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Abstract

In this work, we propose a non-parametric density estimation technique for measuring the
risk in a credit portfolio, aiming at efficiently computing the marginal risk contributions. The
novel method is based on wavelets, and we derive closed-form expressions to calculate the
Value-at-Risk (VaR), the Expected Shortfall (ES) as well as the individual risk contributions
to VaR (VaRC) and ES (ESC). We consider the multi-factor Gaussian and ¢-copula models
for driving the defaults. The results obtained along the numerical experiments show the
impressive accuracy and speed of this method when compared with crude Monte Carlo
simulation. The presented methodology applies in the same manner regardless of the used
model, and the computational performance is invariant under a considerable change in the
dimension of the selected model. The speed-up with respect to the classical Monte Carlo
approach ranges from twenty-five to one-thousand depending on the used model.
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1 Introduction

Portfolio credit risk represents one of the most important sources of risk that any financial
institution has to face with. As an important part of the credit risk management process,
some common risk measures are usually employed like the well-known VaR and ES. Besides
the calculation of these measures, the decomposition of the total risk of a given portfolio into
the individual risk contribution of each obligor is a problem of practical importance. Identi-
fication of risk concentrations, portfolio optimization or capital allocation are, among others,
relevant examples of application. An important amount of papers have addressed the problem
of decomposing the total risk into the individual parts (see for instance [211, [11 [9]).

The problem of obtaining the risk contributions represents a great challenge from the com-
putational standpoint. Within the credit risk literature, many authors rely on Monte Carlo
simulation, since it is straightforward to implement and can be easily extended to multi-factor

*Corresponding author. E-mail: alvaro.leitao@udc.gal.
TE-mail: luis.ortiz-gracia@ub.edu.



models. This fact makes Monte Carlo methods very attractive for practitioners. By following
this approach, the problem of computing the risk contributions is basically reduced to the com-
putation of a certain expectation conditioned on a rare event, which makes the plain application
of Monte Carlo method rather inefficient. To overcome this issue, most of the methodologies
proposed in the last few years usually include more advanced simulation tools. By far, the
so-called importance sampling technique (originally applied as a variance reduction technique)
appears to be the most promising development, providing a significant performance gain with
respect to the plain Monte Carlo. Some representative works were proposed in [7, 8, 22] or,
more recently, in [12]. Particularly in [22], the author presents an approach based on kernel
estimators, but this methodology differs from ours since it is applied within the context of the
importance sampling, so the kernel estimation is not employed to recover the loss distribution
itself. All in all, the application of importance sampling often requires the knowledge of the
portfolio behavioural model, i.e., it is somehow model dependent. Different techniques based on
Markov chain Monte Carlo in [10] or Finite Difference in [I6] have been recently proposed, but
all these approaches have in common that, generally speaking, simulation implies a relatively
big computational cost to control the variance.

Following the classical approach the calculation of VaRC' and ESC requires the computa-
tion either of an expectation given that the total loss equals the VaR value (for VaRC) or an
expectation given that the total loss is greater than the VaR value (for ESC'). These expecta-
tions are therefore calculated by simulation conditioned on a rare event, and this fact makes
impractical Monte Carlo methods for big portfolios (which are typically encountered in real
situations). From the theoretical point of view, as pointed out by [2], it is not guaranteed that
risk contributions to VaR are always smaller than their respective exposures and it is therefore
worth computing the ESC as well.

In this work, we propose a non-parametric density estimation based on wavelets. The starting
point is the sample of the total loss variable generated by Monte Carlo simulation. Then, the
density is estimated either with Haar or Shannon wavelets and the VaR and ES are obtained. It
is worth remarking that the main focus of this work is the computation of risk contributions once
risk measures are available. Here, we entirely focus on the Euler’s capital allocation principle
[2, [I5] to compute the risk contributions for the VaR and the ES. The Euler’s capital allocation
principle can be used under the framework of positive homogeneous risk measures of degree
one, so our approach is not only valid for these two risk measures, but also for others like, for
instance, the unexpected losses, defined as the standard deviation of the total portfolio losses.
According to the Euler’s capital allocation principle, we take derivatives of the risk measures
(VaR or ES) with respect to the exposures and we obtain the VaRC and ESC. While the
Haar family has desirable properties like compact support and gives us positive densities by
construction, we finally prefer the Shannon family due to its robustness and easy handling. We
test our method with one- and multi-factor Gaussian and ¢-copula models. These models belong
to the class of structural models and they are currently used in practice, since they are the
models in force given by the regulators. The computation of VaRC' by means of Monte Carlo
simulation is particularly difficult due to the sensitivity of the results with respect to the length
of the interval selected containing the VaR value in the conditional expectation mentioned above.
In contrast, the wavelets based method gives impressive results, both in accuracy and speed.
For obtaining comparable results in accuracy, Monte Carlo needs between 25 (for the one-factor
model) and 1000 times (for multi-factor models) the CPU time required by our method. While
the wavelet machinery is not affected by increasing the number of factors in the model, Monte
Carlo needs three times more seconds of CPU time when moving from 5 to 25 factors. Moreover,
our methodology is model-free in the sense that it stays the same and it applies in the same
manner, regardless of the model employed for driving the defaults. To the best of our knowledge,
this is the first time that this technique is used for solving the capital allocation problem by
means of Euler’s capital allocation principle. Multiple tests carried out along this work make us



think that this novel method can be used within the risk management toolkit of financial firms.

The paper is organised as follows. We formulate the credit risk problem and describe the
one- and multi-factor models in Section 2. In Section 3, we give an overview of wavelets and
multi-resolution analysis, and explain in detail the non-parametric density estimation procedure
for obtaining the risk measures and risk contributions. Section 4 is devoted to the numerical
experiments and Section 5 concludes.

2 Problem formulation

Let us consider a portfolio consisting in /N obligors. Each obligor is characterized by the exposure
at default, the probability of default and the loss given default. While the first two parameters
will be denoted by E; and Pj, j = 1,..., N, the third parameter is assumed to be 100% for all
the obligors. These are the so-called capital parameters and they are typically estimated from
default data.

Assume now that we are in the framework of Merton’s firm-value model. Let Vj(t) denote
the asset value of obligor j at time ¢ < T', where T is the time horizon (typically one year).
The obligor j defaults when its value at the end of the observation period, V;(T'), falls below a
certain threshold, 7;, i.e, V;(T') < 7;. We can therefore define the default indicator as,

Dj =1y, (1)<ryy ~ Be (B (V;(T) < 75)),

where Be(p) is a Bernoulli distribution with probability of success p. Given Dj, the individual
loss of obligor j is defined as,

L;j=Dj;-Ej,
while the total loss in the portfolio reads,
N
L=) 1L, (1)
j=1

2.1 Factor models for portfolio credit risk

Factor models belong to the class of structural models. Within this class of models, loss only
occurs when an obligor defaults in a fixed time horizon T'. Based on Merton’s firm-value model,
to describe the obligor’s default and its correlation structure, we assign to each obligor a latent
random variable called firm-value. The firm-value (or, more precisely, the asset value log-return)
of each obligor is split into two terms: one common component usually called systematic factor,
and an idiosyncratic component for each obligor. Depending on the number of factors of the
systematic part, the model can be classified into the one- or multi-factor class. In the following
we briefly describe the models used in this work.

