + 2¢)¢, as described in Lemma[37} Lemma 38|
implies that S € Samp ]:(21 te)g and by Lemma there exists ¢y > 0 such that

na(stp(2) < (L+2) ns(z (L +e)pl(z)  2€C, t= 1t

Since S is a net of density (1 4 2¢)/2, the radius ¢, can be taken so that for ¢ > tg

sz, 1+ e)plz)) < T30 u(DO(z)),

This and Corollary 10| give the result. ]
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Let us see now that the inequality is strict.

Proof of the necessity part in Theorem B. Assume that A € Int .7:;’? . We know that D} ¢(A) <

1/27. In order to see that D3 ,(A) < 1/2 consider, given ¢ > 0, a net ¥ associated to 2¢¢ such
that Z := A U X is p-separated.

Lemma 45. Denote Z = {z}. For every m € Nand ¢ > 0 there exist C' > 0 and functions
fx € F3° such that

@) fu(z) =1L
(b) fi(z;) = 0forall z; € DV(z).

(©) |fe(2)] < CM(A)e?D—0) 1

L+ dg(z )
@) [ frllg00 < CM(A)€—¢(zk)_

Proof. Assume first that z, = A € A. By hypothesis there exists g, € ]-'f; C F;° with
gr(Ae) =1, 9(X;) = 0, and |[gk[[ 75> < M (A)e=?*+), Since A plus a finite number of points is
still in Int 77 (Lemma, we can take gj so that moreover gk(aj) =0if |\ — ;| < 1/ep(Ax)
and g(c;) =0,7=1,..., M, where ¢c; = A\ + 26p(\e)ed 5 and & > 0 is taken so that the balls
{B(X, 109)}, are pairwise disjoint.

By construction of the nets there exists C' independent of z and ¢ such that #X N D¢ (z) < C
for any ¥ net of density /.

Define then

fi(z) = (20)™ ni )pM(Zk).

(z—c1) - (z—cm
It is clear that f; € .7-“;0 satisfies (a) and (b).

For z ¢ UM, D°(c;),

|z — 2 |z — 2z
and the estimate follows from Lemma [4]

For z € D°(c;) we have

o) < 124 ),

Estimating like in (iii) in the proof of Theorem [18| we get |fi(2)| < CM(A)e?Z)=9Gn) ag
desired.

In case z;, = o0 € 3, use again that A plus one point is ]-"j—interpolating and start with
gk € F; C F;° such that gi(04) = 1, gx();) = 0 for all j. Then proceed as before. |

Lemma 46. 7 < Int ]—";O.
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Proof. Given v = {v;.}; € (3 (Z) consider the pseudo-extension

E()(z) = Z Uk fr(2).

Let us see first that E(v) € F;°. By (c) above and Lemma@ we see that for any z € C

—¢(z - —d(z 1
e ?DIEW)(2)] S ) luele™ k)]_—’—dM—(ZZ) S vllee(z)-
=1 o y “k

Let R denote the restriction operator from F;° to £2°(Z). In order to see that Z is in Int Flte)s
k

it will be enough to prove that || RE — I||,, < 1, since then (RE)™' =1+ >~ (RE —I)
converges and E(RFE)™! defines an inverse to R.

By Lemma [45|(b) and (c)
IRE@) — ol = [{ 3 ouds)}yen] .,
kik£j 5(2)
e 1
<swpe™® > fullhE) S CMWllge DL s
jeN kizj ¢ D/ (21) kiz; ¢ DY/ (z,) ¢ \“Jr <k
By Lemma [] and Corollary [7] if m is big and ¢ is small enough we have
IRE(v) = vllezz) < 1/2 [[0]lez(2),

thus ||RE — I||,, < 1/2, as desired. [ |

By this Lemma and the results above we have DX ¢(Z ) < 1/2m, i.e for all 6 > 0 there exists
so such that for all z € C and s > s

na(z,sp(2)) + ns(z,8p(2)) < (1/27 +0)u(D*(2)).
By Lemma , Dy, (%) = ¢/m, thus for all § > 0 there exists ¢ such that for all ¢ > ¢,
in(etp(2) 2 (/7 — u(D'())  zeC.
This shows that for 6 > 0 and s big enough
1—2¢

na(z,sp(2)) < ( +20) p(D*(2))  z€C,

hence D} 4(A) < 1/2. [ ]
APPENDIX. ALTERNATIVE CONSTRUCTION OF PEAK FUNCTIONS. (THEOREM [I8)])

It will be enough to prove that for any ¢ there exist C', & > 0 such that for all n € C there is
P, holomorphic with P,(n) = 1 and

|P,(2)| < Ce?@—2m min{1, (|Zp(_7727|)6}7
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since then we can apply this to €5 /m ¢(z), take the m-th power and use Lemma to conclude.