2.1.1 Omne-factor models

In the one-factor model setting, the firm-value of obligor j, V;, at time T is represented by a
common, standard normally distributed single factor ¥ component and an idiosyncratic Gaus-
sian noise component ;. The dependence structure between the latent random variables is given
by the use of copulas. Thus, these models are also called one-factor copula models. Two models
are usually considered in practice. The so-called Gaussian copula model,

Vi=VpiY + /1= pjej, (2)

where Y and ¢; are i.i.d. standard normal random variables for all j =1,..., N. Alternatively,
as an extension of the model in Equation , the so-called t-copula model was introduced to



take into account tail dependence [20],

=\ (VY 4 VI ). 3

where 1,--- ,en,Y ~ N(0,1), W follows a chi-square distribution x?(v) with v degrees of
freedom and €1, -+ ,en, Y and W are mutually independent. Scaling the model in Equation
by the factor y/v/W transforms standard Gaussian random variables into ¢-distributed random
variables with v degrees of freedom. For both models, the parameters p1,---,pn € (0,1) are
the correlation coefficients. In case that p; = p, for all j = 1,..., N, the parameter p is called
the common asset correlation.

According to the Merton’s model described above, obligor j defaults when its firm-value
falls below the threshold level 7;. The threshold is therefore defined by 7; := ®~}(P;) or
Tj = @;1(]3]-) for the Gaussian and ¢-copula models respectively, where ®~! denotes the inverse
of the standard normal cumulative distribution function and ®;! is the corresponding inverse
distribution function of the ¢-distribution (with v degrees of freedom).

2.1.2 Multi-factor models

Multi-factor models aim to capture complicated correlation structures. We consider the ex-
tension to multiple dimensions of the models presented in Section [2.1.1} i.e., the multi-factor
Gaussian copula model and the multi-factor ¢-copula model.

The d-factor Gaussian copula model assumes that the covariance structure of [V1,...,Vy] is
determined by the multi-factor model,

Vi=ajY +bje;, j=1,-- N. (4)

where Y = [V, Ys,... ,Yd]T denotes the systematic risk factors. Note that we represent vectors
by bold symbols throughout the paper. Here, a; = [a;j1,a;0,... ,ajd]T represents the factor
loadings satisfying a]Taj < 1, and ¢; are standard normally distributed random variables repre-
senting the idiosyncratic risks, independent of each other and independent of Y. The constant
b;, being the factor loading of the idiosyncratic risk factor, is chosen so that V; has unit variance,

ie., bj = \/1 — (a?l +ay o a?d), which ensures that V; is N'(0,1).

The incentive for considering the multi-factor version of the Gaussian copula model becomes
clear when one rewrites it in matrix form,

Vi ai a2 aiq bie1

Va a1 a22 azd baea
= ) Yi+ . Yo+ + ) Yo+

Vn an1 an2 ang bnen

While each €; represents the idiosyncratic factor affecting only obligor j, the common factors
Y1,Ys ..., Y, may affect all (or a certain group of) obligors. Although the systematic factors
are sometimes given economic interpretations (as industry or regional risk factors, for example),
their key role being that they allow us to model complicated correlation structures in a non-
homogeneous portfolio.

Similarly, the multi-factor t-copula model definition reads,

14 .
Vj:,/W(a;Fijgj), j=1,---,N, (5)

where Y, ¢;,a; and b; are defined as before, with W ~ 2(v).



2.2 Risk measures and risk contributions

Within this work, we will use two well-known measures of risk, the VaR and the ES. For the
sake of completeness, we give an overview of these two measures.

Definition 1. Given a confidence level a € (0,1) and the vector of exposures E = [Ey, Es, ..., En]7,
we define the portfolio VaR,

VaRy(E)=inf{l e R:P(L<LE)>a}=inf{leR: F(; E) > a},

where Fr, is the distribution function of the total loss random wvariable L (we emphasize the
dependence of VaR with respect to the risk exposures).

Definition 2. Given the loss variable L with E[|L|] < oo and distribution function Fr, the ES
at confidence level o € (0,1) is defined as,

1 1
ES,(E) = / VaR,(E)du.
l—-a/,
When the loss variable is integrable with continuous distribution function, then the ES
satisfies (see Lemma 2.4.2 of [I3]) the equation,

ESq(E) = E[L|L > VaRq(E)], (6)
or, in integral form,
1 too
ES.(E) = / zfr(z; E)dz, (7)
1 —a Jvara(B)

where fr, is the probability density function of the total loss random variable L. Thus, in the
continuous case, ES can be interpreted as the expected loss in the event that VaR is exceeded.
In the discontinuous case, a more elaborated formula holds (see Section 2.4 of [I3] and the
references therein).

A problem of paramount importance in the practice of quantitative risk management is
allocating the risk to the elements of the portfolio, based on their individual contribution to the
corresponding risk measure. This leads to the computation of VaRC and ESC. This problem
is known as capital allocation and a solution to this problem is the Fuler’s capital allocation
principle which states that when a risk measure is positive-homogeneous (like VaR and ES) and
differentiable with respect to the exposures then,

N N
dVaR, 0ES,
J=1 J=1
If we define,
dVaR,, JES,,
VaRCOéJ' = E]TE](E), a].'ld7 ESOO&,] = EJTE](E)’ (9)

as the contribution of obligor j to the VaR (respectively ES) at confidence level a, then, subject
to technical conditions (see Section 8.5 of [I5] and the references therein for details), it can be

shown that,
VaRC, ; = E[L;|L = VaRy(E)], j=1,...,N, (10)

and,
ESC.; =E[L;|L > VaR(E)], j=1,...,N. (11)



3 Wavelet-based estimation of the loss distribution

3.1 Multi-resolution analysis

For the sake of clarity we devote a section to the basic theory on wavelets. A basic reference on
wavelets is [5].

Consider the space of square-integrable functions, denoted by L?(R). A general structure for
wavelets in L2(R) is called a multi-resolution analysis. We start with a family of closed nested
subspaces in L?(R),

LCVacVacVicVvicWmC..., [ Vn={0}, | Vn=IL*®),
meZ MEZ

where,
f(x) € Vi <= f(22) € Vi1

If these conditions are met, then there exists a function ¢ € 1, that generates an orthonormal
basis for each subspace Vy,, denoted by {¢m, k}rez, where ¢, x(z) = 2m/2¢(2mx — k). The
function ¢ is usually referred to as the scaling function or father wavelet.

For any f € L?(R), a projection map of L?(R) onto V,,, denoted by P, : L2(R) — Vy,, is
defined by means of,

me(x) = Zcm,k¢m,k($)a with Cm,k = <f7 ¢m,k> )

keZ

where (f,g) := [p f(2)g(x)dz denotes the inner product in L? (R), with g being the complex
conjugate of g. As opposed to Fourier series, a key fact regarding the use of wavelets is that
wavelets can be moved (by means of the k value), stretched or compressed (by means of the m
value) to accurately represent the local properties of a function.
Following wavelets theory, a function f € L? (R) can be approximated at the level of resolu-
tion m by,
(@) % Puf (@) = 3 eompomp (), (12)

keZ
where Py, f converges to f in L? (R), i.e. ||f — Pmfll2 — 0, when m — +oc. Considering higher

values of m (i.e., when more terms are used), the truncated series representation of the function
f improves.

3.2 Non-parametric density estimation by wavelets: application to the loss
distribution

In this section we briefly describe some concepts of the non-parametric density estimation using
wavelets and its application to recover the density function of the loss distribution. For more
detailed description of wavelet density estimation, we refer the reader to [24] 25] for example.

Given i.i.d samples from an unknown statistical distribution X with density function denoted
by fx, we apply the wavelet theory to approximate fx. We consider here the so-called linear
wavelet estimator (or simply linear estimator) which, after the truncation of the infinite sum in
Equation , is written as,

fX(x) ~ Z Cm,k(bm,k(x):
k

where k varies within a finite range of values that will be determined later on, and the coefficients
Cm,k are given by,

Cm,k = <fX7 ¢m,k> = /RfX(w)Q_ﬁm,k (ZL’) dr =E [ém,k (X)] ) (13)

6



where, as mentioned, ¢ represents the complex conjugate of ¢. The last equality comes from the
fact that fx is a density function. As stated by Vannucci in [23], the linear estimator overcomes
the classical series estimators (Fourier, Hermite) that appear to be poor in estimating local
features of the density since they have poor time/frequency localization properties. On the
contrary, wavelets are localized both in time and frequency. Furthermore, the linear estimator
can be written in terms of the so-called reproducing kernels [1], belonging therefore to the general
class of delta sequence estimators. This facilitates its asymptotic analysis, showing faster rates
of convergence than other classical methodologies, specially for the case of continuous (regular)
densities.

Let us estimate the density function of the loss variable L by means of the wavelet estimator
presented above. We first generate by Monte Carlo simulation a sample of size n corresponding
to the loss variable L and denoted by L!,..., L™. Given a realization of the systematic factor
Y (respectively Y') within the class of one-factor models of Section [2.1.1] (respectively multi-
factor models of Section , defaults become independent. In what follows, we denote by
D} the default indicator of obligor j and realization of the systematic factor i, where ¢ =

1,...,n,j7=1...,N. For convenience, we consider the transformation Z = i:s, and we define
. 17 .
AR Lb_aa,z =1,...,n, where,

= min (L' = LY.
a= min (L), b= max (L)
This normalization transforms the sample interval [a, b] into [0, 1], where the Haar scaling func-
tion is naturally defined. Further, it can prevent from potential numerical instabilities and/or
computational inaccuracies, produced by the big numbers appearing in practice.
From Equation we obtain the following unbiased estimator for the wavelet series coeffi-
cients,

ia%Z%,k(Zi)- (14)
i=1

C ke i= 5

Next, using the wavelet density estimation, the unknown density f;, of L can be therefore
approximated as follows,

K
T—a
N E E C ) 15
(a5 B) = ol B) 1= 3 = (15)
where, as it will become clear in Section and Section by construction, the lower
bound for index k is equal to zero, while the upper limit is K = 2" — 1.
The distribution function of L will be used for computing the risk measures and risk contri-
butions and it can be derived by using expression as follows,

K
Fr(z; E) : / foly; B)dy =~ Fp(z; E) : Zcmk/ ¢>mk<
k=0

We note that the integral in the right hand side of expression ((16)) will be solved either exactly
with Haar wavelets (details in Section [3.3.1)) or approximately with Shannon wavelets (details

in Section [3.3.2)).

) dy.  (16)

3.3 Computation of risk measures and risk contributions

The VaR value is obtained by using a root-finding method to solve the following equation,

Fr(z;E) = a, (17)



where F, 7(z; E) is defined in expression and « is the confidence level given in Definition
As pointed out in Section 5.2.4 of [2], although the distribution of the portfolio loss L in
is discontinuous, it will appear to be “close to continuous” when the portfolio is large. It is
therefore a common practice to compute the ES by means of expression . Thus, we replace
fr(z; E) in expression (7)) to obtain an estimation of the ES,

1 * R
ES.(E) ~ / xfr(z; E)dx, (18)
I —a Jvara(E)
and then by we get,
k b r—a
ES.( TP < > dz. (19)
s VaRu (E) b—a

It is worth remarking that the VaR value can be obtained directly from the samples gen-
erated by Monte Carlo simulation and the ES can be consequently computed by means of @
Nevertheless, for the sake of completeness, we use the methodology presented in this work for
their estimation.

The risk contributions (VaRC and ESC') will be calculated by following the Euler’s capital
allocation principle in , since the distribution function F' 1 (z; E) is differentiable with respect
to the exposures (in the case of Haar basis we approximate the scaling function by a differentiable
function). Technical conditions under which the equalities and hold, are difficult to
verify in practice. Despite of this, a benchmark solution for VaRC' (respectively ESC') will be
computed by Monte Carlo simulation using the expectation on the right-hand side of Equation
(10) (respectively Equation ), since those expectations decompose the total risk (see for
instance [7]).

Looking at expression , the VaR value satisfies,

Fi(VaRo(E): B) = o, (20)

and, if we differentiate expression (20) we obtain,

OVaR, G (VaRa(E); E) Gk (VaRa(E); B)
VaRCoyj = B “(E) = ~ B =g . (21
8xL( )’:c VaRq (E) fL(VaROc(E);E)
If we integrate by parts then,
1 b .
S (E) ~ b— aVaRa(E) — / Fy(z: E)ds | | (22)
1-a VaRa(E)

and finally, by taking partial derivatives of with respect to Ej;, we end up with the risk
contributions to the ES,

ESCo, = B, aaE]Sf

1 N 0VaR, (E) + oVaR,
T1-a Y oE OE,

b R
R E/ @(x;E)dx.

(E)

1— « J VaRa(E) 8E]
(23)
From expressions and , we see that VaRC and ESC require the computation of the
partial derivative of the distribution function with respect to the exposures, 6Fgg_;E). Given the
J



wavelet approximation of Fr in which depends on Ej; only through the coefficients ¢, i, we
can compute the required partial derivative as,

OFy, 0 r r y—a k oe A y—a
E<$?E):@ <kzzocm,k/a Pk (b—a) dy) => 8E;- j Pk (b—a> dy, (24)

where, from expression ((14) we have,

Ok G, 1 1< , 1 1<0mp, . 23m/2 1
LA - 7 — - 7ty — 2mZz k
OF; OF; <b—an;¢m’k( )> b—an; OF; (27) = b—a Z ¢ )
(25)

and we assume that ¢ is differentiable.

Remark 1. The computation of the expression on the right hand side of Equation can be
rewritten as an sparse matriz-vector multiplication, which provides a significant improvement in
terms of computational efficiency in our routines.