We claim that there exists f,, holomorphic with fn( ) =0, f)(n) = 1and
[fa(2)] S ”720 2 () [ p(2).

Once this is proved we take P,(z) = f,(z)/(z — n) and use Lemma|2|to deduce that

A < oo P12 =nli-s _ oo P oo
P 5 e L0l ALy - ¢ b,

In order to construct the function f, define first
|2 =n*\ &
F(z)=(z—n)X efn(2),
( p*(n) )

where [, is a holomorphic function such that Re H,, = h,, (see Lemma([I3]) and X" is a smooth
cut-off function with X = 1 for |(| < 1, X = 0 for |¢| > 2 and |X”| bounded.

Notice that by construction and by Lemma|[I3] we have
p)|E(2)le?) < p*(m)e .
Lemma 47. There exists u solution to Ou = OF such that u(n) = du(n) = 0 and
lue™?pll o) < Cp*(m)e

Once this is proved we take f, = F' — u and we are done.

Proof. First we show that there exists a solution u as in the statement but satisfying an analo-
gous L? estimate instead of the L> one. We use Hormander’s theorem [Hor94): for every 1
subharmonic in C there exists a solution u to Ju = JF" such that

/|u]2 -2 <o/|aF|2 -
Ay

1
. /D s |2 = C|AG(C)dm(C).

Take s so that u(D*(n)) = 8. By the doubling condition there exists ¢ depending only on the
doubling constant C'a, such that s < c. Then

47 1
T Ap=-Ap et
WD ()0 TR0

By construction v is bounded above. Notice also that there exists C' > 0 (independent of 7)
such that —v(z) < C for all z € supp(9F). Since |0F| < e, we deduce from Hormander’s
estimate and Lemma [I3] that

Jluper < [lper <o [ e g e e
C (o D2(n)\D(n)

Define v = ¢ + 2v, where

v(z) =log |z —n| -

A > Ag —
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On the other hand

~ |z — 1|
thus necessarily u(n) = du(n) =

for |z —n| <ep(n),

Let us see now that u satisfies also the L> estimate. For any z € supp(OF) define

Kol o),

U(C):W

where K > 0 will be chosen later on. Then
2
_ p*(z)
/ QP40 < Bl o) S 7(2)

Also, since p(¢) ~ p(n) on supp(OF), we have

o(2) sup Ul = sup L) pp(g)je-s < 1
ceD(z) cen(z) P*(1)e=
We choose K (independent of z) so that
1
(a) / U C 2672¢(C) <1,
2 Joy )
(b) p(z) sup |8U( e O <1,
¢eD(z)
We will be done as soon as we prove that
U(2)]e ™ < C.
This is consequence of [Ber97, Lemma 3.1] applied to the function V' (¢) = u(p(z)( + 2).
Defining ¢.(¢) = ¢(p(2)C + z) and changing to the variable w = p(z)( + 2 we see that
yd
/|v O Om(e) = [ P S <o
D(z) p (Z)

and

sup [0V (O)[2e72©) = sup |0U(w)[>e 2™ p(2) < 1.
ceb weD(n)

Thus, by [Ber97, Lemma 3.1] [V (0)|?e=%:(?) < Ce=%=, where

0. = sup{e(0) 1 ¥ < 0, A = A, .
Defining v so that ¢)(2) = v(p(2)¢ + z) we see that

ap, = sup{v(z) : v <0:Av = Agp}.

The function v(w) = ¢(w)—h,(w)—¢(z)— Ais negative in D(z) if A is big enough (Lemmal13)
and v(z) = —A. Hence ag, > —Aand |U(2)[?e72¢%) = |V(0)]2e2¢:(0) < CeA, as desired. W
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