The accuracy of the data-driven approach presented so far, depends on the family of wavelets
selected to approximate the density function. Within this work, we consider the Haar and
Shannon wavelets. While the estimation of the density function by means of Haar wavelets
gives always positive values (by construction), their derivatives either do not exist or vanish
to zero. This fact hampers the calculation of the partial derivatives in expression , which
is a crucial step when computing VaRC and ESC. We overcome this problem by using a
differentiable approximation of the Haar scaling function. Despite of this approximation, we
will show that Shannon wavelets give us a more robust and easy handling solution. We give the
details in Section [3.3.9] and Section

3.3.1 Haar wavelets

The Haar scaling function reads,

0, otherwise.

o(z) = {1’ v=wed, (26)

While ¢, i, is easily calculated by replacing the Haar scaling functions ¢, x(x) = 22 (27—
k), with ¢ defined in , in Equation , its partial derivative with respect to Ej, requires the
derivative of the Haar scaling function, which does not exist in the context of regular functions.
In the context of generalized functions, we can write,

¢'(x) = d(x) — d(z — 1),

where § represents the Dirac delta function. The Haar scaling function can be rewritten in terms
of the difference between two Heaviside functions as follows,

¢(z) = H(x) — H(x - 1),

H(m):{o, z <0,

1, >0.

where function H is defined by,

Next, we consider a well-studied approximation of the Heaviside function (see for example
[3]) which turns out to be differentiable,

1 1
H(x) ~ Hs(z) := 5t - arctan (%) ,

™



where s is a parameter close to zero to control the steepness of the approximation. Then, the
derivative of the Haar scaling function can be finally approximated by,

T2+ 7w((x—1)2+s2)

¢'(x) ~ Hy(x) - Hy(z — 1) = (27)

In what follows, we derive expressions for computing the ES, VaRC' and ESC for the partic-
ular previous approximation of Haar wavelets.

Lemma 1. Let [Z!,(k),Z% (k)] denote the support of ¢my(x), with IL (k) == a + 52k and
7% (k) == a+ %52 (k +1). Then,

/b Thm (”” - “) o gz { TR = b (max (VaRo(B). Z3,(R)) ) i Ti(k) > VaRa(E).
R, (E)

Va b—a 0, otherwise,

where h(z) := %

Proof. The proof follows immediately by observing that ¢y, ;(x) has compact support on the
bounded interval [Z}, (k), Z% (k)]. O

Lemma 2. Let R(x) be the ramp function with unit high defined as,

0, z <0,
R(z)=<z, 0<z<l,
1, x> 1.

Then,

x y—a o—m/2 m(T—a\)
/a ¢m,k(b_a)dy—2 (b a)R(2 (b_a> k>
Proof. The proof is immediate by distinguishing whether or not x belongs to the support of

Qbm,k(x) Il

Lemma 3. Let us define hi(x) := %M — kx and ha(x) := x. Then,

b x _
o o)
VaRa(E) Ja b—a

_b—a [ h(Ta) — i (max (VaRa(E), T, (k)) ) + ho () = ha (Ta(k) if Tis(k) > VaRa(B),
272 | by (b) — o (VaRo(E)), if T%(k) < VaRa(E).

Proof. The proof directly follows from the use of Lemma O

The ES is calculated by means of expression and Lemma [I| The VaRC' is obtained by
formula and Lemma |2[ and the ESC' by formula and Lemma We underline that

0l ks
OF;

is computed from expression by using H.(xz) — H.(xz — 1) instead of ¢'(z).

3.3.2 Shannon wavelets

The Shannon scaling function reads,

sin(rzx) .

f
¢(r) = sinc(z) = e 70,
1, ifx =0,

10



where sinc(x) is usually called cardinal sine function. Further details on Shannon wavelets can
be found in [4].

One of the advantages of using Shannon wavelets is that the scaling function is differentiable,
allowing this way a direct computation of risk measures and risk contributions. More precisely,
in Equation , we need the derivative of the scaling function which, in the context of Shannon

wavelets, reads,
cos(mz)  sin(mx)
— f 0
d)={ = o 10 (28)
0, if x =0.
In what follows, we derive expressions for computing the ES, VaRC' and ESC for the partic-
ular case of Shannon wavelets.

Lemma 4. Let x1, 2 be real numbers, K., = QZ_IW and v, J,m,k € Z. Then,

B(anvaz) = [ cos (16, (27 — k) dy = g (50 (16 (272 = k) = sin (K, (271 1)),
Iy(x1,x9) = /12 ycos (Ky (2™y —k))dy = (Qm;{)z (cos (Ky(2Mx9 — k)) — cos (K, (2™x1 — k)))
1 5
4 lem (22 sin (K (272 — k) — 21 sin (K, (272 — k),

and,

Ly(a1, ) = / " sin (K, 2™y — k) dy = lefq (cos (K, (2721 — k) — cos (K (2™as — k)

Proof. The result directly follows from integration by parts formula. O

Lemma 5. Let I1(x1,z2) and Iy(z1,z2) defined as in Lemma . Then,

b _ m/2 271 _ _
r—a 2 VaR.(E) — a VaR.(E) — a
/VaR E$¢m’k(b—a>de2J1 E (b a)<a11< o ,1>+(b a)12< — 1) ).
a( ) ’y=1

Proof. Using the classical Vieta’s formula [6], the cardinal sine can be expressed in terms of the
following infinite product:

—+00

¢(x) = sinc(z) = H cos (2—7> : (29)
1

If we truncate the infinite product in expression to a finite product with J terms, then,
thanks to the cosine product-to-sum identity in [19], we have,

! |

T v -
H cos (2—7) = 57 E cos ( 57 7m:> . (30)
=1 y=1

b
By Equations and the Shannon scaling function can thus be approximated as,
1 XL /2y
v —
o(x) ~ 571 Z cos ( 57 7r:1:> . (31)
y=1

Then, we obtain

b r—a 2”‘/22‘]_1 b r—a
Thm k ( ) de ~ — / T Ccos (K <2m ( ) — k>> dz.
Loy o () o e 2 [ oo (55 (2 (5

=1

Finally, the expected result holds by applying the change of variables y = =7 and Lemma

Ml O

11



Remark 2. The approximation of expression 1s used throughout the paper. It is therefore
of utmost importance the determination of integer J. An extensive error analysis is performed
in [18]. Based on that analysis, we select the value J = [logy(2™m)]|, where [x]| denotes the
smallest integer greater or equal than x and m is the scale of approzimation. Once the scale is
calculated (see Section for details) then J remains fized.

Lemma 6. With the same notation as before,

gm/2 27 r—a
/ ¢mk< a>dyN2J_1 (b_aﬂl(()’b—a)'

v=1
Proof. We use (31), then we make the change of variables z = ¥=2 and finally we apply Lemma
O
Lemma 7. Let I3(x1,22) defined as in Lemma . Then,
/ [ oma (422
VaRe
2 VaRo(E)
—a aR, —a .
m Zl <(b — a)[g <b—a’ 1) + (b — V(I/RQ(E)) SIH(K»}, . k)) .

y=

Proof. The proof follows from using and Lemma O

The ES is calculated by means of expression and Lemma [5| The VaRC' is obtained by
formula and Lemma |§| and the ESC' by formula (23)) and Lemma |7} In the case of Shannon

wavelets, we underline that aaég’_k from expression 1| is computed using ¢'(z) in .
J

3.4 Optimal scale of approximation m

As for any other density estimation algorithm, the free parameters need to be set in order to
achieve an optimal convergence in the estimation. In this context the so-called Mean Integrated
Squared Error (MISE) is the most commonly employed measure of the error. This error can
be split into two terms, bias and wvariance. It is well established that the bias and variance
present an opposite behaviour depending on the number of terms used in the approximation
of the density, which in the present work is determined by the scale of approximation m. It
is therefore essential to find a balance between these two errors to achieve the minimal overall
error. The selection of m has been intensively studied in the literature, being our main reference
Section 12.3 and Section 12.4 of [25]. We summarize here some relevant results that we take for
our work.

The MISE is defined as,
. 2
MISE = / E [(fL(x; E) - fu(x; E)) ] da,
R

where f; is the estimated density and fy, is the true density function. In Section 12.4 of [25] the
author introduces an expression for the difference in the MISE between two consecutive levels
of resolution, i.e., the MISE at scale m (denoted by e,,) and the MISE at scale m — 1 (denoted
by em—1). We adapt here that expression, noting that we are using a linear wavelet estimator.
Thus we have,

—em-1=— / D (T fL($E)dCU—n+1de1ka (32)
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Figure 1: MISE difference. Setting: p = 0.05, N = 20, P; = 0.5, E; = C'/j, where C'is a constant
chosen such that Z;VZI E;=1.

where the coefficients d,, j, are defined as dp, ;, = E [, 1 (Z)], being ¥y, 1 (x) = 2/ 20p(27 g — k)
and v the mother wavelet. The mother wavelet is the counterpart of the father wavelet ¢
according to a multi-resolution analysis. In [5, the expressions of ¢ for Haar and Shannon
wavelets are presented. Expression can be therefore approximated, given the samples Z?,
by,

1S n o ntlgn (1 N\
em—em1 X — D Y b (Z) - —— (n > Umtk (Zl)> : (33)
i=1 k=0 k=0 i=1

InF igurewe depict the approximated difference in the MISE given by , for an increasing
scale m and several sizes of sample, n. In order to complete the analysis, we present the
differences e,, — eg in Table [I, By observing both tests, we can see that, after reaching a certain
scale of approximation, increasing m does not give any further improvement in the MISE. This
fact suggests that an iterative algorithm can be developed to determine the optimal value for
m. It has been suggested in [25] a recursive procedure to optimally choose the parameter m.
This approach starts from a high value of m and decrease it until a big jump in the differences
of the MISE is produced. Then, the scale m producing the jump is selected as the optimal
one. However, no mechanism of how to choose the initial value of m and the size of the jump
is provided. Furthermore, the evaluation of expression for high values of m can be very

expensive in terms of computational effort and this is a key aspect in our work.

€m — €8

m 7 6 ) 4 3 2 1 0
n=10% | —0.0029 —0.0698 —0.2508 —0.3712 —0.3088 0.1615 0.3058 1.3730
n=10%| 00124 —0.0088 —0.0004 —0.0011 0.1130 0.5686 1.1156 2.2211
n=10* | —0.0049 —0.0059 —0.0059  0.0209 0.1256  0.5370 1.1122 2.2190
n=10° | —0.0001  0.0010 0.0075 0.0351 0.1495 0.5886 1.1529 2.2973
n=10% | 0.0005 0.0023 0.0097 0.0372 0.1496  0.5880 1.1593 2.3035

Table 1: MISE difference. Setting: p = 0.05, N =20, P; = 0.5, E; = C/j, where C' is a constant
chosen such that Zjvzl E;=1.

Following similar arguments as in [25], we present an slightly different approach that turns out
to be more efficient and robust. Notice firstly that the computational cost of evaluating the ex-
pression in Equation highly depends on the number of terms in the expansion K which, at the
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same time, presents a dependence on m. Then, we propose to start the procedure from m = 1.
Next, we can proceed by increasing the level of resolution m until some prescribed tolerancdﬂ in
the difference e,, —e,,—1 is reached. We summarize in Algorithm(I|the optimal scale selection pro-

Algorithm 1: Optimal selection of m.

Data: n, Z° and ¢,
m=1// Initial guess
cedure.  while |e| > ¢, do
m=m+1// Increasing m by one in each iteration
L € =é€m —en—1 // Compute the difference in the MISE by expression

return m

Once the optimal value for m has been selected, we summarize in Algorithm [2] the steps to
follow for the computation of VaRC' and ESC' employing the approach presented in this work.

Algorithm 2: Computation of VaRC and ESC based on wavelet density estimation.

// Portfolio configuration.

Data: a, N, Pj, Ej.

// Loss simulation settings.

Data: n, d, p; (when d =1), a;,b; (when d > 1).

[LﬂD;] = Samples_generation(N, P;, E;, n, d, p;), Vi,Vj

a = minlgign (LZ) 5 b= maxi<i<n (Ll) N Zz = li:__a Vi // Sample

a

transformation.
m = Optimal_scale(Z) // By Algorithm
ém = Wavelet_coefficients(Z'), // By Equation
fL(:r;E) = Density_estimation(¢,, i, a, b) // By Equation (|15
Fy(z; E) = Distribution_estimation (¢, 4, a, b) // By Equation (T6)
VaR,(E) = VaR _estimation (o, Fy(z; E)) // By Equation (I7)

aé'm Jk

oL = Partial wavelet_coefficients(Z?, D;-), Vj // By Equation ({25

%(m; E) = Partial,distribution(aaég]ﬁk) Vj // By Equation (24

VaRC, ; = VaRC_estimation(VaR,(FE), %(ZC;E), fr(z; E)),Vj // By Equation
e A

ESC,,; = ESC_estimation(VaR,(E), g—%(x;E)), Vj // By Equation ([23))

return VaRC, ; and ESC, ;

4 Numerical experiments

This section is devoted to test the technique presented in this work in the context of the credit
risk decomposition (computation of the quantities VaRC,, ; and ESC,, ;, Vj), and to compare it
against the classical approaches, based on crude Monte Carlo simulation, by assessing different
important aspects. Particularly, we mainly focus on accuracy, robustness and efficiency of our
methodology.

The experiments have been conducted in a computer system with the following character-
istics: CPU Intel Core i7-4720HQ 2.6GHz and memory of 16GB RAM. The numerical codes
have been implemented in C programming language. We have employed the GNU Scientific
Library (GSL), specifically the packages to handle vectors and matrices, random number gener-
ation (Mersenne T'wister MT19937), statistical distributions (Normal, t-student and x?), BLASE-]

IFor the experiments in this work, we set €, = 0.1.
2Acronym of Basic Linear Algebra Subprograms.
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operations (sparse matrix-vector multiplication) and root-finding algorithms (Brent-Dekker).

Two credit portfolio configurations are considered, presented in Table The confidence
level, «, is set to 99% for all the experiments. Both portfolios will be coupled with the use of
various models given in Section 2.1 In Section numerical experiments on a Gaussian one-
factor model are conducted, taking advantage that reliable reference values are available. More
complex multi-factor models are analysed in Section where the gain in robustness provided
by our method is highlighted. The computational performance is tested in Section [4.3]

Portfolio | N P
P1 | 10000 0.08
P2 | 25000 0.05

f=.|—fs.|— Qt.i]

Table 2: Portfolio configurations.

We assume that an initial sample set of size n = 10° for the loss distribution L is given, as
well as the corresponding realizations of the default indicators D;,Vj. The VaR and ES values
are computed from these samples, either directly as a quantile or by means of the recovered
density. The computational cost of generating the samples and calculating the risk measures is
not included in the reported times.

4.1 Experiments on one-factor model

In this section, we consider the one-factor Gaussian copula model . The parameter p is set
to 0.15 for portfolio P1 and 0.12 for P2. The t-copula model will be used in its multi-factor
version in Section

4.1.1 Comparison: Haar versus Shannon

In this section, we compare the performance of the novel methodology presented here when
it is used either with Haar or with Shannon wavelets. Our preliminary experiment consists of
presenting the estimated densities of the loss random variable, L, for portfolio P1. We can see in
Figure [2] the resulting densities for both Haar- and Shannon-based estimations. The individual
scaling functions, ¢, x(z),k =1,...,K, are also depicted, to give an insight of how the density
is locally approximated by each of the wavelet bases. Note that, by construction, Haar basis
always provides a positive density function, a desirable statistical property. That is not the
case when employing Shannon basis since, due its trigonometric nature, negative values are
theoretically achievable. In practical situations, given a sufficiently high number of samples, we
can assume that Shannon-based estimation also keeps the positiveness in the density (i.e., the
negative values are negligible).

Next, we perform a numerical test on credit portfolio management, focusing especially on
risk contributions calculation. As a reference, we will employ the wavelet-based closed-form
solution introduced in [I4], extended to the computation of credit risk contributions in [17].
This numerical method provides a highly accurate approximation for the case of the one-factor
Gaussian model, and it is based on the inversion of the Laplace transform associated to the loss
variable L. We will denote it here by WA method, which originally stands for Wavelet Approz-
tmation. In Figure [3| the tail probabilities obtained by our method are depicted. We observe
that our approach employing both Haar and Shannon wavelets results in good approximations
to the tail probability, for both Portfolios P1 and P2.

However, the main goal of this work is the credit risk contributions computation which is
much more involved and some differences between Haar- and Shannon-based estimations arise
and become clearer. The risk decomposition obtained by the Haar wavelet estimator is affected
by the steepness parameter choice required in expression . We recall at this point that
smaller s gives better approximations of the Heaviside function, i.e., this parameter must tend
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Figure 2: Estimation of the densities for portfolio P1 with Haar (left plot) and Shannon (right

plot).
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Figure 3: Tail probabilities for portfolios P1 and P2.
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Figure 4: Haar vs. Shannon - Portfolio P1: risk contributions (j = 1,...,10).
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Figure 5: Haar vs. Shannon - Portfolio P2: risk contributions (j =1,...,25).

to zero (s — 0) in order to accurately approximate the Haar scaling function. However, the
smaller s the worse is the approximation obtained to the risk contributions. Moreover, there is
not a prescription on how to choose s to get better approximations. In contrast, the estimation
by means of Shannon wavelets is highly accurate. All these facts are shown in Figure [4] where
the risk contributions to VaR and ES for portfolio P1 are presented. For the sake of clarity, we
only show the outcomes for the first ten obligors which, according to the portfolio configuration,
have the bigger exposure, being of major interest. We want to point out the decreasing shape
of the Shannon plot in accordance with the reference as well as with the decreasing exposures
of obligors. The use of Shannon wavelets estimator turns to be more precise and stable in the
approximations.

We carry out a similar experiment as above, but now on portfolio P2. We can see the first
25 VaRC and ESC obtained values in Figure Again, the results employing Haar basis are
rather unstable, specially in the case of low values of s. As before, Shannon basis gives more
accurate and robust estimations.

We also provide the total sum of the individual risk contributions in Table [3] which, as estab-
lished in , has to reproduce the risk measure itself, either the VaR or the ES. As expected, the
use of Haar basis (for several choices of parameter s) results in poor and uncontrolled approxi-
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mations while Shannon wavelet estimation preserves the allocation properties. For the reasons
given above, from now on we discard Haar wavelets and use the Shannon family in the following

experiments.
Portfolio P1 Portfolio P2
Z VaRCa,j Z ESC’a,j Z VaRCa,j Z ESCQJ
| WA (m=10) [ 0.3227 0.3658 | 0.2153 0.2429 |
Haar (s =10"1) [ 0.2667 0.3440 0.1847 0.2315
Haar (s =1072) ||  0.4016 0.4684 0.1762 0.2799
Haar (s =1073) |  0.6411 0.4236 0.0753 0.1599
Shannon 0.3236 0.3681 0.2091 0.2457

Table 3: Influence of the steepness parameter s, in the Haar-based data-driven approximation.

4.1.2 Comparison: Shannon versus Monte Carlo methods

Our methodology intends to be an alternative to pure Monte Carlo simulation-based tech-
niques for the computation of the risk allocation problem, particularly in terms of efficiency
and robustness. As mentioned, Monte Carlo simulation is rather inefficient due to its poor
theoretical rate of convergence. According to the reasons given in Section {.1.1} we choose
Shannon basis for our next experiments. We therefore carry out an experiment comparing
the outcomes provided by the Shannon wavelets density estimation approach presented in this
work and a couple of plain Monte Carlo approaches in computing the risk contributions. As
shown in Section under the Euler’s capital allocation principle, there are two equivalent
ways of expressing the risk contributions, one in terms of partial derivatives, see @]}, and other
one in terms of expectations, see and . Monte Carlo simulation can be employed on
both equations, by introducing some numerical mechanisms to approximately solve them. As
a first Monte Carlo based alternative, we consider the well-known Finite Difference numerical
methodﬂ applied to the partial derivative appearing in expression @ Given the samples of
default indicators, D;-,j =1,...,N,i=1,...,n, and a proportional shift parameter ﬂ the risk
decomposition can be addressed as presented in Algorithm [3] corresponding to the central finite
difference version. We denote this approach as FDMC. As usual, the main issue of FDMC is the
proper selection of 6, whose optimal value is not known a priori, i.e. it is problem dependent.

3In [16] for example, finite difference method was employed in the risk contributions computation context.
4The shift parameter 0 is given in percentage, since the individual exposures can differ much (in size) one from
each other, producing inaccurate estimations.
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Figure 6: FDMC vs. Shannon - Portfolio P1: risk contributions (j = 1,...,10).

Algorithm 3: Finite Difference Monte Carlo (FDMC) method.
Data: N, n, D; and 6
for j=1,...,N do
E;” = (1+0)E; // Shifting up.
E}iw =(1—-60)E; // Shifting down.
fori=1,...,ndo
i )i pup N i U .
Ly =DSE;" + 3 4 p2; D;E;" // Shifted up loss sample.
by = D;E}iw + Zi\szk# D;.E;-iw // Shifted down loss sample.
E" = [Ey,.. .,E;.‘p, ...,EN]T // Shifted up vector of exposures.
Edv — [Eq, ... ,E;-iw, ...,EN]T // Shifted down vector of exposures.

VaRCa,j ~ Ej (VaRa (E“p;;E\;aRa (Edw)> _ VaRa(Eup);GVaRa (Ew) // FDMC VaRC.

ESC,, ~ E; (Esa(E“”ZIija(Edw)> _ ESQ(EW’);eESa(Ed“’) // FDMC ESC.

return VaRC,, ; and ESC, j, Vj

In Figures [6] and [, the FDMC contributions for several values of 6 are presented. We
observe that the precision provided by FDMC highly depends on 6, as expected. In general
terms, the VaRC estimations by FDMC are unsatisfactory and worse than the ones provided
by our method with Shannon wavelets. Note however that FDMC turns to be an acceptable
candidate to compute the ESC, although it slightly violates the allocation principle, see Table
Furthermore, FDMC does not require any extra simulation, since it receives the initial sample set
(n = 10°) as an input, just like our wavelet density estimation based method. Nevertheless, as
the FDMC procedure implies to reconstruct the loss distribution for each obligor, the technique
becomes significantly inefficient in terms of computational effort, see Section |4.3

Let us now propose a second Monte Carlo based alternative to compute the risk decompo-
sition. We focus on the VaR contributions, since their calculation is rather involved for pure
simulation methods, as seen above. According to , each obligor’s contribution to the VaR
is defined as an expectation, for whose estimation the plain Monte Carlo method is a natural
candidate. Since the VaR is nothing else than a quantile (typically obtained at high confidence
levels), the calculation of VaRC' by crude Monte Carlo requires an artificial artifact to avoid an
impractically huge number of simulations. As it is commonly done in the industry, we consider
an interval around the VaR and we select the scenarios falling into that interval. To be more
concrete, instead of using exactly the right hand side of expression , we instead compute
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Figure 7: FDMC vs. Shannon - Portfolio P2: risk contributions (j = 1,...,25).

Portfolio P1 Portfolio P2
ZV&RCOCJ' ZESCQJ' ZV&RCOCJ‘ ZESCa,j
| WA (m=10) [ 0.3227 0.3658 [ 0.2153 0.2429 |
FDMC (0 =10"1) |  0.3706 0.3775 0.1979 0.2559
FDMC (6 =1072) |  0.3667 0.3777 0.1902 0.2562
FDMC (9 =10"3) |  0.3266 0.3777 0.2087 0.2562
Shannon 0.3236 0.3681 0.2091 0.2457

Table 4: Influence of the shift parameter 6, in the FD-MC approximation.

E[L;|L € (VaRo(E) — €, VaR (E) + €)], for several choices of €. In accordance with [10], we will
call this alternative as the pseudo Monte Carlo (pMC) method. Note that, since the VaR value is
obtained from the initial sample set, pMC requires to perform an extra Monte Carlo simulation
to preserve the statistical properties. As it will be shown in the numerical examples, the pMC
estimator on E[L;|L € (VaR,(E) — €, VaR,(E) + €)] is quite sensitive to €, which needs to be
arbitrarily selected. Further, recalling that the VaR is a very extreme quantile, the number of
generated scenarios falling around it might be insufficient to provide accurate estimations. We
therefore include the approximations given by the pMC approach with an increasing number
nye of Monte Carlo scenarios, at the cost of more computational effort, specially when a high
number of factor are employed. They are compared with our methodology based on density
estimation with Shannon wavelets, where it is worth recalling that the calculations have been
carried out with the initial sample set of size n = 10°.

Next, we present the results of the pseudo Monte Carlo approach in computing the VaR
contributions. First, in Figures [§ and [9] the VaRC' curves are plotted. An straight line on
the horizontal axis represents that the pMC method with the chosen configuration (nyc and
€) was unable to provide results, i.e., no single scenario has fallen into the selected interval
around the VaR. We can easily observe that the accuracy of the pMC estimations for the VaR
contributions highly depends on a particular choice of nyc and €, resulting in rather imprecise
approximations, even when we employ very high number of Monte Carlo simulations. When the
length of the interval is too wide, the approximation is very smooth but tends to underestimate
the true value. In contrast, if the interval is very narrow some peaks can appear, requiring
higher number of scenarios to remove them. Note that the presence of peaks in the curves, also
observed in the approximations provided by the FDMC approach, is not desirable, since it would
mean that smaller exposures involve higher risks (and vice versa), and this fact is nonsensical
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when the probabilities are equal across the whole portfolio. Thus, in order to produce accurate
estimations employing Monte Carlo methods, an appropriate balance between nyc and e for
pMC, or an optimal choice of 8 for FDMC, are crucial aspects, for the selection of which no
prior knowledge is available. In contrast, our wavelets-based technique overcomes most of these
problems, producing stable and precise estimations obtained with an impressive reduction of
the computational effort. This is due to the fact that the derivatives are computed analytically
instead of numerically.

0.08 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.08
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Figure 8: VaR contributions (VaRC') with Monte Carlo varying e. Portfolio P1.

Finally, we give in Table[5|the three smallest (MinRE) and the three biggest (MaxRE) relative
errors when computing the contributions to VaR for portfolio P1. Again, the benchmark is the
VaRC' calculated with the WA method. As expected, our Shannon wavelets-based method
provides accurate estimations. This experiment brings out that FDMC produces bigger errors,
specially important when § — 0. Generally speaking, pMC approach provides comparable
precision as Shannon with nyc = 107 and € € {1073,107°}, but, as we will show in Section
at much higher computational cost.

4.2 Experiments on multi-factor models

We consider the multi-factor models presented in Section 2.1.2l This type of models entails
computational challenges from the numerical standpoint due to the curse of dimensionality. In
accordance to the results presented in Section the FDMC method is discarded.
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Figure 9: VaR contributions (VaRC') with Monte Carlo varying e. Portfolio P2.
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Portfolio P1

Method Samples MinRE MaxRE
FDMC (# =107 1) n=10° 4.95 x 1073,5.36 x 1073,8.34 x 107> 2.90,2.90,2.90
FDMC (6 = 1077) n=10° 6.81 x 1072,6.83 x 1072,7.54 x 1072 2.90,2.90, 2.90
FDMC (0 = 107) n = 10" [1.02 x 1071,9.85 x 10~ *,1.00] [2.90, 2.90, 2.90]
nuvc = 10° [ [3.27 x 1072,3.31 x 1072,3.92 x 10~ [2.07 x 107 1,2.19 x 107 1,2.62 x 107 ]
pMC (e =10"1) | numc = 10° || [9.02 x 1072,9.04 x 1072,9.09 x 10~ [1.43 x 1071,1.70 x 1071,2.75 x 1071]
nae = 107 || [1.05 x 1071, 1.15 x 1071, 1.15 x 10~ [1.45 x 1071,1.79 x 1071,2.89 x 107]

[ ]

[ ]

[ ']

navc = 10° || [3.83 x 107,150 x 10~ 2,1.90 x 10~ 7] [1.00,1.11,1.21]

pMC (e=10"2%) | nmc =10° || [3.76 x 107*,1.13 x 1073,2.00 x 107%]  [3.63 x 107*,3.78 x 107*,3.89 x 107?]
[ ]

nvc = 107 || [4.03 x 1075,1.95 x 1075,3.24 x 10~ [1.49 x 1071,1.52 x 1071,1.62 x 107]
nmvc = 10° — —
pMC (e =10"%) | nmc = 10° || [7.50 x 1073,3.31 x 1071,4.86 x 107" [2.90, 2.90, 2.90)
navc = 107 || [1.54 x 107*,4.63 x 107%,5.41 x 10™%] [1.14,1.26,1.26]
| Shannon | n=10" [[[8.07x107°,1.03 x10~%,1.35 x 10_"] [8.07 x 10~",8.09 x 10~1,8.90 x 10~ '] |

Table 5: VaRC: minimum and maximum relative errors: one-factor Gaussian copula model,
portfolio P1.

The classically employed pMC simulation approach, besides the inconvenients already men-
tioned above, is further impacted by the model dimensionality which, in combination with
an increasing number of simulations, makes its application very expensive. In contrast, the
methodology presented here is model-free in the sense that, given the initial samples of the loss
distribution (independently on the model used for generating them), we compute the VaRC
(and ESC) values in an efficient, robust and accurate manner.

We consider first the multi-factor Gaussian copula model given by Equation . In terms
of model dimensionality, two cases are considered, d = 5 and d = 25. The factor loadings a;
are randomly generated in both cases following a uniform distribution in (0,1). The obtained
VaRC values (for portfolio P1) are depicted in Figure |10| (for d = 5) and Figure [L1| (for d = 25),
varying again the width of the interval by means of € and the number of systematic scenarios
nyc for the pseudo Monte Carlo approach. Since no reference is available, the most reliable
reference comes with the combination of a narrower interval (e € {1073,1075}) and very high
number of scenarios (nyc = 107). Taking this into account, the results confirm the excellent
estimation provided by our methodology which matches almost perfectly that reference value.

We repeat the previous experiment but considering this time the multi-factor ¢-copula model
described in Equation . The model parameters are selected in the same way as before,
including in this case the degrees of freedom parameter, set to v = 7. In Figure [12| and Figure
the results are presented for dimensions d = 5 and d = 25, respectively. As expected, the
wavelets-based approach performs very well compared to Monte Carlo.

4.3 Computational performance

So far, it has been shown that the technique proposed in this work provides accurate and robust
estimations. A third important component is the computational performance of the method-
ology with respect to the approaches relying on Monte Carlo. In simulation-based approaches,
this is a key aspect since a desirable balance between precision and efficiency is achieved by re-
ducing either the execution time given a prescribed accuracy or the approximation error given a
computational budget. We therefore conduct an experiment to compare the computational per-
formance of our method based on wavelets density estimation against the Monte Carlo methods.
By analysing the previous experiments, we observe that, in order to get satisfactory approxi-
mations using pMC, the number of systematic scenarios needs to be set to at least nyc = 106,
requiring in many cases a higher amount for stability purposes.

The execution times (given in seconds) and the scale of approximation m needed for different
models are presented in Table [6] (one-factor Gaussian copula), Table [7] (multi-factor Gaussian
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Figure 10: Multi-factor Gaussian copula: VaR contributions portfolio P1 and d = 5.

copula) and Table |8 (multi-factor t-copula). We also include the speed-up taken with respect to
our technique. In all the cases, the presented method outperforms Monte Carlo-based methods,
achieving an impressive speed-up in some particular situations, especially when multi-factor
copula models are considered. It is worth pointing out that, as observed in Table [7| and Table
the CPU time employed with Shannon wavelets does not depend on the dimension d of the
model considered (while pMC is highly dependent on the number of factors of the model).
As mentioned, the performance of our technique is basically impacted by the scale parameter
m, chosen from the MISE. As a general insight, we get higher m for sharper distributions or
distributions including non-common features, like a significant mass at zero or several modes,
barely appearing in practical situations. This is partially observed, for example, in the cases of
the one-factor Gaussian model (Table |§[) or the multi-factor ¢-copula (Table , which achieve
relatively high m’s. Still, the presented machinery based on wavelet density estimation provides
a remarkable reduction of the computational cost with respect to Monte Carlo methods.

5 Conclusions

In this work, we have investigated the computation of risk contributions to VaR and ES in a credit
portfolio by means of non-parametric density estimation based on wavelets. This problem is
usually referred as capital allocation and it is of paramount importance for financial firms. It is a
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Figure 11: Multi-factor Gaussian copula: VaR contributions for portfolio P1 and d = 25.
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Portfolio P1 (m = 8) | Portfolio P2 (m = 9)
Method Samples Time Speed-up Time Speed-up
Shannon | n = 10° 212 x1 1257 x1
FDMC n=10° 8646 x41 35122 x 28
pMC | nyc = 10° || 1246 %6 3140 X2
pMC | nyc = 107 || 12397 x 58 30636 x 24

Table 6: Time and speed-up: one-factor Gaussian copula model.

d=5(m=7) d=25(m=7)
Method Samples Time Speed-up | Time Speed-up
Shannon | n = 10° 90 x1 91 x1
pMC | nyc = 10° || 3330 x37 9759 x107
pMC nyc = 107 || 33260 x 370 99252 x1091

Table 7: Time and speed-up: multi-factor Gaussian copula model. Portfolio P1.

common practice the use of Monte Carlo simulation to perform the calculation. However, Monte
Carlo-based techniques turns out to be a very demanding method from the computational point
of view, since once the loss random variable L has been simulated, the VaRC' and ESC require
the computation of either partial derivatives with respect to the corresponding risk measures,
or expectations given that the total loss equals the VaR value (for VaRC') or is greater than the
VaR value (for ESC). When combined with finite difference numerical derivation, Monte Carlo
simulation entails the reconstruction of the entire loss distribution over the number of obligors.
Moreover the estimations are inaccurate and unstable, specially in the case of the contributions
to the VaR. If a direct application of Monte Carlo is considered, the expectations conditioned
on a rare event have to be calculated by additional simulations, and this fact makes Monte Carlo
methods prohibitive for large portfolios (which are typically encountered in real situations).

We propose a novel methodology based on non-parametric density estimation with wavelets.
The starting point is the sample of the loss variable L generated by simulation. Then, the
density is estimated either with Haar or Shannon wavelets. Finally, we take derivatives of
the risk measures (VaR or ES) with respect to the exposures and we obtain the VaRC and
ESC. While the Haar family has desirable properties like compact support and gives us positive
densities, we finally prefer the Shannon family due to its robustness and easy handling.

We test our method with one- and multi-factor Gaussian and t-copula models. These models
belong to the class of structural models and they are currently used in practice, since they are
the models in force given by the regulators. The computation of VaRC' by means of Monte
Carlo simulation is particularly difficult due to the sensitivity of the results with respect to
free parameters, i.e., the numerical derivative spacing or the length of the interval selected
containing the VaR value. In contrast, the Shannon-wavelets based method gives impressive
results, both in accuracy and speed. For obtaining comparable results in a reasonable accuracy,
Monte Carlo needs between 25 (for the one-factor model) and 1000 times (for multi-factor
models) the CPU time required by our method. Furthermore, while the Shannon-wavelets
machinery is not affected by increasing the number of factors in the model, Monte Carlo needs
three times more execution time when moving from 5 to 25 factors. Moreover, our proposed
methodology is model-free in the sense that it stays the same and it applies in the same manner,
regardless of the selected model.

To the best of our knowledge, this is the first time that this technique is used for solving
the capital allocation problem by means of Euler’s capital allocation principle. Multiple tests
carried out along this work make us think that this novel method can be used within the risk
management toolkit of financial firms.
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d=5 (m=238) d=25(m=28)
Method Samples Time Speed-up | Time Speed-up
Shannon n = 10° 210 x1 213 x1

pseudo MC | nye = 10° || 3181 x15 10376 x49

pseudo MC | nyc = 107 || 33135 x 158 99932 x 469

Table 8: Time and speed-up: multi-factor ¢-copula model. Portfolio P1.

Appendix A. Mother wavelet functions

Here we present the definition of the mother wavelet functions for both Haar and Shannon
families. Thus, in the case of Haar basis, the mother wavelet reads,

1

1 0<r <=

) —_ ‘:l:. 27

(@)= _q, %§$<1,
0, otherwise,

while the Shannon mother wavelet is defined as,

sin (7 (z — %)) —sin (27 (z — 1))

™ (z=3)

P(x) = = 2sinc(2x — 1) — sinc(x).
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